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Abstract

We study perturbations of a stochastic program with a probabilistic constraint

and r-concave original probability distribution. First we improve our earlier

results substantially and provide conditions implying Hölder continuity prop-

erties of the solution sets w.r.t. the Kolmogorov distance of probability dis-

tributions. Secondly, we derive an upper Lipschitz continuity property for

solution sets under more restrictive conditions on the original program and

on the perturbed probability measures. The latter analysis applies to linear-

quadratic models and is based on work by Bonnans and Shapiro. The stability

results are illustrated by numerical tests showing the di�erent asymptotic be-

haviour of parametric and nonparametric estimates in a program with a normal

probabilistic constraint.

1 Introduction

We consider the following optimization problem with chance constraints:

(P ) minfg(x) j x 2 X; P(� � h(x)) � pg:

Here, � is an s-dimensional random vector de�ned on a probability space (
;A;P),
g : Rm ! R is an objective, X � R

m is some abstract constraint set, h : Rm ! R
s

de�nes a system of inequalities and p 2 (0; 1) is some probability level. The meaning

of the probabilistic constraint above is that the system of inequalities � � h(x) has
to be satis�ed with probability p at least. The most prominent representative of (P )
is given by linear constraints, i.e. h(x) = Ax for some matrix A. By � := P Æ ��1 2
P(Rs) (the space of Borel probability measures on R

s) we denote the probability

distribution of �. Throughout the paper we shall make the following basic convexity

assumptions:

g is convex, X is closed and convex, h has concave components and

the probability measure � is r-concave for some r < 0.
(BCA)

The latter property means that �r is a convex set function, i.e.,

�r(�A+ (1� �)B) � ��r(A) + (1� �)�r(B)

holds true for all � 2 [0; 1] and for all Borel measurable and convex A;B � R
s

such that �A + (1 � �)B is Borel measurable too. Note that many prominent
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multivariate distributions (e.g. normal, Pareto, Dirichlet or uniform distribution on

convex, compact sets) share the property of being r-concave for some r < 0 (see

[12]).

Introducing the distribution function of the probability measure � as F�(y) = �(z 2
R
s jz � y), the problem (P ) can be equivalently rewritten as

(P ) minfg(x) j x 2 X; F�(h(x)) � pg:
Usually, only partial information about � is available, and (P ) is solved on the

basis of some estimation � 2 P(Rs) of �. Typically, � is chosen as a parametric or

nonparametric estimator of �. Hence, rather than the original program (P ), some

substitute

(P�) minfg(x) j x 2 X; F�(h(x)) � pg
is solved. Although, at least in principle, arbitrarily good approximations � of �

can be obtained, it is by no means obvious that the solutions of (P�) will well

approximate those of (P = P�) as � tends to �. Consider, for instance, the following

Example 1.1 Let m = 2, s = 2 and

minfx2 � x1jx1 + x2 � 3=2; P(�1 � x1; �2 � x2) � 1=4g;
where � = (�1; �2) is assumed to be uniformly distributed over the triangle

convf(1; 0); 0; 1); (1; 1)g:
Clearly, our basic convexity assumptions (BCA) is satis�ed. The (unique) solution

of this problem is (1; 1=2). On the other hand, it is easy to construct approximating

sequences �n of � = P Æ ��1 such that the substituted problems (P�) have no solution

for all n or a constant solution (3=4; 3=4) which certainly does not converge to the

solution of the original problem.

Although the original data are supposed to be convex, we do not make any as-

sumptions on the data of the perturbed problems (P�). This allows to admit the

important class of empirical approximations which lack any convexity or smooth-

ness properties. Since, in general, the solutions of (P�) are not unique under the

assumptions (BCA), we have to deal with solution sets. The dependence of solu-

tions and optimal values on the parameter � is described by the set-valued mapping

	 : P(Rs)� R
m and the extended-valued function ' : P(Rs)! �R via

	(�) = argminfg(x) j x 2 X; F�(h(x)) � pg
'(�) = inffg(x) j x 2 X; F�(h(x)) � pg.

We are interested in conditions formulated for the data of the original problem (P )
such that 	 and ' behave stable locally around the �xed measure �. In order to mea-

sure distances among parameters and among solutions, we rely on the Kolmogorov

metric between probability measures

dK(�1; �2) = sup
z2Rs

jF�1(z)� F�2(z)j (�1; �2 2 P(Rs)):
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and on the Hausdor� distance between closed subsets of Rm

dH(A;B) = max

�
sup
a2A

d(a; B); sup
b2B

d(b; A)

�
(A;B � R

m):

Qualitative stability results in the sense of dH(	(�);	(�))! 0 as dK(�; �)! 0 have
been obtained in [5] based on earlier works like [14] and [6]. These results guarantee

that, under the imposed conditions (see Theorem 2.1 below), cluster points of ap-

proximating solutions will be solutions of the original problem and that any solution

of the original problem is the limit of a sequence of approximating solutions. For

further work in this direction we refer to [4, 9, 11, 15, 16].

Beyond qualitative stability it is of much interest to know how fast solutions or

optimal values of approximating problems converge to original solutions, which is

a question of quantitative stability. Recall that 	 is Hausdor�-Hölder continuous

with rate � > 0 at �, if there are L; Æ > 0 such that

dH(	(�);	(�)) � L [dK(�; �)]
� 8� 2 P(Rs); dK(�; �) < Æ: (1)

There exists an immediate link between Hausdor�-Hölder continuity with rate � of

of the solution set mapping and exponential bounds for empirical solution estimates:

Consider independent s-dimensional random vectors �1; : : : ; �N on (
;A;P) having
common distribution �. Then, �N(!) := N�1

P
N

i=1 Æ�i(!) (with Æz denoting the

Dirac measure placing mass one at z 2 R
s) is an empirical measure approximating

� as N ! 1. The deviation between the original solution set and its empirical

approximation can be estimated as follows (see Proposition 6 in [6]):

9C > 0 8N 2 N 8" > 0

P (dH(	(�);	(�N)) � ") � C [N � �("; Æ; �; L)]s�0:5 exp(�2N � �("; Æ; �; L)); (2)
where �("; Æ; �; L) =

�
minfÆ; ("=L)1=�g�2 and Æ; L; � refer to (1).

