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Abstract

We consider the problem of reconstructing a planar convex set from noisy obser-

vations of its moments. An estimation method based on pointwise recovering of the

support function of the set is developed. We study intrinsic accuracy limitations in the

shape�from�moments estimation problem by establishing a lower bound on the rate

of convergence of the mean squared error. It is shown that the proposed estimator is

near�optimal in the sense of the order. An application to tomographic reconstruction

is discussed, and it is indicated how the proposed estimation method can be used for

recovering edges from noisy Radon data.

1 Introduction

In this paper we consider the problem of reconstructing a planar region from noisy mea-

surements of its moments. Let G denote a simply connected compact set on the plane

belonging to the interior of the unit disc D. Assume that complexZZ
D

zm1G(x; y)dxdy; z = x+ {y; m = 0; 1; : : : (1)

or geometric ZZ
D

xkyl1G(x; y)dxdy; k; l = 0; 1; : : : ; (2)

moments can be observed with gaussian noise having zero mean and variance �2. The

shape�from�moments problem is to reconstruct the set G from noisy measurements of its

moments.

The problem of reconstructing the shape of a planar object or region from indirect measure-

ments arises in numerous applications. Milanfar et al. (1995) study recovery of polygons

from the moment data and establish close connections of the shape�from�moments problem

to array processing. Milanfar, Karl and Willsky (1996) develop a moment�based approach

to tomographic reconstruction. An application in geophysics is discussed in Golub, Milan-

far and Varah (1999). For detailed literature survey on the shape�from�moments problem

we refer to Elad, Milanfar and Golub (2002).

Most reconstruction methods described in this literature deal with reconstructing polygons

and are based on the so-called Motzkin�Schoenberg formula. If z1; : : : ; zn designate the

vertices of a polygon G in the complex plane, and if f is an analytic function in an open

set containing G, then the Motzkin�Schoenberg formula states that

ZZ
G

f 00(z)dxdy =
nX

j=1

ajf(zj); (3)
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where coe�cients fajg do not depend on f , and are determined completely by the vertices

z1; : : : ; zn (and the way they are connected) [cf. Milanfar et al. (1995)]. Choosing f(z) = zk

in (3) we obtain

k(k � 1)

ZZ
G

zk�2dxdy =

nX
j=1

ajz
k
j ; (4)

so that the weighted complex moments [cf. (1)] are expressed directly through the ver-

tices z1; : : : ; zn of the polygon G. The next step is to observe that the sequence of the

weighted complex moments in (4) satis�es a linear homogeneous di�erence equation whose

characteristic polynomial has the roots z1; : : : ; zn. In this way the problem is reduced to

estimating the roots of a characteristic polynomial from noisy observations of a sequence

satisfying the corresponding linear homogeneous di�erence equation. This idea underlies

the Prony method widely used in signal processing. Elad, Milanfar and Golub (2002)

describe di�erent estimation techniques (including Prony�based) and provide extensive

simulation results.

Although various algorithms has been developed in the aforementioned literature, their

statistical properties have not been studied thoroughly. Most studies focus exclusively on

algorithmic and implementation aspects for reconstructing polygons. Recovery of quadra-

ture domains from exact moment measurements is considered in Gustafsson et al. (2000).

We note, however, that in practically all applications involving reconstruction of shapes

from moments the e�ect of noise is signi�cant (Golub, Milanfar and Varah, 1999). There-

fore understanding intrinsic accuracy limitations in the shape�from�moments estimation

problem is important.

The goal of this paper is to develop an optimal and computationally e�cient algorithm

for estimating convex compact planar regions from noisy observations of their moments.

Our approach to the shape�from�moments problem is based on pointwise estimation of the

support function. It is well�known that the boundary of a planar convex set is completely

characterized as the envelope of the support lines that graze the set in di�erent directions.

The distance between a support line and the origin as function of the angle (direction) is the

support function. Thus pointwise estimation of the support function leads to a pointwise

estimate of the set boundary. Closely related problem of reconstructing a convex set from

noisy data on its support function has been considered in Prince and Willsky (1990) and

Fisher et.al. (1997). We refer also to Korostelev and Tsybakov (1993) for various models

related to estimating sets from noisy data.

