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A Piecewise Polynomial Collocation Method for

the Double Layer Potential Equation over the
Wedge

A.Rathsfeld

Abstract

In this paper we consider a piecewise polynomial collocation method for the
solution of the double layer potential equation corresponding to Laplace’s equation
in a three-dimensional wedge. We prove the stability for our method in case of
special triangulations over the boundary.

Key words. potential equation, collocation
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‘1 Introduction

One popular method for the solution of boundary value problems for elliptic differential
equations consists in the reduction to boundary integral equations.  For instance, the
Dirichlet problem for Laplace’s equation in a bounded and simply connected polyhedron
Q C R? or the Neumann problem for the same equation on R?\ Q can be reduced to the
second kind integral equation Az = y over the boundary S := 09 (cf. e. g. [19] ),where
A=1T+2Wg and

(1) Wes(@) =12 - da(@I=(@)+ o [ "L (P
0n(Q) i lim [P Q1P =@l <]

o {PeR’: |P-Q| <€}

Here np denotes the unit vector of the interior normal to Q at P and |Z]| is the Lebesgue
measure of Z for any Z C R®.Note that, since the boundary S is not smooth, W is

not compact. For the numerical solution of Az = (I + 2Ws)z = y, various methods
have been introduced. The first method was the so called panel method, i.e., piecewise



constant collocation ([26] and cf.[16, 25, 3]). Kral and Wendland [18] (cf. also [2]) have
shown that this method is stable for the case of certain rectangular domains 2. Arbitrary
polyhedral domains have been considered in [22]. Elschner [10] has analysed the Galerkin
method with piecewise polynomial trial functions over arbitrary polyhedrons, and the
Galerkin method together with an approximation of the Lipschitz boundary by smooth
surfaces has been investigated by Dahlberg and Verchota [8]. For all these procedures,
the question arises how to compute the entries of the discretized system of equations (cf.
[26, 12, 24]). In order to avoid this problem, one can consider simple quadrature methods.
In the papers [21, 20] Nystréom methods have been analysed which are similar to those
of Graham and Chandler [7], Kress [17], and Elschner [9] for the corresponding equation
over polygonal boundaries. However,; these quadrature methods improve the complexity
only up to a certain order. The reason for this disadvantage is that the Nystrom method
-works with one grid only. This one grid has to be adapted at once to all singularities of
the kernel function

1 TLp(Q — P)
kE(Q,P):= ———————=.
( Note that k(@, P) turns to infinity if |P — Q| turns to 0 and P and @ lie on different
faces of S. ) Doing so, the number of grid points grows, and the complexity of the method
cannot be reduced in the same manner as in the one-dimensional case (cf.[21, 20]).

In order to get a fully discretized numerical method which reduces the complexity simi-
larly to the one-dimensional case ([7, 9, 17]), one needs quadrature methods, where the
quadratures and the grids depend on the collocation points, in other words one needs
certain discretized collocation methods. The first step in the analysis of such methods
is the stability analysis of piecewise polynomial collocation. This has been done already
for a piecewise constant or a piecewise linear ansatz (cf. [26, 18, 22]). For polynomi-
als of higher degree, the stability of the collocation is still open. However, it is well
known that the stability of the collocation method for the double layer equation over a
polyhedron can be reduced to the stability for the case of polyhedral cones and the case
of a wedge (cf.[22, 21]). In the present paper we shall prove the stability of a certain
piecewise polynomial collocation procedure on'a wedge. First, we introduce a space of
one-dimensional spline functions and derive some properties of this space. In Section 3
we introduce a space of piecewise polynamials over the wedge using tensor products of
the one-dimensional spline functions. This space is the space of ansatz functions for our
collocation. Note that the underlying grid is a uniform or a certain graded one. In Section
4 we shall prove the L2-stability of the collocation method introduced in Section 3.

Finally, let us mention that a further reduction of the complexity seems to be possible if
the discretization scheme is combined with an iterative solution of the system of equations
(cf. [13, 15, 4, 20]) or a fast method for the multiplication of the matrix by a vector (cf.
23, 11, 14, 1, 6, 5).



2 The one-dimensional spline functions

Suppose we are given a grid A := {tx, k € Z} satisfying ... < g < tpy1 < thpa < ...,
and let d stand for a fixed positive integer. Then, by 15%*+(A) we denote the space of
all piecewise polynomials ¢ such that: '

a) The restriction of ¢ to the subinterval [tx, tx41] is equal to a polynomial p; of degree
less than 2d + 2.

b) For the 2d neighbouring grid points tx1;, j = —d,...,d + 1, there holds @(try;) =
Pi(tess)-

In other words, 15?#*1(A) is nothing else than the image space of the local interpolation
projection Ka (cf. property iii) below), where Ka f(t) for ¢y <t < tgyq is defined by

d§+l: (=t
(KAf)(t) = f(tk—j)lj(t): lj(t) = I I T v
j=-d jAl=—d (te—j — ta-t)

Let us suppose that A is a locally quasiuniform partition, i.e., that there is a constant
cq 2 1 with

a1tk — te1] < [trrr — ] < cglte — i1, k€ Z.

Furthermore, let ha stand for the mesh width sup {|tx —tk-1|,k € Z} of A. The following
properties of 15241 (A) and KA are obvious:

P i). The space I5?**}(A) is a subset of the space of continuous function C(R) over R.

P ii). Thereis a constant C' > 0 such that, for any (2d+2) times continuously differentiable
function f,

IEaf = flloo < CRET?[ )| .

P iii). If {px} is the interpolation base in I5%#+1(A) determined by ¢;(tx) = §;x, then the
support of gy, is contained in [tg—g—1,tktar1] and Kaf = Dgez f(te) @k

P iv). If t := kha, k € Z, then there holds @i () = wo(t — kha).

Here and in the following, by C' we denote a generic constant the value of which varies
from instance to instance. The properties iii) and iv) will play an important role in the
stability proof in Sect.4. Let us shortly indicate the importance of iv). Suppose we are
given an operator A := 1+ T € L(C(R)) with ||T|| < ¢ < 1 and consider the collocation



* for A using 15%#*1(A) as ansatz space and {t;} as collocation points. Then the discretized
operator Aa of A takes the form Ax = KnA|rsaarr(p). We get Ap =Id+ KT 152441 (n),
where ||KAT|7s2e41(a)|| < g||Ka|l. Hence, Aa is invertible and stable if only ||Kall = 1.
(Note that A is called stable if it is invertible for ha small enough and if the inverse
operators are uniformly bounded.) The last equation holds if and only if d = 0. For a
higher degree of ansatz functions, we need another method of proving stability. In order
to demonstrate this new method, let us suppose that 7' is given by

TF(t) = /R k(t — $)f(s)ds, /R Ik(s)|ds < q.
Then the matrix of Aa corresponding to the base {¢x} is the convolution matrix

Ap =1d + (Tgﬂj(tk))k’jez =Id+ (T80j~k(t0))k,jez

and its symbol function is

0,27) 3 p = A(p) i= 1+ 3 expliso)Tips(to) = 1 + T(Z; expl(ijp)e; ) (to).
j€Z Jj€E

Taking into account the next lemma, we arrive at

A 2 1= Tl ee@pll D exp(ijp)pillen 21— g

7€Z
Hence, Aa together with A4 is invertible.

Lemma 2.1 i) Suppose that A = {khalk € Z}. Then, for any 0 < p < 2m, there
holds || ez exp(21p)@jlle0 < 1.

i) Suppose hp = 1. Then the Fourier transform &g of po 1s given by

. 1 (sins/2 }2(‘“‘1) d 2
3 = —_— 05dS 3
w6 = ) Lo
1 if7=0,d=0,
Ojd = [%[;i;ﬁl'i!'_;]} Y 1<t <la<.<l;<d 2. l? else.

PROOF. i) By a scaling argument we may suppose ha = 1. Using the inverse Fourier
transform, we obtain



> exp(ijp)e;(t)

JEZ

1 - ) .
= Z exp(i7p)po(t — 7) Z exp(ijp \/%/R @o(s) exp{—is(t — 7)}ds

je€Z J€Z
1 2w
= exp(17p)— Po(s + k27 ) exp{—1(s + k27 )(t — 7)}ds
PPy p(mf/ Bo(s + kam) exp{—i(s + k2m)(t — 1)}
= D exp(ijp)— / {V/27 exp(— zst) > @o(s + k2m) exp(—ik2rt)} exp(ijs)ds
j€Z keZ
= \/Q_Wexp{—i(?;r —p)}r > {05(271' — p + k27) exp(—ik2mt).

ke

Using > exp(zjp)p;(0) = 1 and the last formula with ¢ = 0, we may continue

. , .
ZGXP(iJP)SOJ‘(t) _ ez expl(z]pypj( )
Skez Po(2m — p + k2m) exp{—i(2r — p + k27)t}
Ykez §o(2m — p + k2r)

j€Z

Together with g > 0 this formula proves assertion 1).

ii) Integration by parts leads to

\/2—71'{55(3) = Z / ezp(est)po(t)dt = Z 2§2 Y- 1[%90(()’_1)(25)]”1

r=—d-1 r=—d—1 I=1 (”)l
2d+1 T d+1 :
(2.1) - Z( 1) (as) =D S exp(ars) [0 (1)),
r=—d-1

From the definition of @o we know that the restrictions pr—1 = @oljr—1,] and pr = @o|jrr+1]
are polynomials of degree less than 2(d + 1) and that p, — p,_; vanishes at the points
r—d,...,m+d. Thus p,(t) — pr—1(t) = Carwa(t — r), where Cd, denotes a constant and
wa(t) := t[15-1(¢* — j?). Setting By := wc(,l)(O), we get [t,o )]:"'8 = Cy4,Bq;, and (2.1)
implies ’

22)  Varg(s) = {Z,ilB‘“( ) oy S z Cap exalirs).
From |

2441 de Bd 241
t) = Z l Z (2[ +1 21+1




we derive

1
(2.3)  Bgas1= {

ifd=1=0

(20 + D(-1)+ 2<h <ly<<ly_i<d 3. 05, else.