Conditions for Hausdor�-Hölder continuity of 	 at rate � = 1=2 were obtained in

[6] for the special case of linear chance constraints with convex-quadratic objective

and in [7] for the more general setting of the above data assumptions (BCA). The

�rst part of this paper is devoted to a substantial improvement of the previous

results in two directions: �rstly, the mentioned results relate to so-called localized

solution sets rather than to the solution sets themselves. This technical restriction

seemed to be a necessary consequence of considering non-convex perturbations of

the original convex measure. It tuns out, however, that one can exploit additional

arguments provided in [5] in order to get rid of localizations. Of course, statements

on stability of solution sets themselves as in (1) are easier to interpret than their

localized counterparts. Secondly, all previous results on quantitative stability of 	
essentially relied on the condition

	(�) \ argminfg(x) j x 2 Xg = ;; (3)

which means that no solution of (P ) is a solution of the relaxed problem with the

chance constraint removed and vice versa. In this paper we shall obtain the same

results without requiring such kind of strict complementarity condition.
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Specializing our setting to linear chance constraints, the best (largest) rate we can

obtain is � = 1=2 provided that the random variable has at least dimension s = 2.
Of course, the exponential bound in (2) improves with increasing �. Thus, it is

of much interest to �nd conditions ensuring even Hausdor�-Lipschitz continuity of

	 (� = 1). It is interesting to note that a Lipschitz rate results for linear chance

constraints with 1�dimensional random variable � (but with arbitrary dimension of

the decision variable x). Yet, this observation seems to be too restrictive for practical

relevance. The second part of the paper investigates more reasonable settings and

conditions for Lipschitz rates. Two basic additional requirements turn out to be

crucial then: �rstly the approximating measures � can no longer be arbitrary but

have to be restricted to class C1 in a sense to be precised. Secondly, the strict

complementarity condition (3) which was dispensable for the Hölder rate � = 1=2,
has to be incorporated into the set of conditions now.

2 Hölder Stability

The main result of this section is stated with the technical details of proof left to

the appendix. We start by recalling two results which are needed for the proof of

our main theorem.

Theorem 2.1 (see [5], Th. 1) In addition to the basic convexity assumptions

(BCA), let the following conditions be satis�ed at the �xed probability measure

� 2 P(Rs):

1. 	(�) is nonempty and bounded.

2. There exists some x̂ 2 X such that F�(h(x̂)) > p.

Then, 	 : P(Rs) � R
m is upper semicontinuous in the sense of Berge at �, and

there exist constants L; Æ > 0, such that

	(�) 6= ; and j'(�)� '(�)j � LdK(�; �) for all � 2 P(Rs) with dK(�; �) < Æ:

The second result provides a useful two-level decomposition of the parametric pro-

gram (P�):

Lemma 2.2 (see [5], Lemma 1) Under the assumptions of Theorem 2.1 let V be

an open ball containing 	(�). Set

YV = [h(X \ clV ) + R
s

�
] \ F�1

�
([p=2; 1])

�(y) = inffg(x) j x 2 X \ clV; h(x) � yg;
Y (�) = argminf�(y) j y 2 YV ; F�(y) � pg (� 2 P(Rs))

�(y) = argmin fg(x) j x 2 X \ clV; h(x) � yg (y 2 YV ):

Then it holds that
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1. YV is convex and compact.

2. � is convex, �nite and lower semicontinuous on YV .

3. There is some Æ > 0 such that for all � 2 P(Rs) with dK(�; �) < Æ

'(�) = inff�(y) j y 2 YV ; F�(y) � pg (4)

	(�) = �(Y (�)) (5)

4. Y : P(Rs)� R
s is upper semicontinuous at �.

Now, we are in a position to state the main result of this section. We refer to the

notation of Lemma 2.2.

Theorem 2.3 In addition to the basic convexity assumptions (BCA), let the fol-

lowing conditions be satis�ed at some �xed � 2 P(Rs):

1. 	(�) is nonempty and bounded.

2. There exists some x̂ 2 X such that F�(h(x̂)) > p.

3. F r

�
is strongly convex on some convex open neighbourhood U of Y (�), where

r < 0 is chosen from (BCA) such that � is r- concave.

4. � is Hausdor� Hölder continuous with rate ��1 on YV .

Then, 	 is Hausdor� Hölder continuous with rate (2�)�1 at �, i.e., there are L; Æ > 0
such that

dH(	(�);	(�)) � L [dK(�; �)]
1=(2�) 8� 2 P(Rs); dK(�; �) < Æ:

Proof.

Combine Lemma 5.3 with Proposition 5.2.

The �rst assumption of Theorem 2.3 is of technical nature. It can be enforced,

for instance, by compactness of X (the nonemptiness of the compact constraint set

is then a consequence of the second assumption). The second assumption can be

interpreted as a Slater condition (see proof of Lemma 5.3). In special situations, its

veri�cation is possible without explicit knowledge of the measure �. For instance, in

the situation of linear chance constraints under nonnegativity restrictions (h(x) =
Ax;X = R

m

+ ), it su�ces to know that A � 0; A 6= 0. Indeed, for v := A1 with

1 =(1; : : : ; 1), one has v � 0; v 6= 0. Consequently, lim�!1 F�(�v) = 1. Since p < 1,
there is some � > 0 such that F�(�v) > p. Hence, F�(Ax̂) > p for x̂ := �1 2 X,
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which is condition 2. in Theorem 2.3. An alternative situation occurs when X = R
m

and A has linearly independent rows.