The main contributions of this paper are the following. First we develop an estimator

of the support function based on noisy measurements of the geometric moments (2). It

is shown that the mean squared error of this estimator converges to zero at a very slow

logarithmic rate as � ! 0. We argue that this rate cannot be essentially improved in the

sense of the order. Therefore the shape�from�moments problem is e�ectively insoluble in

practical terms whenever noisy measurements of geometric moments are given. The reason

is that the design functions xkyl, k; l = 0; 1; : : : are non�orthogonal. Considering the choice
of the design functions as a part of our estimation procedure, we develop a method with

fast polynomial rate of convergence. In particular, we show the mean squared error of

our pointwise estimator converges to zero at the rate O([�2 ln��2]1=�) as � ! 0, where
� 2 [1; 2] is a constant depending on the local behavior of the set G in the vicinity of the

estimated support value. We establish a lower bound showing that the proposed estimator

is near�optimal in order within a logarithmic ln(��2) factor. We discuss application of the
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proposed procedure for reconstructing a convex set from noisy Radon data and demonstrate

that the same rates of convergence are achieved in this particular inverse problem.

It is interesting to compare our results with results obtained for the problem of recovering

edges from indirect observations. The shape�from�moments problem can be considered

as a problem of estimating the indicator function of a planar set from noisy moments

measurements. In this setup reconstruction methods based on orthogonal series expansions

have been developed [see, e.g. Liao and Pawlak (1996, 2002)]. It is important to emphasize,

however, that traditional linear methods behave poorly when the function to be estimated

has edges. This fact is re�ected by slow rates at which the estimation error tends to zero as

� ! 0. Recently Candés and Donoho (2002) developed a method for recovering bivariate

functions with edges from noisy Radon data. The method is based on recently introduced

curvlet decomposition of the Radon operator. This technique applied to the problem of

estimating the indicator function 1G(�; �) from noisy Radon data yields an estimator with

the mean integrated squared error of the order O(�4=5) as � ! 0, provided that the

boundary of the set G is twice di�erentiable. In Section 4 we show that in this particular

setup for convex G the edge can be estimated with pointwise mean squared error of the

order O([�2 ln��2]1=�) for some � 2 [1; 2]. This is much faster than the rate indicated

above.

The rest of the paper is organized in the following way. In Section 2 we consider the problem

of reconstructing a convex set from noisy measurements of its geometric moments. The

case of orthogonal design is treated in Section 3. In Section 4 we discuss application of the

proposed algorithm to tomographic reconstruction. Section 5 contains the proofs.

2 Reconstruction from geometric moments

Let f�k;lg be the geometric moments of G given by

�k;l =

ZZ
D

xkyl1G(x; y)dx dy; k; l = 0; 1; : : : :

The objective is to reconstruct the set G using noisy observations

yk;l = �k;l + �"k;l ; k; l = 0; 1; : : : ; (5)

where f"k;lg are independent standard gaussian random variables. In what follows we

always assume that the origin belongs to the interior of the set G.

It is well�known that the boundary of a convex planar set G can be characterized as an

envelope of the support lines `G(�) of the set G in directions ! = (cos �; sin �)0, � 2 [0; 2�).
The line `G(�) is orthogonal to ! and tangent to the set G in !-direction. The support

function � = �(�), � 2 [0; 2�) is de�ned as the distance from the origin to the corresponding

support line `G(�) [cf. Figure 1]. More formally, the support line `G(�) at angle � for the
closed and bounded planar set G is given by

`G(�) = f(x; y) : x cos � + y sin � = �(�)g;

where

�(�) = sup
(x;y)2G

fx cos � + y sin �g
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�

G

�(�)

! = (cos �; sin �)0

`G(�)

Figure 1: The geometry of support lines

is the support function. We note that the support function �(�) takes values in [0; 1] for
� 2 [0; 2�). In what follows we concentrate on pointwise estimation of the support function

�(�) of the set G using noisy observations of its moments. We call the value of support

function �(�) at a single direction given by �, the support value.

From now on, for the sake of de�niteness, we assume that � 2 [0; �) and de�ne the function

g�(t) =

ZZ
D

1[t;1](x cos � + y sin �)1G(x; y)dx dy; for 0 � t � 1: (6)

If � 2 [�; 2�) then we de�ne g�(�) by (6) with 1[t;1](�) replaced by 1[�1;t](�) under the

integral sign. Clearly, g�(t) is the Lebesgue measure (denoted by Lf�g) of the intersection
of G with the half�plane f(x; y) 2 D : x cos � + y sin � � tg:

g�(t) = LfG�(t)g; G�(t) := f(x; y) 2 D : x cos � + y sin � � tg \G: (7)

It follows from (7) that g�(�) = 0 for all t 2 (�(�); 1] and grows monotonically as t decreases

from �(�) to zero. This property of g�(�) underlies construction of our estimator.