On the other hand, we have

PP ()

— () = Cgrwf(0) = Cup(2d + 1)1

Using the definition of p, and p,_;, we get

Car(2d + 1)1

Cd T
Consequently,

d+1

> Cqrexp(irs)

r=—d-1

1-— . ) — 1 — —)}; -
Ht2d+1 it Jtr b Jp— ¢
‘ﬁ —1 d+1 1
i T - _,.+£Ij=_dj +r—1
d 1 . .
——r;;él;!:_:—-dj_l'r{r'—d-—l N r+d+1}
(z@+1y>
2d + 1)(-1)774 = (—1)¢rH d+1+r
(d+1 —T)!(d‘l‘l-l-’r‘)! (2d—{—1)! )
( 2(d+1) ) :
(__1)d—1-+1 d+1+r
(2d + )12~
GV sl O C SV I D
T (2d+1) r=—Zd—1 do14r | (T exp(irs)
(_1)d+1 ' .
= m(l — exp(i_s))Z(d+1)(__1)—(d+1) exp{—i(d + 1)s}
—1)d+1 .
B éﬁiﬁ{zmn(s/m}“dﬂ).

From the last formula, (2.2), and (2.3) we get ii). O

Let us conclude this section with the definition of the corresponding spline space over the

half-axis Ry. However,

we shall modify this space slightly near 0. Suppose we are given

agrid Ay = {tx: k=0,1,...} satisfying 0 = ¢ < t; < ..., tx — oo, and let the positive
integers d and 7, be fixed . Then, by IS52*'(A,) we denote the space of all piecewise
polynomials ¢ such that:



a) The restriction of ¢ to the subinterval [0, ¢;,] is constant.

b) The restriction of ¢ to the subinterval [ty,tg41], k& = 44,94 + 1,... is equal to a
polynomial py of degree less than 2d + 2.

c) For k > i, + d and the 2d neighbouring t1,;, j = —d,...,d + 1, there holds
@(tets) = Prlthss)-

d) For 7, < k < 2, + d and the 2d neighbouring grid points tx1j, j = —d,...,d + 1,
there holds ¢(tg1;) = pr(tes;) for k + 7 > 44 and @(tks;) = pr(ts,) for k+ 7 < i,.

If {¢x} is the base introduced at the beginning of this section, then a base of 1524 (A,)
is given by

1 if0<t<t 0 if0<t<t
() = =Pt D oh) =4 =F =
(PO( ) 0 else » 1 (t) Z;‘*:i.,—d‘)aj else ’
and @f = prpi_1, K =2,3,.... The interpolation projection onto IS?M (AL ) is defined

by Ka, f = k=01, f(t}:)cpz, where t7 := 0, tz = tpin-1, £=1,2,....

3 The collocation for the equation over the wedge

Let us consider the operator A := I +2W € L(L*(S)), where W := Wy is taken from
(1.1) and the wedge Q2 and therewith its boundary S := 01 is defined by

Q:={(u,v,w)€R®*: ue R, v=rcosa, w=rsina, 0 <r < oo, 0 <a<y}

In order to set up a collocation method for the numerical solution of Az = y, we need
a space of ansatz functions and a set of collocation points. Since we shall look at this
collocation as a model problem for the case of a bounded polyhedron, we shall introduce
an infinite but countable ansatz space. First, we start with the definition of a partition
and a function space over the half-plane RZ := {(s,t) € R?, ¢t > 0}. Suppose we have a
fixed grid Ay = {tx, £ =0,...} over R;. We assume that this grid is locally quasiuniform
(cf. Sect.2) and satisfies

. Fore — s
(3.1) sup{’—ﬂ{-.-——], J=tnte+1,...} <€
j

where 1, is a positive integer and € is a prescribed positive constant. Following Sect.2
we can introduce the base of spline functions {¢}(¢)} over Ry. Moreover, using the
equidistant grid Z, we can define the base of spline functions {¢k(s)} over R. The space
of tensor product splines over R? is spanned by the set of functions {(s, t) — wi(s)e] (¢)}-
If t;-“ is defined as in Sect.2, then the set of collocation points over R2 is given by {(k,¢])}.



Now we introduce the functions and points over S with the help of affine mappings. We
choose an h > 0 and introduce 1y : R — S,

| shT 1(1 0,0) + th™'(cos B2, sin B, sinv, sin B, cosy) 1f | = 2,
(3,8) = (s, 1) o= { sh=1(1,0,0) + th=*(cos B, sin B, 0) ifl=1.

Then the set of collocation points over S is {¢i(k,¢})}. Note that we could have set §; =
B2 = 7/2. However, for a localized problem arising from a non-rectangular polyhedron,
we need arbitrary 0 < (1,82 < 7. Taking into account that +:(k,td) = ¥a(k,t3), we
introduce the notation

I == {4=(k,7,D)|i >0,k€Z,l=1,2,=0,keZ,1 =1},
P, Py ji =ik, t]),

(Pk(s)(p:}'(t) ifj>0andl=1
Orji(Pr(s,t)) = orifj=0

0 else,

32)  @uldu(s,?))

=(k,j,0) €I, 1=1,2, (s,t) € R}.

Obviously, there holds

(3.3) —II S bl < AL IGLIE — 17 < CI Y pule.

el eI el

Now we consider the collocation method,where the approximate solution za = ¥ ,cr €0,
for the solution z of Az =y is determined by

(3.4) v Aza(Pg) =y(Py), & € 1.

Theorem 3.1 Suppose A = I + 2W, where W is the operator of (1.1) over the wedge
with opening angle . Let the numbers (1,02 in the definition of 11,v2 as well as the
constant ¢, appearing in the property of local quasiuniformness be fized. Then there 1s a
small € > 0 such that the collocation (8.4) with ansatz functions and collocation points

from (8.2) is stable in L? if only (8.1) is satisfied.

The matrix of the corresponding system of equations takes the form Aa := (Aw.(Pe))x,cl-
Using W fn(Pn) = Wf(P) for P = (z,y,2), Pn = (hz, hy,hz), and the functions f and
fulz,y,2) == f(h~'z, h~ly, h~'z), we observe that this matrix is independent of A. Since
the matrix norm corresponding to

e = M 16 L1t — 11

el



(cf. (3.3) ) is independent of h , too, we get that Aa is stable if and 6nly if Ap is invertible
for b = 1. Thus without loss of generality we may assume h = 1, and it will be enough
to show the invertibility of Ax. This will be done in the next section.

Finally, let us mention two special partitions Ay on Ry, If @ > 1, ¢; := 5%, and € > 0,
then (3.1) holds if only 7, is large enough. For 1 < ¢ < 1 + € and ¢; := ¢7, (3.1) is
satisfied, too. The bound for the inverse of the corresponding collocation matrix will be
independent of q.

4 The proof of Theorem 3.1

4.1.In the first step let us reduce the index set 7. We set I, := {¢+ = (k,7,[)|j = 0} and
I, := I\ I.. Then the span of {¢,,¢ € I} is the direct sum of the span of {¢,,¢ € I} and
of that of {¢,,¢ € I.}. Corresponding to this splitting Aa takes the form

Ae,e AB,‘I‘ ce e
An = ( e U ) s AR = (Apu(Pe) et AX = (AP (Po) )it s -
A A .

We observe that AX" = 0 and A%° is triangular, where the entries in the main diagonal
are equal to 1 +2{1/2 — v/27} (cf.(1.1)). Hence, for the invertibility of A, it will be
enough to prove that A%® and A are bounded and that A} is invertible. Since the proof
of the boundedness for A%’ is analogous to that for A}, we shall only consider A} .

4.2.In the second step let us show the convolution structure of the matrix A" and reduce
the problem of invertibility to that for the symbol. If J, := {p = (4,7 = 1,2,...;1 =
1,2}, then the vector ¢ := (,).c1. can be written as ¢ = (k)rez, where & := (€ku)pesn-
Now we observe Ay ;i(Pijrrr) = Apr—r i1(Pojiir) and conclude that AY is a discrete
convolution matrix with respect to the index k. We write

AT = (Ap k- i keZy Anj—ik = (A0r—k'u(Pos)vue -

Starting with W instead of A, we analogously define W1" and Way,. Hence, AY =
Id +2W," and Aag = Id + 2Wap, and it suffices to prove |WA"|l« < 1/2, where the

operator norm || - ||« is generated by the norm
2 . 0
1€l == {3 1€ Neells = { X sin Bl Y &rsaol et
keZ =1 j=1

which is equivalent to the norms in (3.3). As it is well known, the norm of the convolution
operator W™ can be estimated by the norm of its symbol:

(4.1) 1WAl < sup [[W(p)lls, W(p) := D exp(ikp) Wk
0<p<2m keZ



4.3.Now let us show that the symbol WW(p) is a collocation operator for a one-dimensional
equation. We set I' =T'; U T, where

Iy = {t(cos By, sin By, 0)[0 <t < oo} = {4:(0,¢)]|0 < ¢},
[y = {t(cos B2, sin fz cos 7,sin B2 sin v)|0 < ¢t < oo} = {02(0,¢)[0 < ¢}.

Then we consider the space L*(T") over I' together with the norm ||f|| := (f, f)'/? and the
scalar product

(f:9) = 3sin i [, F(Q)(@)dal.

