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ON THE APPROXIMATION OF SINGULAR INTEGRAL EQUATIONS 
BY EQUATIONS WITH SMOOTH KERNELS 

R. DUDUCHAVA1 AND S. PROSSDORF 

1. INTRODUCTION 
Let r CC be a finite union of closed or open, compact, oriented, smooth curves without 

common points. Let C1, ... , C2m E r be the end points of open arcs where C2, C4, ..• , C2m 

represent the right end points and c1, c 3 , ... , c 2m-l the left ones. Introduce the weight 
function 

n 

e(t) = II It - c;la;' 1 < p < 00' -1 <a;< p - 1, ci, ••. , C2m, C2m+i, .•. , Cn Er. (1) 
j=l 

By Lp(r, e) we denote the Lebesgue space of functions cp equipped with the norm 

llcplLp(r, e)ll := llelcplPIL1(r)l1. 
PC(r) will denote the algebra of piecewise-continuous functions a(t) on r which have 
finite limits a( t ± 0) at any inner point t =f c1 , ... , c 2m and one-sides limits a( c2;-1 + 0), 
a( c 2; - 0) at the end points c 2;-i, c 2; (j = 1, ... ,.m ), respectively. 

L:(r, e) and pcNxN(r) stand for the space of vector-functions (cpi, ... ,cpN), 'Pi E 
Lp(r, e), and for the algebra of N x N matrix-functions a = lla;kllNxN, a;k E PC,(r), 
respectively. 

Consider the following singular integral equation 

Acp .- acp + bSrcp + Tep = f, 
a, b E PCNxN(I'), Srcp(t) .- :i Ir. cp;~~T, cp,f E L:(r, I!), 

where T is a compact integral operator in L: (r, e ): 
Tcp(t) := £ k(t,-r)cp(r)dr. 

With (2) we associate the following family of Fredholm integral equations 

a'lj; + bSr,t:'lfa + T'lj; = f, 
1 f (r - t),,P(r)dr 

.- 7ri Jr (r - t)2 - n2(t)c:2' c: > 0, 

(2) 

(3) 

where n(t), t E r, is a continuous field of unit vectors non-tangential to r. The kernel 
function of Sr,t: is continuous and, moreover, belongs to cr-1(r x r) if r is r-smooth. 

The next three examples show how n(t) can be selected in particular cases: 
1This work was fulfilled during the first author's visit to Institut fiir Angewandte Analysis und Stocha-

stik, Berlin in October 1993. 
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(a) if r = (0, 1], we can take n(t) =: i; 
(b) if r = { ( E C: I (I = 1}, then n( t) = t has the necessary properties; 
( c) if there exists a point Zo ¢ r such that t - Zo is non-tangential to r for any t E r' 

then n(t) = It - z0 1-1(t - z0 ) can be chosen. 
The main purpose of this paper is to solve the following approximation problem. 

PROBLEM A. Let (2) be uniquely solvable for any given f E L: (I', (!). Under what 
conditions does there exist c0 > 0 such that equations (3) have unique solutions 'Pe for all 
0 < c < c0 and these solutions converge in L: (I', cp) to the solution cp of (1) : 

cp = limcpe . 
e-tO 

To formulate the theorem which solves Problem A we consider the following operators 
associated with (2) and depending on the parameter t ET: 

(4) 

se 'l/;( ) ·- _!_ r (y - x )'l/;(y )dy 
li.t,9 x .- 7ri Jli.t (y - x )2 - c2 exp 28( t)i ' 

where 8(t) denotes the angle between the vector n(t) (see (3)) and the tangent to r at 
t Er, while 

!
g(t-0) for x<O and t'f:.c1, ... ,c2m, 

gt(x) := g(t + 0) for x ~ 0 and t -=f.'c1, ... , C2m, 
g(t) for tE{c1, ... ,c2m}, 

{
IR.= (-oo, oo) for t 'f:. c1, ... , C2m, 

lilt := 
JR.+ = [ 0, oo) for t E { C1, ... , C2m} , 

Et :== { 1 for t ¢ { c2, C4, ... , C2m}, 
-1 for t E { C2, C4, ... , C2m}. 

The operators A~,8 will be considered in the space L:(IR.t, lxlo:t), where 

a ·- ' - '' {
a· for t - c· 

t . - 0 for t 'f:. C1, ... Cn • 
(5) 

THEOREM 1. Problem A has a positive solution for equations (2) and (3) if and only 
if the operator Ai,8 is invertible in the space L: (Rt, Ix IO:t) for each t E r. 

