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Abstract

In a supercritical branching particle system, the trimmed tree consists of those particles
which have descendants at all times. We develop this concept in the superprocess setting.
For a class of continuous superprocesses, we identify the trimmed tree, which turns out to
be a binary splitting particle system with a new underlying motion that is a compensated
h-transform of the old one. We show how trimmed trees may be estimated from above by
embedded binary branching particle systems.
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1 Introduction and main results

1.1 Introduction

It frequently happens that a superprocess X = (X;);>0, taking values in the space M(E) of
finite measures on some space E, and a branching particle process X = (X;);>o are related
by the formula

PPos[X, € .]= P*Pois(X,) € -] (t>0, ue M(E)). (1.1)

Here Pois(X;) denotes a Poisson point measure with random intensity X; and PPt denotes
the law of the process X, started with initial law £(Xy) = L(Pois(x)). For example, (1.1)
holds when X is the standard, critical super-Brownian motion in R¢, corresponding to the
evolution equation %ut = %Aut —u?, and X is a system of binary branching Brownian
motions with branching rate one and death rate one. Loosely speaking, X can be obtained
from X by Poissonization. Poissonization relations of the form (1.1) have been exploited by
various authors, for example [GRW90, Formula (8)], [K1e98, Formula (4.19)], and [Win02,
Formula (1.23)].

In the present paper, we investigate Poissonization relations for a class of continuous
superprocesses with Feller underlying motion. We give conditions implying that a superprocess
X and a branching particle system X may be coupled as processes, such that

P[Xt c - |(X5)0§35t] = P[POIS(hXt) c - |Xt] a.s. Vt> 0, (12)

where h is a sufficiently smooth density (Theorem 4). Formula (1.2) says that the conditional
law of Xy, given (X;)o<s<t, is the law of a Poisson point measure with intensity hAX;.

The weighted superprocess (hX;);>o occuring in (1.2) is a superprocess itself, which com-
pared to X has a new branching mechanism and a new underlying motion, the latter being
a ‘compensated’ h-transform of the old one. For the case that X is a superdiffusion, this fact
was proved and exploited by Englinder and Pinsky in [EP99].

Let X and X be related by (1.2), let A := {37 < oo such that X; = 0 V¢ > 7} denote the
event that X becomes extinct after some random time 7, and let A := {37 < 0o such that X; =
0Vt > 1} Since P[X; =0|X; =0] =1 (¢t > 0), one clearly has A C A a.s. We investigate
when the converse inclusion holds, i.e., when the extinction of X implies the extinction of
X. In particular, for a supercritical superprocess X', we construct a binary splitting particle
system X that, heuristically, corresponds to those infinitesimal bits of mass of X which have
descendants at all times. More precisely, when X and X are the historical processes associated
with X and X, respectively, we give conditions on X and X such that

Vt>03r <oo s.t. Vr>71 supp(X;) = supp(X, o W[_Oylﬂ) a.s. (1.3)

(Theorem 7). Here 7o denotes projection on the space Dgl0,t] of cadlag paths from [0, 7]

into F. Informally, X, is a random measure on paths of length ¢, measuring how much each
line of descent contributes to the population at time ¢; likewise, X, counts how often each line
of descent contributes to X;. Thus, (1.3) says that eventually, all mass of the superprocess X
descends from finitely many lines of descent, which are given by supp(X't).

We call X the trimmed tree of X. The reduced tree of a branching process describes the
family relations between all particles alive at a fixed time, and of their ancestors (neglecting
those lines of descent that died earlier). Thus, our trimmed tree can be viewed as the limit



of reduced trees as time tends to infinity. Reduced trees have been studied intensively in the
branching literature. For a historical background, see, e.g., the last paragraph in Section 12.1
from [Daw93, p. 201].

When X is the trimmed tree of X, then X and X are related by a Poissonization formula
of the form (1.2) where h = p, the infinitesimal survival probability of X, given by

p(z) = LP%% X, >0 Vt> (] , (@eB). (1.4)
e=

It is worth to mention that the weighted superprocess (p&};);>0 with p as in (1.4) plays an im-
portant role in the work of Englinder and Pinsky [EP99], who investigate support properties
(such as recurrence) of superdiffusions by analytic tools. Weighted superprocesses and em-
bedded particle systems also played an important role in [FS02], which motivated our present
article.