Furthermore, we introduce the restriction Res and the prolongation Pr by

Res:C(S) — C(I'),  Resf:=f|r,

Preo®— o), pestet = { TR0 ) i e

and define B, € L(L*(T")) by

B,f = ResW M, Pr f, M,g(P) :=m,(P)g(P),
my(i(s,t)) = {D exp(ikp)or(s)}; [=1,2; s€eR; 0 < t.
keZ

Here ¢y is the function introduced in Sect.2,property iii) over the grid A = Z. If we
introduce the collocation points {Q.|u € J.} and the set of ansatz functions {p,|u €
J:} € L*(T) by

+ 7 —
Qu = Fup oitin(0,0) = { §7) 1=V

else

then W(p) is the collocation matrix (B,©.(@.)) e for the operator B,. Thus we are
left with estimating the last collocation operator. This will be done in two steps. First
we shall show that the collocation matrix is a small perturbation of the Galerkin matrix,
and then we shall prove that the norm of the Galerkin matrix is less than 1/2.

4.4.The Galerkin matrix corresponding to B, takes the form G~'H, where G is the Gram
matrix G := ({¢u, Yu) uues. and H is given by H := ((Bowu, o) uues.. We get
W(p) — G'H = G™'E with E := GW(p) — H, and estimate the entries of E defined by

10



Epp = (Z Boon(Qu)ew: n) — (BoPu, ¢n)
veJn

(4'2) = Z [BP“!DIJ(QV) — Bopulion, @n),

veJn

where we have used that 3 ¢, = 1 on the support of ¢,. For @, € suppy,, @ € suppp,
and supp @, N supp p, # 0, we conclude

1Bo0(@.) - Brou @l = - [ {H2m) - 2C D (P)Pr g, (P)deS

1 [ |ne(Q — P) R - e
<— | ————=|P Plldp S Y- -
S Js g PP |Prou(P)|dp peip FCE) ,

where we have used Lemma 2.1 i) for the estimation of m,. Clearly, the right-hand side
of the last equation vanishes if the supports of Pr, and Pr ¢, lie on the same face of
S. If they lie on different ones, it is not hard to get (cf. [21, 20])

np(Qv—P) _ np(Q-P)
Q-PF_— @-PF | . 4@ =@l _ .
np(Q-P) = Qr -
lQ-P2
In view of (4.2) and of 3 |p,| < C we arrive at
(4.3) |Epul < O€<B1‘Pui; ),
B = ResW Pr, Wa(Q):= - /S %E—Q_—Z?l};nm(mdps

On the other hand, analogously to (3.3), it is not hard to show that

CHY Gupul® < X 1GP IR —tF1 S 1D Gl
u=(g et »
C'_lll ZCu"Pyl “2 < Z ICul |t3+1 - tjl < | Z(ﬂ!‘Pul H2
‘ n=(4.1)€
For C = (Cu)uer., we set [[C]l = ||2Cu<Pn|| and ||[¢|l«s = [| X Culwul |l Then, for G,

= ({loul {eu]) Jupues., and D 1= (8up{t]i1 = 17 Du=(it)wes,, the last estimates imply
ICI12 = (G¢,¢) = HGWCH2 IDY2¢|? ~ IGH2C11E ~ NiCI,

11



|G-Y2DY?|| < C, | DY2G~1?|| < C, and ||D7Y2GM?|| < C. Here || - || stands for the

Euclidean norm and the corresponding matrix norm. If we denote the operator norms

corresponding to || - ||« and || - ||« by the same symbols, we conclude
GBI = (GG E)E ) = ¢V EG
< |G| | DD g
< CO| D Y*ED™/|.

Together with (4.3) this leads to
IGTE|l. < Ce| DM2HD™?|| < Cel|GT2HG|| < Oe|| G H |,

where H := ((B|@ul, |¢n]))nues.. Thus the difference of the collocation matrix and the
Galerkin matrix is bounded by C e times the norm of the Galerkin matrix G™'H corre-
sponding to the operator B. Analogously to Lemma 4.1 we conclude that B is bounded.
Hence the collocation operator W(p) is a small perturbation of the Galerkin operator.

4.5.For the Galerkin operator, we know that |G H||. < HBP“L(Lz(F)); Thus the proof of
Theorem 3.1 is finished if the following Lemma is proved.

Lemma 4.1 The norm of the operator B, := Res W M, Pr is less than 1/2.

PROOF. Since the kernel function of W does not change sign, and Lemma 2.1 i) holds,
we get || B,|| < || Bol|| for By := Res W Pr. In order to estimate the latter, let us introduce
the strip and the points

Q = ’gbl/(O,tQ), P1 = 1/)1(0,tp1), Pz :='¢1(0,tp2), Str 1= {’gbl(s,t)[s S R, tp1 <t < tp2}.

Of course, we assume tp, < tp,. Furthermore, for the sake of simplicity, let us suppose
I =1, '’ = 2. For the kernel function k& of the integral operator By, we get

P2 _ 1 [ n(@=-P)
/Pl K(Q, P)dpT i= /Str oy R

We observe, that the right-hand side is just the normalized solid angle under which Str
is seen from Q. Obviously, this is equal to the normalized angle under which the interval
{(¢,0)|tp, sin B; < t < tp, sin B1} C R? is seen from the point

(tq sin B3 cos 7, tg sin B, sin ) € R?. Hence, our kernel function is nothing else than
that of the double layer potential operator over the angle I'y := I'; UT, C R?, where
Ty := {(7,0)|0 < 7 < oo} and I'; := {(7 cos 7, 7 sin 4)|0 < 7 < oo} and where 7 and 7
are substituted by 7 = ¢p sin B; and T = tg sin (s, respectively. We get

12



KQ, P)dpl' =

1 tg sin v sin B,
27 t% sin® By + 17 sin® B, — 2tp sin By tq sin B2 cos vy

dtp sin (3.

However, for the double layer operator over I'y, it is well known that its norm is less than

1/2.

a
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Discretized Collocation for the Numerical
Solution of the Double Layer Potential Equation
over the Cube

A.Rathsfeld

Abstract

In this paper we consider a piecewise polynomial collocation method for the so-
lution of the double layer potential equation corresponding to Laplace’s equation
over the cube. We give formulas for the computation of the entries in the corre-
sponding stiffness matrix and prove the stability for our method in case of special
triangulations over the boundary. Finally, we derive an asymptotic error estimate.

Key words. potential equation, collocation

AMS(MOS) subject classification. 45110, 65R20

1 Introduction

One popular method for the solution of boundary value problems for elliptic differential
equations consists in the reduction to boundary integral equations. For instance, the
Dirichlet problem for Laplace’s equation in a bounded and simply connected polyhedron
Q C R® or the Neumann problem for the same equation on R?\ () can be reduced to the
second kind integral equation Az = y over the boundary S := 0Q (cf. e. g. [21] ),where
A=1+2Wgs and

(1.1) Wea(Q) = [1/2 — da(@a(@) + - [, "5 a(Pees,
dn(Q) == lim {PeQ:|P—Q| <e}

o |{PeR:|P—-QU< ¢}

Here np denotes the unit vector of the interior normal to Q at P and |Z| is the Lebesgue
measure of Z for any Z C R3Note that, since the boundary S is not smooth, Ws is
not compact. For the numerical solution of Az = (I + 2Ws)z = y, various methods
have been introduced. The first method was the so called panel method, i.e., piecewise



constant collocation ([29] and cf.[18, 28, 3]). Kral and Wendland [20] (cf. also [2]) have
shown that this method is stable for the case of certain rectangular domains Q. Arbitrary
polyhedral domains have been considered in [25]. Elschner [11] has analysed the Galerkin
method with piecewise polynomial trial functions over arbitrary polyhedrons, and the
Galerkin method together with an approximation of the Lipschitz boundary by smooth
surfaces has been investigated by Dahlberg and Verchota [8]. For all these procedures,
the question arises how to compute the entries of the discretized system of equations (cf.
[29, 14, 27]). In order to avoid this problem, one can consider simple quadrature methods.
In the papers [24, 23] Nystrom methods have been analysed which are similar to those
of Graham and Chandler [7], Kress [19], and Elschner [9] for the corresponding equation
over polygonal boundaries. However, these quadrature methods improve the complexity
only up to a certain order. The reason for this disadvantage is that the Nystrém method
works with one grid only. This grid has to be adapted at once to all singularities of the
kernel function

. : 1 np (Q - P)
1.2 kE(Q,P):= —————.
( Note that (@, P) tends to infinity if [P — @] tends to 0 and P and @ lie on different
faces of 5. ) Doing so, the number of grid points grows, and the complexity of the method
cannot be reduced in the same manner as in the one-dimensional case (cf.[24, 23]).

In order to get a fully discretized numerical method which reduces the complexity simi-
larly to the one-dimensional case ([7, 9, 19]), one needs quadrature methods, where the -
quadratures and the grids depend on the collocation points, in other words one needs
certain discretized collocation methods. The first step in this direction is the stability
analysis of piecewise constant or piecewise linear collocation due to Kral, Wendland and
the author (cf. [29, 20, 25]). In the present paper we shall consider a method, where the
ansatz function are taken from a certain space of higher degree tensor product splines.
For this method, we shall prove the stability in the L?-space and show nearly optimal
error estimates. The method of proof requires a certain stability condition. Namely, we
have to suppose that certain finite section operators are invertible and the norms of their
inverses are uniformly bounded with respect to the mesh width ( Applying the ideas of
the proof from Theorem 2.1 in [24] we need the invertibility of the operator A’ in the proof
of Theorem 3.1.). However, in order to simplify the considerations, we restrict ourselves
to the case of the cube Q = [0,1]*> C R?3. For this case, the assumption concerning the
finite section operators is satisfied.

Finally, let us mention that, in order to get an efficient algorithm, one has to combine
the presented collocation procedure with an iterative solution of the system of equations
(cf. [15, 17, 4, 23]) or a fast method for the multiplication of the matrix by a vector (cf.
[26, 13, 16, 1, 6, 5]). The analysis of these steps is still open.