The third assumption of Theorem 2.3 is satis�ed for r- concave measures (r < 0) for
which F r

�
is strongly convex on bounded, convex sets (because Y (�) is compact, see

Lemma 2.2). An example for such measure is the multivariate normal distribution

with independent components (see [8]). But even measures lacking this last property

may still satisfy the third assumption. For instance, the uniform distribution over

multidimensional rectangles is r- concave for any r < 0, such that F r

�
is strongly

convex on this rectangle. All one has to know then is that Y (�) is contained in the

rectangle too. Unfortunately, not all uniform distributions over polytopes share the

required strong convexity property (e.g., the uniform distribution over the triangle

convf(1; 0); (0; 1); (1; 1)g is r- concave for any r < 0 but F r

�
fails even to be strictly

convex on this triangle). If h is linear, i.e., h(x) = Ax, then the strong convexity

assumption can be simpli�ed in the sense that it is supposed to hold on some convex

open neighbourhood U of A(	(�)).

In the last assumption of Theorem 2.3, it is assumed that some Hölder continuity

of � with respect to the Hausdor� distance is known. This is the case, for instance,

for linear mappings h, polyhedral sets X and convex-quadratic functions g . Then

the Hölder rate for � equals 1 (see Th. 4.2 in [10] or Prop. 2.4 in [7]) and we have

the following Corollary to Theorem 2.3:

Corollary 2.4 In addition to the basic convexity assumptions (BCA), let g be con-

vex-quadratic, h linear and X polyhedral. Then, supposing the �rst three assumptions

of Theorem 2.3, 	 is Hausdor� Hölder continuous with rate 1=2 at �, i.e., there are

L; Æ > 0 such that

dH(	(�);	(�)) � L
p
dK(�; �) 8� 2 P(Rs); dK(�; �) < Æ:

Apart from this application to linear chance constraints de�ned by h, there is also

a chance of identifying a Hölder rate of � in the more general situation considered

here, when h has concave components (see Prop. 2.4 in [7] for more details).

The following example demonstrates that the Hölder rate obtained in Theorem 2.3

and in Corollary 2.4 is sharp.

Example 2.5 In problem (P), let m = s = 2, X = R
2 , h(x) = x, g(x) =

(x1 + x2 �
p
2)2, p = 0:5 and � = uniform distribution over the unit square [0; 1]2.

Evidently, these data satisfy all the basic assumptions formulated in the introduc-

tion (in particular, � is log-concave, hence r-concave for any r < 0). Next we

verify the assumptions of Theorem 2.3: since the distribution function of � satis-

�es F�(x) = x1x2 for all (x1; x2) 2 [0; 1]2, it follows that 	(�) = f(p1=2;
p

1=2)g
which entails 1. in Theorem 2.3. It is elementary to verify that one may assume

Y (�) � [0; 1]2 (after shrinking the open ball V � 	(�) used in Lemma 2.2). Since F�
is strongly log-concave on [0; 1]2, F r

�
is strongly convex for any r < 0, whence 3. With
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x̂ := (1; 1), one has F�(x̂) = 1 > p, which is 2. Finally, since g is convex-quadratic,

X is trivially a polyhedral set and h is linear, it follows that � is Hausdor� Lipschitz

continuous (see remarks above Corollary 2.4). This provides 4. with � = 1, and,
thus, Theorem 2.3 ensures that 	 is Hausdor� Hölder continuous with rate 1=2 at �.
This rate is sharp. Indeed, considering the perturbed measures �" 2 P(Rs) de�ned
for " > 0 as uniform distributions over the rectangles [�"; 1� "]2, a straightforward

calculation shows that

	(�") = convf(a"; b"); (b"; a")g and dK(�; �") = "(1 + "),

where a"=b" =
p

1=2�
q
"(
p
2 + "). Consequently,

dH(	(�);	(�)) =
p
2

q
"(
p
2 + ") �

p
"(1 + ") =

p
dK(�; �");

which shows that the Hölder rate 1=2 cannot be improved in this example.

Amore sophisticated counter-example (Example 2.10 in [7]) con�rms that the Hölder

rates of Theorem 2.3 and Corollary 2.4 are sharp even in case of linear objective

functions g. This observation is easily modi�ed to construct a counter-example with

strongly convex objective function (which was not the case in the example above).

On the other hand, all these examples live in R2 . The following Theorem con�rms

that the Hölder rates of Theorem 2.3 and Corollary 2.4 can be improved as long

as the random variable � is one-dimensional (the decision variable x is arbitrary).

Moreover, in this special case no strong convexity assumption is needed for the

measure � (condition 3. in Theorem 2.3):

Theorem 2.6 In addition to the basic convexity assumptions (BCA), let s = 1
and assume conditions 1.,2. and 4. of Theorem 2.3. Then, 	 is Hausdor� Hölder

continuous with rate ��1 at �. In the context of Corollary 2.4, 	 is even Hausdor�

Lipschitz continuous (rate � = 1) at �.

Proof.

Combine Lemma 5.4 with Proposition 5.2.

3 Lipschitz Stability

The Lipschitz result of Theorem 2.6 (in the context of Corollary 2.4) is based on the

one-dimensionality of the random variable which is rather restrictive in stochastic

programming. In order to derive Lipschitz stability in a multivariate setting, one

has to impose further conditions and also to restrict the class of considered measures

(for the original as well as the approximating one). The subsequent analysis relies on

general stability results obtained in [1, 2]. The following theorem gives a reduction

of those results to the setting which will be of interest here:
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Theorem 3.1 (see [2], Th. 4.8.1) Consider the parametric optimization problem

minff(x)jG(x; u) 2 Kg;

where f : Rm ! R, G : Rm � U ! R
q , U is a Banach space, K = R

q1

�
� f0gq2,

q1 + q2 = q. Denote by S(u) := argminff(x)jG(x; u) 2 Kg the parametric solution

set and �x some parameter u0 2 U . Let the following conditions hold true:

1. f and G are C1;1 functions (di�erentiable with Lipschitz continuous derivative).
2. S(u0) 6= ; and S is uniformly bounded in a neighbourhood of u0.