Proof follows from Lemma 5 and Theorem 6 proved below. I 
Some equivalent reformulations of Theorem 1 with more explicit conditions can be 

found in Section 3. The next theorem is one of. such equivalent reformulations in the 
particular case p ~ 2, e(t) = 1, N = 1, which in our opinion represents special inter~st, 
since locally strongly elliptic operators play an outstanding role in different approximation 
methods (see e.g. [2], [18]-[23], (28]). For this we need the following definition. 
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DEFINITION (see [19, 22, 28]). An operator 

A: Lf (r)-+ Lf (r) 
is said to be locally strongly elliptic if there exist an invertible matrix-function Bo E 
pcNxN (r) and a compact operator T0 such that 

A= Bo( Ao+ To), 
where A0 is strongly positive definite 

Re(A0 <p, <p) 2:: cS'llcpl 12 for some cS' > 0 and any <p E Lf (r). 

THEOREM 2. Let 8(t) = 7r/2 (i.e. n(t) is the outer normal vector for all t Er). The 
fallowing assertions are equivalent: 

I. Problem A has a positive solution for equations (2), (3) in the space L2(r) (i.e. 
for N = 1, p = 2, and e( t) = 1). 

II. The operator A is locally strongly elliptic in L2(r). 
III. There exists Gt E G(r) such that 

d(t ± 0) # 0, Re Gt > 0, Re Gtc(t ± O)d-1 (t ± 0) > 0 for all t Er. 
IV. The fallowing conditions are fulfilled: 

inf {I [a( t ± 0) + µb( t ± 0)] I : t E r , µ E [-1, 1]} > 0 , 
inf{l[(l - µ)c(t - O)d-1(t - 0) + (1 + µ)c(t + O)d-1(t + O)]I : t Er, µ E [-1, 1]} > 0, 

where a( c2; + 0) = a(c2;-i - 0) := 1, b( c2; + 0) = b( c2;-1 - 0) := 0 (j = 1, 2, ... , m) and 
c(t) := a(t) + b(t), d(t) := a(t) - b(t). 

Proof. The equivalence of conditions II to IV is proved in [19]; the equivalence I 
<==> IV follows from Theorem 1 and Lemma 8 since coth 7r(i/2 + e) = µ E [-1, 1], and 
S.,r12(e) = -sgne exp(-lel) = µ E [-1, l]. I 

REMARK 3. For the matrix-case N > 1 see Theorems 12 and 13 below. 

2. STABILITY 

DEFINITION (cf. [22]). The sequence of operators { Ae:h: is called stable if: 
I. it converges strongly to some bounded operator A: 

IL there exists e0 such that Ae: is invertible for each e, 0 < e < e0 ; 

III. the inverses are uniformly bounded 

sup l:IA;-1 11 ~MA< oo. 
e:<e:o 

The next two assertions show the connection between the stability of {Ae:}e: and the 
solution of Problem A for equation (2). 
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LEMMA 4. The strong convergence 

limSr,e"'7 = Sr,,P e-o 
(6) 

holds for all ,,P E L:(r, e) (see (2), (3)). 

Proof follows immediately since 

Sre,,P(t) = ~ f [ 1 + 1 
] ,,P(r)dr ' 2n Jr r - t - n( t )e r - t + n( t )e (7) 

and the Plemelj formulas 

1. 1 Ir 7/1( T )dr l ,,l.( ) S ,,J.( ) 1m - = ±- ip t + r cp t , e-o 27ri r r - [t ± n(t)e] 2 (8) 

hold if the non-tangential vector n(t) points to the left of the oriented curve r (for (8) 
see e.g. [10]). ·· I 

LEMMA 5. Problem A has a positive solution for equations (2), (3) if and only if the 
sequence {Aeh is stable. 

Proof is well-known (see e.g. [11, 17, 22]) and follows easily from the strong conver-
gence (cf. ( 6)) 

for all (9) 

I 
Our main concern is now to get stability conditions for the operator in (3). The first 

contribution to this topic is given by the following theorem. 

THEOREM 6. The sequence {Aeh defined in (3) is stable if and only if the operator 
At is invertible in the space L:(Rt, lxlat) for each t Er. 

Proof. Sufficiency. In this part we follow the proof of a similar assertion in [17], 
where the operators s;. 8 are defined as follows 

I 

se ,,P(t) = ~ f cp(r)dr 
r,e n lr(t,e) r - t ' r(t,e)=rn{(EC: IC-ti ~e}. (10) 

Let 2lb(r) := 2lb(L:(r, e)) denote the Banach algebra of bounded sequences {Ae}o<e5! of 
operators endowed with the pointwise composition (as multiplication) 

and the uniform norm 

ll{Ae}ll :=sup llAell · 
t: 

Let further 2lo(r) := 2lo( L: (r, e)) denote the ideal in 2lb( L: (r, e)) consisting of sequences 
{ Aeh which converge to 0: 
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It is known that the stability of { Ae} is equivalent to the invertibility of the corre-
sponding quotient classes { Ae }: in the quotient algebra 21b( L;' (r, e)) /21o( L;' (r, e)) (see 
[14, 22, 25]). This observation makes it possible to apply the local principle to the investi-
gation of stability (see [14, 17, 22, 25]). We stick here to the local principle suggested in 
[17]. Introduce the notation 

Since 

21c(r) - {{Be+ T}e: {Be}e E 21o(r), T is compact in L;'(r, e)}, 
21s(r) = { { De}e E 2lb(r) : lim Deep = 0 for all <p E LPN (r' e)}. 

e-+0 

21c(r) n 21s(r) = 21o(r)' 
the invertibility in the quotient algebra 216(r)/210 (r) is equivalent to the invertibility of 
the corresponding quotient classes in the quotient algebras 216(r)/21c(I') and 2Lb(I')/2Ls(I') 
(see [17], Lemma 7). 