2  The discretized collocation method

2.1. First we have to define the collocation points and the ansatz functions. In order to
do this, we start with triangular parametrizations for the boundary S of the cube [0, 1J.
Suppose that R is the centre of a face of S and P and @ are the endpoints of an edge lying
on the same face as R. By U let us denote the mid-point between P and Q. Then we define
the triangular parametrization ®pgg of the triangle Trpgr := {P + sUR+ tPTf, 0<t<
2, 0 < s < min(¢,2—1)} by

@pQR: Sq::{(s,t)ERZZOS.SSl,OStSQ}——-)TTpQR,
®pgr(s,t) = P +min(t,2 —t)sUR +tPU.

We choose v > 1 and, for any positive integer n, we introduce so := 0, s; :=
(1—1/n)™™=7 5 = 1,2,...,m(n) with m(n) := vn[log n]. Furthermore, we set t5 :=
sk, K=0,...,m(n) and tg := 2—Sam(n)-k, k¥ =m(n)+1,...,2m(n). Then the collocation
points are given by Ppqrjk := ®pqr(sj, tk), where j =0,...,m(n), k =0,...,2m(n), and
R, P, @ run through all the centers of faces and corresponding endpoints of edges lying
on the same face.

The definition of the spline space is more difficult. Let us start with the definition of
the one-dimensional splines of degree 2d + 1 over the real half-axis corresponding to the
partition {r; := (1 —1/n)™™=3 j € Z}. We shall consider the set of interpolating splines
7 defined by 9(7,) = y, such that the restriction of 9 to [, 7j4+1] is equal to the polynomial
p of degree less than 2d+2 which satisfies p(n) = y;, { = 7—d,...,j+d+1. In other words,
the basis functions vy satisfying 9 (7;) = 6;x are defined by Yilir;7;41) = Pr,j, Where py ;
is the unique polynomial of degree not exceeding 2d + 1 such that pg () = big, | =
j—d,...,j+d+1. Note that the support of 1 is [Th_d—1, Thyds1] and, for any sufficiently
smooth function f defined over [0, 1], the interpolating spline ¥ f(7x )¢ tends to f with
order O(n~(3+2)) as n — co. If we consider the interval [0, 1], then we cannot use the
interpolation knots greater than 1. Moreover, we need a finite dimensional spline space.
Hence, we set ¢}, := ¢, k =d+2,...,m(n)—d—1 and define g}, &k = m(n)—d,...,m(n)
to be the function whose restriction to [7;, 7j41] is the polynomial pi ; of degree less than
2d + 2 satisfying px j(7) = b1k, where l € {j —d,...,7+d+ 1} for j+d+ 1 < m(n) and
le{m(n)—2d—1,...,m(n)} for j +d+1 > m(n). We define ¢ to be the characteristic
function of [0,71] and set pi(s):=0, k=1,...,d+1for s € [0, 7], }(s) := Sii_ai(s)
and- pi(s) = Yi(s), k = 2,...,d+ 1 for s € [r,1]. Note that the support of ¢ is
[71, Ta+2]. Now we could have defined the tensor product splines over the boundary of the
cube by

Dpor(s,t) - P}(5)0L(t), @rar(s,t) — @H(s)ph(2 — t).

However, to overcome some problems in the stability proof for the collocation method, we
need certain modifications of the tensor product splines along the line {®pgr(s,1), 0 <



s < 1} and near the corner points ®por(0,0) and ®pgr(0,2). Therefore, let us consider
the angle I'; := {®por(sj,t), 0 <t < 2} lying on one face of § = 9. We identify the
plane containing the latter face with the complex plane C. Using this, we consider the
polynomials as polynomials in one complex variable. Now (pi’J , k=1,...,m(n)is defined
to be the function on I'; whose restriction to [®pgr(s;j, 7 ), Pror(Sj, Tr+1)] is the real part:
of the polynomial px . of degree less than 2d + 2 satisfying pr(®prqr(sj, 7)) = b1k, | =
r—d,...,r+d+ 1. Note that 0 (®por(si,t)) = wi(t), k=d+2,...,m(n) —d — 1.
XVG set 97 (Ppar(sirt)) = Pomny-r(PPer(s;,2 — 1)), k =m(n)+1,...,2m(n) — 1 and
efine ‘

05" (Prar(sj,t)) = { - vlz;nl(n)_l w17 (®rar(s;t) = Tico Yult) if t <1

0 else ’

@g;i(n)(@PQR(Sj, t)) := gog’j(épqg(sj, 2 —1)), and the modified tensor product spline func-
tions over S are given by

0porit(ror(s,t)) = @i(s)ey’ (Ppor(s;,t)),
7=0,...,m(n), k=0,...,2m(n).

2.2. If we interchange the roles of P and @) in the notation of Section 2.1, then we can define
®qprRr, TroprRr, PoPRjk, and oprjr and get Trpgr = Trqprr, Prorjk = PopPRj(2m(n)-k), 85
‘well as YpQRrjt = PQPRj(2m(n)~k)- Lhus we suppose for the set {(PQRjk)} of all indices
that it contains either {(PQRjk), 1 =0,...,m(n), k=0,...,2m(n)} or {(QPRjk), j =
0,...,m(n), k=0,...,2m(n)}. On this set {{ PQRjk)} of indices there is an equivalence
relation ~, where (PQRjk) ~ (P'Q'R'j'k") holds if and only if Ppgrjx = Ppiq'rijik. Note
that the latter is possible only if Ppgprjr is at the boundary of Trpgr. Let us denote
the set of equivalence classes by Z and its elements by ¢,x € Z. We set P, := Ppgrjr if
(PQRjk) € ¢ and define

(B) = oporik(P) if thereis a (PQRjk) € ¢ such that P € Trpgr,
PEI =00 else. ’

If we consider the functions as elements of the space L?, then we can write

P, = Z P PQRjk-
(PQRjk)€L

Let us consider the following collocation method: Find an approximate solution z, :=
>ez &up, of Az =y from solving

(2.1 (4z.)(P.) = y(P.), r €T,



Obviously, (2.1) is a linear system of equations for the coefficients ¢, of the unknown
function z,. The matrix of this system, i.e., the so called stiffness matrix takes the form

(an:")n,LEI7 a’nv" = (ASDL)(PK')'

The discretized collocation is the modified method (2.1), where the entries a, , are replaced
by the approximate values a, , which we shall define in the following.

2.3. Setting

Kz(Q) := g;/s%ci—_éﬁ—)m(mdps,

we observe that

(2.2) ar, = 21 —da(P)lePe)+ D (Koporsk)(Px),
(PQRjk)EL
- (23) (Koporik)(Pe) = E%fs%%};—ﬁzsﬂpomk(mdﬁ

1 n P(PK. - P )
= — —_—t x(P)dpS.
Thus in order to compute a,, approximately, we need cubature forrnulas for integrals over
Trpgr. Moreover, as indicated in the introduction, we shall introduce rules depending on
the collocation points P,. Let us start with a quadrature formula over the interval [0, 1]

1 T
(2.4) / )t~ Y wif(o), 0<o1<...<0, <1, w>0.
o 1=1

We shall assume that this formula is exact for polynomials of degree less than 2d+2. The
cubature over T'rpgr will consist of an iterated product version of (2.4). Therefore, let us
introduce the partition. Let {s;, 7 =0,...,m(n)} and {tz, £ =0,...,2m(n)} be defined
as above and consider two cases. If P, € Trpigirr and TrpigirNTrpgr = [P, Q'] = [P, Q],
then let ®pgr(0,t.) be the orthogonal projection of Py onto [P, @]. We define the partition
0=1wupo<us <...<Up(nx) = 2 by

{ug, =0,...,m(n,k)} = {tx, £=0,...,m(n)} U
{tetsj: 0<tyEts;j<2andj=0,...,m(n)}

If P,.-° € TT}DIQIRI and TTPIQ/Rf = TT‘PQR or TT’PIQIRI and TTPQR have no more than one
point in common, then set m(n, k) := 2m(n) and uj := tx. We arrive at the cubature
formula



2.5 Pyps = =~ [ [ g
(2.5) »/Trpqn f(P)dpS = E/o /o f o ®pgr(s,t)min(¢,2 — t)dtds
m(n)-1 r m(nk)-1 r

~ D 2 > X f(@per(sjs, ki ))wii ki

where we have set

850 = (1 —0i)s; + 0isjpr, Uks = (1 — ow)ug + ooty

1 .
Wi it += 7 min(uky, 2 = Uk )(8541 = Sj)wi(up — ur)wir

Following the formulae (2.2)-(2.5), we define the approximate value aj,, of a., by

=2 = da(Pbut T 3 X XY

(PQRjk)EL =0 i=l Kk'=0 =1
n‘I’PQR(Sjl,i:”k',;')(PN - @PQR(Sj',i, uk’,i’))
|®por(sj i, ur i) — Pul?

©pPQRrik(PPQR(Sj1i, Ukt ) )Wt ikt it

Now we observe that the support of wpgrjr is contained in {®pgr(s,t) : s; < s <
ss, ug, <t < ug}, where 5, == max(0,j — d — 1), j» := min(m(n),j + d + 1) and
the indices %, ko are given by ug = tmax(0k—d-1)> Ui, = min(zm(n)k+d+1)- Lspecially, if
P, € Trpigip and~T7‘p:Q:Rr = Trpgr or Trpgir and T'rpggr have no more than one point
in common, then &y = max(k—d—1,0) and k; = min(k+d+1,2m(n)). The summation
in the definition of a , reduces to

(2.6) ay, =21 —da(P)bes+ D, — D0, > >

(PQRjk)ee 2 =3 =1 ki=fy V=1
n‘I’PQR(’j',{x“k',il)(P": B @PQR(‘SJ"M uk’.i’))
|2 pqr(sj i) uk,ir) — Pulf®

©PQRik(PPQR(Sj1i, Ukt ir) )Wjr ikt it

For the modification of (2.1), where the entry a,, of the stiffness matrix is replaced by the
right-hand side of (2.6), we shall show the L*-stability and derive the convergence order.

