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Abstract: It is known that the joint measures on the product of spin-space and disorder
space are very often non-Gibbsian measures, for lattice systems with quenched disorder,
at low temperature. Are there reflections of this non-Gibbsianness in the corresponding
mean-field models? We study the continuity properties of the conditional expectations
in finite volume of the following mean field models: a) joint measures of random field
Ising, b) joint measures of dilute Ising, c) decimation of ferromagnetic Ising. Observing
that the conditional expectations are functions of the empirical mean of the conditionings
we look at the large volume behavior of these functions to discover non-trivial limiting
objects. For a) we find 1) discontinuous dependence for almost any realization and
2) dependence of the conditional expectation on the phase. In contrast to that we
see continuous behavior for b) and c), for almost any realization. This is in complete
analogy to the behavior of the corresponding lattice models in high dimensions. It shows
that non-Gibbsian behavior which seems a genuine lattice phenomenon can be partially

understood already on the level of mean-field models.



1. Introduction

The relationship between mean field models and lattice models is an interesting meta-
theme in statistical mechanics. The general wisdom is of course that a) there should
be mean-field like behavior in sufficiently high dimensions, as far as the phase-structure
is concerned and b) mean field models are often amenable to simple computations and
explicit solutions. In the limit of high dimensions the free energy of a spin system
converges to its mean field value, and critical behaviour is supposed to be mean-field
like. Moreover, mean field models sometimes possess independent applications outside
of solid state physics, and deserve to be studied in their own right. The reader might
think in this context also e.g. on bond-percolation on the lattice vs. the random graph
[BCKSO01]. Simple mean-field models of disordered systems were also used earlier by the
author to illustrate the (supposed) asymptotic behavior of the Gibbs measures of the
corresponding lattice models as described by the corresponding metastates [K97],[K98],
a notion introduced in [NS96a,b]. For an excellent overview about further related results
also in more complicated situations we refer the readers to [Bo0Ol] and the references
therein.

On the other hand, there are cases (think of the famous Edward-Anderson spin-glass),
where there are good reasons to question the equivalence between lattice and mean-field
behavior in high dimensions. Also the corresponding mean field-solution [MePaVi87|
itself is mathematically not justified and not at all simple. (For the current status of the
ongoing discussion on this fascinating topic see [NS02], [MPRRZ00].) Moreover, when
conceptually subtle properties are investigated, it might not be straightforward or even
prove impossible to translate well-defined questions on lattice models into questions on
mean field models.

Our present paper is motivated by the study of non-Gibbsianness in lattice spin-
systems. We pick three well-known models showing non-Gibbsian behavior of different
character, and compare their lattice versions to their mean-field versions. As we will
see there are close analogies in the behavior in these models, and in fact the mean field
models allow for very simple explicit computations. We believe that because of their
simplicity our examples contribute to a more intuitive understanding of some aspects
of non-Gibbsianness and are also interesting in itself. It might seem surprising that we
are looking for non-Gibbsianness in mean-field models, since there is no proper Gibbsian
structure anyway. Our important point is that when “Non-Gibbsianness” for mean-
field models is understood as “discontinuity of conditional expectations as a function
of the conditioning”, it becomes a meaningful and natural notion when it is taken in
the appropriate sense. Note that simple mean-field models (like the standard Curie
Weiss model) usually converge weakly to linear combinations of product measures. A
(non-trivial) linear combination of product measures is non-Gibbsian and has each spin
configuration as a discontinuity point [EL96], so one could feel discouraged to look for
non-trivial continuity properties in conditional expectations of mean-field models. In
contrast to that, the proceeding that is appropriate for our mean-field model is as follows:
1) Take the conditioning while staying in finite volume. 2) Observe that the conditional
expectations outside a finite set are automatically volume-dependent functions of the



empirical average over all the (joint) spins in the conditioning. 3) Derive the large
volume-asymptotics for these functions. 4) Consider their continuity properties and look
at the size of the set of their discontinuity points in the large volume-limit.

The functional dependence of the limiting form of the conditional expectations can
not be deduced from the sole information of the limiting product measures. This is
particularly clear for the decimation transformation of the Curie-Weiss model: It has
the same limiting measures as the Curie-Weiss model itself, but non-trivial continuity
properties of its conditional expectations in the above sense, as will become explicit later.

Our most interesting example however is the joint measure of the random field Ising
lattice model, and we will treat it more detail than the other two examples. The study
of such joint measures arising in spin-systems with frozen disorder on the product space
of disorder space was advocated a long time ago in the so-called Morita-approach to dis-
ordered systems [Mo64] (see also [SP93],[Ku97],[KM94]). Much later, starting from the
first example of the dilute Ising ferromagnet [EMSS00], it was discovered in [K99],[K01]
that such joint measures provided a whole class of examples of non-Gibbsian measures,
in low temperature situations, see also [EKMO00],[KMO00]. This situation has some anal-
ogy with the much discussed non-Gibbsian behavior of images of low-temperature lat-
tice spin measures under renormalization group transformations (for the latter see [EF-
S93],[MRSV00],[BKL98| and references therein.) The simplest example of such a trans-
formation is just the projection to a sublattice, or decimation. The analogy is close in
the region of interactions when the joint measure happens to be a Gibbs measure again
(which is true for small enough interactions). Then one has regularity statements (u-
niqueness and Lipschitz-continuity, see [K02]) that are parallel to the known statements
for renormalized measures [EFS93]. On the other hand, even if there is no interaction
that is summable everywhere, by general arguments there always exists a potential that
is at least summable almost everywhere [K01], however without any information on the
decay. This abstract result does not have a counterpart for renormalized Gibbs measures.

Now, the joint measures of the random field Ising lattice model in dimensions greater or
equal than 3, small randomness, provide a particularly nice example for various unusual
“pathologies”.

1. They are not Gibbs measures for any uniformly summable potential. Moreover, the
set of configurations where the discontinuity of their conditional expectations happens is
not negligible but has even full measure ([K99], [K01]).

2. The functional form of the conditional expectations depends on whether the system
is in the plus- or minus-phase (see [K01], [KLR02]).

As explained in [KLRO02] Property 2 implies the failure of the Gibbs variational princi-
ple. Since there is a potential nevertheless that converges even like a stretched exponential
[which is a non-trivial result] on a full measure set, this indicates that having the exis-
tence of a potential is not of much use. We refer to this paper for a general discussion and
for a restauration of the variational principle for a reasonable smaller class of generalized
Gibbs measures that is defined in terms of the continuity properties of their conditional
expectations.

At first sight Properties 1 and 2 might seem not very intuitive, or at least unusual.