The paper is organised as follows. In Sections 1.2-1.4, we introduce our objects of interest
together with some of their elementary properties in more detail. Sections 1.5 and 1.6 contain
our main results, while Section 1.7 is devoted to discussion. Proofs are deferred to Section 2.

1.2 Poissonization of superprocesses

Let E be a compact metrizable space and let B(E), C(E) denote the spaces of bounded
measurable real functions and continuous real functions on E, respectively. We set B4 (FE) :=
{f € B(E) : f 20}, Bpy(E) :={f € B(E) : 0 < f < 1}, and define C,(E),Cpp,1)(E)
similarly. M(E) denotes the space of finite measures on F, equipped with the topology of
weak convergence. If y € M(E) and f € B(E) then (u, f) := [ f du denotes the integral
of f with respect to u. By N(E) C M(E) we denote the space of finite point measures, i.e.,
measures v of the form Z?Zl 0z; with z; € E. We interpret such a point measure as a collection
of n particles, situated at positions z1,...,z,. For f € By 1)(F) and v = Yo 0e € N(E)
we use the notation f” := [], f(z;) (where fO := 1). If y is a random variable taking
values in M(E), then Pois(u) denotes an N (E)-valued random variable such that conditioned
on u, Pois(p) is a Poisson point measure with intensity p. If v is a random variable taking
values in N'(E) and f € By 1(E), then Thin;(v) denotes a point measure obtained from v by
independently thinning the particles in v, where a particle at z is kept with probability f(z).
Note that

() PlPois(fu) =0lu]=c /) (feBL(E)), (w5)
(i) P[Thing(v) =0|v]=(1-f)" (f € Bjoy(£))-
It is well-known that
Thing(Thing(v)) = Thinge(v) and Thiny(Pois(u)) = Pois(fu). (1.6)

Let G be the generator of a Feller process { = (£;);>0 on E and let o € C(F), 8 € C(E).
Then, for each f € B, (F), an appropriate integrated version (see formula (2.8) below) of the
semilinear Cauchy problem

{ %ut = Guy + Buy — au? (t>0),

=1, (1.7)

has a unique solution u; =: Uyf (¢t > 0) in B (FE). Moreover, there exists a unique (in law)
Markov process X with continuous sample paths in M(FE), defined by its Laplace functionals

Bhle= AN = o= WU (150, ue M(E), fe B, (B)). (1.8)



X is called the superprocess in 2 with underlying motion generator G, activity o and growth
parameter B (the last two terms are our terminology), or shortly the (G, «, 3)-superprocess.
U)o =U =U(G, a, B) is called the log-Laplace semigroup of X. In fact, U;f can be defined
unambiguously for any measurable f : E — [0, 00| such that (1.8) holds (where e~ :=0). X
can be constructed in several ways and is nowadays standard; see, e.g., [Fit88, Fit91, Fit92].
We can think of X' as describing a population where mass flows with generator G, and during
a time interval dt a bit of mass dm at position z produces offspring with mean (1+ 8(z)dt)dm
and finite variance 2a(z)d¢ dm. For basic facts on superprocesses we refer to [Daw93, Eth00].
Similarly, when G is (again) the generator of a Feller process in a compact metrizable
space E and b,d € C1(E), then, for any f € Bjg1)(F), an integrated version of the semilinear

Cauchy problem
{ %ut = Guy + bup(1 — ug) — duy (t > 0), (1.9)
up = f, '

has a unique solution u; =: Uy f (t > 0) in B,1(E). Moreover, there exists a unique Markov
process X with cadlag sample paths in N (E), defined by its generating functionals

EY[1- )% =(1-Uf)Y  (t20, veN(E), f€ Byy(E)). (1.10)

We call X the binary branching particle system in E with underlying motion generator G,
branching rate b and death rate d, or shortly the (G,b,d)-bin-bra-process. (Up)i>0 = U =
U(G,b,d) is called the generating semigroup of X. The particles in X perform independent
motions with generator G and additionally, a particle branches with local rate b into two new
particles, created at the position of the old one, and particles die with local rate d. If the
death rate is zero, we also speak about binary splitting instead of binary branching.

Because of (1.5), formulas (1.8) and (1.10) can be rewritten as

(i) PH[Pois(fX:) = 0] = P[Pois((Uf)u) = 0] (t>0, pe M(E), f € BL(E)),
(i) PY[Thing(X;) = 0] = P[Thing, ;(v) = 0] t>0, veN(E), fe B[O,l](E()). |
1.11

The following lemma is now an easy observation.