3. f satis�es a second order growth condition with respect to S(u0), i.e., there
exist a neighbourhood V of S(u0) and a constant c > 0 such that

f(x) � f0 + cdist2(x; S(u0)) 8x 2 V; G(x; u0) 2 K

(f0 = minff(x)jG(x; u0) 2 Kg).

4. For all x 2 S(u0) it holds that

frxGi(x; u0)gi=1;:::;q2 [ frxGj(x; u0)gj2I(x)
is a set of linear independent vectors in R

m , where

I(x) = fj 2 f1; : : : ; q1gjGj(x; u0) = 0g:

Then, S is upper Lipschitz at u0, i.e., there are constants L; Æ > 0 such that

dist(x; S(u0)) � L ku� u0k 8x 2 S(u) 8u 2 U; ku� u0k < Æ.

In order to apply Theorem 3.1 to our parametric problem (P�), we have to interpret
the parameter u as distribution functions F� where � 2 P(Rs). However, condition 1.
requires to restrict the admissible class of measures to those having C1;1 distribution
function. More precisely, we introduce the following space:

C1;1
b

(Rn) := ff 2 C1(Rn)jf is bounded and has a bounded, Lipschitzian derivativeg

With the norm

kfk1;1
b

:= max

�
sup
x2Rn

jf(x)j ; sup
x2Rn

krf(x)k ; sup
x;y2Rn;x 6=y

krf(x)�rf(y)k
kx� yk

�
;

C1;1
b

(Rn) becomes a Banach space.

In the parametric problem (P�), let us specify the general convexity assumptions

(BCA) in the following sense:
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� The objective function g is convex-quadratic, i.e., g(x) = hx;Hxi + hc; xi
for some positive semide�nite (m;m)-matrix H (H = 0 possible) and some

c 2 R
m .

� h(x) = Ax, where A is a matrix of order (s; n).

� X is a polyhedron and has an explicit description

X = fx 2 R
m j h�j; xi � aj (j = 1; : : : ; ~q1); h�i; xi = bi (i = 1; : : : ; ~q2)g.

� For some �xed probability measure � 2 P(Rs) it holds that � is r-concave for

some r < 0.

Now, we are in a position to formulate the desired stability result:

Theorem 3.2 Let the following conditions be satis�ed at � �xed in the setting above:

1. 	(�) is nonempty and bounded.

2. F r

�
is strongly convex on some convex open neighbourhood U of the compact

set A(	(�)):

3. F� 2 C1;1b
(Rs).

4. For all x 2 	(�), the following set is linearly independent, where J(x) = fj 2
f1; : : : ; ~q1gj h�j; xi = ajg:

frF�(Ax) �Ag [ f�jgj2J(x) [ f�igi=1;:::;q2:

5. 	(�) \ argminfg(x) j x 2 Xg = ;.

Then, the solution set mapping 	 is upper Lipschitz continuous at � in the accord-

ingly restricted class of probability measures, i.e., there are constants L; Æ > 0 such

that

dist(x;	(�)) � L kF� � F�k1;1b
8x 2 	(�) 8� 2 P(Rs); F� 2 C1;1b

(Rs); kF� � F�k1;1b < Æ.

Proof.

We are going to apply Theorem 3.1 with U := C1;1
b

(Rs), u0 := F�, q1 := ~q1+1, q2 :=
~q2, G1(x; u) := p�u(Ax), Gj(x; u) := h�j�1; xi (j = 2; : : : ; ~q1+1), Gi(x; u) := h�i; xi
(i = 1; : : : ; ~q2). Then, obviously, the constraint sets in Theorems 3.1 and 3.2 coincide

for all u := F� 2 C1;1b
(Rs), � 2 P(Rs):

G(x; u) 2 K () x 2 X; u(Ax) � p.

9



In particular, S(u) = 	(�). The partial derivatives of G are calculated as

rxG(x; u) =

0@ �ru(Ax)A
�T
j
(j = 1; : : : ; ~q1)

�T
i
(i = 1; : : : ; ~q2

1A ; ruG(x; u) =

�
L

0~q1+~q2

�
;

where Lu = �u(Ax). From the de�nition of C1;1
b

(Rs) one easily veri�es that G

belongs to the class C1;1, hence, assumption 1. of Theorem 3.1 is satis�ed.

Next, we show:

there is some x̂ 2 X such that F�(Ax̂) > p. (6)

To this aim, choose some x 2 	(�) according to condition 1. in our theorem. Then,

x 2 X and F�(Ax) � p. Owing to condition 4., there is a solution v of the linear

system

hr(F� Æ A)(x); vi = 1; h�j; vi = h�i; vi = 0 (j 2 J(x); i = 1; : : : ; ~q2).

Then, for " > 0 su�ciently small, x̂ := x + "v satis�es (6). Now, (6) along with

condition 1. entails upper semicontinuity of 	 at � via Theorem 2.1, whence as-

sumption 2. of Theorem 3.1. The quadratic growth of f required in assumption

3. of Theorem 3.1 was veri�ed in the context of problem (P�) in [6], (Th. 8), un-

der conditions 1.,2., 5. of our theorem together with (6). Finally, assumption 4.

of Theorem 3.1 follows immediately from condition 4. in our theorem (recall that

rxG1(x; u0) = �rF�(Ax) � A).

When comparing the last Theorem with Corollary 2.4 which imposes the same data

requirements, the stronger Lipschitz result is mainly based on two additional as-

sumptions (leaving apart the condition 4. of linear independence in Theorem 3.2

which can be understood as a modi�cation of the Slater type condition in the pre-

vious results): �rstly, condition 5. requires that the chance constraint F�(Ax) � p

a�ects the solution of the problem. If this condition is violated, no Lipschitz rate

can be expected for solutions even when all remaining assumptions of Theorem 3.2

hold true. This can be seen from a small modi�cation of Example 2.5 upon replacing

the uniform distribution there by some bivariate normal distribution with indepen-

dent components in order to meet the data requirements of Theorem 3.2. In that

example, the solution set of the �xed problem with chance constraint is the same

as the solution set of the unconstrained problem with removed chance constrained.