In fact the expression of the conditional expectations involves quantities that are not
‘explicitly’ given. The aim of this paper is to show that these two properties in fact
have analogous manifestations in the corresponding mean field model. A lot about this
simple model is known [SW85],[APZ92],[Ku96], and so we can partially draw from stan-
dard estimates, but our perspective is new and the conditional expectations of the joint
measures we are looking at have not been considered.

Our point will become even clearer when we compare this model to mean-field versions
of two other well-known examples of non-Gibbsian lattice measures. The first is the mean-
field analogue of the decimation transformation. For this measure the set of continuity
points on the lattice is of full measure [FLNRO02]. Moreover we discuss the mean field
analogue of the ‘GriSing-field’ [EMSS00]. It is very simple to see that for both mean field
models we get full measure continuity points, and this complements our picture.

The paper is organized as follows. In Chapter 2 we introduce the models and state
our results. In Chapter 3 we prove the statements about the random field model and
provide some further discussion about the analogy to the lattice model. In Chapter 4
we give the remaining proofs of the statements on the decimated ferromagnet and the
diluted ferromagnet.

2. Main results

In this section we look at the continuity properties of the conditional expectations of
our three models. We give precise estimates including error bounds only for the random
field Ising model.

2.1 The Curie Weiss random field Ising model

The model is given by the Gibbs measures
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Let us look at the case of symmetric Bernoulli n; = +1 with equal probability P, so that
P(np1,n)) = 2N, We define the corresponding joint measure in finite volume N by

Kg [,y 011,8) = P(ma,ny) - e, n [, (o1, 87) (2.2)

Of course this measure is permutation-invariant under joint permutation of the sites ¢ of
the joint spin (o;,n;) taking values in the set {(—1,—1),(—1,1),(1,-1),(1,1)}. We are
interested in the behavior of the one-site conditional expectation

Ké\{s[017711|0[2,N]77[2,N]] = Ké\{s[fflﬂh,0[2,N]7TI[2,N]]/ Z Ké\fe[ﬁ,fh,(?[z,zv],"?[z,zv]]
5’1::tl
n1==%1

(2.3)



Without loss of generality we look here at the site 2 = 1. Define the function

m2

m — @O’E’Q(m) = Eq <log cosh(B(m + Eﬁl))) (2.4)

where 7j; = £1 is a dummy random field variable with expectation [, (71) = a. Denote
by mP¥(B,¢) the largest global minimizer for the symmetric case & = 0. This is the
‘mean-field magnetization’. In what follows we restrict ourselves to the two-phase region
of the model. This is the region of the phase diagram where +mZ®F (3,¢) are the only
two different global minima.

Let us first recall how the measures look in the weak infinite-volume limit: From
[K97] follows in particular that the finite-dimensional marginals of K év . converge to the

- .. d d,— d
symmetric linear combination of product measures 3 (K Be ¢ B ) Here K'2 -+

are the product measures over the joint configurations with
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Now we state and discuss the asymptotics of the conditional expectations in finite volume.
We start with the (more uninteresting) regime of atypically large modulus of the field
sum.

Theorem 1 (Continuity for large modulus of the field sum).

1 exp (B8(m + eni) o)

lim Ké\,’e[m, M Ia[z,N]"?[z,N]] =

Ntoo ~ Norm. cosh B(mBF (B,e,a) + em)
L " (2.6)
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where mBF (B,¢,0) is the global minimizer of the function (2.4). The normalization
is obtained by summing over o1,m. In particular, the limiting expression (2.6) varies
continuously as a function of the pair (m,a) of the empirical means of the conditioning
joint spins, in the two connected components a > 0 and o < 0.

Remark. m®¥ (B, ¢, a) is the magnetization of a random field Curie-Weiss model with
biased i.i.d. random fields such that E, (7;) = a # 0.

Remark. We note that the conditional expectation is continuous everywhere in the single
variable m, but it is not continuous everywhere when we consider it as a function of .
This is identical to the lattice case. The continuity for o # 0 follows from the elementary
fact that, for §,e in the two phase region (for the model with & = 0) the minimizer
m¥fF (B, ¢, a) varies continuously as a function of a. It however jumps at oo = 0 and
changes sign, and we have m®¥(8,e,a = 0+) = mBF(B,¢) = —mBF(B,e,a = 0-).



Of course, the probability that the normalized n-sum takes values o away from zero is
exponentially small in V, and so the regime we are looking at is atypical.

Heuristically speaking, in the large N-limit there will be all mass on the two condi-
tionings o = 0+ and a = 0—. We will see and make precise below the following picture:
Outside a set of zero measure the conditional expectations (2.6) will acquire the two
limiting forms for & = 0+ and a = 0— that are manifestly different. So, an infinitesimal
variation of o around zero leads to discontinuous behavior in the conditional expectation.
Since a = 0 is typical, we have an almost sure discontinuity is a function of the joint
conditioning.

To understand better the nature of this discontinuity at o = 0 let us blow up the scale
of the empirical mean of the random fields. We like to be more precise here than in the
simpler Theorem 1 given before and provide a uniform bound on the deviation from the
limiting expression.

Introduce the regular set of random field configurations

H(N) := {n: ‘inz

< N#} (2.7)

for some fixed 0 < § < é. We note that it is a very large set for large N since we have
— s
P(H(N))>1—2 7.

Theorem 2 (Close-up of discontinuity region - Almost Sure Discontinuity).
We have the uniform approzimation

N N
1 _1-66
sup  sup Ké\,rs[01,771|0[2,N]Tl[2,N]] - K5 [Jlanl‘ﬁ ZUi,ZTIi] <C(B,e)N~ =
nEH(N) (2,N] i=2 i=2
(2.8)
Here the limiting expression is given by
oo . 1 . m
Ko, mlm, w] = < exp (B( 4+ em)o1) - g,e,00(w) ™2 (2.9)
for any € [—1,1], w € Z where we have put
(r5) 7 + (5", cosh(B(mEF(B,¢) +¢))
qﬁ,E,OO(w) = * w41 % _ w41 T/B’e = RF (2.10)
(r5.0) % + (r5 )™ cosh(B(m™¥ (8,¢) — €))

Remark. Note that (2.9) is a function of the non-normalized sum of random fields in the
conditioning. So, while the limiting expression (2.9) is continuous in the empirical mean
of the spin conditioning m, it is not continuous in the empirical mean of the random field
conditioning % Zfiz 7n;, due to the occurrence of the normalization %



We note that, for large IV, the measure P gives mass to typical random field configu-
rations on the scale of the central limit theorem, i.e. Zfiz n; =% +C+/N resp. —C+v/N.
Since we have that -

. (¥
LM gpe00(w) = () (2.11)

the n-dependence acquires two limiting forms, outside of a set with vanishing P-mass in
the limit NV 1 co. Using (2.11) they can be written in the form

. 1 exp (8(m + en1)o1)
KZ + = 2.12
lowmitol = e S G ey 1

Note that the two forms coincide with the o | 0 resp. o 1 0 limits of the r.h.s. of (2.6).
For the sake of clarity let us make explicit the following trivial consequence of Theorem
2. Tt results from the fact that the convergence in (2.11) is exponentially fast in w.