The invertibility of {Ae}: in 2Lb(I')/2Ls(I') is equivalent to the invertibility of the limit 
operator A'lj; = lime-+O Ae'l/J since the strong convergence holds [17]. Thus we have to look 
only for the invertibility conditions in the quotient algebra 216(r)/21c(r).. 

Let Mt(r) denote the class of r-smooth cut-off functions on r which are equal to 
1 in some neighbourhood of t E r (r denotes the smoothness of the contour r). By 
Mf'(r) we denote the quotient class {gtf}" E 21b(r)/21c(r) of stationary sequences where 
9t E Mt(r). It can be proved that {gtf}" and {Ae}: commute (see [17]) and there holds 
the quasiequivalence (cf. [17, 26, 27]) 

M{'(r) M:(l.t) 

{Ae}~ ---- f3t ---- {A:,o}~, (11) 
M;(Rt) C 21b(Rt)/21c(Rt), {A:,o}~ E 21b(Rt)/21c(Rt), 

where 

21b(lRt) := 2lb(L;'(Rt, jxjat)), 21c(lRt) := 2lc(L;'(lRt, Ix lat)) 
and f3t: Ut ~Vo denotes a diffeomorphism between the domains Ut c r, t E Ut, Vo c lRt, 
0 E Vo, f3t(t) = 0. 

If Ai 8 is invertible, then , 

(12) 

and, therefore, A~,o have uniformly bounded inverses (note that I IHelLp(lRt, lxla,t)ll = 1, 
e > 0). Thus, {A~18 }e is invertible in 21b(Rt) and this implies the invertibility of {A~,o}: 
in the quotient algebra 21b(lRt)/21c(lRt)· 

If Ai,8 is invertible for all t Er, we get due to the local principle (see (10, 26, 27]) that 
{ Ae}: is invertible in 21b(r)/21c(r). 

Necessity. This part of the proof in [17] is given only for the case r = JR, JR+ which 
simplifies the argumentation. Therefore we display here the detailed proof. 

Due to the quasiequivalence (11) and the local principle we have to prove only that the 
local invertibility of {A~18}~ E 21b(Rt)/21c(Rt) at 0 E lRt implies the invertibility of Ai,e in 
L;'(Rt, lxlat). 
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Suppose {A~ 8}~ is locally invertible. Then there exist {Le}~, {Re}~ E 2lb(1Rt)/2lc(:!Rt) 
and 91, 92 E M;(lRt) such that , · 

92A~9Re = 921 +De+ T2' I 

lim llBell = lim llDell 0, 
t:-+0 t:-+0 

(13) 
(14) 

where T1 and T2 are compact operators in L:(1Rt, lxla:t). Therefore 9~,9f can be chosen 
so that 9~9~1 = 9~91 = 9~ and llT19f Jll + llBell < 1 if e and supp9f are sufficiently small. 
Thus (see (13)) 

LeA~,89~] =(I+ Be+ Ti9:l)9~] 

and due to the invertibility of I + Be + Ti9f I we get 

L~A~189~l = 9~1. 
Similarly from (14) we derive 

'Ae R' 'I 92 t,8 t: = 92 . 

Due to (12), from (15) and (16) we get 

where 

L" A1 I I 
t: t,891,e 
I Al R" 92,e t,8 e · 

I _ 1+at I . I 
93,e(x) := e 2 He93(x) = 93(cx), j = 1, 2,. 
L: = HeL~H1/e, R~ = HeR~H1/e. 

From (19) it follows that 

1. I - 1 1m93·e = , 
t:-+0 I 

j = 1,2, 

sup llL:ll::; M < oo, sup llR:ll ::; M < oo. 
t: t: 

Let now cp0 E Ker At,1· Then (see (20)) 

and from (21) we get 

Thus, Ker Ai,8 = {O}. Similarly, due to (18), we get Ker (A},8)* = {0}. 