As a consequence, a Hölder rate of 1/2 results.

Secondly, the probabiliy measures in Theorem 3.2 are restricted to have distribution

functions in the space C1;1
b

(Rs). This applies for the �xed measure � as well as to its

perturbations � (see statement of the result in Theorem 3.2) Again, without such

restriction no Lipschitz rate could be obtained. We refer once more to Example 2.10

in [7] (which would have to be slightly modi�ed in the same sense as before). In

this example, all assumptions of Theorem 3.2 are satis�ed. However the perturbed
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measures are just Lipschitz continuous and do not belong to C1;1
b

(Rs). They are

constructed in such a way that the perturbed solution set 	(�) grows at a Hölder

rate of 1/2 away from the unperturbed solution set 	(�).

Although the result in Theorem 3.2 is stronger than that of Corollary 2.4 in that it

improves the Hölder rate towards a Lipschitz rate, it provides only an upper esti-

mate whereas the estimate of Corollary 2.4 is two-sided by relying on the Hausdor�

distance. Furthermore, even the upper estimate of Theorem 3.2 is slightly weaker

than its one-sided counterpart in Corollary 2.4, since, by de�nition of k�k1;1
b

and of

dK, one has

kF�1 � F�2k1;1b � dK(�1; �2) forall �1; �2 2 P(Rs); F�1 ; F�2 2 C1;1b
(Rs).

Of course, imposing new restrictions raises the question of which class of probability

measures still meets the new assumptions. Theorem 3.2 requires that both the

original and all the perturbed measures have distribution functions in C1;1
b

(Rs). The
following proposition identi�es two classes of such measures:

Proposition 3.3 Let � 2 P(Rs).

1. If � is a nondegenerate multivariate normal distribution, then F� 2 C1;1b
(Rs).

2. If � is the distribution of a random vector with independent components and if

the 1-dimensional distributions �i 2 P(R) of these components have bounded

and Lipschitzian densities f�i, then F� 2 C1;1b
(Rs).

Proof. Ad 1.: Without loss of generality, one may consider standard normal

distributions (zero mean and unit variances). It is well known then (e.g. [12], p.

***), that the partial derivatives of F� can be calculated as

@F�

@xi
(x) = ~F~�(~xi) � f(xi) (i = 1; : : : ; s),

where ~F~� is the distribution function of some nondegenerate multivariate normal

distribution ~� 2 P(Rs�1), ~xi 2 R
s�1 and f is the density of the 1-dimensional

standard normal distribution. Taking into account that F� ; ~F~� and f are bounded

(say by some M > 0), it follows immediately that F� 2 C1(Rs) is bounded and has

bounded derivative. Since ~F~� (as a nondegenerate multivariate normal distribution

function) and f are Lipschitzian on R
s�1 and R, respectively, it follows that the

partial derivatives of F� are Lipschitzian on Rs (as products of functions which are

bounded and Lipschitzian on Rs). Hence, F� 2 C1;1b
(Rs).

Ad 2.: Clearly, F� is bounded as a distribution function. By the assumption of

independence, F� = F�1 � � �F�s , where F�i are the marginal distributions of �. Since

the marginal densities f�i were assumed to be Lipschitzian, the F�i and, hence, F�

11



itself are of class C1. The assumed boundedness of the f�i yields that the F�i are

Lipschitzian. Furthermore,

@F�

@x1
= f�1 � F�2 � � �F�s.

Therefore, @F�

@x1
is bounded and Lipschitzian according to the assumptions. The same

argumentation applies to the other partial derivatives, whence F� 2 C1;1b
(Rs).

4 Illustration of the Stability Results

In this section we illustrate the obtained stability result for a simple 2-dimensional

example. We consider the problem

minfx1 + x2jP (�1 � x1; �2 � x2) � 1=2g;
where � is assumed to have a distribution � which is normal with independent

components of mean zero and unit variance. Clearly, this problem satis�es the basic

data assumptions (BCA). The solution set of this problem consists of a singleton

	(�) = fq; qg, where q � 0:55 is the 1=
p
2-quantile of the 1-dimensional standard

normal distribution. First, we check the assumptions of Theorem 2.3. Obviously,

	(�) is nonempty and bounded. Next, a Slater point certainly exists, any x̂ with

x̂1 = x̂2 > q satis�es F�(x̂) > F�(q; q) = 1=2. Furthermore, as � is a normal

distribution with independent components, F r

�
is strongly concave for any r < 0 and

on any bounded, convex set (see remarks below Theorem 2.3). As a consequence,

F r

�
is strongly concave on some convex, open neighbourhood of 	(�). Summarizing,

the �rst three assumptions of Theorem 2.3 are satis�ed. Finally, in our example,

g is linear (in particular: convex-quadratic), X = R
2 is trivially polyhedral and

h is linear as the identity. Hence, Corollary 2.4 guarantees the Hausdor� Hölder

continuity with rate 1/2 of the solution set mapping 	 for any approximation � 2
P(Rs) of �.

We want to focus now on two speci�c approximations both of which are based on

a sample Z1; : : : ZN of observations of �. The empirical measure derived from this

sample is de�ned as � = N�1
P

N

i=1 ÆZi , where ÆZ is the Dirac measure placing mass

one at the point Z. The empirical measure is a suitable approximation when no

information at all is available about the true measure �. If, on the other hand, par-

tial information about � is given, better adapted approximations may be favorable.