Corollary to Theorem 2. We have the approzimation

N
0o 1 _1-865
sup  sup ‘Ké\{s[017m|0[2,N]77[2,N]] - K,B,s [Ulanl‘ﬁ ZUz', :I:oo} ‘ <C(B,e)N™ =
nEHE(N) o2,N] i=2

(2.13)
with the two components of ‘regular realizations’ given by
N 1448
HT(N) := {n :C_(B,e)logN < Zni <NF } , HT(N):=—HT(N) (2.14)
=1
with C_(B,€) = (1 +66)/(41log 51 ).

Remark. Note that P(XT(N) UK~ (N)) > 1 — const l%v goes to one for large N, but

it does so much slower than the set H(N).

Remark. The corollary says in brief: “For all spin-conditionings ¢ and all random field
conditioning outside of a set with vanishing mass in the large volume limit, the conditional
expectation is discontinuous in the empirical random field sum.” This discontinuity in
the random field-sum reflects the behavior of the lattice model where the conditional
expectations depend on the conditioning in a discontinuous (that is non-local) way. In
the analogous expression for the lattice model the empirical spin-average is replaced by
the sum over nearest neighbor spins, while the empirical random field average is replaced
by a more complicated non-local function. For more on that, see the discussion in section
3.2.

2.2 Decimation of Standard Curie Weiss

The decimation transformation of the usual ferromagnetic nearest neighbor Ising mod-
el at low temperature is one of the most basic examples of a non-Gibbsian measure. It



is however known, that its conditional expectations are only discontinuous outside of a
set of measure zero. Let us see the reflections of this in the mean-field model. Start with
the ordinary Curie-Weiss model given by the Gibbs measures

2_N6% (E:vzl ai)z

Zg,N

(2.15)

pg,n (o[1,N7) =

We look at the decimated model which is just the marginal ug n(0[1,p41]) on the first M+
1 spins. We are interested in the asymptotic behavior of the conditional expectation when
M = My grows like a multiple of N in the limit N 1 co. This is a natural analogue of
decimation to a sublattice. Denote by m©" (83) the ordinary Curie-Weiss magnetisation,

i.e. the largest solution of the mean-field equation m = tanh(Sm). It is well-known that
etBmCW (B)o;

Bmntoo g, N = %(,u; + ,uE) with the product measures given ,ug: (07) = S e (BT (5))
This limit is in the sense of finite-dimensional marginals. So the large M-limit of the
decimated measure on finite dimensional marginals is given in terms of the same product
measures, by definition. Moreover one has of course that impy, ar1e0 K3, N(Zf\f{l o; €
) = %((5mow(lg) + 5_ch(ﬁ)). This makes particularly clear that it doesn’t suffice to
look at the limiting measures to see “non-Gibbsianness”. Let us start with the behavior
outside of the discontinuity region.

Theorem 3 (Almost Sure Continuity in the Conditioning for Decimation). Assume
that limy4oo My /N =1 —p. Then

. M+1
; ePha.p(h)o1 . 1 .
B G R U el e e L 2 ; =mEl (2.16)
1-p

where hg p() = pmSW (p,B, Tm) +(1—p)m

where mCW (8, 1) is the solution of the mean-field equation of the Curie-Weiss model
in an external magnetic field ', i.e. m = tanh(8'(m + h')), that has the sign of h'. In
particular, the limiting form of the conditional expectation is continuous in m for m # 0.
It is discontinuous in m at m = 0 for p@ > 1.

Remark. For a check-up we see that by conditioning on typical configurations we get
back the product measures with mean-field magnetization, i.e.

M+1
. o1
Aim g v (011072,01y+1]) = us(o3), if P ; oi = +m°W (6) (2.17)

This is clear from the theorem since it is immediate to check that hg ,(+m®W (8)) =
LmOW (5).

Remark. The continuity statements of the theorem are clear by the known properties
of the mean-field solution m®%W (pB3, h') as a function of A’: It is continuous for h' # 0



and jumps at A’ = %0 for p3 > 0. The behavior of the conditional expectation as a
function of m corresponds to the situation in the lattice model. The reader familiar with
the latter will recall that in the lattice model putting a checker-board configuration in
the conditioning produces a point of discontinuity. The mechanism of non-Gibbsianness
is to produce a phase transition in the system that is integrated out by varying this
conditioning of the decimated system arbitrarily far away. Also in the mean-field model
varying the neutral conditioning of the decimated system around m = 0 produces a phase
transition in the part of the system that is integrated out. This phase transition takes
place iff the inverse temperature for the part of the system that is integrated out, Gp is
smaller than one.

Remark. In contrast to the joint measures of the random field model, we see that the
point of discontinuity m = 0 is atypical; it is taken only with exponentially small prob-
ability. This also corresponds to the lattice model, where the ‘checker-board-like’ points
of discontinuity have zero mass w.r.t. the decimated measure.

For reasons of analogy to the random field model, let us also mention the following
simple result. In Theorem 2 we gave a uniform approximation statement for conditionings
such that Ef\; 7; is subextensively small in order to interpolate between o = £0. We

could give a similar statement here for conditionings such that Zf\ig o; is subextensively
small that shows how the interpolation at m = 40 looks on a finer scale. For reasons
of simplicity let us formulate the result for conditionings such that Zf‘i’; 0; = z is even
constant. Of course, we could also give error estimates and allow for increasing values of

z like we did before in Theorem 2 but we omit these details here.

Theorem 4 (Close-up of discontinuity region). Assume that limy4oo My /N =
1—p. Then

1\171%20 pa,N (o1 |0'[2,MN+1])

eBzm Y (pg) #; (01) + e—Bzm " (pB) 1, (o) My+1 (2.18)
= P P , if E o; =z stays finite
2 cosh(BzmCW (pg)) P

Of course, in order for this statement to make, My need to be all even, or all odd,
depending on z. Again, the r.h.s. is a function of the non-normalized sum of the spins z
in the conditioning. Its values for z = +oo coincide with the values of (2.16) for 7 = +0.