(15) 

(16) 

(17) 
(18) 

(19) 

(20) 

(21) 

Assume now that Ai 8 is not normally solvable; then there exists a sequence { cp; }i, 
ll'P;ll = 1, such that li~j-+oo Ai,s'Pi = 0. For sufficiently small e; we get (see (20), (21)) 

11(1- 9~,.)'f';ll <~min { ~, Mll~i,ill, 1} 
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and therefore (see ( 1 7)) 

1 = llcp1ll ~ 119~,t:;<pill + 11(1 - 9~,t:;)<p1ll ~ 

< llL:;A!,e9~,.;'Pill + ~ :'S: llL:;A!,e'Pill + (22) 

+ llL:;~.e(l - 9~ •• ;)'P;ll + ~ < ~, 
if j is sufficiently large so that 

llA!,e'Pill < 4~ · 
The obtained contradiction in (22) proves that At,1 is normally solvable. This together 
with Ker A: 9 = {O}, Ker( A: 9 )* = {O} yields the invertibility of A: 9 • I 

I I I 

REMARK 7. Some sufficient conditions for the stability of sequences {.AI +SJ,e}, where 
A EC, J = [O, 1], n(t) = i, in the Lebesgue space Lp(J) are announced in [24]. 

3. EQUIVALENT CONDITIONS 
To reformulate the conditions of stability of the operator sequences { Ae}e, A = lime-o Ae 

(see (2), (3) ), i.e. to solve Problem A we shall give invertibility conditions for the operators 
(see Lemma 5 and Theorem 6) 

Bo = al+ bSi,e : L: (IR, lxla) --7 L: (IR, lxla), 

B+ = cl+ dSi.+,e : L: (JR+, xa) --7 L: (IR+, xa), 0 < () < 7r, 
-1 < a< p - 1, 1 < p < oo, a(x) = a-x-(x) + a+x+(x), (23) 

b(x) = b-x-(x) + b+x+(x ), a±, b±, c, d EC, X±(x) ='o ~(1 ± sgn x). 

For this we notice that Si,9, Sj +,s represent Fourier convolution operators with disconti-
nuous symbols 

Si,scp = W~9 <p := ;:-1 Se:F<p, 

Si+,9<p = r+W29 <p := Ws9 <p, 

where r + is the restriction r +<p = cpl1.+ and 

Ss(e) = :Fg(e) =loo eiex (-x)dx = 
-oo 7ri( x2 - exp 2iB) 

(24) 

__ 1 100 
( 1 1 ) iexd _ 

2 . ·e + ·e e x - (25) 7ri -oo x - expi x + expi 
- exp(ie expiB)x+(O +exp( -:-ie expiB)x-(0 = ·-sgne exp(ilel expiB). 

Notice that the image of the function S8(e) on the complex plane C represents two spiral-
like curves which start at -1 and + 1 and twist around the origin (see Fig. 1 and 2 for 
different values of 8). For fJ = 7r/2 the curve degenerates into ~~e interval [-1, l]. 
LEMMA 8. Let N = 1. The operator B 0 in (23) is invertible if and only if the following 
conditions hold (see ( 4)): 

7 



(i) a±+ Ss(e)b± # 0 e E IR, 
(ii) 9f3t( a, b; t, e) =/:- O, e E IR, 

(iii) [arg hi12( a, b; t, e)Jee1. + [arg Yf3t( a, b; t, Olee1. = o, 
where 

hi12( a, b; t, µ) 

9f3t(a, b; t, e) 

with (see ( 5)) 

.- [a(t + O) + Ss(e)b(t + O)][a(t - O) + Se(e)b(t - O)t1
, 

1 
.- 2[1 + coth?r(i,Bt + e)]c(t + O)d-1 (t + 0) + 
+ ~[1 - coth 7r(i,8.+ OJc(t - O)d-1(t - 0)' e E JR 

(26) 

c(t) = a(t) + b(t), d(t) = a(t) - b(t), ,Bt = l +at, e E IR. (27) 
p 

0.60 

0.40 

0.20 

-0.20 

-0.40 

-0.60 

-0.9· -o.6 -o.4 -0.2 o.o 0.2 o.4 o.6 o.8 i.o 
-0.80 ,___...__..........___.____.____,....___.__.___...___.____, 

-1.0 -0.8 -0.6 -0.4 -0.2 o.o 0.2 0.4 0.6 0.8 1.0 

FIGURE 1. () = 10° and()= 20° 

-o .40 -o. 04 .._.....___.____.____.___.____.._.....____.____.._____, 
-1.0 -0.8 -0.6 -0.4 -0.2 0.0 0.2 0.4 0.6 0.8 1.0 -1.0 -0.8 -0.6 -0.4 -0.2 o.o 0.2 0.4 0.6 0.8 1.0 

FIGURE 2. () = 45° and()= 85° 

Proof. The operator B0 can be represented as follows 

Bo = X- w~-+SsL + X+ w~++Ssb_+ . 

8 
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. , 

From the results on paired convolution equations with scalar discontinuous presymbols, 
proved in [6], we get easily that the invertibility conditions for the operator (28) coincide 
with (i)-(iii). I 

LEMMA 9. If a( x) = a01 b( x) = b0 are constant N X N matrices then the operator B 0 · 

in (23) is invertible if and only if · 

(29) 

Proof follows immediately since Bo = w~o+S9bo and (29) is well-known invertibility 
condition for this operator (see, e.g., [6, 13]). I 

LEMMA 10. Let c, d E C (i.e. N = 1). The operat<Jr B+ in (23) is invertible if and 
only if 

(i) c+ Ss(e)d f:. 0, e E JR.; 
(ii) c - coth 7r ( i{:J + e) d f:. 0, {:J = (1 + a)/p, e ER; 

(iii) [arg{c + Ss(e)d}]ee1. + [arg {c - coth 7r (i{:J + 0 d}Jee1. = 0. 