For instance, if we know that � in our problem is some nondegenerate multivariate

normal distribution (but do not know its parameters), then a parametric approxi-

mation de�ning a normal distribution with mean and (co-) variances estimated from

Z1; : : : ZN may be useful. We want to symbolize this parametric approximation by

� 0. Of course, with increasing sample size N , dK(�; �) and dK(�
0; �) will tend to

zero in a probabilistic sense, and dK(�
0; �) will do so even faster than dK(�; �). The
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Figure 1: Illustration of stability results for simulated data

issue we want to address here is convergence of the approximating solution sets, i.e.,

dependence of dH(	(�);	(�)) on dK(�; �) . To this aim, several thousand samples

of � were simulated according to its distribution �. The sample size varied up to a

few hundred.

Figure 1 a) illustrates the results for the parametric (black dots) and empirical (gray

dots) approximations. Clearly, in both cases the approximating solutions converge

to the true solution when the approximating measure converges to the true measure.

Indeed, this kind of qualitative stability is already ensured by the �rst two assump-

tions of Theorem 2.3 via Theorem 2.1. From a quantitative point of view, however,

the solution sets of parametric approximations seem to converge much faster (in the

worst case) than those of empiric approximation. This is particularly obvious in a

region close to the origin which has been magni�ed in Figure 1 b). According to the

diagram, there is no doubt that there exists an upper Lipschitz estimation for the

parametric approximation, whereas in case of the empiric estimation increasingly

large ratios between the two distances seem to be possible when dK(�; �) tends to
zero. This suggests a Non-Lipschitzian relation. At least, Corollary 2.4 guarantees

that the corresponding cloud of points lies below some function �
p
dK(�; �), where

� > 0 is su�ciently large.

As far as the parametric approximation is concerned, its Lipschitzian behavior is

supported by Theorem 3.2. To see this, recall that both the original and the ap-

proximating measures are normal distributions, hence, their distribution functions

belong to the space C1;1
b

(Rs) according to Proposition 3.3. Furthermore, the gradi-
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ent of a (nondegenerate) normal distribution function is always nonzero which yields

condition 4. of Theorem 3.2. Finally, owing to the fact that the objective function

in our example is linear, condition 5. of Theorem 3.2 is trivially ful�lled. It has to

be noted, that Theorem 3.2 provides a Lipschitz result with respect to the distance

kF� � F�k1;1b , whereas Figure 1 b) even suggests a Lipschitzian relation with respect

to the stronger Kolmogorov distance dK(�; �).

As far as optimal values are concerned, Theorem 2.1 guarantees a Lipschitzian esti-

mation for any approximating measure. This is observed empirically in Figure 1 c)

for the example of empirical approximation (the better behaved parametric case is

omited here).

Finally, we may reduce our example to a 1-dimensional setting, i.e., to the problem

minfxjP (� � x) � 1=2g;
where � is assumed to have a standard normal distribution �. In this situation, the

dependence of Hausdor� distances between solution sets on Kolmogorov distances

between measures is seen from Figure 1 d) to be of Lipschitzian nature for both

types of approximations (gray dots on top of black dots). Again, this observation

is supported by our results via Theorem 2.6, according to which the Lipschitz rate

results for any approximating measure.

5 Appendix

Proposition 5.1 For r < 0 and � 2 P(Rs) it holds: If F�(y) � w > 0 for all

y 2 Q � R
s, then there exist constants c; Æ > 0 such that

jF r

�
(y)� F r

�0
(y)j � cdK(�; �

0) 8y 2 Q 8� 0 2 P(Rs); dK(�; �
0) < Æ.

Proof. Note that

jur � vrj � jrjmaxfur�1; vr�1g ju� vj 8u; v > 0.

Then, choosing Æ := w=2, one has

F�0(y) � w=2 > 0 8y 2 Q 8� 0 2 P(Rs); dK(�; �
0) < Æ:

Fix c as jrj (w=2)r�1.

Proposition 5.2 With the assumptions and notations of Lemma 2.2 assume that

1. Y is Hausdor� Hölder continuous with rate 1/2 at �, i.e., there are constants

�; Æ > 0 such that

dH(Y (�); Y (�)) � �d
1=2

K
(�; �) 8� 2 P(Rs); dK(�; �) < Æ:

14



2. � is Hausdor� Hölder continuous with rate ��1 on YV , i.e., there exists L > 0
such that

dH(�(z); �(y)) � Ld�
�1

(y; z) 8z; y 2 YV :

Then, 	 is Hausdor� Hölder continuous with rate (2�)�1 at �. More precisely, it

holds that

dH(	(�);	(�)) � L��
�1

[dK(�; �)]
(2�)�1 8� 2 P(Rs); dK(�; �) < Æ:

Proof. For a nonempty and closed subset Q � R
s and y 2 R

s denote by projQ(y)
the projection of y onto Q. Note that for � 2 P(Rs) with dK(�; �) < Æ and small

enough Æ, one has 	(�) 6= ; (Theorem 2.1) and Y (�) 6= ; by (5). Furthermore,

the sets Y (�) are closed (see proof of statement 4. in Lemma 2.2 provided in [5],

Lemma 1). Consequently, proj applies to these sets Y (�). Recalling that Y (�) � YV ,

it follows from the assumptions and from (5), that for � 2 P(Rs) with dK(�; �) < Æ

dH(	(�);	(�)) = maxf sup
x2	(�)

d(x;	(�)); sup
x02	(�)

d(x0;	(�))g

= maxf sup
y2Y (�)

sup
�2�(y)

d(�; �(Y (�))); sup
y02Y (�)

sup
�2�(y0)

d(�; �(Y (�)))g

� maxf sup
y2Y (�)

sup
�2�(y)

d(�; �(projY (�)(y)));

sup
y02Y (�)

sup
�2�(y0)

d(�; �(projY (�)(y0)))g

� Lmaxf sup
y2Y (�)

d�
�1

(y; projY (�)(y)); sup
y02Y (�)

d�
�1

(y0; projY (�)(y0))g

� L

"
maxf sup

y2Y (�)

d(y; Y (�)); sup
y02Y (�)

d(y0; Y (�))g
#��1

� L [dH(Y (�); Y (�))]�
�1

� L��
�1

[dK(�; �)]
(2�)�1

:

Lemma 5.3 Under the assumptions of Theorem 2.1 and with the notations of

Lemma 2.2, consider the parametric program

( eP�) min f�(y) j y 2 YV ; F�(y) � pg (� 2 P(Rs))

near � 2 P(Rs), the solution set mapping and optimal value function of which are

given by Y and ', respectively (see Lemma 2.2). Let the following assumption be

satis�ed in addition, where r < 0 refers to the exponent of concavity of �

� F r

�
is strongly convex on some convex open neighbourhood U of Y (�).
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Then, Y is Hausdor� Hölder continuous with rate 1/2 at �.