2.3 Joint measures of the mean-field diluted Ising model

The lattice version of this model was the first example of a non-Gibbsian joint measure.
Let us see how the mean-field version behaves. The model is given by the Gibbs measures

9N (SXymics)”

.Uﬁ,N[n[l,N]](U[LN]) = N (2.19)
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Here the n; or independent Bernoulli occupation numbers Pln; = 1] = 1 — P[n; =

0] = p. Of course, (2.19) is nothing but the ordinary Curie-Weiss with the smaller
N .

inverse temperature 3’ = Elen (B on the set of occupied sites, tensored with symmetric

Bernoulli-spins on the sites of vacant sites. We define the corresponding joint measure

in finite volume N by

brplnpny, o11,1) = P(np,n) - v [0, v (07, 87) (2:20)
Then it is straightforward to see that we have

1

prod,+ prod,—
2(Kﬂ,p + Ko ) (2.21)

lim K}
Nl%go Bp —

in the sense of finite-dimensional marginals of the joint variables where

J1-n; P (£8p - m®Y (Bp)nso;)

Kprod,:l:
B,p 2 cosh (,Bp - mCW (ﬁp)ni)

[05,m3] :=p™ (1 — (2.22)

The limit (2.21) is clear because the distribution of the occupation numbers concentrates
exponentially fast on those configurations that have a fixed density p, and for those
configurations we are back in the ordinary Curie-Weiss model with inverse temperature
Bp. Then we have

Theorem 5 (Almost Sure Continuity in the Conditioning for Dilute Ising).

1 (1 — p)i-m exp (fmnio1)
Norm. cosh(BgmCW (Bg)n.1)

hm Kﬂ p[Ul, n1|0[2 N2, N]]
(2.23)
if 11m—anal—m 11m—Zm—q>0

In particular, the limiting expression (2.6) varies continuously as a function of the pair
(m, q) of the empirical magnetization and density of occupied sites.

Remark. Doing our check-up of the formula by conditioning on typical configurations
like we did for the other two models we see that indeed

hm Kﬁ p[al, nlld[z N2, N]]

KEeHonm] 1 & (1 +mo (8p)) (220
— d if lim NZ(nunzal) =p cw
K5 lom) NN £ (1, =" (62)

General Comment. Theorems 1,3,5 immediately carry over from single-site conditional
expectations to conditional expectations outside any finite subset. Here one obtains
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convergence to product measures (“propagation of chaos”), with the same parameters
depending on the conditioning. E.g. for the decimation case we have

k M+1

| ehan@os )
]}}ngo 16,N (071, O k41, My +1]) = 11;[1 2 cosh(Bhy, (7)) if 1\141%0 i Z ogi=m#0

1=k+1
(2.25)
for the random field model and the dilute ferromagnet it is analogous. (2.25) follows re-
cursively from Theorem 3 with the use of the formula p(o[1 k]| [k+1,n]) = P(Tk|O[1,k—1]0[k+1,n]) X

~ - —1 .
(Z&k p(ak|0[1,k_1]a[k+1’n])/p(a[1’k_1]|aka[k+1’n])) for any measure p, since the change
of any finite number of spins does not effect the limiting value m.

2.4 A simple heuristic for the random field model

Let us explain a simple heuristic that shows that Theorem 2 can be checked without
computations in a limiting form for “most” joint configurations. It will make clear how
the almost sure discontinuity in the random fields comes about in a qualitative way.
Now, we have for such ‘typical’ n the approximation for the random finite volume Gibbs
measures of the simple form

prod,+ N

Hge M CVvN

g Ll for Y m { * (2.26)
i=2

pg.e,N (M ~ { rod.—
Hre ™ [n] -CvVN

where ugrgd’i[n] are the 7-dependent product measures on the o-configurations given by

prod,:l:[ ]( 1) _ €xXp (ﬂ(imRF(IB7 E) + 5771‘)01')

Ho,e 2 cosh B(£mEBF (B, €) + en;) (2:27)

They play the role of infinite-volume Gibbs measures. [In this heuristic discussion C
indicates a positive random quantity of order unity.] This approximation is made rigorous
in [K97] and asymptotic statements about metastates are derived from it (including the
arcsine-law for the empirical metastate). Now, formally this approximation implies for
the joint measure for typical n

Kpr0d7+ o T’ N C N
Ké\’rs[o-[l,N]n[l,N]] ~ { i;sod _[ [1,N] [1,N]] for Z’rh ~ { —+ \/\/: (228)
KIB’S ’ [U[I’N]n[]-’N]] =2 _C N
These joint product measures have the concentration properties that
PR -
rod, -~ N
KgooT N Z(m,ffi) R (iC/\/N, +mBF (B, 5)) ~1
- 122 . (2.29)
rod,— 1
Kg; N Z("?i,ffi) R~ (:I:C/\/N, —mBF (g, 6)) ~1
B 1=2 i
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This clearly follows from the mean field equation which can be written +m®¥(3,¢) =
J P(dn) [ ugfsd’i[n] (do;)o;. Note that the empirical mean of the fields have arbitrary
signs. By (2.28) it follows that the original joint measure then concentrates on the union
of the two sets where 3 Zi]\iz(m,ai) ~ +(C/vV/N,mEF (B, ¢)), forming a disconnected
set of two “joint lumps” where the empirical means of the field and the magnetisation
have the same sign. Conditioning on these typical configurations and using the product

nature of (2.28) the simple heuristic formula

K§' (o1, mlop, N1z,
(+C/VN,+mEE(B,e))  (2.30)

(~C/VN, —mPF (g,e))

rod
Kg,e o1, m]

1N
~ if — Z(nZ 0;) &
d,— ’
{ K 2% o1, m] NS
But now we see that for joint configurations in these two joint lumps the expression given
in the Corollary to Theorem 2 reduces to the same formula.

2.5 Random field model: Dependence of conditional expectations on the
phase

A different feature of the lattice random field Ising model is the dependence of the
conditional expectation of a joint measure on the phase u* resp. p—. It is this property
that is responsible for the failure of the variational principle. We cannot put boundary
conditions in a mean field model, but we can put an additional “infinitesimal” symmetry-
breaking external field sy that goes to zero like a suitable power of N (but dominates
typical random field fluctuations) in order to pick either the plus or the minus state.
This leads to a different form of the limiting expression for the conditional expectation,
depending on the sign of sy. The precise result of this is given in Theorem 6.

So, let us define

_ e (B ) st (o) (2.31)

Zﬁ,s,s,N[W[l,N]]

uﬁyé‘,s,N[n[l,N]](O'[lyN]) :

and the corresponding joint measure K]\fe’s[n[l,N], op1,n5) = P, wy)-18,e,5,5 (1, 871 (071, 37) -
Then we have

Theorem 6 (Dependence of conditional expectations on the phase). Fiz any
constants o, 0 > 0 such that o+ 9 < % Then we have the approrimation

N
1
sup sup sup |KJ', i [o1, milopnmpe,n] — K52 [Ulanl‘ﬁ Zgi,iOOH
N%+‘s<:<1v1 a n€H(N) 712,N] 1=2

< C(B,e)N~2*2 1+ C(B,e) N~
(2.32)
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Remark. This has to be interpreted as analogue of the dependence of the conditional
expectation of the joint measures on the phase 4 resp. — in a lattice model. Note that
the limiting expression is independent of the random field conditioning outside of a set of
vanishing mass in the large N-limit. We could also proceed in the same way and add an
infinitesimal external field for the decimated and the dilute Ising model. In both cases
nothing interesting happens, and the limiting expressions stay the same as for zero field.
We don’t give an explicit analysis.