Proof follows from the results of [6], since (see (24)) 

B+ = r + W~+dS9 = Wc+dS9 

and the symbol c + dSs(e) is piecewise-continuous with discontinuity at e = 0. I 

c' w,8 ( c', c") 

n,a ( c'' c") 

Figure 3 

Let c', c" E C, 0 < {:J < 1, and let !1,a( c', c") 
denote the segment of the circle bounded 
by the straight line w112( c', c") and by the 
part of the circular arc (see Fig. 3) 

{ 
c' + c" w,a(c', c") =- (EC· ( = --. 2 

c'-c" } 
2 

coth 7r( i{:J + e), e E JR . 

COROLLARY 11. Let 8 = 7r/2 and c,d EC (i.e. N = 1). Then the operatorB+ in 
(23) is inver_tible if and only if 0 ¢ n,8(c + d, c - d), {:J = (1 + a)/p. 

THEOREM 12. Let r be a .smooth closed curve and a, b E oNxN(r). Suppos~ the 
operator A in (2) is invertible in the space L:(r, e); (see (1)). The sequence {At:}e of 
Fredholm operators in (3) is stable if and only if the symbol aA(x,e) = a(t) + b(t)sgne 
( t E I', e E JR) satisfies the following condition: 

. inf{I det[a(t) + Se(e)b(t)]I: t Er' e E JR.}> 0. 

Proof follows from Theorem 1 and Lemma 9. 
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THEOREM 13. Let r be as in Section 1, B(t) =: 7r /2, a, b E CN~N(r), and p = 2, 
e( t) = 1 if N > 1 or 

1 +a· 1 
1 < p < oo , p 3 

-
2 

, j = 1, 2, ... , 2m (31) 

if N = 1. Suppose the operator A in (2) is invertible in the space L:(r, e). The sequence 
{Ae}e of operators in (3) is stable if and only if the following condition holds 

inf{I det[a(t) + µb(t)]I: t Er' -1~µ~1} . (32) 

Proof. Due to Theorem 1 we have to check the invertibility conditions for the qperators 
A!,11"12 = a(t) + b(t)Si_,11"12 = w;:, 9t(e) := a(t) + S!1ie)b(t) (see (24)) in L:(IR, lxlat) for 
t =f=. c1, ... , C2m and for the operators . 

A!;,11"/2 = a(t) + b(t)Si_+,11"/2 = W9c;, 9c;(e) := a(c;) + (-1)i+1s11"12(e)b(c;) 

in L:(IR+, xa;) for j = 1, 2, ... , 2m. 
Since S11"12(e) = -sgnee-lel = µ E [-1, 1], condition (32) reads 

inf{I detgt(e)I : e E IR}> 0 for all t Er. 

For the operators w;: the invertibility is ensured by (33) (see [~, 13]). 

(33) 

For the Wiener-Hopf operator W9c; in L:(IR+, xa;) condition (33) is only necessary, but 
not sufficient. For Fredholmness we have to impose the following restriction (see [7, 8]) 

where 

inf{! det h;(A)I : A E IR}> O, 

h;(>..) ~[1 - coth7r(i,8; + >..)]9c;(O - 0) + ~[1 + coth7r(i,8; + >..)]9c;(O + 0) 
a( c;) + coth 7r{ if3; + A)b( c;) = a( c;} + µb( c;), 

(34) 

since {3; = 1/2 (see (31)) and coth7r(i/2+A) = µ E [-1, l]. Therefore (34) coincides with-
(32). 

For the index IndWgc. we have the formula (see [6, 7, 8]) 
J 

1 1 
IndW9 c. = --2 [arg det 9c·(0]eel&l. + -2 [arg det h;(A)]eeJR = 0. 

J 7r J 7r 
This already yields the invertibility of the operator W9c. in the scalar case N = 1 (see 

J 
[6]). 