Let fpn(x)gn=0;1;::: be the orthonormal Legendre polynomials on [�1; 1], and let

pn(x) =

nX
j=0

�n;jx
j; and pn(x) =

r
2n+ 1

2
Pn(x):

Denoting u = x cos � + y sin � and expanding the function 1[t;1](�) into Fourier series with

respect to this orthonormal system we can write 1[t;1](u) =
P

1

n=0 anpn(u), where for n � 1

an = an(t) = �
Z t

�1

pn(u)du = �
r

2n+ 1

2

Z t

�1

Pn(u)du

=
1p

4n+ 2

h
Pn�1(t)� Pn+1(t)

i
; (8)

and the series converge in L2(�1; 1). Here we used the following well�known properties of

the Legendre polynomials [see, e.g., Erdéyi et al. (1953, v. II, Chapter X)]

(2n+ 1)Pn(x) = P 0

n+1(x)� P 0

n�1(x); Pn+1(�1) = Pn�1(�1); 8n:
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Then (6) is rewritten as

g�(t) =

1X
n=0

an

ZZ
D

pn(x cos � + y sin �)1G(x; y)dxdy

=
1X
n=0

an

nX
j=0

�n;j

ZZ
D

(x cos � + y sin �)j1G(x; y)dxdy

=

1X
n=0

an

nX
j=0

�n;j

jX
m=0

�
j

m

�
cosm(�) sinj�m(�)�m;j�m : (9)

These considerations lead to the following natural estimator of the function g�(t). We

de�ne

ĝN� (t) =

NX
n=0

an

nX
j=0

�n;j

jX
m=0

�
j

m

�
cosm(�) sinj�m(�)ym;j�m ; (10)

where fyk;lg are given by (5), and N is a natural number to be chosen.

Theorem 1 Let G be a convex set in the interior of the closed disc D1�h of the radius

1� h centered at the origin. Let ĝ��(t) be the estimator de�ned in (10) and associated with

N = N� :=
j 1

ln32

n
ln
� 1

�2h2

�
� ln ln

� 1

�2h2

�ok
: (11)

Then for any � 2 [0; �) and � small enough

sup
t2(0;1�h]

E jĝ�� (t)� g�(t)j2 � C1

h
h2 ln

� 1

�2h2

�i
�1

;

where C1 is an absolute constant.

Now we de�ne the estimator of the support value � = �(�) at angle � 2 [0; �). For �xed

r = r� > 0 let

�̂(�) = maxft 2 (0; 1� h] : ĝ��(t) � rg; (12)

where ĝ��(t) is given by (10) and (11). Observe that for small enough � and r < LfGg
the estimate �̂(�) is well�de�ned. It follows from (8) and (10) that ĝ��(�) is a continuous

function of t; hence ĝ�� (�̂(�)) = r.

To analyze accuracy of the above estimator we introduce assumptions on the local behavior

of the boundary of the set G in the vicinity of the support point � = �(�).

We say that G belongs to the class G�(�;L) if there exist positive numbers �,
L, and � such that

g�(t) � Lj� � tj�; for t 2 (� ��; �): (13)

It is important to emphasize that the class G�(�;L) is de�ned for a �xed direction ! =
(cos �; sin �)0, so that in general constants L, �, and � depend on �. For simplicity we omit

this dependence from the notation.
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Because g�(t) is the Lebesgue measure of the set G�(t) given by (7), the above condition

speci�es the rate at which this measure increases as t decreases from �(�) to zero. It is

easily veri�ed that ifG is convex then necessarily 1 � � � 2 for any angle �. Next examples

illustrate how parameters � and L of the class G�(�;L) are related to geometrical properties

of the set G.

Examples:

1. Let G be a convex polygon. Then for any direction ! which is not perpendicular to

the sides of the polygon, G belongs to class G� with � = 2. The constant L depends in

an evident way on the angle between two adjacent sides of the polygon corresponding to

the support vertex. This situation corresponds to the minimal increase of the Lebesgue

measure of G�(t) as t varies in an open left vicinity of the support value �(�). If the

direction ! is perpendicular to a side of the polygon, then the corresponding support line

contains that side. In this case G belongs to G� with � = 1, and we have the maximal

increase of LfG�(t)g as t varies in an open left vicinity of �(�).