3. Random field: Further comments and proofs

In this section we prove the statements on the random field model in the order Theo-
rems 2,6,1 (starting with the slightly more subtle estimates first). The first simple step
is a formula for the one-site conditional expectations in finite volume. It is the sim-
pler analogue of Proposition 3.1 in [KO01] for lattice-spin models in finite volume for a
mean-field model. We take the chance and provide some discussion about this formula,
and its monotocity properties and also give a heuristic explanation for them. We also
compare it to its lattice analogue and give a heuristic explanation of monotonicity and
the dependence on the phase-phenomenon on the lattice. After that we provide details
about the saddle-point estimates used to prove the theorems.

3.1 Representation of conditional expectation and monotonicity

Proposition 1. The one-site conditional expectations can be written in the form

N N 1
1 1 3
N
Kﬂ,s[ffh 771|U[2,N]77[2,N]] = Norm. e€xp (ﬂ(ﬁ ;22 o; + 6771)01> : Qﬂ,s,N(iE:2 771')
(3.1)

where

N
48,e,N (Z "7i) = fﬂﬂ,s,N[ﬂ1 = +1,7p2,3)](d61) e~ =% (3.2)
=2

with the obvious normalization obtained by summing over o, and n;.

Remark. The last definition is meaningful, because the Gibbs expectation on the r.h.s.
depends only on the number of plus random fields, by permutation invariance of the

model, and this number can equivalently be expressed by the sum over the random
fields.

Remark. By monotonicity, ¢z ¢, n(w) is a decreasing function in w. This follows e.g. from
Theorem 4.8 [GHMO00] (Holley’s theorem) because of the monotonicity of the the single-
site conditional expectations, i.e. uge n[m = +1,72,n51](0s = +|op,n0\s) < Bge,N[M =
+1, nf2’N]](0,~ = +|UE2,N]\i) for all njp Ny < nfz’N], for all oy ny\i < GELN]\i'
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Remark. The reader may think of h = %logq field acting on 7; that depends on the
random fields appearing in the conditioning.

Proof of Proposition 1. This is just a computation. Write out the definition of the
conditional expectation. Apart from quotients of the exponential of the energy functions,
quotients of quenched partition functions are appearing. All of these can be expressed

in terms of Zg ¢ n[m = —1,M2,n1]/Z8,e,N[M = 1,M2,8]] = GB,e,N (Ziz 771‘) <

In particular it is instructive to introduce the bias of the plus-random field at the site
1 defined by
Kpe,N[m = +|op2, n1712,37]

" Kpe N[ = —|op2,n72,n]]

Bg e, N[0[2, N2, N]] (3.3)

—1
Note that we have the symmetry Bg . n[o[2,n], M2,8]] = (Bﬂ,e,N[—U[z,N], —n[27N]]> .
To avoid trivial misunderstandings let us point out that, of course, by dropping the
spin-conditioning, we get the unbiased expression Kg . n[m = +|np,n]/Kp.enim =
—|m2,n1] = 3. The bias contains all the interesting non-trivial behavior of the conditional
expectations  (3.1) because of the trivial identity K é\fe[ﬁ, Moz, N2, ]
= ug,e,N[mn2,n](01|o2,N7) - Ké\fs [n1|o72, N2, v)] and the last probability is trivially re-
lated to the bias (3.3).
Carrying out the spin-sums in (3.1) we may write the bias in the form

N N
Bg e, N|o[2,N)M2,N])] = TB,¢ (% Z Ui) “4B,e,N (Z m) (3.4)
1=2 1=2

Here we have defined the function

cosh(B(m + ¢
rﬂ,e(’m) = Tﬁ,—e(_m) = Tﬁ;e(_m)_l - T'B’_e(m)_l - COShEgEm i_ 5;; (3'5)

= cosh(20¢) + sinh(208¢) tanh(B(m + ¢€))

Note that m > rg . (m) is increasing and rg ¢(m = 0) = 1, lim100 75,6 (M) = €2°°.

So Bg. n is increasing in the spin-condition and decreasing in the random field-
condition. Let us give a heuristic explanation for this monotonicity. This might be
a little more intuitive if we adopt a voter model interpretation of our model: Each index
i € {1,...,N} stands for a voter. There are two political parties, called 1,—1. Each
voter 7 has a frozen ‘long-term preference’ 7; taking values in 1, —1, modelling preferences
to one of the political parties 1, —1. Now, each voter ¢ acquires his current opinion o; as
a consequence of a random interacting decision making procedure according to the rules:
Keep the long-term preference 7, fixed but try to be similar to the current opinions (o)

such that Prob(o; = +|(0;);i)/Prob(o; = —|(0j) %) = exp(% > 205t 2ﬂani). The

resulting measure describing the situation in equilibrium is then the model (2.1). The
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joint measure Kg. n then describes the two-step random procedure in which first the
long-term preferences are produced according to the equidistribution and then the deci-
sion making process as described above happens.

Let us suppose that all persons participate in the interactive decision making process,
but one person ¢ = 1 is missing on election day. Suppose on election day not only the
votes but moreover also the long-term preferences are asked (and faithfully answered).
This gives a realization of the two quantities Z?; o; and Z?; 71;, sampled from the
joint measure. When we ask ourselves for the distribution of decision o; and long-term
preference 7; of the missing person, given these two observed quantities, we see that it
is described by (3.1). Let us interpret the monotonicity properties of the bias (3.3) for
the long-term preference 7; in this language. Note that the conditioning on Zf\; o;

destroys the independence of 7; from Ziz 1;- Indeed, when the latter sum increases we
should expect that n; will acquire a lesser tendency to be plus when the same result of
the election Zfiz o; is observed. This is because increasing the n-sum will increase the
tendency of o;’s to be plus and so the probability for n; = — should also increase to make
up for this. This is particularly clear in a situation where the decision happened to be
a tie Eig o; = 0, while the preferences happened to be positive Zf\; 1n; > 0. Then we
expect quite naturally 7; = — with probability bigger than %, because we would ascribe
to the value of 17, some partial responsibility for the neutral outcome.

A somewhat similar “Bayesian destruction of independence” can also be seen in the

related (dynamical) situation of [EFHRO02]. (This catchy term goes back R.Schonmann
in the context of [EMSS00], as it was pointed out to the author by A.van Enter.)