For the operator W9 c· in the space Lf (JR+) we apply the strong ellipticity property: if 
J 

( 32) holds, then 

(35) 

for any e E IR,,,, E e,N and some constants 0 ~ Bo < 27r, Co > 0. If we insert ,,, = 'lj; E 
Lf (IR), from (35) it follows after integrating that 

Re ei80 (9c;'l/;, 'l/;) ~ Col l'l/;ILf (JR)l 12 (36) 
where(·,·) stands now for the scalar product in Lf (IR). 
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Let £0 be the extension operator by zero from JR+ to IR. Then locp E Lf.(IR) for any 
cp E Lf (JR+) and we proceed with the help of (24) and (36) as follows 

Re ei80 (W9c· <.p, <.p) = Re ei80 (r +:F-1gc/Flo<.p, cp) , 
= Re ei80 (:F-19c;:Flo<.p, lo'if;) = Re ei80 (9c;:Flo<.p, :Flo'if;) ~ 27rcol lcplLf (JR.+)11 2 

(37) 

since due to Parseyal's equality we have 

ll:Flo1/JILf (IR)ll = J2;lllocplLf (IR)ll = J2;llcplLf (JR+)ll · 

The obtained inequality already implies that Ker W9 c· = {O} and W9c· is normally , , 
solvable (i.e. the image W9c.Lf (JR+) is closed). In fact, if one of these two properties , 
fails there exists a sequence {cpn}f C Lf (JR+), ll'PnlLf (JR+)ll = 1 (n = 1, 2, ... )such that 
limn W9c. 'Pn = 0 (we can take <.p ::::: <.p1 = cp2 = ... , cp E Ker W9c. if the latter is non-trivial). , , 
This leads to a contradiction, since (37) implies 

llei80Wgc;'PILf (IR+)ll ~ F.llcplLf (JR+)ll. 

The adjoint operator W9*e:. = W9c. has a similar estimation. Therefore Coker W9c. rv , , , 
Ker w;c; = {O} and W9 c; is invertible in Lf (JR+). I 

COROLLARY 14. Let the conditions of Theorem 12 hold. The sequence {Ae}e of Fred-
holm operators in (3) is stable for any 0 < O(t) < 7r if and only if 

det[a( t) + (b( t)] =f 0 

for all t Er and ( E {±1} U {(EC: 1(1 < l}. 
For n = 1 condition (38) can be rewritten as follows: 

7r 
9±(t) := a(t) ± b(t) -:f 0 and I argg+(t) - argg_(t)I ~ 2 

for all t Er. 

(38) 

REMARK 15. See also [5, 16] for the factorization of strongly elliptic matrix-functions 
and [9, Sect. 3.6] for more general assertions on pseudodifferential operators with local-
sectorial symbols. 

4. SOME REMARKS ON ERROR ESTIMATES 
Since, for fixed e > 0, (3) is a Fredholm integral equation with smooth kernel, a wide 

variety of approximation methods applies to the numerical solution of equation (3), e.g., 
projection methods (such as Galer kin or ·collocation methods) and quadrature (Nystrom) 
methods (see e.g. [1, 3, 4, 12, 15, 22]). . 

Assume that such an approximation method is given by the sequence of equations 

(39) 

where f n E Xn is known and 1/Je,n E Xn is the approximate solution of equation (3) with 
Xn being a closed subspace of L;'(r, g). Then 1/Je,n can be viewed as an approximate 
solution of equation (2), too. 

11 
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THEOREM 16. Suppose the sequence {Ae:h and, for any fixed e, th~ sequence {A~n)}n 
are stable. Assume Pn : L: (r, {!) --+ Xn is a projection. Then for the solutions of the 
equations (2), (3) and (37) the error estimate 

llcp -1/Je,nll::; cllAcp -Ae:cpll + 111/7- Pn1/Jll + Ce:(llf - fnll + llAe1/7 - A~n)pn1f711) (40) 
holds with 

c =sup llA;1 ll, Ce= sup ll[A~n>t1 ll · 
t: n 

Proof follows immediately from the identities 

cp -1/J A;1(Ae:cp ~ !) , 
Pn1/J -1/Je:,n = [A~n)t1 (A~n) Pn1/J - fn) 

and the triangle inequality 

llcp -1/Je,nll::; llcp -1/Jll + 111/J-1/Je,nll · 
,I 

Since for the aforementioned approximation methods estimates of the last three terms 
are known (see e.g. [1, 3, 4, 12, 15, 22]) the problem of estimating I l'P -1/Je,nll is reduced 
to estimating the term 11 Acp - Ae:cp 11 · . 

The following lemma gives a corresponding estimate in the particular case of a closed 
curve r. Notice that in this case the solution cp of (2) has the same regularity as f 
provided a, b and r are sufficiently smooth. 

LEMMA 17. Assume that r is a closed CUT'lJe and cp E C1(r). Then there is a positive 
constant C such that 

max IAcp(t) - Ae:cp(t)I ::; eC max lcp'(t)I. ter ter 
Proof. Since r is closed we have the relation 

e2 n 2 
( t) J . 1 1f; ( r) - 1/1 ( t) 

Sr,e:1f7(t) - Sr1f7(t) = . ( )2 2 ( ) 2 dr. n r r-t -n te r-t (41) 

Thus, it remains to estimate the integral 

{ ldrl < C1 f ldrl . 
Jr l(r - t) 2 - n 2(t)e 2

1 - Jr Ir - t1 2 + e2 

Without loss of generality we may assume that, e.g., l/4 < s = ltl < 31/4 where l is the 
length of the curve r. Hence we get 

f I l~:I 2 :-::; C2 f
1 

( d)2 2 = C2 [arc tan l -
8 

+arc tan~] ::; C27r/e. Jr r - t + e lo y -· s + e e e e 

Applying Holder's inequality to ( 41 ), one obtains in a similar manner that 

max IAcp(t) - Ae:cp(t)I ::; e1-~Gllcp'llLN(r) ter P 

provided cp1 E L: (r) exists. 