2. IfG is a circle or an ellipse, thenG 2 G� with � = 3=2 for any direction ! = (cos �; sin �)0.
More generally, let (�; !) denote the coordinate system on the plane associated with

direction ! = (cos �; sin �)0. If in some vicinity of the point � = �0 where the sup-

port value � = �(�) is attained, the boundary @G of the set G can be represented as

f(�; !) : ! = � � c(� � �0)
qg for some c > 0 and q > 1, then G 2 G� with � = 1 + 1=q.

Now we are in position to state the main result of this section.

Theorem 2 Let conditions of Theorem 1 be ful�lled. Let �̂ be the estimator associated

with N = N� given by (11) and

r = r� :=

"
4 ln ln

�
1

�2h2

�
h2 ln

�
1

�2h2

�
#1=2

:

Then for � small enough

sup
G2G�(�;L)

E j�̂ (�)� �(�)j2 � C2(hL)
�2=�

"
ln ln

�
1

�2h2

�
ln
�

1
�2h2

�
#1=�

; (14)

where C2 is an absolute constant.

Theorem 2 indicates that the estimator �̂ converges to the support value �(�) at a very slow
logarithmic rate. In fact, it can be argued that this rate cannot be substantially improved,

see remark immediately after Theorem 5 in Section 3. As proofs of the Section 5 indicate,

this slow convergence rate is a consequence of the fact that the monomials xkyl, k; l =
0; 1; : : : are highly non�orthogonal, and each geometric moment brings a small amount of

information about the set to be estimated. It was recognized widely in the literature that

even if exact measurements of the moments are available, this non�orthogonality leads to

unstable reconstruction algorithms.
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3 Reconstruction from Legendre moments

In this section we show that the estimation accuracy can be substantially improved by

more careful choice of design functions. Typically in applications involving reconstructing

shapes from moments design functions can be selected; geometric and/or complex moments

are usually used only for the sake of simplicity and convenience. For discussion of these

issues we refer to Milanfar et. al. (1995), Milanfar, Karl and Willsky (1995), and Golub,

Milanfar and Varah (1999). We explore the situation where the moments with respect to

the Legendre polynomials can be observed with gaussian noise.

As before, we consider the problem of pointwise estimation of the support value �(�) at a
single �xed direction ! = (cos �; sin �)0. Suppose that for given ! the Legendre moments

�n = �n(�) =

ZZ
D

pn(x cos � + y sin �)1G(x; y)dxdy; n = 0; 1; : : : (15)

can be observed with noise, i.e.,

yn(�) = �n(�) + �"n(�); n = 0; 1; : : : ; (16)

where f"n(�)g are independent standard gaussian random variables. We construct an

estimate of the support function � = �(�) based on observations (16).

With the above notation, considerations similar to those preceding (9) lead to g�(t) =P
1

n=0 an(t)�n(�), where an(t) are given by (8). For �xed integer N we de�ne

ĝN� (t) =

NX
n=0

an(t)yn(�): (17)

The next statement is obtained as an immediate consequence of Theorem 1.

Theorem 3 Let G be a convex set in the interior of the closed disc D1�h of the radius

1� h centered at the origin. Let g�(t) be given by (17); then for any N and � 2 [0; �)

sup
t2(0;1�h]

E jĝN� (t)� g�(t)j2 � 2�2
�
1 +

�

h2N

�
+

8�

h2N
:

The estimator �̂ of the support value � = �(�) is de�ned as follows. Fix N = N� = [��2],
and let ĝ�(�) = ĝN�

� (�). For r = r� := 2�
p

ln (1=�2) we de�ne

�̂ = maxft 2 (0; 1 � h] : ĝ�(t) � rg: (18)

Theorem 4 Let conditions of Theorem 3 hold, � � 1 and �̂ be given by (18). Then for �

small enough

sup
G2G�(�;L)

E j�̂ (�)� �(�)j2 � C3

h�2
L2

ln
� 1

�2

�i1=�
;

where C3 is an absolute constant.

Proof of Theorem 4 goes along the same lines as the proof of Theorem 2, and therefore it

is omitted.
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Theorem 4 shows that the rates given in (14) can be substantially improved provided

that for a �xed direction moments with respect to the correspondingly rotated Legendre

polynomials can be observed. The next statement establishes a lower bound showing that

the proposed estimator �̂ is near�optimal in order up to a logarithmic factor.