3.2 Comparison with lattice random field Ising model

To appreciate the analogy to the lattice nearest neighbor random field model, let us
compare the above formula for the conditional expectation given in Proposition 1 with
its lattice analogue. So, we look at the random field Ising model with symmetric i.i.d.
plus minus random field distribution P. The Gibbs measures have formal Boltzmann

weights o« exp (,B >z OOy T B, nzaz). Denote by K*(dndo) = P(dn)u[n](do) the
infinite-volume joint measure corresponding to a Gibbs measure u[n|(do). In particular
one might think of the measure p*[n](do) and p~[n](do) obtained as weak limits for

plus resp. minus boundary conditions. They are different for 3 or more dimensions, low
temperature and small £ (see [BK88]).

Now, with these notations the lattice analogue of this formula is

1
Norm.

KP[0g, Mg |OgeNge] = exp(,@(z oy + 67],;)0,3) -qa’,j(nmc)"Tm where
yre (3.6)

gt (Nge) = /u[m =1, M, )(d6,)e 2P
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This follows from [KO01]. In particular we have for the bias the expression

Ku[’r’z == ]_|0'mc'l7mc:| . u
K.U'['r’z — _1|chnzc] - rﬁﬂ(Z Uy) qz (nmc) (37)

y~z

We note that all of the monotonicity arguments given for the mean field model stay
correct; so the last expression is increasing in the nearest neighbor sum Zyrv;z: oy and
decreasing in 7zc = (ny)yecz4\o- Of course the function g% (7<) is not explicitly given like
the limiting forms of its mean-field analogue when N 1 oc.

Moreover we have q§+ (Mzc) < @* (nge). This follows from the representation as finite
volume limits with plus resp. minus boundary conditions, and the monotonicity in the
boundary conditions.

Let us recall the voter interpretation given for the mean-field model and extend it
to the lattice model. Then the dependence on the state u is quite understandable, too.
So, suppose we have observed a neutral outcome of the votes of the neighbors of z, i.e.
Zy,\,z oy = 0. Let us look at a typical realization of preferences 7,- that are more or

less neutral. Suppose we look at the state K v, Tt is overall plus like on the oy’s; so we

would expect 7; = + with a probability that is smaller than in the state K* that is
overall minus like. This is natural because we would ascribe the value of 7, some partial
responsibility for the neutral outcome of the neighbors of x and so it will get a different
bias according to the choice of the infinite-volume state.

3.3 Proofs

Proof of Theorem 2. We first remind the reader of some facts about the mean field
random field Ising model. Let us put ®3 (m) = ®3_ ,_(m) where the last function
was introduced in (2.4). The large N behavior of the model is dominated by the minima
of this function, for P-typical n. This is seen by a Gaussian (Hubbard-Stratonovitch)
transformation explained e.g. in [K97]. We won’t repeat the details. This function
@3 . has been well-analysed (see [SW85],[APZ92]). For ‘large magnetic fields’ & > z
it has only one global quadratic minimum at m = 0. For 0 < ¢ < % there exists a
critical inverse temperature 3.(¢) s.t. for 3 > B.(¢) the system has two symmetric global
quadratic minima. We assume for this papers that (§,e are in this two phase regime.
For B < (.(¢) the system has one global quadratic minimum at m = 0. At the phase
transition line itself there are two regions: For small £ there is a unique global quartic
minimum at m = 0, as for the usual CW ferromagnet; for large ¢ there are three global
quadratic minima. These two line segments are separated by a tricritical point, where
there is one global sixth order minimum.

Now, on the basis of Proposition 1, the proof of Theorem 2 follows immediately from
the following proposition that provides control of the quantity gg . n(w).
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Proposition 2. Fiz §,e with 8 > B.(¢) and fir 0 < § < %. Then there exists a constant
C(B,e) and an integer Ny = Ny(B,€) such that for all N > Ny we have the uniform
approximation

_ 1,388
sup  |gg,e, N (W) — gg,e,00(w)| < C(B,e) N2 5.9
w:|w|<N# .

Remark. We have r5 . > 1 with strict inequality for mBF(B,¢) > 0.
Proof of Proposition 2. The first step is to use the following representation.
Lemma 1. For each w € Z we have

Jexp (—BN®p (m))r <(m)“T dm
ag,e,N (W) = p< i ) ’ (3.9)

w+1

B J exp (—ﬂN@O’E(m)> rg,e(m) 2 dm

But assuming the lemma, the form of the approximation of the Proposition is easily
understood: Just approximate the integrals by their values at the unperturbed minimizer
+m®fF(B,¢). This approximation is good as long as |w| is not too big compared to N.
Let us now proceed with the actual proof.

Proof of Lemma 1. This is a simple identity following as the result of the well-known
Gaussian transformation (Hubbard-Stratonovitch-transformation) for the partition func-
tion explained for our model e.g. in [K97]. To make the connection to the formulae of
[K97] the reader should note the following. In [K97] we introduced the quantities

1
Lge,—(m) = ﬁ log rg,e(m)

w (3.10)
®ﬁ7€’N(m, w) = ¢g,5(m) - Lﬂ’s’_(m)ﬁ
Then the claim of the lemma is equivalent to
exp (—BN®g . n(m,w — 1)) dm
qg,e,N (W) = S s ) (3.11)

~ [exp(—BN®g e n(m,w+ 1)) dm

which is immediate when writing the L.h.s. as a quotient of partition functions and
performing the HS-transformation as explained in [K97]. {

We continue with the proof of Proposition 2 and consider balls around the minima
+mPBF with radii py := N~31%. We denote their complement by R, := (B,(m®F) U B,(—m%F))*.
Then we may write

(3.12)
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with the integrals

I;—L(w) = / exp(—,@N (®g,e,n (M, w) — @g,e(mRF)))dm
B (£m ™) (3.13)
Jo(w) == / exp(—ﬁN (®g,e,n(m, w) — @Oys(mRF)))dm

R,

We will have to estimate I (w) from above and below and J,(w) from above. We just
recall the results of [K97| that were shown by the use of the Taylor expansion around
+mBF and estimates on Gaussian integrals. They say that

1 () > exp (591 (")) |5 (e (0O ) —nep (-0 )

BNb.(p) 2b4(p) 4
(3.14)
For the upper bound we simply write
27 z(w)?BN
IF (w) < exp (£BL_ (mBw) | ———exp <7 (3.15)
P( ) ( ( ) ) ﬁNb_(p) 2b_(p)
Here we have put
2(w) = — L (mBF) (3.16)
N
and . w
by(p) := sup ®° (mBF +0)+ ‘— sup ‘L_(mRF-l-v)‘
v,lv|<p Nlolvj<p (3.17)
b_(p) := inf ®° (MBF 40) - ‘E sup |L. (mRF—i—v)‘
vlvi<e N1y jvi<p