12 
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Concluding remarks. It was not the aim of this paper to give optimal e~timates for 
the term 11 Acp - Aecp 11. In a forthcoming paper we will compare by numerical e~periments 
the efficiency of the method studied in the present paper with the efficiency of other well 
known methods for approximately solving equation (2) (see e.g. [22]). 

Acknowledgement. The authors are grateful to A. Rathsfeld for valuable remarks 
and to B. Kleemann for helping in preparing the graphical displays. 

REFERENCES 

1. Anselone, P.M., Collectively compact operator approximation theory and applications to integral 
equations, Prentice-Hall, INC., Englewood Cliffs, New Jersey, 1971. 

2. Arnold, D.N ., Wendland, W .L., On the asymptotic convergence of collocation methods, Math. Comp. 
41 (1983), 349-381. 

3. Atkinson, K.E., A survey of numerical methods for the solution of Fredholm integral equations of the 
second kind, SIAM, Philadelphia, 1976. 

4. Baker, C.T.H., The numerical treatment of integral equations, Clarendon Press, Oxford, 1977. 
5. Clansey, K., Gohberg, I., Factorization of Matrix-Functions and Singular Integral Operators, Vol. 3 

of Operator Theory: Advances and Applications, Birkhauser Verlag, Basel, 1981. 
6. Duduchava, R., Singular Integral Equations with fixed singularities, Teubner Verlag, Leipzig, 1979. 
7. Duduchava, R., On Wiener-Hopf integral operators, Math. Nachr. 65, 1 (1975), 59-82. 
8. Duduchava, R., On algebras, generated by convolutions and discontinuous functions, Integral Equa-

tions and Operator Theory 10 (1987), 505-530. 
9. Duduchava, R., Speck, F.-0., Pseudodifferential operators on compact manifolds with Lipschitz 

boundary, Mathematische Nachrichten 160 (1993), 149-191. 
10. Gohberg, I., Krupnik, N ., Introduction to the Theory of One-dimensional Singular Integral Operators, 

Birkhauser Verlag, Basel, 1992. 
11. Gohberg, I., Feldman, I., Convolution Equations and Projection Methods for their Solutions, vol. 41 

of Transl. of Mathern. Monogr. Amer. Mathern. Soc., 1974. 
12. Hackbusch, W., Theorie und Numerik der Integralgleichungen, Teubner, Stuttgart, 1989. 
13. Hormander, L., Estimates for translation invariant operators, Acta Math., 104 (1960), 93-140. 
14. Kozak, A., A local principle in the theory of projection methods, Soviet Mathematics, Doklady, 1974 

(translated from Dokladi Akademii Nauk SSR, 212, 6 (1973), 1287-1298). 
15,. Kress, R., Linear integral equations, Springer-Verlag, Heidelberg, 1989. 
16.- Litvinchuk, G., Spitkovskij, I., Factorization of Measureable Matrix-Functions, Birkhauser Verlag, 

Basel, 1987. 
17. Pilidi, V., Criteria for uniform invertibility of regular approximations of one-dimensional singular 

integral operators with piecewise-continuous coefficients, Math. USSR·Izv., 37, 3 (1991), 631-655 
(translated from Izv. Akad. Nauk SSSR, Ser. Matern., 65, 6 (1990), 1270-1294). 

18. Prossdorf, S., Starke Elliptizitat singularer Integraloperatoren und Spline-Approximation, in: Linear 
and Complex Analysis Problem Book - 199 Research Problems (V.P. Havin, S.V. Kruscev and N.K. 
Nikol'ski, eds.), 298-302, Lecture Notes in Math. 1043, Springer-Verlag, Heidelberg, 1984. 

19. Prossdorf, S., Rathsfeld, A., On strongly elliptic singular integral operators with piecewise continuous 
coefficients, Integral Equations and Operator Theory, 8 (1985), 825-841. 

20. Prossdorf, S., Rathsfeld, A., A spline collocation method for singular integral equations with piecewise 
continuous coefficients, Integral Equations and Operator Theory, 7 (1984), 536-560. 

21. Prossdorf, S., Schmidt, G., A finite element collocation method for singular integral equations. Math. 
Nachr., 100 (1981), 33-60. 

22. Prossdorf, S., Silbermann, B., Numerical Analysis for Integral and Related Operator Equations, 
Operator Theory: Advances and Applications, vol. 52, Birkhauser Verlag, Basel, 1991. 

23. Saranen, J ., Wendland, W.L., On the asymptotic convergence of collocation methods with spline 
functions of even degree, Math. Comp. 45 (1985), 91-108. 