Lemma 1 (Poissonization of superprocesses) Let X' be the (G, «, 3)-superprocess, as-
sume that a > 8 and let X be the (G, a,a — B)-bin-bra-process. Then

PPosl)[X, € .] = PH[Pois(X;) € -] (>0, up€ M(E)). (1.12)

Proof Let U = U(G, o, B) and U = U(G, a,a — ) denote the log-Laplace semigroup of X
and the moment generating semigroup of X, respectively. Comparing the Cauchy problems
(1.7) and (1.9) we see that U;f = Uif for all f € Bjy1(E) and t > 0. It follows that for any
f € By (E), p € M(E), and t > 0,

PPois()[Thing (X;) = 0] = P[Thing, ;(Pois(u)) = 0] = P[Pois((Uif)u) = 0]

0 -
= PR[Pois(fX;) = 0] = P#[Thiny(Pois(&;)) = 0]. (1.13)

Since this holds for arbitrary f € By 1j(E), the law of X}, when X is started with initial law
L(Xo) = L(Pois(p)), coincides with the law of Pois(X}), when X is started in Xy = p. |

Remark (Locally compact spaces) Let E be a locally compact but not compact, separable,
metrizable space, G the generator of a Feller process & = ({;);>0 on E, whose semigroup maps

4



the space Cy(FE) of continuous real functions vanishing at infinity into itself, and let «, 8 be
bounded continuous functions on E, o > 0. Then the (G, «, 8)-superprocess may be defined
as follows. First, £ may be embedded in a compact metrizable space E such that E is an open
dense subset of E and such that the functions «, 8 can be extended to continuous functions
@, B on E. Second, ¢ may be extended to a Feller process in E (with generator denoted
by G) by putting P¥[¢, = 2 V¢t > 0] := 1 for z € E\E. Identifying M(E) with the space
{u € M(E) : u(E\E) = 0}, the (G, @, B)-superprocess X satisfies P*[X; € M(E) Vt > 0] =1
for all u € M(E). The (G,a,3)-superprocess may then be defined as the restriction of X
to M(E). In this way, the results in this paper can be applied, for example, to the usual
super-Brownian motion (with finite initial mass). To keep notation simple, we formulate our
results for superprocesses in a compact space E in the rest of this paper.

1.3 Historical superprocesses and branching particle systems

Let E be a compact metrizable space as before and let Dg[0,00), Dg[0,t] denote the spaces
of cadlag paths w : [0,00) — E and w : [0,t] — E, respectively, equipped with the Skorohod
topology. Let € be a Feller process in £. Then the path process é associated with £ is a time-
inhomogeneous Markov process with tlme—dependent state space Dgl0, t] defined as follows.
If £* is the process & started in {§ = = € E, then { , the path process 5 started at time s > 0

in w € Dg[0, s] and evaluated at time ¢ > s, is deﬁned as

o w(r) if 0<r<s
t, (T‘) = w(s) .
¢ if s<r<t.

T—S8

(1.14)

For ¢ > 0, we identify the space Dg[0,t] with the space {w € Dg[0,00) : w(u) = w(t) Yu > t}
of paths stopped at time ¢. With this identification, £5% : [s,00) — Dg[0,00) has cadlag
sample paths. Note that é?”", the path process started at time zero in z € Dg{0} = E and
evaluated at time ¢ > 0, records the path followed by £ up to time ¢.

If X is a (G, a, B)-superprocess in E as defined in the last section, then by definition
the historical superprocess X associated with X is the time-inhomogeneous superprocess with
time-dependent state space M(Dg[0,t]), with underlying motion £, time-dependent activity
éy(w) = a(w(t)), and time-dependent growth parameter S;(w) := B(w(t)). We call X the
historical (G, a, B)-superprocess. We identify as before Dg[0,t] with the subspace of Dg[0, o0)
consisting of paths stopped at time ¢, and in this identification X : [0,00) — M(Dg|0,00))
has continuous sample paths. For the technical complications arising from the fact that the
underlying motion is time-inhomogeneous and the space Dg[0, o) is not locally compact, we
refer to to [DP91]; see also Section 2.2 below for more details. If X is started at time zero
in X = p € M(Dp{0}) = M(E) and m;(w) := w(t) denotes projection on the endpoint of a
path w € Dg[0,t], then the projection