We note that by (pn) — b_(pn)| < Const (8,e)N~iT% because the difference is dom-
inated by the variation of the second derivation in the ball with radius py. Note also
2| < Const N~2+2

For the integral over the complement of the balls we have further shown in [K97] that
for N > Ny(B, €) we have that

Jon (w) < exp (—const (8, z—:)N%H) (3.18)

But from this it is not difficult to derive (3.8). We only show the lower bound. First note
that the integral over the outer region can be ignored, using that |w| < N 3+%. Note
that exp(BL_ (mfF)w) = (TE,E)% and recall the definition of gg . oo(w). We have then
by our upper and lower estimates on the integrals over the balls the bound of the form

z(w—l)zﬁN

I;' (’LU _ 1) + Ip_ (’LU _ 1) e 24(p) _ g—const Np?, b (PN)

— Z q ,s,oo(w) )
Fw+1)+ I (w+1) =7 T br(on)  (3.19)

> g5.co(w) (1~ Const (3, )N 419
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This bound is obtained with the use of the worst case bound }(}—EN 1bi(pn) — by(pn)| <

Const'(8,e)N —%13%_ This finishes the proof of Proposition 2 and consequently also the
proof of Theorem 2. $<&

Proof of the Corollary to Theorem 2. It is elementary to see that the lower bound w >
C_(B,¢e)log N implies 0 < (r5 )™ — gp,e,00(w) < C'(B, €)N—5T% . Now use the upper
bound w < N 52 to apply the approximation of Theorem 2 to finish the proof. {

Proof of Theorem 6. We need to generalize some of the steps given in the proof of
Theorem 2 to the case of s #% 0. We will be faster here than before. Suppose without
loss of generality that s > 0. Note first that in generalization of Proposition 1 we have
the representation of the conditional expectation in the form

N N 1
1 1 3z
Kg . slo1, mlop, v, nl = Norm, &P (ﬂ(N E o;+s+ em)m) (I,B,e,s,N( E m)

1=2 =2
(3.20)
where

N
Zg.e,s,NIm = —1,m[2,N] 28¢5
_ »€,8, ’ ] — _ Ja — ,36(71
qg, ,s,N( ’L) - —/ ,€,8,N - +1’ , doq)e
B,e zz:; n Zﬂ,s,s,N[nl —1, "7[2,N]] Hg,e [m 2 N]]( 1)

(3.21)

The Hubbard-Stratonovitch transformation gives in this situation the representation
_ [ exp (—BN @5,c,s(m)) rﬂ,s(m)wT_ldm
J exp (=8N @5 s(m)) rg’e(m)wTHdm

98,¢,s,N (W) (3.22)

with the ‘tilted function’
m— @5, (m) := @%’e(m) —sm (3.23)

This is not to be confused with (2.4). It remains to do a saddle-point approximation for
the integrals in (3.22). This modification needs a little more care. We have

Proposition 3. Fizx 3,¢ in the two-phase region. Fir two auxiliary constants a,d > 0
such that o + 6 < % Then there ezxist constants C(0,¢),C'(B,€) and an integer Ny =
No(B,€) such that for all N > Ny we have the uniform approximation

sup @g,e,s,n(w) — (r5..) " < C(B,e)N"2F2 1 C(B,e)'N~°
145 (3.24)

w:|w|<N 2

1
s:N2+5SsSN1_a

Proof. Denote by m* = m*(8,e,s) > 0 the global minimizer of the function m —
@g’e’s(m) for s > 0. In the two-phase region it is unique. m* is the mean magnetization
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of the system in the presence of the field s. This time we consider only one ball around
m* with radius

py = N"z18 (3.25)
Then we may write

n . Ip+ (w—1,s) I (w—1,s)
Ip (w—1,8)+ Ip(w —1,s) _ If(w+l,s) | If (wtl,s)

9p,e,5,N (W) = —7 ; = T (3.26)
Blesiaeain T
with the integrals

I (w,s):= dmexp(—,BN (p,e,5,n (M, w) — B (m*)))
14 ) |m_m*|<p sE5S, ’ ,E,8

IS (w, s) :z/l R dmexp(—ﬂN (®g,e,5,n (M, w) — @%’E,s(m*))) (3-27)

m—m*|>p

: = = w

with  Dp.e5,n(m, w) = Ppe,s(m) — Lp,e,— (M)

The r.h.s. of (3.26) approximately equal to the first term in the numerator and this term
is close to (rg’s)_l. Let us discuss this in more detail. By the Taylor expansion around

the s-dependent minimizer we have for |v| < p,

— — w
Q,B;E;S;N(m* + U’w) - @ﬂ’g’s(m*) + NL_ (m*)

=" n -2
Ep w0 L w (8) (3.28)
B 2 N~ N 2
with some 0 < 0,60’ < 1. Thus, on |v| < p we have the upper and lower bounds
b b_
Lh.s. of (3.28) < %1)2 —zv, > 71)2 —2zv  with
z = %L'_ (m*),
=11 n 3-29
by :=by(p) := sup ®g5 . (m* +v)+ ‘E sup ‘L_ (m* + v)‘ (3-29)
v,|v|<p Nl jvi<p
-1 w n
b_:=b_(p):= inf P45, . (m*+v —‘— sup L_m*—i—v‘
(p) := inf @, ( ) =N i ( )

We obtain from this for p > 4|z|/b; (which holds by our choice on p for N sufficiently
large) after standard estimates on the tails of Gaussian estimates the bounds

28N Nb, p?
If(w, s) > exp (BL_(m*)w) ﬁJ2V7;+ (eXp (szﬂ+ ) —2exp (_ﬁTer))

< exp (BL_(m™)w) mexp (z;fiv>

(3.30)
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As in (3.19) we obtain the estimate

z(w71)2ﬂN

It (w—1,s) . ~1 ¢ %y(N) _ geonstNoy  [p (oN)
T— > (Tﬁ,s(m (ﬁae’ 3))) ’ 2(wt1)28N b
I (w=+1,s) R +(on)  (3.31)

= (rac(m°(,5,9))) (1~ Const (5,6) O(N*pw))

and a similar upper bound.
Next we show that all other corrections are of lower order. Look at the term in the
denominator on the r.h.s. of (3.26). It is not difficult to see that

i('l.lh 3) < e—const (B,e)Ns + e—const (B,e)p> N (332)
1, (wa 3)

The first term comes from the fact that we have for the difference between the local
minima
‘i)ﬂ,e,s(m*_ (,3, &, S)) - (i)ﬁ,s,s(m* (ﬂ’ €, S)) ~ 2sm* (,3, €,8 = O) (3'33)

for s | 0 where we have denoted by m* (8,¢,s) the local minimum that is close to
—m* (8,e,s = 0) for s | 0. This term dominates the w-dependent contributions because
|lw| << s for large N. The second term in (3.32) is an estimate on the tail of a Gaussian
random variable and it comes from the distance from the local minimum to the range of
integration. The second term in the numerator of (3.26) is just bounded by a constant
times the same expression, by the fact that the function r is bounded.