24. Sengupta, A., A note on a reduction of Cauchy singular integral equation to Fredholm equation in 
Lp, Applied Mathematics and Computation, 56 (1993), 97-100. 

13 



25. Silbermann, B., Lokale Theorie des Reduktionsverfahrens fiir Toeplitzoperatoren, Math. Nachr., 104 
(1981), 137-146. . 

26. Simonenko, I., Chin Ngok Min, A Local Method in the Theory of One-dimensional Singular Inte-· 
gral Equations with Piecewise-continuous Coefficients: Fredholmness, lzd. Rostovsk. Universiteta, 
Rostov-na-Donu, 1986 (Russian). 

27. Simonenko, I., New general method for. the investigation of linear operator integral equations I-II, 
lzv. Aka.d. Nauk SSSR, ser. matem., 29, 3-4 (1965), 567-586, 757-782. ' 

28. Wendland, W.L., On Galerkin collocation methods for integral equations of elliptic boundary value 
problems, Intern. Series Num. Math. 53 (1980), Birkhauser Verlag, Basel, 244-275. · 

R. Duduchava 
Mathematical Institute 
of the Academy of Sciences of ·Georgia 
Z. Rukhadze str. 1 
Tbilisi - 93 
Republic of Georgia 

14 

S. Profidorf 
Institute of Applied Analysis 
and Stochastics 
Mohrenstrafie 39 
D - 1011 7 Berlin 
Germany 



\. > 

Recent publications of the 
Institut fiir Angewandte Analysis und Stochastik 

Preprints 1993 

51. J. Schmeling: Self normal numbers. 

52. D.A. Dawson, K. Fleischmann: Super-Brownian motions in higher dimen-
sions with absolutely continuous measure states. 

53. A. Koshelev: Regularity of solutions for some problems of mathematical 
physics. 

54. J. Elschner, LG. Graham: An optimal order collocation method for first kind 
boundary integral equations on polygons. 

55. R. lSchlundt: Iterative Verfahren fiir lineare Gleichungssysteme auf Dis-
tributed Memory Systemen. 

56. D.A. Dawson, K. Fleischmann, Y. Li, C. Muller: Singularity of super-
Brownian local time.at a point catalyst. 

57. N. Hofmann, E. Platen: Stability of weak numerical schemes for stochastic 
differential equations. 

58. H.G. Bothe: The Hausdorff dimension of certain attractors. 

59. LP. Ivanova, G.A. Kamenskij: On the smoothness of the solution to a bqund-
ary value problem for a differential-difference equation. 

60. A. Bovier, V. Gayrard: Rigorous results on the Hopfield model of neural 
networks. 

61. M.H. Neumann: Automatic bandwidth choice and confidence intervals in 
nonparametric regression. 

62. C.J. van Duijn, P. Knabner: Travelling wav~ behaviour of crystal dissolution 
in porous media fl.ow. 

63. J. Forste: Zur mathematischen Modellierung eines Halbleiterinjektionslasers 
mit Hilfe der Maxwellschen Gleichungen bei gegebener Stromverteilung. 

64. A. Juhl: On the functional equations of dynamical theta functions I. 

65. J. Borchardt, I. Bremer: Zur Analyse gro:Ber strukturierter chemischer Reak-
tionssysteme mit Waveform-Iterationsverfahren. 



} . 

66. G. Albinus, H.-Ch. Kaiser, J. Rehberg: On stationary SchroP.inger-Poisson 
equations. · 

67. J. Schmeling, R. Winkler: Typical dimension of the graph of certain func-
tions. 

68. A.J. Homburg: On the computation of hyperbolic sets and their invariant 
manifolds. 

69. J.W. Barrett, P. Knabner: Finite element approximation of transport of 
reactive solutes in porous media. Part 2: Error estimates for equilibrium 
adsorption processes. 

70. H. Gajewski, W. Jager, A. Koshelev: About loss of regularity and "blow up" 
of solutions for quasilinear parabolic systems. 

71. F. Grund: Numerical .solution of hierarchically structured systems of alge-
braic-differential equations. 

72. H. Schurz: Mean square stability for discrete linear stochastic systems. 

73. R. Tribe: A travelling wave solution to the Kolmogorov equation with noise. 

7 4. R. Tribe: The long term behavior of a Stochastic PDE. 

75. A. Glitzky, K. Greger, R. Hiinlich: Rothe's method for equations modelling 
transport of dopants in semiconductors. 

76. W. Dahmen, B. Kleemann, S. Pro:Bdorf, R. Schneider: A multiscale method 
for the double layer potential equation on a polyhedron. 

77. H.G. Bothe: Attractors of non invertible maps. 

78. G. Milstein, M. Nussbaum: Autoregression approximation of a nonparamet-
ric diffusion model. 

Preprints 1994 

79. A. Bovier, V. Gayrard, P. Picco: Gibbs states of the Hopfield model in the 
regime of perfect memory~ 