Remark 2.1 It will turn out in Section 8 (cf. (3.4) ) that the matriz (ax,)x,. 15 of
convolution type. Thus, in order to calculate its entries a.,, &,t € I, we may restrict
ourselves to the case (PQRjk) € x with fized k, e.g., k = m(n). We can approzimate
these entries as in (2.6) using only one additional partition {ux}.



3 The stability near the corner

Following [24], the first step in the stability analysis is the proof for the case that  is an
infinite cone. Thus we start with the definition of the corresponding collocation method..
Let us set Q :=[0,00)3, S := 99, and choose P := (0,0,0). By R we denote a point on
a face of S such that two of its coordinates are equal to 1/2 and one is 0. We choose @
on an edge lying at the same face with R. Moreover, let the distance between @ and P
be 1. If U is the orthogonal projection of R onto the edge containing @), then we define
the triangular parametrization by

®por:  Str — Secpgr, Str:= {(s,t)eRz:OSSSI, 0<t< oo}
Secpgr = {P—I—SU-R—I—tP—U, 0<t<oo, 0<s<t},
®por(s,t) = P+tsUR+tPU.

Retaining the definition of 7, sj, Lp}, and 1p; from the last section and setting ¢p :=

0,tr := Tk, k = 1,..., we introduce the collocation points Ppgrjr := ®por(s;,tr) for
7=0,...,m(n)and £k =0,.... The spline functions are given by
eporik(Pror(s,t)) = ¢j(s)pi(t) 7=0,...,m(n), k=0,...
(70]%; = ¢k7 k= 17"'1 903 :1_2@12:.
k=1

Analogously to the previous section, we define the corresponding set Z, ¢,, and P,. Hence,
if A = I+ 2Ws5 is the double layer operator defined by (1.1) over the infinite boundary S,
then the collocation method is defined by (2.1), where z, := 3 ,cr &0, The entry a,, of
the corresponding stiffness matrix A, := (ax,)x.e7 is given by a., := (A, )(Px), and A,
is considered as an operator acting in the space of vectors {{,}.c7 endowed with the norm

I{&H == 11D &pullzas)-

LT

The collocation method (2.1) is called stable if A, is invertible for n large enough and if
the norms of the inverse operators are uniformly bounded with respect to n.

Theorem 3.1 The method (2.1) applied to the double layer operator over the boundary
of [0,00) is stable.

PROOF. a) The proof follows analogously to that of Theorem 2.1 of [24]. Let i, € T
stand for the class of all (PQRjk) such that Ppgrjx = (0,0,0), i.e., 1 is the set of all



(PQRjk) with k = 0. We define J := T\ {4} and set A := (ax,)s.cs as well as
Al = (@x, )reg. Furthermore, by A’ € £(L?(S")) we denote the double layer operatcr
A" := 1+ 2Wg, where S’ stands for the truncated boundary S’ := U,czsuppp,. We
introduce the interpolation projection P,f := 3 ,c7 f(P.)¢.. Obviously, the image im F,
can be identified with the space of functions over {P,},c 7. Consequently, A/, maps im P,
into im P, . By W,, € L(¢m P,) we denote the operator which can be obtained analogousiy
to the definition of AJ, if we start with Wy instead of A, i. e., W := 1/2(Al, — Id). For
a function x on S’, we set X, := Pox|imp,. Finally, by x° we denote the characteristic
function of the set of points P € S whose distance to the set of edge points is less than
|P|6 . Now all we have to show is that the following assertions are valid (cf. Lemma 2.2
and the proof of Theorem 2.1 in [24]).

i) The operators A/ and A! are uniformly bounded with respect to n.
i1) Let § > 0,e > 0 .Then, for n large enough, we get [|(1 — x°)[A" — A.]limp.|| < €.

iii) There exist ng > 0,8 > 0 such that , for n > ng and § < &, the operator
[Id+ 2W.(x%)a] € L(im P,) is invertible.

b) Let us show i) and start with proving that A/, := P,A|imp, is bounded. On the
set {(PQRy)} there is an equivalence relation ~g, where (PQRj) ~o (P'Q'R's') if and
only if Ppgrjm(n) = Ppig'rijim(n)- We denote the set of equivalence classes by Jo and
the elements of Jo by A, p. For v € J, (PQRjk) € ., and (PQRj) € A, we write
v = (A, k), and we set Py := PpgRrjm(n). Note that these points belong to the set T' :=
Urqr){®pror(s,1) : 0 < s <1} which is a closed polygon on S. Moreover, we introduce
@ := P(Am(n))|r. Then the matrix of P, Al|im p, corresponding to the base {(,} takes the
form

(=)

(3.1) A, = ((aguanonmures)

k' k=1

Obviously, the norm || - ||« is equivalent to

[{&eall := 71—7;\1 i(l — 1/n)2mm=B) | 7 € mealliay:

k=1 AET

Thus it is enough to prove the boundedness of the matrix

(3.2) B = (((1 = 1/n)* ¥ agurn,i)wie) ez

where the norm is the matrix norm generated by

(3.3) ~ Hedeoll =[S 1S €onpaliag

keZ AED



and @@y, (ak) = (A(p&k))(P(;k,)). The definition of the functions c,a.(f\’k) and the points

f\)(-;’k) is analogous to that of ¢ ) and Py k) (k > 0), respectively. Namely, for (PQRj) €
, we set

ey (@rar(s,t)) = @j(s)di(t), 7 = 0,...,m(n), k € Z, P 1y := ®por(sj, )-

From homogeneity arguments we observe that

(34) (1= 1/n)*Fagumomluaess = (1= 1/n) ™ agum(my),(minyh-k) Jures-

Consequently, B, is a block convolution matrix, and B, is bounded 1f and only if the
symbol

tpk
Igze p ( 1 — ]_/'n,) A(p,m(n)),(A\,m(n)— k)) wAETo

keZ wAETS

is uniformly bounded with respect to p. Taking into account that

keZ keZ

(Z e (1 —1/n)” 90(,\,,1(“) k)) (®por(s,t)) (Z e (1 —1/n) k'ﬁl’m(ﬂ k(2 )) 39;(3)7

we conclude that B? is the matrix of the collocation operator PLAP|imP}, where the
interpolation projection over I' is given by PLf := ez f(Pr)ga, AP := Res AM, Pr,
and

Res : C(S) — C(T), Res f := f|T,
Pr:.C(I') — C(S), Pr g(®pqr(s,t)) := g(2ror(s, 1)),
MP'LZ(S)—’Lz( ); M, f(P) = my(P) f(P),
mo(®por(s;t)) = Y €71 —1/n) Pm(n)-k(t)-

keZ

Setting

PL(f) = > F(PA)ex

A€ Jo:Pyedge point



" we split P! into 2 —|—P2r:n Now PP LAP|imPr is a finite rank operator and its boundedness
is equivalent to the boundedness of the functionals f— (APf)(Py), where P, is an edge
point of S. However, if Py is an edge point, then the integral corresponding to the
integral operator A is to be taken over all the faces of S not containing this edge and
the boundedness of the functionals follows easily. It remains to show that P} A?|imP}
is bounded. In part c) we shall show that A? is a bounded operator in L*(T'). Let QL
stand for the L?-orthogonal projection onto the space imPZF’ »- Then the Galerkin operator
QL A®|;mpr is bounded, and the boundedness of P}, A?|imP. follows from the fact that,
for any prescribed € > 0,

(35) HQ-}:AP‘imP}: - le—:nAplimP,l:” Sce

if only n is large enough. Here and in the following ¢ denotes a generic positive constant

the value of which varies from instance to instance. For the proof of (3.5) we refer to
Section 4.4 of [22].

In order to prove the boundedness of P,,Al,pan{%o }, we observe that

m(n)

01 (®por(s;1)) = D> > ;(s)u(t

j=0 k<0

Hence, the matrix of PpA|span{e,,} takes the form Bpb, with b, := (entryae))(a, k)ejoxz,
entry(ak) = 0 if £ >0 and entryog) = 1 if £ < 0. Since the function }- entry ;\k)go(/\ k)
is in L? and B, is bounded, the operator P, nAlspan{ep,,} 18 bounded, too.

c) Let us show that A? is a bounded operator in L*(T"). First we consider m,. Using
Tm(n)—k = (1 — 1/n)*, we get

mp(8por(s,t)) = 7Y € Pm(m-p(t) +

keZ ,
S T T
I;Z Tm(n)—k
For t in the support of ¥m(n)k, there holds
lt — Tm(n)——ki < ‘Tm(n) k4+d+1 — Tm(n)- kl < C
- Tm(n)—k Tm(n)—k n’

Taking into account that (cf. Lemma 2.1 in [22]) | Ciez € m(n)—k(t)| < 1+ €/2, we
conclude |m,| < t7}(1 + €) for any prescribed e if only n is large enough.

We get A? = I +2 Res Ws M, Pr, where the norm of the operator Res Ws M, Pr can be
estimated by the norm of (1 + €)Res Wt M Pr with
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Wra(Q) = [ IMQ, P)le(P)dpS, M £(Q):= clQI"f(Q)

The operator W is a Mellin convolution operator with respect to the radial coor-
dinate and maps homogeneous functions into homogeneous ones. Moreover, if v de-
notes the orthogonal projection of I' onto the unit sphere, then (Res W+ M Pr)z(P) =
c|PI"Y{W([Pr z]|y)}(P/|P|), where W = W(1) € L(L?*(v)) is the Mellin symbol of W+
at the point 1 (cf. Theorem 2.1 in [10]). Since |P|™! is a bounded function on T and the
operator z — ([Prz])|y is in L(L*(T"), L%(v)), the operator Res W+ M Pr is bounded.
Thus A” is bounded, too.

d) Let us consider the assumption ii). Thus we have to prove that ||(1 — x%)[A’ —
PoAllimp.| < €. We write (1 — x°)[A' — PoA]limp. = 2(Te; + Tey), where Te; :=
(1 = x)(P1)Ws — PaWsllimp, and Tes := (1 — x*)[1 — Po 1)lWst|imp,. Let x := x(n),
X := x(n), and x* stand for the characteristic function of the sets Upgr{®pqr(s,t): 0 <
5 < 1,7-g <t < Tapa}, Upgr{®pqr(s,t) : 0 < s <1, Tan)—d < t < Trnn)4d41), and
Upgr{®pror(s,t): 0 <s<1,1/2 <t <2}, respectively. Then we observe that (1 — P,1)
is a bounded function and that x(1 — P,1) = (1 — P,1) over S’. Hence, for ||Tes|| < €/4,
it is enough to show that (1 — x°)xWs has a small norm. By homogeneity arguments, we
get 101 — X sl = (1 = x)Wsl and (1 — x)5Ws| = I%(L — X)W The last
norm, however, tends to zero as n — oo since (1 — x°)x*Ws is compact and the operator
of multiplication by ¥ := %(n) tends strongly to zero.

Let again W™ denote the integral operator over S with the kernel function |k(P, Q)l which
is the absolute value of the kernel of Ws. For Te;, we conclude

(P 1)Ws — PaWs]Pof(P) = ) [Ws(Paf)(P) — Ws(Paf)(P)p(P),

eJ
Ws(Pof)(P) - WS(P FIE) s

(1 = x*)[(Pa 1)Ws — P, Ws|Paf|

o WEBAP) - WS PR s~
supp p.Nsupp(1—x¥)£0 ‘
Pesuppp.
e [P RE)
e et ) S LX) s
supp p.Nsupp(1—x7)#0
Pesupp o,

Hence, we are left with the estimation of the supremum. We conclude
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Ws(Puf)(P) = Ws(Paf)P) = [ [K(P,Q) ~ k(P )| Paf(Q)daS,

k(Pr Q) . k(PH Q)
k(P Q)

(Ws(Paf)(P) = Ws(Paf)(P)| < sup

[ IE(P, @)/ IP.£(Q)ldaS,

Ws(Paf)(P) — Ws(Pof)(P.)
WH(|P.f[)(P)

sup
T
supp . Nsupp(l—x°)#0

< p [ HELHED)

Pesupp .

where the last sup is taken over any @, P, P, such that « € J, suppp, Nsupp (1 —x?%) # 0,
P € suppy, and @ is not on the same face of S as P,. Now the estimate ||Te1]| < €/4
follows from the fact (cf. proof of Lemma 2.2 ii) in [24]) that the supremum tends to zero
if n — oo.

e) Let us consider the assumption iii). By x% we denote the characteristic function of
the set of points P € S such that the distance of P to a given edge e of S is less than
|P|6. Furthermore, let X, stand for the linear span of all ¢,, ¢« € J such that x{(P,) =1
but P, does not belong to the edge e. Following the proof of Lemma 2.2 iii) in [24],
we only have to show || P.xSW!|x,|| < 1/2. However, P.x!W!|x, = P.x’Wslx,, and it
remains to prove || Pax5Ws|x,|| < 1/2. The last estimate follows analogously to the proof
of the boundedness in part b) if one takes into account that the norm of the operator
Res Ws M, Pr € L(L*(T")) restricted to a sufficiently small neighbourhood of a corner
point is less than 1/2 (cf. part c) and step 2 of the proof to Theorem 2.1 in [10]). O

4 The stability at the edge

In the last section we have considered the corner point (0,0,0), the tangent cone [0, 00)?
~ of the cube [0,1]% at (0,0,0) and the corresponding double layer operator over the cone.
For this operator, we have shown that the corresponding collocation is stable. The latter
collocation operator is a local representative at (0,0,0) for the collocation operator of
the method over the cube introduced in Section 2. Similarly, we have to analyse the
stability of local representatives at all the other boundary points of the cube. However,
if we consider a point in the interior of a face, then the tangent cone is a plane, the
double layer operator is the identity and the stability of the collocation method is trivial.
Thus it remains to check the case of an edge point. We start with the definition of the
corresponding collocation method.

Let us set Q := R x [0,00)?, § := 8%, and choose P := (0,0,0). We set @ :=(1/2,0,0)
and choose R :=(0,1/2,0) or R:=(0,0,1/2). Then

Ppor : Hpl — Hplpgr, Hpl:={(s,t) e R*:0<s< o0, t€R}

12



Hplpgr = {P+sPR+tPQ, 0<s< o, t € R},
@pQR(S,t) = P—i—sP_R—}—tP_Q.

Retaining the definition of 75, s;, ¢}, and %; of Section 2 and setting

L o o
t;:::k/n,keZ,s?::{s’ ismin) s, {% if j <mln)—d—1

T; else » T p; else ’

we introduce the collocation points Ppgrjk 1= @pQR(s?,tk) forj=0,...and k€ Z . The
spline functions are given by

opqrik(®ror(s,t)) = @i (s)pi(t) 7 =0,..., ke,

where ¢} is defined for the partition {tx} like ¢; for {r;}. Analogously to Section 2,
we define the corresponding set Z, the spline functions ¢,, and the points P,. Hence, if
A = I + 2W5s is the double layer operator defined by (1.1) over the boundary S of the
wedge, then the collocation method is defined by (2.1), where @, := ¥ ,c7 {,¢0.. Again we
set a., := (Ag,)(P,), denote the matrix (ax,)s.ez by An and consider this matrix as an
operator in the space of vectors {{,},cr endowed with the norm

{63 =112 &l zas)-

€T

Theorem 4.1 The method (2.1) applied to the double layer operator over the boundary
of R x [0,00)? is stable.

The proof is given in [22].

5 The localization principle

Let us consider the collocation and the notation of Section 2. From the stability of the
local representatives in Sections 3-4 we conclude

Theorem 5.1 The method (2.1) applied to the double layer operator over the boundary
of the cube [0,1]® is stable. Moreover, the method (2.1) remains stable if we replace the
entries a., by their discretizations a,. In other words, the discretized collocation is stable,
too.
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PROOF. a) We start with proving that the discretized collocation operator Al, = (@, )« ez
is a small perturbations of the collocation operator A, = (ax,)x.cz. If this is done, then
in the following part of the proof we only have to deal with the stability for the collocation
without discretization step. Thus let us estimate the error of the quadrature (2.6) applied
to the integral in (2.3). Setting Set := {®por(s,t): s; < 5 < 541, Uk < ¢ < Ut} and
denoting the quadrature knots and weights of (2.6) over Set by Q; and 6;, respectively,
we arrive at

(5.1) [, B(Pey Pou(P)dpS — 3 b(Pey Qu)ep(Q0): =

o [B(Pes P) = B(Po, P)pu P)dpS = ) [k(Pe, Q) = k(Pe, P)] (@16,

where P’ is a fixed point of Set. Note that we have used that our quadrature is exact for
the polynomial ¢, over Set. The first term in (5.1) can be estimated by

[, JE(Pus P) = B(Px, P (P)dpS| <

[ |K(Pe, P)|g.(P)ldS sup
Set P

€Set

k(P,, P') — k(P,, P)
)

For the second term, we conclude
k(P.,Q:) — k(Ps, P")
- k(PP

IZ((%’,Z)) LetVC(PmP)H%(P)\dpS.

| D_[R(Px, Q) — B(Px, P (Q:)6:] < sup clk(Px, P')||Set,

Py 2

(k(Pe, P)[|Set] < ¢ sup

PeSet

Repeating the estimations of Section 2 in [24], we get

k(Py, P) — k(Ps, P")
k(Px, P)

[P’ — P|
_CiPK_Ply

where the last ratio is small by the special choice of the partition in Section 2.2. Namely,
the introduction of the additional points tx £ s;, 7 = 0,...,m(n) in the definition of the
points ug, k =0,...,m(n, k) guarantees that the diameter of Set is small in comparison
to the distance | P, — P|. From these and analogous arguments we derive

(5.2 BPo P)=k(PuP)| . [KPLP)|
. . S ) T s =Y
b k(Py, P') = pedr | B(Pe, P)
k(Ps, P') — k(P,, P) «
53 ) = CE,
(5:3) Se T k(PP
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for arbitrary € > 0 if only n is sufficiently large. Consequently,

5:4) | [ HPu PY(PdnS — TP QI @06 < ce [ [E(Pur Pl lpu(P)ideS,
and |a., — af | is less than ceb,, with

b, o= 2 /S |k(Pe, P)| |o.(P)|dpS.

Note that b, is the entry of a collocation matrix corresponding to the integral operator
with the kernel |k(@, P)|. Hence, if this collocation operator is bounded, then the dis-
cretized collocation is a small perturbation of the collocation without discretization. The
boundedness of the latter collocation operator follows analogously to the boundedness of
the original collocation operator defined for A and using the ansatz functions |¢p,| instead
of p,.

b) For any point U of S, we denote the tangent cone by Sy and consider the corresponding
collocation for the double layer equation over Sy. We denote the collocation points by
PY, 1 € IY, the functions of the interpolation basis by V. More exactly, if U = (0,0, 0),
then we consider the method introduced in Section 3. If U is another corner, then Sy can
be identified with the boundary of [0,00)® (There is a translation and a rotation which
maps Sy onto the boundary of [0,00)%. ). Taking into account this identification, the
method of Section 2 is the corresponding collocation over Sy. For U in the interior of a
face of S, we take any set of points and any interpolation basis over the plane Sy that
coincides in a neighbourhood of U with {P,} C S and the spline basis {p,} C L*(5),
respectively. Using these splines as ansatz functions and these points as collocation knots
we get the corresponding method over Sy. Finally let us consider an edge point U. We
suppose that U = ®pgr(0,tr), that ®por(0,tk,) is the collocation point on the edge
nearest to U, and let @g,Q,R, stand for the corresponding mapping onto the boundary of
R x [0,00)? introduced in the last section. Then we can map Sy onto the boundary of
R x [0,00)% with the help of a translation, a rotation and a dilation in such a way that
®por(s,t+tey) = @g,Q,R,(s(t + try )/ tky, 1), 0 < s < 1. Identifying Sy and the boundary
of R X [0, 00)? with respect to this mapping, we can consider the method of Section 4 to
be the corresponding collocation method over Sy.

In any case, let Ay, stand for the matrix of the collocation method over Sy, Pyn for the
interpolation operator Py, f := ¥,e7v f(PY)e! and xu,, for the operator Punx|impy, if
xv is a function over Sy. Analogously we define P, and x, over S. Moreover, we denote
the orthogonal projection onto the spaces 1m Py, C L*(Sy) and im P, C L*(S) by Qua
and @, respectively. Now our theorem follows from the proof of Lemma 3.2 in [24] and
the well-known Gohberg-Krupnik localization principle ([12]). We only have to verify the
following assumptions.

i) The operator 4,Q, tends strongly to A.
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i) I U € S and xy is a smooth function over Sy with finite hml’c at oo, then there is
a compact operator Ty € L£(L*(S)) such that

[AU,m XU,n] = AU,nXU,n - XU,nAU,n = QU,nTUIim Pyyp + 0(1) (77' - OO)

iii) If x is a smooth function over S, then there is a compact operator T € L(L?(Sy))
such that

{Aan] = QnTiimP71 + 0(1) (n — OO)

iv) For any V € S and any € > 0, there is a neighbourhood Ny € SN Sy of V such
that

(5.5) [XnAnXn — XnAvaXnll < €
if x is a smooth function with |x| <1 and support in Ny.

v) For any V € 5, the method with the approximate operator Ay, € L(im Py,,) is
stable.

¢) Assumption v) follows from the last two sections. So let us start with proving iv). If
V is a vertex, then we choose Ny C Ug r{®vor(s,t) : 0 < s <1, 0 <t <1/2} and
the norm in (5.5) is even zero. For a point V in the interior of a face, we choose Ny on
this face. Since the tangent cone Sy at V is a plane and Wg, = 0, we get Ay, = Id
and (5.5) holds again with € = 0. Thus we may suppose that V is an edge point, and
without loss of generality, we assume V = (1/2,0,0). For this special situation, we
get (cf. part b)) V = ®pgg,(0,1) = ®pgr,(0,1) with P = (0,0,0), @ = (1,0,0), Ry =
(1/2,1/2,0), R, =(1/2,0,1/2) and V = ®}415,(0,0) = &V :g,(0,0) with Q' = (1.5,0,0).
Let Ppgr,jr and @pgr,jk be defined as in Section 2 and denote the corresponding points
and functions introduced in Section 4 by Pygipx and @V gip i, respectively. Defining
®: Hplygr, U Hplygir, — Trpgr, U TTpqr, by

8 (87 g, (5,1) = Bror(s,¢(t), ®(BVqr,(5,t)) = Brar(s, (1)),

[ a=1/m)mTt aft<0
wlt) = {2~[(1—1/n)”]t ift>0 "

we arrive at @(PVQ,RH,C) PPQRlJ(m(n)+k) We identify @VQ,RJk with @pgRj(m(n)+k), and
the term anann in (5.5) is to be understood via this identification. Thus we have to
estimate a,nv v —Qy,,, Where aVV v = (I+2W5v)<pL (P%), ax, := Ap,(Ps), and the indices

¥,V €I¥, k€T are connected by (VQ'R3'K') € kY, (PQRyj'(K + m(n))) € &
and (VQ’lek) €V, (PQR1j(k 4+ m(n))) € .. Moreover, since we consider the points
and functions from a small neighbourhood of V, we assume 0 < j,;' < ém(n) and
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|k'— k| < §m(n) for a small number § > 0. For simplicity, let us also suppose 0 < 7, 0 < j’
and k' > k. Now we observe that the matrices (a’y ,v)ev v and (ax,)s, are Toeplitz
matrices (cf. (3.4) and Section 4.2 of [22]). Hence, without loss of generality, we may
suppose k' = 0 and get P%, = P,. Furthermore, we conclude '

Ge, = 2 / K(Pe, P)pu(P)dpS =2 [ K(P., ®(P))p. 0 B(P)Ja(P)ds5,
(5.6) ey —a¥v,v = 2 / [k(Pe, ®(P))Js(P) — k(P., P)lp, 0 ®(P)dpS +

2 [ K(PYv, P)lip. 0 B(P) — ol(P)ldsS.
Taking into account that the derivative of ® at V' is the identity, we obtain |Js(P)—1| <€

and |®(P) — P| < €|]P — V| for é small enough. From this it is not hard to conclude (cf.
Section 2 of [24]) that

sup
Pesupp ‘PLVV

k(P., ®(P)) — k(P., P)’ <
k(Py, P) -

for any prescribed € > 0 and § sufficiently small. On the other hand, it is also not hard
to derive

¢, 0 3(P) — o¥ (P)
®. 0 @(P)

V(P
(PJ,V( ) <e sup

sup scC
@, 0 @(P) ’ PEsuppcp:’V

\ 4
PEsuppchV

for sufficiently small §. Hence, both terms on the right-hand side of (5.6) are less than
ce[|k(PY, P)||¢% (P)|dpS, ie., by ce times the entry of a bounded collocation matrix
(for the boundedness cf. the arguments in Section 4 of [22] ). Thus Ay, is a small
perturbation of A, in the neighbourhood of V, and iv) follows.

d) Let us show i). We first prove that the approximate operators A, := P,Alinp, are
uniformly bounded with respect to n. Note that the restriction of Ws acting between
S; € S and S; € S is a compact and smoothing operator if the distance between S;
and S, is positive. Thus it is enough to show that, for any V' € S, there is a small
neighbourhood Ny of V such that A, restricted to Ny is bounded. This, however, follows
from the boundedness of the local representatives and the assertion iv) which was just
proved. Knowing the uniform boundedness of A,, it remains to show A,Q.f — Af for
any f from a dense subset of L?(S). Hence, we may suppose that f is smooth and vanishes
in a neighbourhood Ny of the edges. Again, Wy restricted to S\ Ny is smoothing, and
ApnQnf — Af follows easily.

e) Let us prove iii). We obtain

(57) [A‘n) Xﬂ] - PnAPnXIimPn - PnXPnAlimPﬁ
- QnTlimPn + {Pn - Qn}TlimPn + PnA{Pn - I}X'imPn)
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where T' := [A, x] = Ax —xA is bounded from L%(S) to C(S) and compact as an operator
acting in L?(S). (Note that the kernel I(P, Q) of Ax — xA is bounded by c§|P — Q|2
where § denotes the distance from P to the plane Pl containing the face F' of S such
that @ € F. Hence, [p |I(P,Q)[dgS is less than ¢ 6 [p [P — Q|™* < ¢6? [y, 773dr < c.)
Consequently, ||[{Pn — @u}T|imp.|| — 0. Namely, for a given € > 0, let x; denote the
characteristic function of a small neighbourhood of the set of all edge points such that
Jsx1 < e. Then we arrive at

“{Pﬂ- - QH}TPnf“%? / IXl{Pn - Qn}TPnf|2 + / I[l - Xl}{Pn - Qn}TPnfiz

<
< €l{Pn = Qu}TPafl}e + 1 = x1il{ P — @u}TPaf|%:
< cellPaflife + I — xal{Pn — Qu}T Pufll2s,

where the second term on the right-hand side is bounded by L = x1{Pn — @u}T|imp.||?

X||Pnfl|22. However, ||[L—x1]{Pn— @n}T|imp.|| tends to zero since [1 —x1]T" is a compact
and smoothing operator.

On the other hand, P,A{P,—I}x|imp, = 2P Ws{Pn—1I}xX|imp, and [{Pn—I}xP.f(P)| <
£|P,f(P)|. Hence, -

| PWs{Pa = IyxPufll < Z|IPXW|P £1])

where P+f = Y.ez f(P)]p.]. Since || |P+f[ | < ¢||P.f]| and the collocation operator
PIW*|,np+ is bounded (repeat the arguments of part d)), the third term on the right-
hand side of (5.7) tends to zero, too. Thus (5.7) implies iii).

f) Using the arguments of the proof of Lemma 3.2 ii) in [24], assertion ii) will follow
analogously to part e). O ,

6 The asymptotic convergence rate

Theorem 6.1 Suppose that the right-hand side y of the boundary integral equation Az =
y 15 continuous on S and a C*- function up to the boundary on each face of S. Let z,
denote the solution of the discretized collocation, i.e., , satisfies the modified equation

(2.1), where the entry a,, is replaced by a;,, defined in (2.6). Then there is a constant
independent of n such that

|z — @nl|z2(s) < c ma,x{n""/zy/log n,n'(2d+2)}.

Especially, if the parameter v in the definition of the gmd is greater than 4d + 4, then we
get the estimate ||© — zn||L2(s) < cn —(2d+2)
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Note that the number of collocation points, i.e., the number of equations in (2.1) is of order
n? log? n. The computation of the stiffness matrlx requires no more than O(n* log* n)
operations. Consequently, if we imply our discretized collocation (2.1) together with the

Gaussian algorithm, we need to perform O(n® log® n) operations. In order to prove the

estimate of Theorem 6.1, let us start with some lemmata.

Lemma 6.1 For the exact solution ¢ = A™'y and the triangular coordinate transforma-
tion ®por of Section 2, we get

(6.1) sup |s'0%(z 0 ®pgr)(s,t)| < ¢
(s,t)eSq
(6.2) sup  |t'0H(z 0 @pgr)(s,t)| < ¢ 1=0,...,2d +2.

(s,t)€Sg,t<1

PRrOOF. It is enough to prove the assertion of the lemma for the case of the tangent cone
S = Sp of a corner point P (Note that the restriction of W acting between subsets of S
with positive distance is a smoothing operator. Moreover, if we consider the neighbour-
hood of an edge point, then the following arguments can also be applied if the Mellin
transform is replaced by the Fourier transform.). First we suppose that y satisfies the
estimates of z in (6.1) and (6.2) and we shall prove that Wy satisfies them , too. Let us
consider the polar coordinates ¢t = r cos ¢ and ts = r sin ¢ over ®pgr(Sq) C S. Then we
get 8; = (1/ cos @) O, and 8, = 7 sin ¢ cos ¢ J, + cos® ¢ 9, and it remains to prove that
the derivative (r 8, )*(sin ¢ 8,)'Wsy is bounded for k+! < 2d+2. Let R’ denote the centre
of the face of S which intersects the face containing R in the edge PQ. For simplicity, we
assume that y vanishes outside of ®por/(Sq) and that V := ®pgr(s,t), t = rcos p <
1, ts =rsin ¢, U := ®pgri(s',t'), t' = p cos p < 1, t's’ = p sin ¢, and y(p,¥) := y(U).
We arrive at

1 o (/2 r sin o y(p,¥)
Way(V) = o TPdp
s 4 ‘/0 ‘/ \/(r cos ¢ — p cos )2 + (p sin P)? 4 (r sin p)?

_ /2 r/p sin ¢ y(p, %) éﬁdw
4x / / \/(T/p —2(r/p)[cos ¢ cos ] P

Since the kernel takes the form of a Mellin convolution with respect to r and the differential
operator r8, commutes with the Mellin convolution (cf. the proof of Theorem 3.1 in [10]),
we conclude

w/2 T/p sin cp(pap)ky(/’;¢) dp
(rd; > Wsy(V) = S
! - am / / V(r/p)* +1=2(r/p)lcos ¢ cos Y] *
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‘and we are left with proving the boundedness of (sin ¢ 8,)'Wsy. However, if we denote
the kernel of the integral operator by k, then it is not hard to show |(sin ¢ 8, )'k| < c|k].
Thus the boundedness of the integral operator W+ € L(C(S)) with the kernel function
|k| implies that (sin ¢ 8, )Wy is bounded.

Now consider z = A™'y. We get A™! = (I + 2Ws)™' = I — 2WsA™! and, using the fact
that (r 0,) commutes with Ws and A~?, we conclude

(r8.)%(sin ¢ 8, )z = (r 6,)F(sin @ 8,)'y — 2(sin @ 8,) WsA™(r 8,)Fy
Obviously, the first term on the right-hand side is bounded. Moreover, A~}(r 8, )y is

bounded and, again, [(sm ©8,)'k| < c|k|implies that the second term on the right- hand
side of the last equation is bounded. Thus the proof is finished. O

Lemma 6.2 For any z satisfying (6.1) and (6.2), there holds

”:E _ Pn:EHLz(S) S cn—m.in{u/2,2d+2}.

PRroOF. Let x stand for the characteristic function of the union over PQR of all sets
{®por(s,t): 0<5<45,0<t<20r0<5<1,0<minft,2—t] <t4}.

Then we get ||z — Prz||po(s) < ¢ and

Ix(I = Pa)zllzasy < lIxllze(s)lle — Pazllie(s)
(6.3) < CTS/Z < en”v2,

The remaining term [|(1—x)(I — P.)x|| 12(s) can be estimated by ¢ ||(1—x)({ — Pn)zl| £ (s)-
Thus we only have to estimate |(I — P,)z(V)| for V = ®pgr(s,t) with s; < s < 5544,
tr <t <tpyy and 1 <7, d < k. For simplicity, suppose even d + 1 < 7 and 41 < 1. We
obtain

j+d  k4d

(I-P)e(V) = zo®pgr(s,t)— 3. Y. o ®poa(sy,tr)i(s)e™ (®pror(ss,t))

. j'=j—d k'=k—d
= Tey+ Tey,

jt+d
Te; = zo®pgr(s,t)— Y. z0Bpgr(sj,t)i(s),
j'=j—d
J+d k+d iy
Tey, := Z ¢jr(3) {m o} ‘I’pQR(sj/,t) - Z T o @pQR(Sjl,tk:)(p ’J(@pQR(sjr, t)) .
i=j—d k'=k—d
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From the definition of %, we conclude

Terl < c(sjrn =)™ sup  [87%%(z 0 Bpor(s, )|

95-dSISTjtdtt

) e 2d4-2
< ¢ (SJH SJ) sup |s*2027 (2 0 Bpgr(s,t))| < cn~ (34D,
85 0<s<1

On the other hand, let us set

k+d )
P’I"O(f) = Z f(@pQR(Sjl,tkr))gDZ’J(@pQR(SJ‘/,t))

k'=k—d

and let T'ay(f) stand for the real part of the sum of the first 2d + 1 terms of the Taylor
series expansion of f at the point ®pgr(s,/,tk). Then Pro is a bounded projection into
the space of the real parts of polynomials, and we obtain

|f = Pro(f)l = |f = Tay(f) + Prolf — Tay(f)]] ‘
<ellf = Tay(f)llz= < et — )07 || peo.

Using this, we arrive at

|Tes] < c(thyr — tk)2d+2 sup sup |@fd+2(:v o ®por(sj,t))|
i'=j—d,..,j+d tr,<t<tpiays

i —t 2d+2
< o (BRTEYT qup 20450502 0 0 Bpga(s, )] < en ()
23 0<t<1

and the proof is finished. O

ProoF oF THEOREM 6.1. During this proof retain the notation of x from the proof of
Lemma 6.2 and let A, € L{vmP,) stand for the discretized collocation operator, i.e., for
the approximation of P, Alimp,, where the entries a,, of the matrix corresponding to the
basis {¢,} are replaced by a;,, which is defined in (2.6). Then, taking into account the
stability, we obtain

T—2, = z— P,oz+ A {A P,z — Anz,}
Iz — znllzz < ||z — Paz||zz + c¢||AnPnz — PaAz||2
< Tei+c{Tey+ Tes+ Tey+ Tes}
Te; := ||z — Pua||2, Tes:= ]]AnP,,Xq:Hsz Tes := || PaAxz|| L2,
Tes := |(AnPn— PaAP)(1 = X)z| 2, Tes := || PaA(I — Pa)(1 — x)z| 2.
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Here T'e; is bounded as in Lemma 6.2. The boundedness of A, implies Te; < c||Poxz| 12
which can be estimated analogously to (6.3). Furthermore, the term T'es can be estimated
by ¢||PoA(I — Pn)(1 — x)z||z, and we conclude Tes < c||(I — P,)(1 — x)z||z=, where
the last norm was estimated in the proof of Lemma 6.2. For T'e; and (PQRjk) € « with
k < m(n), we obtain

Tes < > lloxllzal(Axz)(Po)?

k€T

14+ 2W*x(P)}? if P. € suppx
< e Xl =it - ) fole { Gn 2N
kel K

Since Wt x(P,) is the solid angle under which suppx is seen from P, i.e., the angle under
which a strip of width < 7y is seen from a distance > 7,7;, we get WFx(P.) < c71/(775).
Consequently,

2
T, — Tk T4 — T4 T
Te: < ¢ > loxllZz +¢ > L Ak 2 —I1L
k€T, P € suppx xeZ Tk Tj Tj
vn[log n) 1 .
< en e Y ==(1—1/n)Prleeni(1 — 1 p)Tvrieents
jk=0 T

< cllog n]n7".

Instead of T'ey we shall estimate ||(AnPrn — PoAP,)(1 — x)%||ze . In other words, we only
have to estimate |(AnP, — PoAP,)(1 — x)z(P,)|. Setting Setpgrjr := {®ror(s,t) : 5; <
s < 811, uk <t < ugyr} and denoting the quadrature knots and weights of (2.6) over
Setpgrjr by @; and 0;, respectively, we arrive at

Err = | /5 k(Pe, V)Paz(V)dy S — 3 k(Pe, Qi) Pas(Q:)6:]
etpQRjik 1

< tSetPQRm{ sup |9k Py, V)PV )| (s541 — 3374

€SetpgRrjk

+  sup lafd“[k(PmV)in(V)]l(ukH—uk)2d+2}

VESethRjk

Without loss of generality, let us assume that V := <I>pQR(s t), t=rcosp < 1, ts =
7 sin @, P := ®pgir(s',t"), t' = p cos 1, t's’ = psin 1p. For the kernel k of Ws, it is
not hard to derive (cf. the proof of Lemma 6.1 ) that |8:k| < cs’llkl and |0k| < ct7Uk|.
Moreover, from Lemma 6.1 we infer that |8! P,z| < ¢|8'z| < ¢s7!and |0, Poz| < c[@lm| <
ct7l If S etpoRrjk is of positive distance to the set of edge points, then we choose a point
P’ € Setpgrjr and obtain
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2d+-2

+

Uk+1 — Uk
Uk

Si+1 T S5

Err < c|Setpgrjk| |k( P, P {

2d+2}

S5
_<__ C lSethRjkl !k(PE, P,)I n—(2d+2).

Using (5.2) and summing up over all Setpgr;x with positive distance to the edges leads

to

|(AnPr — PRAP,)(1 = x)a(Py)|

VAN

Z Err S cn—(2d+2) Z lSEtPQRjkl !k‘(P,c,PI)I
< cn_(2d+2) /;‘k(Pn;)l < Cn_(2>d+2).
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