Finally we use that we have for the s-dependent shift of the minimum

|m*(B,¢e,8) — m*(8,e,s = 0)| < Const (B,¢)s (3.34)

and thus
‘(rﬁ,s (m*(B, ¢, sN)))_l — (r5.)""| < Const (B,¢)'sy < Const (8,e)) N~*  (3.35)
This finishes the proof of Proposition 3, and consequently also the proof of Theorem

6.0¢

Proof of Theorem 1. We need to look at gg . n(w) for wy = aN, with o > 0. Indeed,
using saddle point approximation arguments on the expression (3.12) like we did in the
more complicated situation in the proof of Proposition 2 we arrive at

-1
Jm gs.e.n(wn) = .0 (m™7 (B,c,0)) (3.36)
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recalling that m”*'(8,¢, ) is the (unique) minimizer of the function m — ®3_ (m).
For the saddle point approximation to work we need to make sure that the minimum is
unique, the function in the exponent is quadratic around the minimum, and also uni-
formly bounded below by (say) a quadratic function. All of these elementary analytical
properties of the function @0157a(m) are true (however we don’t give details of this here).

¢

4. Decimation and diluted ferromagnet - Proofs
4.1 Decimation

Proof of Theorem 8 and Theorem 4. We start with the representation of the finite volume
conditional expectation for the decimation. It reads

M+1 Bmon
. e
,U'ﬂ,N(0'1|0'[2,M—|—1]) = /.U,B,N,M (dm‘ Zz:; O'i) m (4.1)
where
1 BNmM?
[ = — N — M)l h 4.9
fig,n,n (dm|2) Nowr, exp( 5 + ( ) log cosh(Bm) —|—,8zm) dm (4.2)

This is seen by Hubbard-Stratonovitch transformation. To check the formula let us at
first derive (2.17), giving back the unbiased measure with mean-field magnetisation for
typical conditioning. To see this we write the negative exponent of the expon2ential
under the integral in the form G(N — M) (mTz - %log cosh(ﬁm)) + % (m — ﬁ) plus
an m-independent constant.

We see from this that conditioning on the positive or negative mean-field solution
gives that the integral is concentrated on this conditioning, in the limit of large N and
we have
Oymew(p) .. 2 { +mW (B)

if — — oW
—m~" ()

To prove Theorem 3 in generality use the alternative representation of the measure
fig,n,m that is obtained after a change of variable in the form

,ﬂfﬂ,N,M (dm|z) — { (4.3)

Oomew(g M

~ - N-M .
/“ﬁ,N,M(dm|2)‘P(m) :/N’ﬂ',h',N—M(dy)QO( N y+ %) with

N-M z

/I I _
F=—xNF "=x§"m

(4.4)

where
y? 1
2 o4

v (dy) = Noim_ exp (—ﬁ’N’( logcosh(ﬁ’(y+h’)))> dy  (4.5)
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The function appearing in the exponent of (4.5) is well known. Its minimizer m€" (5, b’)
is the mean-field magnetization of the Curie-Weiss ferromagnet in an external magnetic
field A’. For ' > 0 it is well-known that the minimizer is unique. Letting N, M tend to

infinity such that % — p > 0 we thus get that

- e R N
.U',B,N,M:(l—p)N(dm|z) — 5pmcw(pﬂ,1%pm)+(1_p)m(dm) if i —m (4.6)

This proves Theorem 3. To prove Theorem 4 where z stays fixed, we write

J g, N, M (dm z= 0) ePzmePmat /(2 cosh(Bm))

fﬁﬂ,N,M <dm‘z = 0) efzm

pg,n(01]o12,Mm41]) = (4.7)

and use ﬁﬂ’N’M:(l—p)N(' |Z =0) — %(5—meW(pﬁ) + 0pmew (p8))- ©

4.2 Diluted ferromagnet

Proof of Theorem 5. Here the formula for the one-site conditional expectations can be
written in the form

Kgp[al’ n1/072, N2, N]]

N N ni
1 4.8
— Normm. pn1 (1 _ p)l—nl exp (% Z n;o; - "1101) . wﬂ,N (z_; nz> ( )

=2

where
] M _

w,n (M) = ( / upr01(d6) exp(% > ai)) ' with @ = BM/N  (4.9)

1=
The normalization is given by summing over n; = 0,1 and o7 = £1.

Remark. In particular we have for the “occupation-bias” the formula

KN [nl 1|0’ n ] N N
B,p [21“] [2’1'] D /6
1 pCOS N : 2n 0. wa,N izzn ( )

Kgp[”l = 002, N2, V)]

To derive (4.8) with (4.9) proceed as in the random field model. To express the
resulting fractions of partition functions use that for any ny n7 such that Zf; n, =M
we have that Zy[n, = 0,np2,n)]/ZN[n1 = 1,2, n]] = e_%wﬁ,N (M).

Now, it is easy to see that impsteo [ par,m(d6) exp(% Zf\il 6i) = cosh(8m®W (8))
since the distribution of the magnetization of the ordinary Curie-Weiss model concen-

trates on plus or minus the mean-field value. We also have limyto, wg, n(gN)™ =
cosh(8gm®W (Bq))™ = cosh(Bgm®" (Bq)n1). This proves Theorem 5.<>
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Let us finally compare the formula for the conditional expectation with the lattice
analogue with formal Boltzmann weights o exp(ﬁ Z<z v) nmamnyay). It reads for the
joint measure K* obtained from a Gibbs measure u

Xp (,B Z NyOy * nzam) - wk(ng)™ where

y~e

wh (nge) = (/,u[ =0, nzc|(do) exp( Znyay om))

y~z

KHP[og, Ng|openge] = Normm

) (4.11)

This representation also follows from [KO01]. In particular we have from that for the
“occupation-bias”

KHt[ng = 1|ogeng:] D
Kbng = 0j0genge] 1—p COSh<ﬂZn-”%> g () (4.12)

y~a

As for the joint measures of the random field model mean-field and lattice expressions
look similar. Now, writing w#(ngze) = [ plne = 1,n.-](dd) exp(—,@ Yy N0y - &m))
and choosing the specific configuration of [EMSS00] for n,- made of two separate clusters

it is possible to see that (4.12) is indeed not a quasilocal function. This however is an
example of a typical lattice effect and can not be mimicked in the mean field model.

Acknowledgments: The author thanks A.van Enter for interesting comments on an
earlier draft.
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