Theorem 5 Let G be a convex set in the interior of the closed disc D1�h of the radius 1�h
centered at the origin. For any estimator �̂ of � = �(�) based on observations (15)-(16)

and for � small enough

sup
G2G�(�;L)

E j�̂ (�)� �(�)j2 � C4

��2
L2

�1=�
;

where C4 depends on � and h only.

We remark that the lower bound of Theorem 5 remains valid when the moments with

respect to any orthonormal system on [�1; 1] rotated correspondingly are observed in

(16). The proof of the lower bound exploits equivalence between the gaussain white noise

model and the gaussian sequence space model for Fourier coe�cients with respect to an

orthonormal system of functions. By the same token, gaussian sequence space model with

respect to a non�orthonormal system of functions is equivalent to a continuous model

with correlated gaussian noise. Using this idea and the same reasoning as in the proof of

Theorem 5 one can show that if the geometric moments are observed with gaussian noise

then the risk of the pointwise estimation is bounded from below by O([ln( 1
�2h2

)]�1). Hence
the upper bound of Theorem 1 cannot be substantially improved.

4 Application to tomography

We consider the problem of reconstructing a convex set G from noisy Radon data given

by the white noise model:

Y (dt; d�) = (R 1G)(t; �) + �W (dt; d�): (19)

HereW (t; �) denotes the Wiener sheet on [�1; 1]�[0; �] and R : L2(D)! L2([�1; 1]�[0; �])
is the Radon transform,

(Rf)(t; �) =

ZZ
D

f(x; y)Æ(t � x cos � � y sin �)dxdy;

where Æ(�) is the delta�function. The continuous observation model (19) means that for

any function s(�; �) 2 L2([�1; 1] � [0; �]) we can observe integrals
RR

s(t; �)(Rf)(t; �)dt d�
with zero mean gaussian noise having the variance �2

RR
s2(t; �)dt d�.

Although many di�erent methods for restoring functions from noisy Radon data have

been analyzed in the literature, the focus is usually on estimation of smooth functions

[see, e.g., Johnstone and Silverman (1990), Korostelev and Tsybakov (1993) and references

therein]. Recently Candés and Donoho (2002) considered the problem of recovering a

function which is smooth apart from a discontinuity along a twice di�erentiable curve on

the plane. For the observation model similar to (19) they develop an estimator based
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on the curvlet decomposition of the Radon operator. Applying that estimator we obtain

that the indicator function 1G(�; �) can be estimated from observations (19) with the mean

integrated squared error of the order O(�4=5) as � ! 0, provided that the boundary of the

set G is twice di�erentiable. It turns out that the edge of a convex set can be estimated

with much better accuracy from noisy Radon data. In particular, we demonstrate below

that the estimator developed in Section 3 achieves the rate O([�2 ln��2]1=�) with � 2 [1; 2]
in the problem of pointwise edge estimation from noisy Radon data.

In practice the data are usually discretely sampled, and the continuous white noise model

(19) is only a useful idealization. We assume that discretization with respect to the angle

variable � is performed, i.e. we can observe

Y�j (dt) = (R 1G)(t; �j)dt+ �W�j (dt) (20)

for angles �j 2 [0; �], j = 1; : : : ; n�. In what follows we consider the problem of estimating

the support function � = �(�) of G at an angle � 2 f�1; : : : ; �n�g using the data (20).

It follows immediately from the de�nition of the Radon transform that for any square

integrable on [�1; 1] function F (�)
Z 1

�1

(Rf)(t; �)F (t)dt =

ZZ
D

f(x; y)F (x cos � + y sin �)dxdy : (21)

In particular, the choice F (t) = e�i!t leads to the well�known Projection Slice Theorem.

Let F (t) = pn(t), where pn(�) is the Legendre orthogonal polynomial of the degree n on

[�1; 1]. Then applying (21) for f(x; y) = 1G(x; y) we obtain from (20) for given � 2
f�1; : : : ; �n�g

yn(�) :=

Z 1

�1

pn(t)Y�(dt)

=

Z 1

�1

pn(t)(R 1G)(t; �)dt+ �

Z 1

�1

pn(t)W�(dt)

=

ZZ
D

pn(x cos � + y sin �)1G(x; y)dxdy + �"n(�);

where "n(�) is a sequence of independent standard gaussian random variables. This shows

that the observation model (15)-(16) is equivalent to (20). An immediate consequence of

this equivalence is that the upper bound of Theorem 4 is valid for estimating the support

function of the set G from noisy Radon data (20).