X=X omt  (t>0) (1.15)

gives back the original (G, a, §)-superprocess X started in Xy = p

Likewise, if X is a (G, b, d)-bin-bra-process in E as defined in the last section, then the
historical binary branching particle system X associated with X is defined as the time-inhomo-
geneous binary branching particle system with time-dependent state space N (Dgl0,1]), with
underlying motion ¢, time-dependent branching rate b(t,w) := b(w(t)), and time-dependent
death rate d(t,w) := d(w(t)). We call X the historical (G,b,d)-bin-bra-process. Viewed



as a process in N(Dg[0,00)), X has cadlag sample paths. If X is started at time zero in
Xo = v € N(Dg{0}) =2 N(E) then the analogue of (1.15) gives back the (non-historical)
(G, b, d)-bin-bra-process X started in Xy = v.

1.4 Weighted superprocesses and compensated h-transforms

Let ¢ be a Feller process in E. Let G be the generator of ¢, i.e., Gf := limy_,o t*(P,f—f) where
P.f(z) := E®[f(&)] is the semigroup associated with ¢ and the domain D(G) of G consists of
all functions f € C(E) for which the limit exists in the supremum norm. The following lemma,
the proof of which can be found in Section 2.3.3 below, introduces compensated h-transforms
of Feller processes.

Lemma 2 (Compensated h-transform of a Feller process) Let G be the generator of a
Feller process & in a compact metrizable space E and assume that h € D(G) satisfies h > 0.
Then the operator

Ghf e %(G(hf) —(@my). (1.16)

with domain D(G") := {f € C(E) : hf € D(G)} is the generator of a Feller process £" on E.
The laws of " and € are related by

Po((€1)set0 € dw] = B0 e~ Jo 5 (WA prj(e) o e dw] (150, ze B). (117)

Remark (h-transforms) Doob’s h-transform of a Feller process is the process with generator
Ghf = £G(hf). (See, for example, [Doo84, Section 2.VI.13] or [Sha88, Formula (62.23)].)
Here h is superharmonic, i.e., Gh < 0, and the h-transformed process has an additional local
killing rate Gh/h. In our set-up, it is natural to compensate this killing by adding the term
—Gh/h in the definition of G*. In this case we can allow & to be any positive function in the
domain of G.

Let E, G, a and S be as in Section 1.2 and let X’ be the (G, a, 5)-superprocess. The following
lemma, which was proved in a non-historical setting for superdiffusions in [EP99], describes
the relation between weighted superprocesses and compensated h-transforms.

Lemma 3 (Weighted superprocess) Let X be the historical (G, a, B)-superprocess and
assume that h € D(G), h > 0. Then the weighted process X" defined by

XM (dw) = h(wy) Xy(dw) (£ >0) (1.18)
is the historical (G", ha, B + %)—superprocess.

In particular, by formula (1.15), if X is the (G, o, 3)-superprocess, then X/*(dz) := h(z)X;(dx)
(t > 0) is the (G", ha, B + %)—superprocess. The proof of Lemma 3 can be found in Sec-
tion 2.3.4 below. The proof of Lemma, 3 is deferred to Section 2.3.4.

1.5 Main results

We are ready to state our first result.



Theorem 4 (Embedded particle system) Let E be a compact metrizable space, G the
generator of a Feller process in E and a € C(F), B € C(E). Assume that h € D(G) satisfies
h >0 and, for some v € C+(E),

Gh + Bh — ah? = —vh. (1.19)

Then the historical (G, a, B)-superprocess X started in Xy = p € M(E) and the historical
(G", hav, y)-bin-bra-process X started in Xo = Pois(hy) can be coupled as processes such that

P[X; € -|(X;)o<s<t] = P[Pois((hom)X) € - |X] as. Vt>0. (1.20)

It follows from (1.15) that the associated non-historical processes X and X are related by
(1.2). The phrase ‘coupled as processes’ means that (./'f,’t)t>0 and (Xt)tzo can be defined on
the same probability space in such a way that (1.20) holds.

If X and X are related by (1.20), then clearly the extinction of X implies the extinction of
X a.s. We now investigate when the converse conclusion can be drawn, i.e., when eventually
all mass of the superprocess X' descends from particles in X. Set

p(z) := —log P% [X, =0 t-eventually | (z € E). (1.21)

Here, —log0 := oo and we write ‘t-eventually’ behind an event, depending on %, to denote
the existence of a (random) time 7 < oo such that the event holds for all ¢ > 7. (Thus,
{&: = 0 t-eventually } := |, oo i>-{&: = 0}.) It is not hard to check that p, defined by
(1.21), satisfies (1.4). Therefore, we call p the infinitesimal survival probability of X. Note
that

PO (X, = 0] = B [e {4 0)] = ¢—U(®) (1 >0, 3 € B). (1.22)

The following proposition is proved in Section 2.4.1.

Proposition 5 (Properties of the infinitesimal survival probability) Assume that
Sup,cpUroo(z) < oo for some t > 0. Then one has the following:

(a) Pointwise Upoo | p as t 1 oo and imy_soo U f = p for all f € C4(F) with f > 0.

(b) Uyp = p for all t > 0.

(¢) A function f € Co(E) satisfies Upf = f for all t > 0 if and only if f € D(G) and f solves

Gf+Bf —af?=0. (1.23)
(d) If inf epp(x) > 0, then p is continuous and p is the unique positive solution to (1.23).

We now formulate our main theorem, which gives sufficient conditions for all mass of the
superprocess X to descend eventually from particles in an embedded particle system X. We
write 7 5 to denote projection on Dgl0, s]. By definition, the support supp(x) of a measure
 is the smallest closed set such that p(supp(p)©) = 0.

Theorem 6 (Eventual descent from an embedded particle system) Let X, X, and h
be as in Theorem 4, and assume that U = U(G, o, B) satisfies sup,cpUroo(z) < oo for some
t > 0. Then p < h, and X and X may be coupled as processes such that (1.20) holds and
additionally

supp(X;) D supp(X, o o, t]) r-eventually Vt>0 a.s. (1.24)

If moreover inf e p(z) > 0, then by Proposition 5 we may take h = p in Theorem 4. In this
case one has the following:



Theorem 7 (Trimmed tree of a superprocess) Let E be a compact metrizable space, G
the generator of a Feller process in E and a € C(E), € C(E). Assume that U = U(G, a, )
satisfies supyepUpoo(z) < oo for some t > 0 and infyepp(z) > 0. Then the historical
(G, a, B)-superprocess X started in Xy = p € M(E) and the historical (GP,pa,0)-bin-bra-
process X started in Xo = Pois(pu) can be coupled as processes such that

P[X; € - |(Xs)o<s<t] = P[Pois((pom)X;) € -|X] as. Vt>0, (1.25)
and R X
supp(X;) = supp(X; o 7T[Blt]) r-eventually Vt>0 a.s. (1.26)

If X and X are coupled as in Theorem 7, then we say that X is the trimmed tree of X. If
Xy =AXiom, Land X; = X0 T 1 are the associated non-historical processes, then we also call
X the trimmed tree of X. Note that the death rate of X is zero, i.e., X is a binary splitting
process.

Remark (Checking the assumptions on U;oo and p) Upper bounds on ;00 and lower
bounds on p can be found, in practical situations, by finding solutions to an appropriate
differential inequality, see Lemmas 9 and 23 below.

1.6 Finite ancestry

In this section, we investigate the assumption, in Theorems 6 and 7, that sup,c g Uioo(z) < 0o
for some ¢t > 0. In particular, we show that this assumption is equivalent, in some sense,
to the statement that all mass of the superprocess X descends eventually from finitely many
ancestors.

In order to do this, we need to equip the historical (G, a, 8)-superprocess X with some
additional structure, that makes it possible to distinguish different ancestors. To this aim, set
E' := FE x [0,1]. Define a Feller process ¢ = (£,n) on E’, where for given initial conditions
(z,y) € Ex]0,1], { is the Feller process with generator G started in z, and n ==y (¢ > 0). Put
o/ (z,y) := a(z) and f'(z,y) := B(x). Let X' denote the historical (G', o/, 8')-superprocess.
Then the formula

X=X oyt (t>0) (1.27)

gives back the original historical (G, «, 3)-superprocess X , where v, denotes the projection
from Dgy(o,1[0,] to Dg[0,t]. (For the proof of (1.27), see Lemma 15 below.) The following
lemma is proved in Section 2.4.2.

Lemma 8 (Finite ancestry) Let X be the historical (G, a, B)-superprocess, let X' be the
extended historical superprocess just defined, and let U = U(G,a, ). Let £ denote Lebesgue
measure on [0,1]. Then one has the relations (i) < (ii) = (iii), where

(i) supUioo(z) < oo for somet > 0,
z€E

(i) PY#®supp(X] o my?) is finite t-eventually] =1 Vu € M(E), (1.28)
(iii) POP[supp(X; o my 1) is finite t-eventually] =1 Vu € M(E).

We interpret supp()\?t’ o my 1) as the ancestors at time 0 of the population of X at time £.
We have extended the underlying space F to make sure that different ancestors live a.s. on



different positions. Note that if E is finite, then (iii) is always trivially fulfilled even when (i)
fails.
For many superprocesses, it is actually the case that

sup Uzoo(z) < oo Vit > 0. (1.29)
el

If a superprocess X satisfies (1.29) then in view of Lemma 8 and formula (1.31.i) below we say
that X has the finite ancestry property. A sufficient, but not necessary condition for (1.29) is
that @ > 0. One has the following bound (see e.g. [FS02, Lemma 11]).

Lemma 9 (Extinction estimate) Set o := inf,ecp a(z) and B := supyep B(z). If a > 0,

then .
_ B _ _ 1
oo s ot (B0 and oo 5 F=0) (1.30)
On the other hand, it is possible for a (G, «, 3)-superprocess to satisfy (1.29) while o = 0, see
[FS02, Lemmas 5 and 6].

The following consequence of the finite ancestry property is proved in Section 2.4.2 below.

Lemma 10 (Finite ancestry and preserved past property) If X has the finite ancestry
property, then

(i) supp(X o 7r[0 t) is finite VOo<t<r as., (1.31)
(ii) supp(X, o o, ]) > supp(&X, o o, t]) VOo<t<r<r as. '
Note that (1.31.ii) says that lines of descent (up to a given time s) can get extinct, but no new
ones are created. Here, as elsewhere in this paper, the order of the statements VO < t < r <7’
a.s. means that the same zero set works for all times ¢, 7,7’ such that 0 < ¢ < r < r’. In
particular, if the superprocess X in Theorem 7 has the finite ancestry property, then a.s. the
sets supp(X o, t]) are finite for all r > ¢, and decrease to supp(Xt) as r 1T oo.

1.7 Methods, discussion, and outline of the proofs

The main ideas behind our proofs of Theorems 4, 6 and 7 are the simple observations about
Poissonization and weighting of superprocesses in Lemmas 1 and 3. Our strategy is to con-
struct a version of the superprocess with so much additional structure that one can distinguish
all ancestors of the population alive at a given time. For such a sufficiently enriched process,
we then explicitly identify the trimmed tree, and check that it is a binary splitting particle
system. This is done in Proposition 35 and Lemma 36 from Section 2.4.3 below. The essential
step, where a coupling of &A; and X; for fixed ¢ is improved to a coupling of X and X as pro-
cesses, occurs in the proof of Lemma 36. Forgetting step by step some of the added structure,
we then arrive at Theorems 4, 6 and 7.

Interesting side results of this approach are a number of lemmas about the ‘lines of descent’
of a superprocess, in particular Lemma 10, which plays an essential role in the proofs. On the
other hand, our approach does not make any statements about the transition probabilities of
the joint process (X, X;);>0, when X and X (and their historical counterparts) are coupled
as in Theorem 4. Another possible approach to our Theorem 4 (not followed in this paper)
would be to specify a joint Markov evolution for (X, X) and then show that if the process
is started in a state such that Xy = Pois(hXp), then X; = Pois(hX;) for all ¢ > 0. Here, X



would be an autonomous binary branching particle system, while X would be a superprocess
with an additional mass creation on the positions of the particles in X.

Our results can be generalized in several directions. If the space E is not compact but
locally compact, then generalizations of our results can be derived using the compactification
technique sketched at the end of Section 1.2. This requires, however, that the functions A and
p can be extended to positive continuous functions on some compactification of F, i.e., that
h and p are uniformly bounded away from zero. Truly local versions of our results, where h
and p are only required to be locally bounded away from zero, are somewhat more subtle.

A lot of our proofs work for superprocesses whose underlying motion is a general Hunt
process on a Polish space and whose activity and growth parameter are bounded and measur-
able, but we don’t know how to treat compensated h-transforms and weighted superprocesses
(Lemmas 2 and 3) in this context.

The proofs are organized as follows. After settling some notational and topological issues
in Section 2.1, we formally introduce historical processes in Section 2.2 and collect some
of their elementary properties. Section 2.3 treats compensated h-transforms and weighted
superprocesses. In Section 2.4, finally, we prove our main results.

2 Proofs

2.1 Topological preliminaries

Let E be a Polish space (i.e., E is a separable topological space and there exists a complete
metric generating the topology). We always equip E with the Borel-o-field B(E). We let
B(E), By (E), and By (F) denote the spaces of bounded, bounded nonnegative, and [0, 1]-
valued, real measurable functions on F, respectively. Recall that if {f; : ¢ € N} C B(F)
separates points, then B(E) = o(f; : i € N) (this result is known as Fernique’s theorem). We
also remind the reader of the fact that a subspace F' of a Polish space E is itself Polish in the
induced topology, if and only if F is a Gs-subset of E, i.e., a countable intersection of open
sets [Boub8, §6 No. 1, Theorem. 1].

Let Cy(E) denote the space of bounded continuous real functions on E. We write M(E)
for the space of finite measures on E, equipped with the topology of weak convergence (with
weak convergence denoted by =), under which M(E) is a Polish space [EK86, Theorem 3.1.7].
Recall that p, = p iff (un, f) — (u, f) for all f € C,(E) (see e.g. [EK86, Theorem 3.3.1])
and note that the topology on M(E) does not depend on the choice of the metric on E. The
Borel-o-field on M(E) is generated by the mappings pu — u(A4), A € B(E). If F C E is
measurable, we identify M(F') with the space {y € M(FE) : u(E\F) = 0}. In particular,
when F' is a Gs-subset of E' (and therefore Polish in the induced topology), then the topology
of weak convergence on M(F') coincides with the induced topology from its embedding in
M(E). By Mi(E) C M(E) we denote the space of probability measures and N'(E) C M(E)
denotes the space of finite point measures on F.

We denote by Dg[0, c0) the space of cadlag (i.e., right-continuous with existing left limits)
functions w : [0,00) — E, equipped with the Skorohod topology. This is the J; topology
defined in [Sko56]. The space Dg[0, 00) is Polish [EK86, Theorem 3.5.6]. One has w, — w in
Dg[0, 00) if and only if for each T' > 0 there exists a sequence of strictly increasing, continuous
An 2 [0,T] — [0,00) with A, (0) = 0, such that

lim sup |A,(t) —t| =0, (2.1)
n—0o0 tE[O,T]
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and such that (compare [EK86, Proposition 3.5.3])

Wy (An(tn)) = w(t) whenever t, |t

W (A (tn)) = w(t—) whenever t, 1t } (tn,t € [0,T]). (2.2)

Note that the topology on Dg[0,00) does not depend on the choice of the metric on E.

2.2 Historical processes
2.2.1 Hunt processes

Let E be a Polish space and let (P;);>o be a measurable transition probability on E, i.e.,
(t,z) — Pi(z,-) is a (Borel) measurable map from [0,00) X E into M(E), Py(z,-) = & for
all z € FE and P,P;f = P,y sf for all s,t > 0, f € B(FE), where we adopt the notation

Pf(z) = /E Pz, dy)f(y) (z€FE, f € B(E)). (2.3)

Assume that (P;);>o is the transition probability of a Markov process with cadlag sample paths
in E, ie., for every p € M1(E) there exists a Dg[0, co)-valued random variable &, unique in
distribution, such that £(&) = p and

E[f (€)1 Fs] = (P-sf)(&) as.  (0<s<t, feB(E), (2.4)

where (F;)¢>0 denotes the filtration generated by £&. By definition, the Markov process with
transition probability (P;)¢>o is a Hunt process if, for every Dg[0, 0o)-valued random variable
¢ satisfying (2.4), the following statements hold (see [Sha88, Theorem (I.7.4) and Defini-
tion (V.47.3)]):

(i) (Right property) For every ¢t > 0 and f € B(FE), the map [0,t) > s — P,_sf(&;) is
a.s. right-continuous.

(ii) (Quasi left-continuity) For every increasing sequence of F , -stopping times 7, 1 7,
one has &, — &, a.s. on {7 < oo}.

(2.5)
Here F = (Fi+)i>0 denotes the right-continuous modification of (F;)¢>¢. The right property
implies the strong Markov property [Sha88, Theorem (1.7.4)]. Conditions (2.5.i) and (2.5.ii)
are properties of the law of ¢ only and therefore being a Hunt process is a property of the
transition probability. It suffices to check (2.5.i) for all f € C,(F) [Sha88, Theorem (1.7.4)]. A
Feller process on a compact metrizable space is a Hunt process (see [Sha88, Theorem (1.9.26)
and Exercise (1.9.27)] or [Get75, (9.11)]). We identify a Hunt process with the collection of
random variables (£%)%€F | where ¢ denotes the process started in z € E.

We will also need time-inhomogeneous Hunt processes with a time-dependent state space
E,;. We assume that the E; are (or can be identified with) subsets of some Polish space FE and
that the set E := {(t,z) € [0,00) x E : z € E;} is a Gg-subset of [0,00) x E (and therefore
Polish in the induced topology). Let Wi, ) := {w € Dgls,00) : wy € E; Vt > s} denote the
space of all paths the process can follow after time s. Generalizing our previous definition, we
say that a collection of random variables (55"”)(5’””)615 , where £** takes values in W[, o), is a

time-inhomogeneous Hunt process, if the collection of random variables (f (s’x))(s’m)eE defined
by
E5 = (s + 1,675 ((s,2) € B, £>0) (2.6)

11



is a (time-homogeneous) Hunt process in E. If (Es’x)(s’z)eE is a time-inhomogeneous Hunt
process then we write P (x,-) := P[¢)" € -] and we let Ps; : B(E:) — B(E;) denote the
operator

Pyof(s) = /E Poi(o,dy)f(y)  (w€E,, f e B(E)). (2.7)

We call (Ps)¢>s>0 the semigroup associated with &.

2.2.2 Superprocesses with Hunt underlying motion

Let ¢ be a (time-homogeneous) Hunt process in a Polish space E with semigroup (P;):>0
and assume that o € B, (F), 8 € B(FE). Then, for every f € B, (F), there exists a unique
B([0, 00) x E)-measurable nonnegative function u which is bounded on [0,7] x E for all T > 0,
solving the Cauchy integral equation

ug = Prf + /Ot P, (Bus — auf) ds (t>0). (2.8)

Moreover, it is shown in [Fit88, Fit91, Fit92] that there exists a unique (in law) Hunt process
(X HEM(E) | with continuous sample paths, such that

Brle X = e~ Uf) (130, pe M(B), f € B.(B)). (2.9)

We call X the superprocess with underlying motion &, activity o and growth paramater 3, or
shortly the (¢, «, 8)-superprocess and we callif = U(&, , 3) its log-Laplace semigroup. In fact,
Ui f can be defined unambiguously such that (2.9) holds for any measurable f : E — [0, oo]
[FS02, Lemma 9].

We list some elementary properties of (€, «, 3)-superprocesses that we will need later. The
following lemma is an easy consequence of (2.9).

Lemma 11 (Branching property) Let ui,ps € M(E) and let X#', X*2 be independent
copiess of the (&, a, B)-superprocess started in p1, o, respectively. Then

xfTHe = xi L xF2 (¢ >0) (2.10)
is the (&, a, B)-superprocess started in p1 + po.
The following lemma is proved in [Fit88].

Lemma 12 (Moment formulas) For every f € B(E), there exists a unique B([0,00) x E)-
measurable function v which is bounded on [0,T] X E for all T > 0, such that

t
v = P f +/ P,_s(Bus)ds (t>0) (2.11)
0
and the formula Vi f := v, defines a (linear) semigroup (Vy)i>0 on B(E). One has
t
Vif(@) = B [f(&)edo P& (120, s e B, 1 e B(E) (2.12)
Moreover, for allt >0, f,g € B(E),
(i) ERl(%, )] = p Vi )

(i) COV“(<Xt,f),<Xt,g))=2/Ods (1 Vs (@ Vi—s ) Vi=s9)) )- (2.13)
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The following lemma is an easy consequence of Lemma 12 and the fact that 0 < Vif <
elBllt)| P, f|| for all f € B, (E) (where || - || denotes the supremum norm).

Lemma 13 (Absolute continuity of moment measures) Let p be a probability measure
on E and m > 0. Then

(i) E™[X] < PHlg € -]
(i) E™[X® Xi] <<P“[€Z €-]®@PFé e ]+ Q?, } (t>0) (2.14)

where QY is the measure on E x E defined as

t
b [ [Precdd (Pl e JePlae ]) 20, @)

A measure p € M(E) is atomless (i.e., u({z}) = 0 for all z € E) if and only if*
pQ p({(z1,22) € EX E:2z1=x9}) =0. (2.16)
The following lemma follows from formulas (2.14.ii) and (2.16).

Lemma 14 (Atomless superprocess) Assume that P*[¢; € -] is atomless for every t > 0
and ