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Abstract

We develop a cluster expansion in space-time for an in�nite-dimensional system of interacting

di�usions where the drift term of each di�usion depends on the whole past of the trajectory; these

interacting di�usions arise when considering the Langevin dynamics of a ferromagnetic system

submitted to a disordered external magnetic �eld.

1 Introduction.

Consider a Random Field Ising Model (RFIM) on Z
d, i.e. a spin system on the lattice Zd whose

Energy Hamiltonian in each �nite volume � may be written as

H�(s) = �
X

fi;jg2��

sisj �
X
i2�

hisi; 8s 2 f�1gZ
d

;

�� denoting the set of all bonds in � (equipped e.g. with its periodic boundary conditions), and�
hi
�
i2Zd

being a �xed realisation corresponding to an i.i.d. family of symmetric random variables

hi having variance �2 . Such site disordered spin systems have been studied in the Mathematical

Physics litterature since the mid eighties. Using a rigourous renormalisation method, Bricmont and

Kupiainen were able to prove in [BK88] that the low temperature ground states associated with a 3-

dimensional Ising Model weakly perturbed through a Bernoulli Random Field display ferromagnetic

ordering, thus (partially) settling a controversy on the lower critical dimension d of such RFIMs;

Aizenman and Wehr brought this controversy to its end shortly afterwards, by proving in [AW90]

that in 2 dimensions an arbitrarily weak disordered external Magnetic Field leads to a breakdown of

the �rst order Phase Transition occuring in the standard Ising model on Z
2, so that dc = 2 . Such

equilibrium properties were later examined in a �soft spin� setting by C. Külske, who considered a

3-dimensional RFIM where the original discrete spins si = �1 are being replaced by continuous spin

variables xi 2 R . The Boltzmann factor corresponding to the inverse temperature parameter � then

becomes

exp

8<
:�

X
i2�

U(xi) + �
X

fi;jg2��

xixj + �
X
i2�

hixi

9=
; (1)

for some �double well� single site potential U : R �! R, e.g. U(x) = Cx4�2Cx2, introduced in order

to obtain some resemblance with the original discrete spin setting . In [K00], a new renormalisation
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method is developped in order to prove the Bricmont-Kupiainen result in this �unbounded spin�

setting.

The present paper is concerned with the dynamics corresponding to such continuous spin

RFIMs. For a �xed realisation of the external �eld h =
�
hi
�
i2Zd

(Gaussian or Bernoulli), the Langevin

dynamics associated with the Boltzmann factor (1) consists in the system of interacting di�usions�
Sh�
�
given by

�
Sh�
�
8>><
>>:
dxit = dwit � U 0(xit)dt+ �

P
j�i x

j
tdt+ �hidt

(i 2 �; t � 0)�
(wit)t�0; i 2 Z

d
	
denoting here an i.i.d. family of standard Brownian motions, and the notation

j � i indicating that i and j are nearest neighbours in �; as for the initial condition given to this

system, one may for example consider any probability measure �0 on the real line having �nite second

moment, and set: Law(xjt=0) = �
�0 .

Fixing a bounded (arbitrarily large) time horizon [0; T ], one may then let �% Z
d and observe

that such system of interacting di�usions obeys a Strong Law of Large Numbers. Indeed, letting Ph�;T

denote the probability law corresponding to
�
Sh�
�
considered during time [0; T ], one may establish that

the law under dPh�;T (x) of the empirical process associated with x =
�
(xit)0�t�T ; i 2 �

	
converges

towards a Dirac mass concentrated at some asymptotic dynamics QT ([BAS02] contains a complete

proof in the Gaussian case, together with quenched and annealed Large Deviations estimates). In the

case of a �Bernoulli� random �eld, QT may be characterised as the law of the system8>>>>>><
>>>>>>:

dxit = dwit � U 0(xit)dt+ �
P

j�i x
j
tdt

+�� tanhf��(xit � xi0 +
R t
0
(U 0(xiu)� �

P
j�i

x
j
u)du)gdt

Law(xjt=0) = �
Z
d

0 (i 2 Z
d; 0 � t � T )

As may be seen immediately, the di�usions in the above system have a short range spatial interaction,

whereas this interaction is of a long range nature in time, due to the presence of the functional

tanhf��(xit � xi0 +

Z t

0

(U 0(xiu)� �
X
j�i

xju)du)g

in the drift term associated with xit . Of course, letting

vit = xit � xi0 +

Z t

0

(U 0(xiu)� �
X
j�i

xju)du ;

one may also de�ne QT as the x-marginal corresponding to the system8>>>>>><
>>>>>>:

dxit = dvit � U 0(xit)dt+ �
P

j�i x
j
tdt

dvit = dwit + �� tanh
�
��vit

	
dt

(i 2 Z
d; 0 � t � T )
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In the setting of a Gaussian random �eld, the asymptotic dynamics QT may be similarly characterised

as the x-marginal of 8>>>>>><
>>>>>>:

dxit = dvit � U 0(xit)dt+ �
P

j�i x
j
tdt

dvit = dwit + 
tv
i
tdt

(i 2 Z
d; 0 � t � T; 
t =

�2�2

1+�2�2t
)

So in this setting, the white noise
�
(wit)t�0; i 2 Z

d
	
driving the Langevin dynamics associated with

a standard ferromagnetic spin system has to be replaced by a family
�
(vit)t�0; i 2 Z

d
	
of Ornstein-

Uhlenbeck processes having a time dependent friction coe�cient, 
t =
�2�2

1+�2�2t
.

Having performed such thermodynamic limit for the empirical process, one may then let

T �! +1 and wonder about the large time properties of the corresponding asymptotic dynam-

ics. At this stage, it should be noted that the costumary methods relying on coercive inequalities

for the associated Markov generator do not seem to be of much help here, since we are dealing with

degenerate Markov processes on
�
R
2
�Zd

, moreover the second of these processes is also time inhomo-

geneous.

On the other hand, much work has been invested recently in the Statistical Mechanics litterature

in order to implement some Cluster Expansion methods both for interacting di�usions systems (start-

ing with [IMS92], further developped in [MVZ00], [MRZ00], [DPR02]) and for some one-dimensional,

non-Markovian di�usions viewed as Gibbs measures on path space (see for example [OS99] or [LM01]).

[MVZ00] considers a particular system of interacting di�usions representing a Quantum Crystal and

establishes the validity of a Cluster Expansion in space-time for this system, in the �light mass� limit.

In [MRZ00], space-time Cluster Expansions are being developped for certain classes of systems of

interacting di�usions considered in a weak interaction regime. [LM01] establishes the validity of a

Cluster Expansion method for some probability measures on path space C (R;R) which are associated

with some �reasonable� external potentials (corresponding e.g. to a di�usion evolving in a double well

U) and with a 2 body interaction potential W of the type

W (u; t;xu; xt) = F (t� u;xu; xt)

for some functional F (s;x; y) decaying rapidly when s �! +1 . Finally in [DPR02], P. Dai Pra and

the �rst author consider a general system of interacting di�usions given by8>><
>>:
dxit = dwit � U 0(xit)dt+ b"

�
�itx
�
dt

(i 2 Z
d; t 2 R)

�it being a space-time shift on C (R;R)Z
d

:

�itx = y =
�
yju
�j2Zd
u�0

; yju = x
i+j
t+u;
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and b" : C (]�1; 0];R)Z
d

�! R being simply a measurable adapted functional on C (]�1; 0];R)Z
d

that is both local in space and time, and that satis�es further a uniform boundedness assumption

(kb"k1 � "). Of course, the (eventual) lack of regularity of b" and its non Markovian nature show

that the mere existence of a weak solution is not at all obvious for such systems. Dai Pra and Roelly

establish the existence of a weak solution (and some of its asymptotic properties) for such systems

by developping a Cluster Expansion in space-time and considering the regime of small interactions

(where " is �small�). Such method may be carried out by giving a proper reference measure to the

path space C (R;R)Z
d

, e.g. independent bridges based on the di�usions
�
(xit)t2R; i 2 Z

d
	
given by

dxit = dwit � U 0(xit)dt; (2)

and by considering an Energy Hamiltonian

�
H"
��I ; � �

finite
Z
d; I �

interval
R

�
corresponding to the drift

term b" . For a �xed space-time window V = �� I, this Energy Hamiltonian is actually given by

H"
V (x) = �

X
i2(�[@�)

�Z
I

b"
�
�itx
�
dBi

t(x)�
1

2

Z
I

b"
�
�itx
�2
dt

�
;

the notation @� corresponding to a certain locality in space that was assumed for b", and the func-

tionals Bi
t(x) being de�ned by

Bi
t(x) = xit � xi0 +

Z t

0

U 0(xis)ds

Considering the partition functions Z"V associated with such reference measure and Energy Hamilto-

nian on 
, one is then interested in the asymptotic behaviour of Z"V for large V . In [DPR02], the

validity of a cluster representation in space-time was established in the regime of small interactions

(" � "0), together with an exponential estimate for the cluster coe�cients appearing in this expansion.

This means that the partition function Z"V may be decomposed as

Z"V = 1 +
P

V
R=(�1;:::;�n)

sQ
r=1

K�r ;

P
V

R

denoting a sum over all �clusters� (compatible collection of �contours�) contained in the volume

V , and K�r being a coe�cient such that

jK�j � �(")j�j ;

for some �(") = O(") and some positive quantity j�j measuring the size of each contour � .

Our aim in the present paper is to establish the validity of such a space-time cluster expansion

for the asymptotic dynamics Q1 arising in the Bernoulli RFIM (time being now extended to the

whole semi-in�nite interval [0;+1[). The novelty here is that we have to deal with interacting

di�usions (xit)
i2Zd

t�0 which display a local interaction in space as well as a long range memory (in time);
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moreover in the present situation, the in�uence of xiu over xit does not seem to decay so rapidly for

jt � uj �! +1 . In the case of a Bernoulli Random Field, one may still establish the validity of a

High Temperature Cluster Expansion in Space-Time for Q1, together with an exponential estimation

of the corresponding cluster coe�cients; among other consequences, the (space and time) correlation

functions associated with Q1 may then be shown to decay exponentially fast in the High Temperature

regime (see [MM91], x 3 in chapter 5). On the other hand, despite various attempts, there does not

seem to be any way of establishing such a Space-Time Cluster Expansion for the asymptotic dynamics

Q1 arising in the Gaussian setting.

The next section is dedicated to a brief derivation of the Large Deviations estimates and

Strong Law of Large Numbers leading to the consideration of Q1 in the Bernoulli setting. Then in

section 3 we show that Q1 may also be presented as a Gibbs measure in Space-Time, and establish

correspondingly the validity of a Space-Time Cluster Expansion in the High Temperature regime,

together with exponential estimates for the cluster coe�cients. This implies in particular that the

non-Markovian interacting di�usions system under consideration displays exponential ergodicity in

the High Temperature regime.

2 Spatial Large Deviations and the asymptotic dynamics Q1.

2.1 Gibbsian nature of the annealed dynamics.

Recall that for a �xed (Bernoulli) realisation of the random �eld h =
�
hi
�
i2Zd

, Ph�;T denotes the law

of the interacting di�usions system
�
Sh�;T

�
given through the stochastic di�erentials

dxit = dwit � U 0(xit)dt+ �
X
j�i

x
j
tdt+ �hidt;

where i; j 2 � and j � i means that i and j are nearest neighbours, whereas time t varies in a bounded

interval [0; T ]. (For simplicity, we shall always assume that a �nite box � is being equipped with its

periodic boundary conditions.) Ph�;T is thus a probability measure on path space C ([0; T ];R)�, and

we then de�ne the averaged probability measure P�;T via the identity

P�;T (A) = Eh

�
Ph�;T (A)

�

holding for any Borel set A � C ([0; T ];R)� (here and in the sequel, Eh denotes an average taken with

respect to the realisations of the random external magnetic �eld h). It turns out that the averaged

probability measure P�;T may also be viewed as the weak solution associated with a new stochastic

di�erential system.
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Proposition 2.1.

For �xed � �� Z
d
and T > 0,

P�;T = Eh

h
Ph�;T

i
may be characterised as the law of the interacting di�usions system (S�;T ) given by

8>>>>>><
>>>>>>:

dxit = dwit � U 0(xit)dt+ �
P

j�i x
j
tdt

+�� tanhf��(xit � xi0 +
R t
0
(U 0(xis)� �

P
j�i

x
j
s)ds)gdt

Law(xjt=0) = �
�0 (i 2 �; 0 � t � T )

Proof:

we let pT denote the probability law on C ([0; T ];R) corresponding to the di�usion

dxt = dwt � U 0(xt)dt (2)

having initial condition �0. We also consider the restriction of pT to the �-algebra Ft associated with

the time interval [0; t] � [0; T ] and denote it by pt, whilst P�;t similarly denotes the restriction of

P�;T to the �-algebra F�
t in C ([0; T ];R)�. Then according to the Fubini and Girsanov theorems:

P�;T � p
�T ;

and

M�
t =

dP�;t

dp
�t

is a positive p
�T -martingale with mean 1, such that:

M�
t (x) = Eh

2
4exp

8<
:�

X
i2�

Z t

0

(
X
j�i

xjs + hi)dwis �
�2

2

X
i2�

Z t

0

(
X
j�i

xjs + hi)2ds

9=
;
3
5

= exp

0
@�X

i2�

Z t

0

(
X
j�i

xjs)dw
i
s �

�2

2

X
i2�

Z t

0

(
X
j�i

xjs)
2ds

1
A

� Eh

�
exp

�
� (h�;A�;t(x))�

�2t

2
(h�;h�)

��
;

A�;t(x) being the �-dimensional vector de�ned by:

Ai�;t(x) = wit(x)� �

Z t

0

(
X
j�i

xjs)ds

= xit � xi0 +

Z t

0

(U 0(xis)� �
X
j�i

xjs)ds

6



Observing that

Eh

�
exp

�
� (h�;A�;t(x))�

�2t

2
(h�;h�)

��
=

 Y
i2�

cosh
�
��Ai�;t(x)

�!
e�

�2�2t
2

j�j;

and using Ito's formula, we then obtain:

logM�
t (x) =mart

X
i2�

log cosh
�
��Ai�;t(x)

�
+ �

X
i2�

Z t

0

0
@X
j�i

xjs

1
A dwis

=mart

X
i2�

Z t

0

�� tanh
�
��Ai�;s(x)

�
dAi�;s(x) + �

X
i2�

Z t

0

0
@X
j�i

xjs

1
A dwis

=mart

X
i2�

Z t

0

�� tanh
�
��Ai�;s(x)

�
dwis + �

X
i2�

Z t

0

0
@X
j�i

xjs

1
A dwis;

the sign =mart: meaning here that the two p
�T -semimartingales under consideration (on the left hand

side and on the right hand side of the equality) have the same martingale part. At this point Gir-

sanov's theorem may be applied a second time, which yields the announced characterisation of P�;T . 2

Naturally, one may also introduce the auxiliary variables

vit(x) = xit � xi0 +

Z t

0

0
@U 0(xis)� �

X
j�i

xjs

1
Ads

and view P�;T as the x-marginal of a Markov system of interacting di�usions taking values in
�
R
2
��
,

and the classical results of Shiga and Shimizu ([SS80]) may then be applied to establish that such

Markov system of interacting di�usions also has a unique strong solution when extending the spatial

index set to Z
d and letting t vary in [0;+1[. But let us �rst extend the spatial index set to Z

d

whilst keeping [0; T ] as our time horizon, and call QT the x-marginal of the unique strong solution

associated with

(ST )

8>>>>>><
>>>>>>:

dxit = dvit � U 0(xit)dt+ �
P

j�i x
j
tdt

dvit = dwit + �� tanh
�
��vit

	
dt

vi0 � 0; law (xjt=0) = �
Z
d

0 (i 2 Z
d; 0 � t � T )

QT is a probability measure on C ([0; T ];R)Z
d

, and just as in [BAS02] we may view QT as a Gibbs

measure corresponding to a certain translation invariant family of interaction functionals on this

in�nite-dimensional path space. Indeed, for �xed � �� Z
d the Radon-Nykodím derivative M�

T =

dP�;T

dp
�T
has a Girsanov exponent which may be decomposed as

7



logM�
T (x) =

X
i2�

Z T

0

(�� tanh(��Ai�;s(x)) + �
X
j�i

xjs)dw
i
s

�
1

2

X
i2�

Z T

0

(�� tanh(��Ai�;s(x)) + �
X
j�i

xjs)
2ds

=
X
i2�

f
Z T

0

�� tanh(��Ai�;s(x))dA
i
�;s(x))�

�2�2

2

Z T

0

tanh2(��Ai�;s(x))ds

�
�2

2

Z T

0

(
X
j�i

xjs)
2ds+ �

Z T

0

(
X
j�i

xjs)dx
i
s + �

Z T

0

(
X
j�i

xjs)U
0(xis)dsg

=
X
i2�

flog cosh
�
��Ai�;T (x)

�
�
�2�2

2

Z T

0

(tanh2
�
��Ai�;s(x)

�
+

1

1 + �2�2Ai�;s(x)
2
)ds

+ �

Z T

0

(
X
j�i

xjs)U
0(xis)ds�

�2

2

Z T

0

(
X
j�i

xjs)
2dsg

+ �
X
j�i

h
xiTx

j
T � xi0x

j
0

i
;

which suggests that the projections of QT onto a space C ([0; T ];R)� of �nite-volume con�gurations

satisfy the DLR equations associated with a translation invariant family	 = ( A)A��Zd of interaction

functionals de�ned on C ([0; T ];R)Z
d

. More precisely, letting

�i =
n
j 2 Z

d : jj � ij = 0 or 1
o
;

one may successively de�ne the translation invariant functionals  A for each �nite subset A � Z
d

through

 fig(x) = �2d

Z T

0

(xis)
2ds;

 fi;jg(x) = ��
�h
xiTx

j
T � xi0x

j
0

i
+

Z T

0

�
U 0(xis)x

j
s + U 0(xjs)x

i
s

�
ds

�
when jj � ij = 1;

 fi;jg(x) = 2�2
Z T

0

xisx
j
sds when jj � ij =

p
2;

 fi;jg(x) = �2
Z T

0

xisx
j
sds when jj � ij = 2;

 �i(x) = � log cosh
�
��Ai�;T (x)

�
+
�2�2

2

Z T

0

(tanh2
�
��Ai�;s(x)

�
+

1

1 + �2�2Ai�;s(x)
2
)ds;

(3)

letting further  A � 0 whenever A is not of the preceding type, and the Radon-Nykodím derivative

M�
T may then be expressed as the exponential of the sum

�
X
A��

 A(x);

� still being equipped with its periodic boundary conditions.

One may check that the in�nite volume dynamicsQT satis�es the DLR equations relative to the

interaction ( A)A��Zd, and it then remains to show there are no other Gibbs measures corresponding

to ( A)A��Zd and to the reference measure p
Z
d

T .

8



Proposition 2.2.

Let Q be a probability measure on C ([0; T ];R)Z
d

, and assume that Q is a Gibbs measure corresponding

to the interaction 	 and to the reference measure p
Z
d

T . Then Q is the x-marginal of an in�nite

dimensional di�usion (xt;vt)0�t�T solving (ST ), consequently: Q = QT .

Proof:

The identi�cation of any Gibbs measure as a weak solution for an in�nite dimensional system of

interacting di�usions follows from an integration by parts formula that was developped and used in

this context by Cattiaux, Roelly and Zessin, see in particular Théorème 2.11 in [CRZ96]. As for the

fact that Q then has to coincide with QT , it follows from unicity in Shiga and Shimizu's classical

results (see Theorem 4.1 in [SS80]); note that we have equipped our interacting di�usions system with

a product initial condition, therefore there can be no such phenomena as a phase transition occuring

at time t = 0 .2

Since QT is a Gibbs measure corresponding to a translation invariant interaction 	, it should

be expected to satisfy some spatial Large Deviations estimates for �% Z
d; there are indeed several

reference papers establishing Large Deviations estimates for the empirical process of a spin system

evolving under a Gibbs measure on the con�guration space XZ
d
(X being a Polish space), see e.g.

[Com89] or [Geo93]. The next paragraph is devoted to a precise statement of such a spatial Large

Deviations Principle (LDP) for the Gibbs measure QT .

2.2 Large deviations of the empirical process.

For each cubic box � �� Z
d and for each con�guration x 2 C ([0; T ];R)�, one may de�ne a probability

measure on C ([0; T ];R)Z
d

, the empirical process associated with x, in the following way:

�̂
(�)
x =

1

j�j

X
i2�

Æ
(per:x)(i)

;

where: y = per:x 2 C ([0; T ];R)Z
d

is a �-periodic con�guration on Zd whose restriction to � coincides

with x, and where
�
y
(i)
�j

= yj+i; 8j 2 Z
d.

The empirical process �̂
(�)
x thus de�nes a shift invariant probability measure on C ([0; T ];R)Z

d

, whose

1-site marginal coincides with the empirical measure associated with x. Now in the case where x

is distributed according to a product measure p
� on C ([0; T ];R)�, the law of the empirical process

obeys a Large Deviation Principle (LDP) on the scale j�j and according to a good rate function

H :Ms

�
C ([0; T ];R)Z

d
�
�! [0;+1]

9



known as the speci�c entropy relative to p
Z
d
and de�ned on the set Ms

�
C ([0; T ];R)Z

d
�
consisting

of all shift invariant probability measures on C ([0; T ];R)Z
d

as the following limit:

H(�) = lim
�%Zd

1

j�j
H
�
��
��p
� � ;

�� denoting here the �-marginal of �, and H
�
�
��p
� � : M

�
C ([0; T ];R)�

�
�! [0;+1] being the

relative entropy corresponding to p
�.

As a convenient generalisation of the preceding LDP, one may then consider the case where

x is being distributed according to the projection onto C ([0; T ];R)� (say with periodic boundary

conditions) of a Gibbs measure on C ([0; T ];R)Z
d

corresponding to the reference measure p
Z
d
and to

a translation invariant interaction 	 = ( A)A��Zd. As was shown in several papers (see for example

[Com89] or [Geo93]), the law of the empirical process then also obeys a LDP, at least when the

interaction 	 satis�es an additional boundedness assumption such as

X
A3O

k Ak1 < +1; (4)

and the new rate functional I	 :Ms

�
C ([0; T ];R)Z

d
�
�! [0;+1] may then be de�ned by

I	(�) = H(�)�
Z
C([0;T ];R)Z

d
U	(x)d�(x);

where: U	(x) =
P
A3O

 A(x)=jAj .

We are in the situation where p = pT and where 	 coincides with the interaction (3) de�ned

in the preceding paragraph; in such a situation, (4) does not hold true: our translation invariant

interaction 	 has a �nite range, but the individual functionals  A fail to be uniformly bounded.

Nevertheless, one may still prove in such a context that the law of the empirical process satis�es a

LDP on the scale j�j and according to the good rate functional I	. Of course some veri�cations are

needed in order to make sure that such LDP still holds true, and some further veri�cations are needed

in order to prove that the following Variational Principle is indeed valid for 	.

Proposition 2.3.

Let Q 2 Ms

�
C ([0; T ];R)Z

d
�
. Then: Q is a minimiser associated with the good rate functional I	

if and only if Q is a Gibbs measure on C ([0; T ];R)Z
d

corresponding to the interaction 	 and to the

reference measure p
Z
d

T .

Sketch of proof:

The validity of such a Variational Principle is established in ([Geo88], Chapter 15) for Gibbs measures

satisfying the summability condition (4). As for the present situation, one may decompose the proof

10



into the following three steps:

1o) Any Q 2Ms

�
C ([0; T ];R)Z

d
�
for which the integral

R
C([0;T ];R)Z

d U	(x)dQ(x) is �nite satis�es

H(Q) �
Z
C([0;T ];R)Z

d
U	(x)dQ(x)

Indeed, using the L1 version of the multidimensional ergodic theorem enables us to view the integral

in the right hand side above as

lim
�

1

j�j

X
i2�

Z
U	(x(i))dQ(x);

and the limit above may then be seen to coincide with

lim
�

1

j�j

X
i2�

Z
U	((per:x�)

(i))dQ�(x�);

where Q� stands for the �-marginal of Q. Hence:

H(Q)�
Z
U	(x)dQ(x) = lim

�

1

j�j

Z
dQ�(x�)

(X
i2�

U	((per:x�)
(i))� ln

 
dQ�

dp
�T
(x�)

!)
;

and Jensen's inequality applied to ln then yields

Z
dQ�

(X
i2�

U	((per:x�)
(i))� ln

 
dQ�

dp
�T
(x�)

!)
� ln

8>><
>>:
Z
dQ�

exp
�P

i2� U
	((per:x�)

(i))
�

�
dQ�

dp
�T
(x�)

�
9>>=
>>; = 0

for each �xed �.

2o) QT is such that

H(QT ) =

Z
U	(x)dQT (x)

In order to prove this equality, one uses the fact that QT is a Gibbs measure corresponding to 	, so

that for each �nite box � � Z
d:

dQT (x�) =

Z
dQT (x�c)

exp
n
��
P

�\�6=;  �(x� _ x�c)
o

Z	
� (x�c)

;

where Z	
� (x�c) =

Z
dp
�T (x�)e

��
P

�\�6=;  �(x�_x�c ), x� _ x�c denoting a combination of con�gura-

tions x� (in the volume �) and x�c (in �c).

Using again the L1 multidimensional ergodic theorem enables us to view both H(Q) and
R
U	dQ as

the following limit:

H(QT )�
Z



U	(x)dQT (x) = lim
�

1

j�j

Z
dQT (x�c)� ln

�
Z	
� (x�c)

�
;

and using Jensen's inequality applied to (� ln) and to the probability measure e��
P

�\�6=;  �(x
(�)

�
) � dp
�T (x�)

�nishes the proof of the fact that

H(QT )�
Z
U	(x)dQT (x) � 0

11



3o) Any Q 2Ms

�
C ([0; T ];R)Z

d
�
satisfying

Z



U	dQ = H(Q) < +1

is also such that

lim
�

1

j�j

Z
ln

�
dQ�

dQT;�
(x�)

�
dQ�(x�) = 0

(where QT;� and Q� denote the �-marginals of QT and Q respectively).

Indeed, for each �nite box � one has

1

j�j

Z
ln

�
dQ�

dQT;�
(x�)

�
dQ�(x�)

=
1

j�j

Z
ln

 
dQ�

dp
�T
(x�)

!
dQ�(x�)�

1

j�j

Z
ln

 
dQT;�

dp
�T
(x�)

!
dQ�(x�)

=
1

j�j

Z
ln

 
dQ�

dp
�T
(x�)

!
dQ�(x�)�

1

j�j

Z
dQ�(x�) ln

(Z
dQT;�c(x�c)

e��
P

�\�6=;  �(x�_x�c )

Z	
� (x�c)

)

�
1

j�j

Z
ln

 
dQ�

dp
�T
(x�)

!
dQ�(x�)

�
1

j�j

Z
dQ�(x�)

Z
dQT;�c(x�c)

8<
:
0
@�� X

�\�6=;

 �(x� _ x�c)

1
A� ln

�
Z	
� (x�c)

�9=; ;

and in the right hand side of the preceding inequality the �rst term converges to H(Q), while the

second term has a limit that may easily be seen to coincide with

Z



U	dQ, using once again the

multidimensional ergodic theorem.

In view of 1o), 2o) and 3o), any Q 2 Ms

�
C ([0; T ];R)Z

d
�
minimising the good rate func-

tional I	 has to coincide with QT . 2

Using the unicity of QT as a minimiser for the good rate function I	, we may now state

the following Strong Law of Large Numbers (SLLN) as a corollary to the annealed Large Deviation

estimates already available.

Corollary 2.1.

P-a.s. (h), the law of the empirical process p
Z
d

T under dPh�;T (x) converges to a Dirac mass concen-

trated at QT as �% Z
d
(Ms

�
C ([0; T ];R)Z

d
�
being equipped with the topology of weak convergence).

Proof:

Consider a metric D onMs

�
C ([0; T ];R)Z

d
�
compatible with the topology of weak convergence, and

for �xed " > 0, let

A" =
n
Q 2Ms

�
C ([0; T ];R)Z

d
�
jD (Q;QT ) � "

o
:

12



I	 de�nes a good rate function on Ms

�
C ([0; T ];R)Z

d
�
, so that it certainly attains its minimum m"

on A", and m" is positive since QT =2 A". Applying the Large Deviations upper bound to A" enables

one to choose a �nite cubic box �0 �� Z
d such that

P�

n
x

����̂(�)x 2 A"
o
� e�

m
2
j�j (5)

whenever � � �0.

On the other hand, according to Tchebitche�'s inequality:

8Æ > 0;P
n
h

���Ph� nx ����̂(�)x 2 A"
o
> Æ

o
�
P�

n
x

����̂(�)x 2 A"
o

Æ

As a consequence of (4), one has

X
�

P�

n
x

����̂(�)x 2 A"
o

Æ
< +1;

and making use of the Borel-Cantelli lemma then �nishes the proof. 2

The preceding SLLN for the empirical process �̂
(�)
x justi�es our interest in the dynamics QT ,

which may now be viewed as an asymptotic dynamics obtained by letting � % Z
d and performing

spatial averages. As a second step, one may then extend the time horizon to [0;+1[ and wonder

about the (space and time) decorrelation properties of the in�nite-dimensional dynamics Q1, given

as the x-marginal of the stochastic di�erential system

(S1)

8>>>>>><
>>>>>>:

dxit = dvit � U 0(xit)dt+ �
P

j�i x
j
tdt

dvit = dwit + �� tanh
�
��vit

	
dt

Law (xjt=0) = �
Z
d

0 (i 2 Z
d; t � 0)

We are going to consider Q1 in the High Temperature regime (where � is �small�) and prove, among

other facts, that the corresponding spin system decorrelates exponentially fast in space and time,

using a cluster expansion on the path space 
 =Ms

�
C ([0;+1[;R)Z

d
�
. To this end, we �rst need to

present Q1 as a Gibbs measure on 
 in a space-time sense, the reference measure being now made

of independent bridges based on the di�usion

dxt = dwt � U 0(xt)dt (2)

13



3 Cluster expansion in space-time.

3.1 Presentation of Q1 as a space-time Gibbs measure.

For each �nite � � Z
d, let

�+ =
n
i 2 Z

d j(i 2 �) or (i � j for some j 2 �)
o

and @� = (�+)
+ n �. For any open interval I =]a1; a2[� R+ , de�ne the enlargement of I by

I+ = [0; a2], and let V denote the set consisting of all space-time windows V of the form V = �� I,

where � is a �nite subset in Zd and I an open interval in R+ . Following [DPR02], we de�ne a forward

(resp. backward) �-�eld FV (resp. F̂V ) on path space 
 = C (R+ ;R)Z
d

by:

FV = �

�
!it; i 2 �++; t 2 I+

	
;

F̂V = �

�
!it; (i; t) =2 V

	
;

and the boundary �-�eld @FV is then given by

@FV = FV \ F̂V :

We now need to equip 
 with a reference speci�cation
�
�0
V

�
V 2V

, i.e. a Markov kernel on

�

; fFV gV 2V ; fF̂V gV 2V

�

corresponding to a �free� situation (where the di�usions
�
(xit)t�0; i 2 Z

d
	
do not interact with each

other). In the present setting, 
 may be conveniently equipped with the reference speci�cation�
�0
V

�
V 2V

de�ned by

8V 2 V; 8A 2 FV ; �0
V (A) = P

�
A
���F̂V � ;

where P = p
Z
d
and p is the stationary weak solution of the S.D.E.

dxt = dwt � U 0(xt)dt (2)

with initial condition d�0(x) proportional to e
�2U(x)dx. In order to come to the Gibbsian speci�cation

corresponding to the asymptotic dynamics Q1, we then let

�0 =
n
i 2 Z

d ji = O or i � O
o

and de�ne the potential � = (�V )V 2V on 
 by8>>><
>>>:
���I � 0 whenever � is not a translate of �0

�(i+�0)�I(x) = �
R
I

 
�
P
j�i

x
j
t + �� tanh�� ~Bi

t(x)

!
dBi

t(x) +
1
2

R
I

 
�
P
j�i

x
j
t + �� tanh�� ~Bi

t(x)

!2

dt;
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with:

Bi
t(x) = xit � xi0 +

Z t

0

U 0(xiu)du

and

~Bi
t(x) = xit � xi0 +

Z t

0

0
@U 0(xiu)� �

X
j�i

xju

1
A du = Bi

t(x)� �

Z t

0

0
@X
j�i

xju

1
A du

At this stage, one should remark that �(i+�0)�I 2 L2(P ), so that �(i+�0)�I(x) is �nite P � a:s:(x),

say on 
0 � 
 . We then de�ne the Hamiltonian H = (HV )V 2V on 
0 by

HV (x) =
X

�0\�6=;

��0�I(x) = �
X
i2�+

�Z
I

bit(x)dB
i
t(x)�

1

2

Z
I

bit(x)
2dt

�
;

where:

bit(x) = �
X
j�i

x
j
t + �� tanh�� ~Bi

t(x)

Observe that � and H are both spatially translation invariant, and that HV is FV -measurable. We

�nally let
�
�HV
�
V 2V

denote the new speci�cation given by

�HV
�
!; d!0

�
=

8>>>>>><
>>>>>>:

1
ZH
V (!)

1
0(!
0)e�HV (!

0)�0
V (!; d!0)

if 0 < ZHV (!) < +1;

0 else ;

ZHV (!) =

Z

0
exp

�
�HV (!

0)
�
�0
V

�
!; d!0

�
being the (@FV -measurable) normalisation factor corre-

sponding to the space-time window V and to the boundary condition ! . So for each ! 2 
,

�HV
�
!; d!0

�
is a probability measure on 
 whose support is included in 
0; one then says that a prob-

ability measure Q on 
 is a space-time Gibbs state corresponding to the speci�cation �HV
�
!; d!0

�
whenever the identity

Q
�
A
���F̂V � = �HV (A) ; Q� a:s:; (6)

holds true for each V 2 V and all A 2 FV .

The asymptotic dynamics Q1 may now be presented as a limit corresponding to the �nite-

dimensional dynamics ~Qn given by

~Qn (dxn) = exp f�HVn(x)g 

i2�++n

pjFIn (dx
i);

Vn = �n�In being here a sequence of bounded space-time windows increasing up to Zd�R+ (so that

�n % Z
d , In =]0;Tn[; Tn ! +1), and xn denoting the restriction of a con�guration x to �++

n � I+n .

To be more precise, one may extend each of the probability measures ~Qn to 
 by letting

Qn(dx) = exp (�HVn(x))P (dx);
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and observe that Qn converges weakly to Q1. On the other hand, each of the probability measures Qn

is actually a mixture of the local speci�cations �HVn , which shows that the weak limit Q1 is a Gibbs

measure corresponding to �H =
�
�HV
�
V 2V

(see Lemma 2 and Proposition 1 in [MRZ00]). Moreover

we may now derive a Cluster Expansion in space-time for some �nite-volume approximation Qn, with

n arbitrarily large, and look for some exponential bounds for the corresponding contour coe�cients:

as long as these bounds depend only on the small parameter �, such Cluster Expansion will also be

valid for Q1 itself. The main consequence of interest to us is that one may then establish that the

interacting di�usions
�
(xit)t�0; i 2 Z

d
	
driven by Q1 decorrelate exponentially fast in space and time.

Theorem 3.1.

There exists an �0 > 0 such that for each 0 < � � �0, one may �nd positive constants c, C for which:����
Z



F (x)G (x) dQ1 (x)�
Z



FdQ1 �
Z



GdQ1

���� � C � e�c�D(V1;V2)

whenever F;G : 
 �! R are measurable with respect to FV1 , FV2 respectively and such that

kFk1; kGk1 � 1 ;

D(V1;V2) standing for a measure of the distance separating the bounded space-time windows V1 =

�1 � I1 and V2 = �2 � I2 .

Considering bounded functionals F (x) which depend on x only through x
�
t =

�
(xit); i 2 �

	
yields

the following exponential ergodicity statement :

Corollary 3.1.

For each 0 < � < �0, there exist positive constants c; C such that����
Z
F
�
x
�
t

�
F
�
x
�
t+T

�
dQ1 �

Z
F
�
x
�
t

�
dQ1 �

Z
F
�
x
�
t+T

�
dQ1

���� � C � e�c�T

whenever F : 
 �! [0; 1] is a bounded measurable functional of x depending on x only through

x
�
t =

�
(xit); i 2 �

	
, for some t and some �nite box � � Z

d
(c and C do not depend on �).

In the next subsection, we establish the validity of a cluster expansion in space-time for Q1 consid-

ered in the High Temperature regime, and give exponential estimates for the corresponding contour

coe�cients in Proposition 3.2. . The above theorem may then be seen to follow from the validity of

such exponential estimates, as was established in a general setting in [MM91] (x3 in Chapter 3).

3.2 Construction of a cluster expansion for Q1.

For simplicity, we �rst consider the Markovian case where �2 = 0 and derive a space-time Cluster

Expansion for some �nite-volume approximation Qn following the method developped by P. Dai Pra
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and the second author in [DPR02]. In our case some extra care has to be taken in the exponential

estimation of the contour coe�cients, since the interaction term

�

0
@X
j�i

x
j
t

1
A dt

appearing in the drift of our stochastic di�erential is not a uniformly bounded one. We then consider

the non-Markovian setting where �2 > 0; in this case the notion of contour has to be modi�ed, but

in the end one may again derive a satisfactory Cluster Expansion in space-time, where the validity

of some exponential estimates for the contour coe�cients may be seen to follow from the uniform

boundedness of the original Random Field variables hi 2 f��g.

3.2.1 Markovian case (�2 = 0).

We recall that �0 denotes the probability measure on R yielding a reversible equilibrium measure for

the di�usion

dxt = dwt � U 0(xt)dt (2)

and equip the stochastic di�erential system S1 with the initial condition �
Z
d

0 . For �xed y; z 2 R,

we further letWy;z
I (d!) denote a stochastic bridge associated with the di�usion (2) considered on the

interval I . Fixing a > 0, we then let In = [0;na], whereas (�n)n�1 is de�ned recursively through the

relations

�0 =
n
i 2 Z

d jjij = 0 or jij = 1
o
; �n+1 = �+

n ; 8n 2 N

In this Markovian context, the partition function Zn associated with Qn

Zn =

Z



exp f�HVn(x)gP (dx)

may be decomposed as the following integral over yn 2 R
(n+1)j�n+2 j:

Zn =

Z
R
(n+1)j�n+2 j

Zn(yn)
Y

k2�n+2;0�j�n�1

qa(y
k
j+1; y

k
j ) 


k2�n+2;0�j�n
�0(dy

k
j ); (7)

qa(y
k
j+1; y

k
j )d�0(y

k
j ) denoting a transition probability density on any time interval of length a for the

di�usion (2) considered in its stationary regime, and Zn(yn) being de�ned by

Zn(yn) =
R


exp f�HVn(x)g 


k2�n+2;0�j�n�1
W

ykj ;y
k
j+1

Ij
(dxk)

=
Q

0�j�n�1

R


exp

�
�H�n�Ij (x)

	



k2�n+2
W

ykj ;y
k
j+1

Ij
(dxk)

=
Q

0�j�n�1

R



Q
k2�n+1

exp
n
��(k+�0)�Ij (x)

o



k2�n+2
W

ykj ;y
k
j+1

Ij
(dxk)

(8)

Analysing the spatial product Y
k2�n+1

exp
n
��(k+�0)�Ij (x)

o
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�rst, and letting �k;j = �(k+�0)�Ij , one obtains:

Q
k2�n+1

exp f��k;j(x)g =
Q

k2�n+1

f1 + (exp f��k;j(x)g � 1)g

= 1 +
P
L

P
k2L

(exp f��k;j(x)g � 1)

= 1 +
P
s�1

P


j
1;:::;


j
s

Qs
m=1

Q
k2


j
m

(exp f��k;j(x)g � 1) ;

where
P
L

denotes a sum over all nonempty subsets of �n+1, and where
P



j
1 ;:::;


j
s

stands for a summation

over all maximal ��0-connected� components of L� Ij , so that

L� Ij =
�


j
1 � Ij

�
[ : : : [

�

js � Ij

�
;

the latter decomposition being the �nest one for which

(
jr +�0) \ (

j
r0 +�0) = ;; 81 � r 6= r0 � s:

Integrating back (and still using the Markov property) we have:

Zn(yn) =

n�1Y
j=0

Z



8><
>:1 +

X
s�1

X


j
1 ;:::;


j
s

sY
m=1

Y
k2


j
m

�
e��k;j(x) � 1

�9>=
>; 


k2�n+2
W

ykj ;y
k
j+1

Ij
(dxk)

The time product
n�1Y
j=0

qa(y
k
j+1; y

k
j )

may also be expanded as

1 +
X
�

X
Ij2�

�
qa(y

k
j+1; y

k
j )� 1

�
= 1 +

X
p�1

X
�k1 ;:::;�

k
p

pY
u=1

Y
Ij2�ku

�
qa(y

k
j+1; y

k
j )� 1

�
;

where
X
�

runs over all non-ordered collections of intervals of the type

Ij = [ja; (j + 1)a] ; 0 � j � n� 1;

and where the summation
P

�k1 ;:::;�
k
s

is taken over all pairwise non-intersecting collections of consecutive

time intervals �ku = f(k; Ij); (k; Ij+1); : : : ; (k; Ij+r)g .

Inserting both of these expansions in the expression (5) obtained for Zn, one obtains:

Zn =
R
R
(n+1)j�n+2j

Qn�1
j=0

R



8<
:1 +

P
s�1

P


j
1 ;:::;


j
s

Qs
m=1

Q
k2


j
m

�
e��k;j(x) � 1

�9=; 

k2�n+2

W
ykj ;y

k
j+1

Ij
(dxk)

Q
k2�n+2

0
@1 +

P
p�1

P
�k1 ;:::;�

k
p

Qp
u=1

Q
Ij2�ku

�
qa(y

k
j+1; y

k
j )� 1

�1A 

k2�n+2;0�j�n

�0(dy
k
j )

(9)
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time

Γ

Γ

1

2

Figure 1: Two non-intersecting aggregates �1 and �2

so that

Zn = 1 +
X
v�1

X
�1;:::;�v

vY
l=1

K�l ; (10)

where

�l =
n


j1
1 ; : : : ; 


js
s ; �k11 ; : : : ; �

kp
p

o
is a nonempty collection of contours 
 and temporal series � satisfying

�

jmm +�0

�
\
�


jm0

m0 +�0

�
= ;; �kuu \ �ku0u0 = ;; 8m 6= m0; u 6= u0

The coe�cient K� attached to each aggregate � is given as

K� =
R
R
(n+1)j�n+2 j

Qs
m=1

R



Q
k2


j
m

�
e��k;j(x) � 1

�



k2�n+2
W

ykj ;y
k
j+1

Ij
(dxk)

Qp
u=1

Q
Ij2�ku

�
qa(y

ku
j+1; y

ku
j )� 1

�



(k;j)2[�]
�0(dy

k
j );

(11)

so that

Zn = 1 +
X
v�1

X
�1;:::;�v

vY
l=1

K�l ; (12)

the sum
P

�1;:::;�v
running over arbitrary �nite collections of 2 by 2 non intersecting aggregates, and�

�
�
denoting the set of all vertices (k; j) appearing in �. Letting further � denote the set consisting

of all temporal edges appearing in �, one may then establish the validity of an exponential upper

bound of the type

jK�j � �(�)j�j;

for some �(�) = O(�) .

Indeed, using a generalised Hölder inequality (stated and proved as Lemma 5.5 in [MVZ00]), one may
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�rst show that

jK�j �
Qs
m=1

Q
k2


jm
m

�R
F kjm(yn)

�1 

l2(k+�0)

�0(dy
l
jm
)�0(dy

l
jm+1)

�1=�1

�
Qp
u=1

Q
Ij2�

ku
u

�R ���qa(ykuj+1; ykuj )� 1
����2 �0(dykuj )�0(dy

ku
j+1)

�1=�2
;

the function F kj (yn) being de�ned on R
(n+1)j�n+2 j by

F kj (yn) =

�Z



je��k;j(x) � 1j�1 

l2(k+�0)

W
ykj ;y

k
j+1

Ij
(dxk)

�1=�1

and the exponents �1; �2 satisfying

2(1 + 2d)

�1
+

2

�2
� 1:

This enables one to control the spatial interactions and the time interactions separately; more pre-

cisely, one may then prove the existence of upper bounds M1 = M1(a; �);M2 = M2(a; �) > 0

depending both on the time scale a and on the inverse temperature parameter �, and for which

�Z
F kj (yn)

�1 

l2(k+�0)

�0(dy
l
j)�0(dy

l
j+1)

�1=�1
�M1; (13)

�Z ���qa(ykj+1; ykj )� 1
����2 �0(dykj )�0(dykj+1)

�1=�2
�M2

�
8k 2 Z

d;8j 2 N

�
; (14)

whereas

lim
�&0

M1(a(�); �) = lim
�&0

M2(a(�); �) = 0 (15)

when the time scale a is chosen properly as a function of the inverse temperature parameter �.

More precisely, using ultracontractivity of the reference di�usion (2) enables one to establish

the existence of positive constants a0 and C for which

�Z
jqa(y;x) � 1j�0(dy)�0(dx)

�1=4

� C � a�1=2

as soon as a � a0 (see the end of the proof of Proposition 5 in [DPR02]); as we shall see, the choice

of a time scale a(�) = ��1=2 turns out to be a convenient one (cf proof of Proposition 3.1), and in

this case one obtains an upper M2 of the type C � ��1=4 in (15). As for (14), it may be seen to follow

from the basic estimate derived below.

Lemma 3.1.

Fix U(x) = Cx4 � 2Cx2 for some C > 0, and recall that Ij = [ja; (j + 1)a] � R+ .

There exists a constant K > 0 depending only on C and on the dimension d of the lattice and

for which Z



e
�
R
Ij

�P
l�k

xlt

�2
dt

P (dx) � KeK�
2a2 ; 8� > 0;8j 2 N;8k 2 Z

d:
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Proof:

Let us �rst observe that

R


e
�
R
Ij

�P
l�k

xlt

�2
dt

P (dx) �
R


e
2�d�

P
l�k

R
Ij
(xlt)

2dt

P (dx)

=

�R


e
2�d

R
Ij
(xkt )

2dt
P (dx)

�2d
;

so that: Z



e
�
R
Ij

�P
l�k

xlt

�2
dt

P (dx) � (f(2�d))2d

for f de�ned through

f(z) =

Z
ez
R
I
!2t dtp(d!);

p being the probability distribution associated with the reference stationary di�usion (2), and I � R+

being any interval of length a. Observing that

f(z) =

+1X
n=0

zn

n!

Z �Z
I

!2t dt

�n
p(d!);

we then obtain:

jf(z)j �
+1X
n=0

jzjn

n!

Z �Z
I

!2t dt

�n
p(d!)

�
+1X
n=0

jzjn

n!
an�1

Z Z
I

!2nt dtp(d!)

=

+1X
n=0

(ajzj)n

a � n!

�Z
!2n0 p(d!)

�
� a

=

+1X
n=0

(ajzj)n

n!

Z
R

x2ne�2U(x)dx;

having used Hölder's inequality for the �rst inequality and then the stationarity of our reference

di�usion process (2).