Proof. Setting b�(y) := F r

�
(y)� pr for � 2 P(Rs), the original problem ( eP�) may

be written as

( eP�) min f�(y) j y 2 YV ; b�(y) � 0g.
As a consequence of the r- concavity of � (where r < 0), F r

�
is a convex (possibly

extended-valued) function. Therefore, b� is a convex function �nite-valued on YV

(see de�nition of YV ). Then, in view of 1. and 2. in Lemma 2.2, ( eP�) is a convex

program which satis�es the Slater condition b�(ŷ) < 0 for some ŷ 2 YV . Indeed, we

may choose x� 2 	(�) 6= ; (�rst assumption of Th. 2.1), hence x� 2 X \ V and

b�(h(x
�)) � 0. Furthermore, x̂ 2 X taken from the second assumption of Theorem

2.1 satis�es b�(h(x̂)) < 0. With F� being nondecreasing as a distribution function,

the composition F r

�
Æ h is convex too due to F r

�
being nonincreasing (r < 0) and to

h having concave components. Therefore, b� Æ h is convex and, for su�ciently small

� > 0, x� := �x̂+ (1� �)x� satis�es b�(h(x�)) < 0. Now, one may take ŷ := h(x�).

Statement 4. in Lemma 2.2 and Proposition 5.1 guarantee that for some c; Æ0 > 0

Y (�) � U; jb�(y)� b�(y)j � c dK(�; �) 8y 2 YV ; 8� 2 P(Rs); dK(�; �) < Æ0: (7)

Finally, the additional assumption on strong convexity of F r

�
on U means in partic-

ular that

b�(y1=2 + y2=2) � b�(y1)=2 + b�(y2)=2� � ky1 � y2k2 8y1; y2 2 U (8)

for some � > 0. We proceed by case distinction with respect to the relation between

Y (�) and the solution set Q := argminf�(y) j y 2 YV g of the relaxed problem ( eP�)
where the chance constraint b�(y) � 0 is omitted.

case 1: Y (�)\ Q = ;:
Choose some y� 2 Y (�) (recall that Y (�) 6= ; due to 	(�) 6= ; and to (5)). Since �

and b� are �nite-valued on YV (statement 2. of Lemma 2.2 and '(�) = �(y�) > �1
(see (4)), the Slater condition shown above for problem ( eP�) ensures the existence
of a Lagrange multiplier �� � 0 such that (cf. [13], Cor. 28.2.1)

�(y�) = min f�(y) + ��b�(y) j y 2 YV g and ��b�(y
�) = 0. (9)

By the case 1- assumption, one has �� > 0 and so � + ��b� is strongly convex on

YV \ U due to the additional assumption in this lemma. This implies

~� ky � y�k2 � �(y) + ��b�(y)� �(y�) for all y 2 YV \ U: (10)

for some ~� > 0 (due to ��b�(y
�) = 0 and y� being a minimizer in (9)). In particular,

y� is the unique minimizer of ( eP�), i.e., Y (�) = fy�g. For an arbitrary � taken from

(7), (10) applies. Using the results of Lemma 2.2 and the fact that b�(y) � 0 for all
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y 2 Y (�) one arrives at the asserted Hölder continuity with respect to the Hausdor�

distance:

dH(Y (�); Y (�)) = sup
y2Y (�)

d(y; y�)

� ~��1=2 sup
y2Y (�)

�
�(y)� �(y�) + ��(F r

�
(y)� pr)

�1=2
� ~��1=2 sup

y2Y (�)

['(�)� '(�) + ��(b�(y)� b�(y))]
1=2

� ~��1=2 [LdK(�; �) + ��cdK(�; �)]
1=2

� ~��1=2(L + ��c)1=2dK(�; �)
1=2 8� 2 P(Rs); dK(�; �)

< minfÆ0; Æg
with L; Æ > 0 from Theorem 2.1.

case 2: Y (�) \Q 6= ;:
In this case, Y (�) has the simple representation

Y (�) = fy 2 Q j b�(y) � 0g: (11)

Note that Q is closed and convex by the properties of � and YV stated in Lemma

2.2.

case 2.1 9 �y 2 Y (�), b�(�y) < 0.

Then, �y is a Slater point of the constraint b�(y) � 0 with respect to Q. As a

consequence of results in [14] (Theorem 3.2, Corollary 3.7 and Lemma A.2), each

y 2 Y (�) is supplied with neighbourhoods Vy of y and Uy of � such that for moduli

Ly > 0

d(y0; Y (�)) � LydK(�; �) 8� 2 Uy 8y0 2 Y (�) \ Vy
d(y0; Y (�)) � LydK(�; �) 8� 2 Uy 8y0 2 Y (�) \ Vy