5 Proofs

In the proofs below we use well�known properties of the Legendre polynomials; all these

facts can be found, e.g., in Natanson (1949, Part 2, Chapter V) and Erdéyi et al. (1953,

v. II, Chapter X).
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5.1 Proof of Theorem 1

For �xed N we have

E jĝN� (t)� g�(t)j2 = vN + b2N

= �2E
� NX
n=0

an

nX
j=0

�n;j�j

�2

+

� 1X
n=N+1

an

ZZ
D

pn(x cos � + y sin �)1G(x; y)dxdy

�2

; (22)

where

�j = �j(�) :=

jX
m=0

�
j

m

�
cosm(�) sinj�m(�)"m;j�m ; j = 0; : : : ; n : (23)

First we bound the variance term vN . To this end we observe that �j, j = 0; : : : ; n are

independent zero mean gaussian random variables with variances


2j := varf�j(�)g =

jX
m=0

�
j

m

�2
cos2m(�) sin2(j�m)(�) :

Therefore the variance term vN can be written in the form vN = �2a0NB�2B0
aN , where

aN = (a0; a1; : : : ; aN )0, � = diag(
0; : : : ; 
N ), and B is the (N+1)�(N+1) lower triangular
matrix with non-zero elements given by

B =

2
666664

�0;0
�1;0 �1;1
�2;0 �2;1 �2;2
...

...
...

�N;0 �N;1 �N;2 � � � �N;N

3
777775 :

Noting that 
2j � 2j for all j = 0; : : : ; n we obtain vN � �22NkaNk2�max[BB
0], where

�max[�] stands for the maximal eigenvalue of a matrix. Because of (8) and the well-known

fact that

jPn(t)j � 1

h

r
�

2n
; 8t 2 [�1 + h; 1� h]; n = 1; 2; : : :

we have

janj �
r

�

h(4n+ 2)

h 1p
2(n+ 1)

+
1p

2(n� 1)

i

�
p
�

h
p

(2n+ 1)(n� 1)
for n = 2; 3; : : : : (24)

In addition, a0 = (1� t)=
p
2 and a1 =

p
3=8(1� t2). Thus,

kaNk2 � 2 +
�

h2

NX
n=2

1

(n� 1)2
� 2 +

�

h2

�
1 +

Z N

1

x�2dx
�

� 2
�
1 +

�

h2N

�
: (25)
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To bound �max[BB
0] we note that trace[BB0] =

PN
n=0 S

2
n where S2

n is the sum of squared

coe�cients of the polynomial pn(x): S
2
n =

Pn
j=0 �

2
n;j. It is well�known that

Pn(x) =
1

2n

[n=2]X
m=0

(�1)m
�

n

m

��
2n� 2m

n

�
xn�2m

where [�] denotes the integer part. Therefore

S2
n � 2n+ 1

2

1

4n

[n=2]X
m=0

��
n

m

��
2n� 2m

n

��2

� 2n+ 1

2

1

4n

��
2n
n

��2

(2n)2 � 42n

�

�
1 +

1

2n

�
;

where we have used the fact that (2n)!(n!)�2 � 4n(n�)�1=2 [see Natanson (1949, p. 666)].

Therefore trace[BB0] =
PN

n=0 S
2
n � 42N (10�)�1 and combining this inequality with (25)

we �nally obtain

vN � �vN :=
25N�2

5�

�
1 +

�

h2N

�
: (26)

Now we bound the bias term in (22). The orthogonal transformation of the coordinate

system results in

cn :=

ZZ
D

pn(x cos � + y sin �)1G(x; y)dxdy

=

Z 1

�1

pn(u)

Z '2(u)

'1(u)

1G(u;w)dwdu

=

Z 1

�1

pn(u)['2(u)� '1(u)]du; (27)

where u = x cos �+y sin �, w = �x sin �+y cos �, and '1(�) and '2(�) are the w�coordinates
of the intersection points of the lines u = const with the boundary of G. We note that the

function '2(�)� '1(�) is de�ned on [�1; 1], takes values in [0; 2] and is continuous because

G is a convex simply connected set. Therefore '2(�) � '1(�) belongs to L2(�1; 1), and
cn in (27) is nothing but the n-th Fourier coe�cient of this function with respect to the

Legendre orthonormal system on L2(�1; 1); hence by the Parseval formula

1X
n=0

c2n =

Z 1

�1

['2(u)� '1(u)]
2du � 8:

This along with (22) and (24) yields

b2N �
� 1X
n=N+1

ancn

�2
� 8

1X
n=N+1

a2n �
8�

h2N
:= �b2N : (28)

Combining (26), (28) and (11) we complete the proof.
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5.2 Proof of Theorem 2

First we prove an auxiliary lemma. Denote

XN (t) = �

NX
n=0

an(t)

nX
j=0

�n;j�j ; 0 � t � 1� h; (29)

where an = an(t), n = 1; 2; : : : and �j = �j(�) are given by (8) and (23) respectively. We

note that fXN (�)g is a zero mean gaussian process with continuous sample paths, and

sup
t2[0;1�h]

E jXN (t)j2 = vN � �vN <1;

where �vN = (5�)�125N�2(1 + �h�2N�1) [cf. the proof of Theorem 1]. In the sequel we

write v� and �v� for vN�
and �vN�

respectively, where N� is given by (11).

Lemma 1 There exists an absolute constant c1 such that for �xed N and all Æ � 2
p
�vN

P

n
sup

t2[0;1�h]

jXN (t)j � Æ
o
� c1N

r
�vN
vN

exp
n
� Æ2

2vN

o
: (30)

In particular, if N = N� and � is small enough then for Æ =
p

2{�v� ln(1=�v�) with { � 1
we have

P

n
sup

t2[0;1�h]

jXN�
(t)j �

r
2{�v� ln

� 1

�v�

�o
� c1N��v

{

�
: (31)

Proof The proof is based on Theorem 2.4 from Talagrand (1994). Below we use the

notation introduced in the proof of Theorem 1. We have for 0 � s < t � 1� h

�2(XN (s);XN (t)) := E [XN (s)�XN (t)]2

= �2[aN (s)� aN (t)]0B�2B0[aN (s)� aN (t)]

� �22NkaN (s)� aN (t)k2�max[BB
0]:

As it was shown in the proof of Theorem 1, �22N�max[BB
0] � �vN . Moreover, by (8)

kaN (s)� aN (t)k2 =

NX
n=0

jan(s)� an(t)j2

�
NX
n=0

2n+ 1

2

���Z t

s

Pn(t)dt
���2 � jt� sj2N2 :

Therefore �2(XN (s); XN (t)) � N2jt� sj2�vN , and the minimal number of balls of the radius

" (with respect to the semi�norm �) covering the index set [0; 1 � h] does not exceed

N"�1
p
�vN , for any " 2 (0;

p
�vN ). Applying Theorem 2.4 from Talagrand (1994) we obtain

that for all Æ � 2
p
�vN

P

n
sup

t2[0;1�h]

jXN (t)j � Æ
o
� c1N

r
�vN
vN

exp
n
� Æ2

2vN

o
;

which completes the proof of (30).
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To derive (31) we set N = N� in (30) and choose Æ =
p

2{�v� ln(1=�v�) with { � 1. For �
small enough we have

P

n
sup

t2[0;1�h]

jXN�
(t)j �

p
2{�v� ln(1=�v�)

o
� P

n
sup

t2[0;1�h]

jXN�
(t)j �

p
2{v� ln(1=v�)

o
� c1N��v

{

�
:

The lemma is proved.

Proof of Theorem 2 We write

E j�̂ � � j2 = I1 + I2

:= E

h
j�̂ � � j21f�̂ � �g

i
+ E

h
j�̂ � � j21f�̂ > �g

i
: (32)

We bound I1 and I2 separately.

First we bound I1. In view of Theorem 1, ĝ��(t) converges in probability to g�(t) for any
�xed � and t as � ! 0. This implies that �̂ converges in probability to � as � ! 0 provided
r = r� ! 0. Therefore without loss of generality we can assume that �̂ 2 (� ��; �) for �
small enough. Under this assumption we have from (13)

j�̂ � � j2 � L�2=�jg�(�̂)j2=�

� L�2=�
�
jg�(�̂)� ĝ��(�̂)j+ jĝ��(�̂ )j

�2=�
= L�2=�

�
jg�(�̂)� ĝ��(�̂)j+ r

�2=�
:

Applying Theorem 1 we obtain

I1 � 21=�L�2=�
�
E jg� (�̂)� ĝ��(�̂)j2 + r2

�1=�
� 21=�L�2=�

n
r2=� + C

1=�
1

h
h2 ln

� 1

�2h2

�i�1=�o
: (33)

To bound I2 we note that

I2 � 4Pf�̂ > �g � 4Pfĝ�� (t) � r for some t 2 (�; 1� h]g
= 4P

n
sup

t2(�;1�h]

ĝ��(t) � r
o

� 4P
n

sup
t2[0;1�h]

jXN�
(t)j � r � j�bN�

j
o
;

where XN (t) is de�ned (29), and �bN is given by (28). Clearly, for � small enough r�j�bN�
j �

r=2. By Lemma 1 for our choice of r we have

I2 � 4P
n

sup
t2[0;1�h]

jXN�
(t)j � r=2

o
� c2N��v

{

�

� c3 ln
� 1

�2h2

�h
h2 ln

� 1

�2h2

�i�{
: (34)

Combining (34), (33), and (32), and taking into account that I1 dominates I2 for { = 2
and � small enough, we complete the proof.
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5.3 Proof of Theorem 5

Without loss of generality we assume that � = 0. Let G0 be a convex set in the interior of

the unit disc with support value �0 = �0(0) in the direction associated with angle � = 0.
Denote

g0(t) := gG0
(t) =

ZZ
D

1[t;1](x)1G0
(x; y)dxdy

and assume that for some � > 0

g0(t) = Ljt� �0j�; for t 2 (�0 ��; �0):

In addition, let

�n;0 =

ZZ
D

pn(x)1G0
(x; y)dxdy; n = 0; 1; : : :

denote the Legendre moments of G0 associated with the angle � = 0. It follows from

(9) that g0(t) =
P

1

n=0 an(t)�n;0, where functions an(t) are given by (8). It is important to

emphasize here that g0(�) depends on the underlying setG0 only through the moments �n;0.

Fix Æ 2 (0;�), and let GÆ denote the translate of G0 by vector (�Æ; 0)0: GÆ = G0 � (Æ; 0)0.
Clearly, support value �Æ of the set GÆ in the direction � = 0 is �Æ = �Æ(0) = �0 � Æ, and

gÆ(t) := gGÆ
(t) = g0(t+ Æ). In addition, we can write gÆ(t) =

P
1

n=0 an(t)�n;Æ, where

�n;Æ =

ZZ
D

pn(x)1GÆ
(x; y)dxdy; n = 0; 1; : : : :

Using the aforementioned de�nitions we obtain g0(�0 � Æ)� gÆ(�0 � Æ) = g0(�0 � Æ) = LÆ�,

and therefore

g0(�0 � Æ)� gÆ(�0 � Æ) =

1X
n=0

an(�0 � Æ)[�n;0 � �n;Æ] = LÆ�: (35)

Now we evaluate the Kullback�Leibler distance K(�; �) between the probability measures

Q0 and QÆ corresponding to the observations (16) associated with sets G0 and GÆ. For

this purpose we note that by de�nition

�n;0 =

Z 1

�1

pn(x)
h
'0(x)� '

0
(x)
i
dx

�n;Æ =

Z 1

�1

pn(x)
h
'Æ(x)� '

Æ
(x)
i
dx

where '0; '0, and 'Æ; 'Æ are the y�coordinates of the intersection points of the lines x =
const with the boundary of G0 and GÆ respectively. Hence f�n;0g and f�n;Æg are noting

but the Fourier coe�cients of the functions  0 = '0�'0 and  Æ = 'Æ�'Æ with respect to

the Legendre orthonormal system on [�1; 1]. Therefore, by equivalence of the model (16)

and the standard white noise model, we obtain

K(Q0; QÆ) =
1

2�2

1X
n=0

j�n;0 � �n;Æj2 : (36)

Now we note that K(Q0; QÆ) � c4�
�2L2Æ2�, where c4 depends on h only. This follows from

the fact that the norm of the sequence fan(�0�Æ)g is bounded away from zero for any �xed

14



Æ, and the maximal value of the Kullback�Leibler distance given by (36) under restriction

(35) equals L2Æ2�[2�2
P

1

n=0 a
2
n(�0 � Æ)]�1. Therefore choosing Æ so that ��2L2Æ2� � O(1)

[or, equivalently, Æ � O(1)(�=L)1=� ] as � ! 0, we obtain that the probability of the error

in distinguishing between the sets G0 and GÆ on the basis of observations (16) is of the

order O(1). This completes the proof.
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