Hence:

jf(z)j �
Z
R

X
n

(ax2jzj)n

n!
e�2U(x)dx

=

Z
R

eax
2jzj�2U(x)dx

= e
2C
�
1+

ajzj

4C

�2
�
Z
R

e
�2C

�
x2�

ajzj+4C

4C

�2
dx

Setting A =
ajzj+4C

4C and taking into account the fact that the two-parameter integral

I(A;C) =

Z
R

e�2C(x
2�A)

2

dx

satis�es

sup
A�1

I(A;C) = K1(C) < +1;
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we then have: Z



e
�
R
Ij

�P
l�k

xlt

�2
dt

P (dx) � jf (2�d)j2d

� K1(C)
�
e2C(1+

a�d
2C )

2�2d
= K1(C)e

4Cd(1+a�d
2C )

2

;

which �nishes the proof. 2

The proof of inequality (14) may now be seen to follow from the estimate given in the preceding

Lemma, and we give the full details of such a derivation in the non-Markovian case where �2 > 0 (see

Proposition 3.1 and its proof).

3.2.2 Non-Markovian case (�2 > 0).

In order to obtain a satisfactory Cluster Expansion in the non-Markovian setting where �2 > 0, we

shall now take into account the fact that the SLLN characterising Q1 as an asymptotic dynamics is

of a self-averaging nature.

Lemma 3.2.

For any space-time window V 2 V and for x 2 
0, the (space-time) Boltzmann weight

e�HV (x) = exp

8<
:
X
i2�+

�Z
I

bit(x)dB
i
t(x)�

1

2

Z
I

bit(x)
2dt

�9=
;

may also be presented as

e�HV (x) = Eh

2
4expfX

i2�+

�Z
I

cit(x;h)dB
i
t(x)�

1

2

Z
I

cit(x;h)
2dt

�
g

3
5 ;

where cit(x;h) is given by

cit(x;h) = �

0
@X
j�i

x
j
t + hi

1
A :

Proof:

The proof is similar to that of Proposition 2.1 . Indeed, considering �rst the particular case where

V = fig � [0; t], one may introduce

M i
t (x) = e

R t
0
biu(x)dB

i
u(x)�

1
2

R t
0
biu(x)

2du

and observe that
�
M i
t (x)

�
t�0

is a positive martingale with mean 1 under dP (x), such that

logM i
t (x) =mart:

Z t

0

biu(x)dB
i
u(x)
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(using here again the notation introduced in the proof of Proposition 2.1). Remembering the expres-

sions given for the functionals bit(x), B
i
t(x) and

~Bi
t(x), we then have

logM i
t (x) =mart:

R t
0

 
�
P
j�i

x
j
u

!
dBi

u(x) + ��
R t
0
tanh

�
�� ~Bi

u(x)
�
dBi

u(x)

=mart:

R t
0

 
�
P
j�i

x
j
u

!
dBi

u(x) + ��
R t
0
tanh

�
�� ~Bi

u(x)
�
d ~Bi

u(x)

=mart:

R t
0

 
�
P
j�i

x
j
u

!
dBi

u(x) + log cosh
�
�� ~Bi

t(x)
�
;

the last equality following from Itô's formula. Now the second summand in the latter term may also

be presented as

log Eh

h
e�h

i ~Bi
t(x)
i

;

which establishes Lemma 2.1 in the particular case where V = fig � [0; t]. The general case may be

proved along the same lines. 2

This representation of the Boltzmann weights turns out to be very convenient for our purposes, at

least in the Bernoulli setting; one may indeed replace the identity (7) obtained for Zn by an expected

value

Zn = Eh

2
4Z

R
nj�n+2j

Zhn (yn)
Y

k2�n+2;0�j�n�1

qa(y
k
j+1; y

k
j ) 


k2�n+2;0�j�n
�0(dy

k
j )

3
5 (16)

where, correspondingly to (8), Zhn (yn) is now given by

Zhn (yn) =
Y

0�j�n�1

Z



Y
k2�n+1

exp
n
��h(k+�0)�Ij (x)

o



k2�n+2
W

ykj ;y
k
j+1

Ij
(dxk: ) ; (17)

and where

�h(k+�0)�Ij (x) = �
Z
I

 
�
X
l�k

xlt + �hk

!
dBk

t (x) +
1

2

Z
I

 
�
X
l�k

xlt + �hk

!2

dt :

Following step by step the development given precedingly in the Markovian case, one then obtains

Zn = 1 +
X
v�1

X
�1;:::;�v

Eh

"
vY
l=1

Kh

�l

#
; (18)

the coe�cient Kh

�l
being now given by

Kh

� =
R
R
(n+1)j�n+2j

Qs
m=1

R



Q
k2


j
m

�
e
��h

k;j
(x) � 1

�



k2�n+2
W

ykj ;y
k
j+1

Ij
(dxk: )

Qp
u=1

Q
Ij2�ku

�
qa(y

ku
j+1; y

ku
j )� 1

�



(k;j)2[�]
�0(dy

k
j ) ;

(19)

for each aggregate � =
n


j1
1 ; : : : ; 


js
s ; �k11 ; : : : ; �

kp
p

o
.

In order to view the average

Eh

"
vY
l=1

Kh

�l

#
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Γ 2

Γ 1

time

Z 2

Figure 2: Two aggregates �1 and �2 having disjoint supports

as a product running over some new aggregates, one should then partition the collection �1; : : : ;�v

into a convenient collection of (two by two disjoint) subsets

�1 =
�
�e1;1; : : : ;�en1 ;1

	
; : : : ;�~v =

�
�e1;~v; : : : ;�en~v ;~v

	
(~v � v)

To be more precise, one may de�ne the �spatial support� associated with

� =
n


j1
1 ; : : : ; 


js
s ; �k11 ; : : : ; �

kp
p

o

as

suppZd (�) =
n
k 2 Z

d : 91 � m � s; (k; jm) 2 
jmm
o

and then decompose
�
�1; : : : ;�v

	
into a union

�
�1; : : : ;�v

	
= [~vl=1�l ;

each of the classes

�l =
n
�e1;l; : : : ;�en;l

o

being maximal among all subsets of
�
�1; : : : ;�v

	
satisfying:

81 � n0 � n;9n00 6= n0; suppZd (�
en0 ) \ suppZd (�

en00 ) 6= ;

One thus obtains:

Eh

2
4 vY
l=1

sY
m=1

Y
k2


jm
m

�
e
��h

k;jm
(x) � 1

�35 =

~vY
l=1

Eh

2
4 nY
n0=1

sY
m=1

Y
k2supp(


jm
m )

�
e
��h

k;jm
(x) � 1

�35 ;
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so that

Zn = 1 +
X
~v�1

X
�1;:::;�~v

~vY
l=1

~K�l ; (20)

the new cluster coe�cients ~K� being now given by

~K� =
R
R
(n+1)j�n+2 j

Q
(k;Ij)2�

�
qa(y

k
j+1; y

k
j )� 1

�



(k;j)2[�]

�0(dy
k
j )(R



Eh

" Q
(k;j)2[�]

�
e
��hk;j(x) � 1

�#



(k;Ij)2�

W
ykj ;y

k
j+1

Ij
(dxk: )

)

= Eh

"R
R
(n+1)j�n+2j

Q
(k;Ij)2�

�
qa(y

k
j+1; y

k
j )� 1

�



(k;j)2[�]

�0(dy
k
j )(R




Q
(k;j)2[�]

�
e
��hk;j(x) � 1

�



(k;Ij)2�

W
ykj ;y

k
j+1

Ij
(dxk: )

)#
(21)

For a �xed realisation of h, one may then apply the generalised Hölder inequality stated as Lemma

5.5 in [MVZ00], �rst to the integral

Z



Y
(k;j)2[�]

�
e��

h

k;j(x) � 1
�



(k;Ij)2�

W
ykj ;y

k
j+1

Ij
(dxk: );

whose absolute value is bounded from above by the product

Qn
n0=1

Qs
m=1

Q
k2supp(


jm
m )

�R



�
e��

h

k;jm
(x) � 1

��



l2(k+�0)
W

yljm ;y
l
jm+1

Ijm
(dxl:)

�1=�

=
Qn
n0=1

Qs
m=1

Q
k2supp(


jm
m )

Fhk;jm

�n
ylj

ol2k+�0
j=jm;jm+1

�

for � = 4(2d + 1) (since each of the edges (k; Ij) cannot appear in more than 2d + 1 of the contours


 or � pertaining to the collection �); one may secondly apply this generalised Hölder inequality to

Z
R
(n+1)j�n+2j

nY
n0=1

8<
:

pY
u=1

�
qa(y

ku
j+1; y

ku
j )� 1

� sY
m=1

Y
k2supp(


jm
m )

Fhk;jm

�n
ylj

ol2k+�0
j=jm;jm+1

�9=
; 


(k;j)2[�]

�0(dy
k
j ) ;

whose absolute value is bounded from above by

Qn
n0=1

8<
:Qs

m=1

Q
k2supp(


jm
m )

�R
R2

���qa(ykuj+1; ykuj )� 1
���4 d�0(ykuj )d�0(y

ku
j+1)

�1=49=
;8<

:Qs
m=1

Q
k2supp(


jm
m )

�R
Fhk;jm

�n
ylj

ol2(k+�0)
j=jm;jm+1

��



l2(k+�0)
d�0(y

l
jm
)d�0(y

l
jm+1)

�1=�9=
;

(since each of the space-time vertices (k; j) appears at most 2(1 + 2d) times as an extremity of an

edge pertaining to �).

Controlling the term �Z
R2

���qa(ykuj+1; ykuj )� 1
���4 d�0(ykuj )d�0(y

ku
j+1)

�1=4
(22)
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requires of course no new ingredient, and we are left with the control of the expected value

Eh

2
4 nY
n0=1

sY
m=1

Y
k2supp(


jm
m )

�Z
Fhk;jm

�n
ylj

ol2(k+�0)
j=jm;jm+1

��



l2(k+�0)
d�0(y

l
jm)d�0(y

l
jm+1)

�1=�
3
5 ;

where

Fhk;jm

�n
ylj

ol2(k+�0)
j=jm;jm+1

��
=

Z



�
e��

h

k;jm
(x) � 1

��



l2(k+�0)
W

yljm ;y
l
jm+1

Ijm
(dxl)

Using the uniform boundedness of the variables hi, one may actually give a satisfactory upper bound

that is valid almost surely in h (having assumed � is small enough).

Proposition 3.1.

There exists a positive constant �0 for which the following holds true: whenever 0 < � � �0, one may

choose a time scale a = a(�) > 0 so that for � = 4(2d + 1):�Z



Fhk;jm

�n
ylj

ol2k+�0
j=jm;jm+1

��



l2k+�0
d�0(y

l
jm)d�0(y

l
jm+1)

�1=�
= O(�)

uniformly in k, jm and h.

Proof:

Let us recall that qt(y2; y1) denotes the transition density of the reference di�usion

dxt = dwt � U 0(xt)dt (2)

with respect to its invariant reversible measure �0: qt may be de�ned through the equalities

p fxt 2 dy2 jxt=0 = y1 g = qt(y2; y1)�0(dy2);

and since the single-site potential U has been de�ned as U(x) = Cx4 � 2Cx2, we know that the

di�usion (2) is ultracontractive (cf [KKR93]). Hence: qt(y2; y1) converges to 1 uniformly in y1; y2 2 R,

and a fortiori

8A > 1;9a0 2 R+ ;8a > a0;8y1; y2 2 R; qa(y2; y1) �
1

A
:

Choosing a time-scale a > 0 that is large enough, we may thus replace the integral�Z �Z



�
e��

h

k;jm
(x) � 1

��



l2(k+�0)
W

yljm ;y
l
jm+1

Ijm
(dxl:)

�



l2(k+�0)
d�0(y

l
jm)d�0(y

l
jm+1)

�1=�

by  Z �Z



�
e
��h

k;jm
(x) � 1

��



l2(k+�0)
W

yljm ;y
l
jm+1

Ijm
(dxl:)

�



l2(k+�0)

d�0(y
l
jm
)d�0(y

l
jm+1)

qa(y
l
jm
; yljm+1)

!1=�

;

thereby loosing only a constant factor A(2d+1)=�. But the latter integral coincides with�Z



�
e
��hk;j(x) � 1

��
P (dx)

�1=�
;
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and we then have:Z



�
e��

h

k;j(x) � 1
��
P (dx) =

Z



�Z 1

0

�hk;j(x)e
���hk;j(x)d�

��
P (dx)

=

Z
[0;1]�

Z



(�hk;j(x))
�e
�(�1+:::+��)�

h

k;j
(x)
P (dx)d�1 : : : d��

=

Z
[0;1]�

d�

dz�
T h(z)

����
z=�1+:::+��

d�1 : : : d��;

where

8z 2 C ; T h(z) =
Z



e
�z�h

k;j
(x)
P (dx)

According to Cauchy's formula: ���� d�dz�T h(z)
���� � �!

r�
sup

j��zj=r

jT h(�)j;

whenever T h is holomorphic on an open domain containing B(z; r), and we also know that for

� = �1 + ��2; �1; �2 2 R,

���T h(�)��� � Z



je���
h

k;j(x)jP (dx) =
Z



e
��1�

h

k;j(x)P (dx)

Factorising e��1�
h

k;j(x) into

exp

 
�1

Z
Ijm

ckt (x;h)dB
k
t (x)� �21

Z
Ijm

ckt (x;h)
2dt

!
� exp

 
(�21 �

�1

2
)

Z
Ijm

ckt (x;h)
2dt

!

and using the Cauchy-Schwarz inequality together with the P -martingale property of the square of

the �rst factor then yields:Z



�
e
��hk;j(x) � 1

��
P (dx) �

�!

r�

�Z



e
(2�2��)

R
Ijm

ckt (x;h)
2dt
P (dx)

�1=2
;

� > 0 being chosen so that (�2 � �
2
) is larger than any of the (�21 �

�1
2
)'s appearing when using an

auxiliary parameter � such that j� � (�1 + : : :+ ��)j = r .

At this stage the integrand

e
(2�2��)

R
Ijm

ckt (x;h)
2dt

may be estimated from above by

e(4�
2�2�)a�2�2e

(4�2�2�)�2
R
Ijm

�P
l�k

xlt

�2
dt

;

and replacing further (4�2 � 2�) by 4(�+ r)2, it thus remains to control

�!

r�
e4(�+r)

2a�2�2

0
@Z




e
4(�+r)2�2

R
Ijm

�P
l�k

xlt

�2
dt

dP (x)

1
A

1=2

Taking a(�) = ��1=2 and using Lemma 3.1 enables us to replace the above term by

f�(r) =
�!

r�
e4(�+r)

2�2�3=2 �K � e16K�(�+r)
4

;

27



and min
r>0

f�(r) may be seen to decrease to 0 as � & 0 by setting e.g. r� = ��1=� = ��1=4(2d+1), for

which one obtains the existence of ~K such that

f�(r�) � ~K�

for all � small enough. This �nishes the proof. 2

We are now in a position to give exponential estimates for the cluster coe�cients ~K� appearing

in the decomposition (20).

Proposition 3.2.

There exists an �0 > 0 for which the following holds true: whenever 0 < � � �0, one may choose a

time scale a = a(�) > 0 so that each of the cluster coe�cients ~K� appearing in the decomposition

(20) of the partition function Zn satis�es

��� ~K�

��� � C � (�(�))j�j ;

j�j denoting the number of temporal edges (k; Ij) appearing in the cluster �, and � being such that

lim
�&0

�(�) = 0

Proof:

This is a simple consequence of inequality (15) and of Proposition 3.1, yielding an exponential control

of the contributions associated with �time contours� and �spatial contours� respectively. 2

As a consequence of such exponential control of ~K�, we may further assert that the asymptotic

dynamics Q1 is exponentially ergodic in a space-time sense (Theorem 3.1). The link between such

exponential control of the cluster coe�cients ~K� and an exponential decay of correlations under the

Gibbs measure Q1 may be found in [MM91] (see Lemma 1 in x2 of Chapter 3).
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