The compactness of Y (�) � YV (statement 1. of Lemma 2.2) then allows to extract

a neighbourhood ~U of � and an open set ~V containing Y (�) such that

d(y; Y (�)) � LdK(�; �) 8� 2 ~U 8y 2 Y (�)

d(y; Y (�)) � LdK(�; �) 8� 2 ~U 8y 2 Y (�) \ ~V

with some L > 0. By upper semicontinuity of Y (statement 4. of Lemma 2.2),

one has Y (�) � ~V for all � 2 P(Rs); dK(�; �) < ~Æ with some ~Æ > 0. Hence,

even Hausdor� Lipschitz continuity of Y at � follows from the above inequalities:

dH(Y (�); Y (�)) � LdK(�; �) for all � 2 P(Rs); dK(�; �) < Æ� with some Æ� > 0.
This, of course, implies the asserted Hölder continuity with rate 1/2.

case 2.2 b�(y) = 0 8y 2 Y (�).
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The convexity of Y (�) along with (8) yield that Y (�) reduces to a singleton, say

Y (�) = fy�g. Then, b�(y�) = 0 and y� 2 Q � YV by (11). For any � satisfying (7),

let y 2 Y (�) � U be arbitrary, hence y 2 YV and b�(y) � 0. Put

�0 := inff� � 0 j b�(�y� + (1� �)y) � 0g.
Then, �0 2 [0; 1]. De�ne y0 := �0y� + (1 � �0)y. Assume �rst that �0 > 0. Since

the convex function �(�) = b�(�y
�+(1��)y) is upper semicontinuous on [0; 1] and

continuous on (0; 1), it follows that b�(y
0) = 0. Since, for �0 > 0, b�(y) > 0, one has

y0 6= y and b�(y=2 + y0=2) > 0 according to the de�nition of y0. Then, (7) and (8)

yield

cdK(�; �) � b�(y)� b�(y) � b�(y)=2 + b�(y
0)=2 � b�(y=2 + y0=2) + � ky � y0k2

� � ky � y0k2 ;
whence

ky � y0k �
p
c=�
p
dK(�; �): (12)

In the excluded case of �0 = 0, the same inequality follows trivially from y0 = y.

Now, we want to estimate the distance between y0 and y�, hence, without loss of

generality, we may assume that y0 6= y�. Then, �0 < 1 and y0 =2 Q (if y0 2 Q, then

y0 2 Y (�) due to b�(y
0) = 0 and (11), whence a contradiction to Y (�) = fy�g).

Now, y =2 Q since y� 2 Q and Q is convex (otherwise the contradiction y0 2 Q).

Consequently, �(y) > �(y�). Put, y00 := y�=2+ y0=2, hence y00 = �0+1
2
y� + 1��0

2
y,

which is a convex combination of y� and y. Then, y00 2 YV \ U due to convexity of

YV \ U . It follows that

�(y00) � �0 + 1

2
�(y�) +

1� �0

2
�(y) < �(y):

If b�(y
00) � 0, then a contradiction to y 2 	(�) results, hence b�(y

00) > 0. Again

referring to (7) and (8), it follows that

cdK(�; �) � b�(y
00)� b�(y

00) � �b�(y�=2 + y0=2)

� �(b�(y
�) + b�(y

0))=2 + � ky� � y0k2 = � ky� � y0k2 :
Combining this with (12), one arrives at the desired estimation

dH(Y (�); Y (�)) = sup
y2Y (�)

ky � y�k � 2
p
c=�
p
dK(�; �):

In the case of a 1-dimensional random variable, the assertion of the previous lemma

can be sharpened even without the strong convexity assumption made there:

Lemma 5.4 If s = 1 then, under the assumptions of Theorem 2.1, Y is Hausdor�

Lipschitz continuous (i.e., Hausdor� Hölder continuous with rate � = 1) at �.
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Proof. We consider the parametric program from Lemma 5.3 which Y is the

solution mapping of:

( eP�) min f�(y) j y 2 YV ; F�(y) � pg (� 2 P(R))

We have YV = [a; b] for some a; b 2 R (see 1. in Lemma 2.2). Choosing some

x� 2 	(�) � X according to the assumption of Theorem 2.1 , it follows that

h(x�) 2 YV 6= ;, hence a � b. Since F� is upper semicontinuous and nondecreasing

as a distribution function, one gets

fy 2 R j F�(y) � pg = [�(�);1); �(�) := minfy 2 R j F�(y) � pg.

Clearly, f�(�)g is the solution set of a parametric program of type (P�) (see intro-
duction) which at the �xed measure � satis�es the basic data assumptions (BCA)

(with g(x) = h(x) = x and X = R). Since p 2 (0; 1) and F� is a distribution

function, there exists some �y 2 R with F�(�y) > p. Now, Theorem 2.1 allows to

derive the existence of L; Æ > 0 such that

j�(�)� �(�)j = j'(�)� '(�)j � LdK(�; �) 8� 2 P(R); dK (�; �) < Æ,

where '(�) refers to the optimal value function of the parametric problem de�ning

�(�). Summarizing, we may rewrite ( eP�) as
( eP�) min f�(y) j y 2 [b(�); b]g (� 2 P(R)),

where b(�) := maxf�(�); ag satis�es

jb(�)� b(�)j � LdK(�; �) 8� 2 P(R); dK (�; �) < Æ: (13)

We argue that b(�) � b for all � 2 P(R) with dK(�; �) < ~Æ and some ~Æ > 0. This
is obvious from (13) if b(�) < b. If b(�) = b, then we refer to some ŷ 2 YV with

F�(ŷ) > p (see proof of Lemma 5.3). Consequently, a = b = ŷ and F�(b) > p. Then,

F�(b) � p and, hence, b(�) � b for all � 2 P(R) with dK(�; �) < ~Æ := F�(b)� p.

Now, � is a lower semicontinuous, convex and �nite function on the nonempty

intervals [b(�); b] � YV (see Lemma 2.2). In particular, Y (�) 6= ; for all � 2 P(R)
with dK(�; �) < ~Æ. Elementary calculus shows that

dH(Y (�); Y (�)) � jb(�)� b(�)j 8� 2 P(R); dK (�; �) < ~Æ.

Along with (13), this yields the assertion of the Lemma.
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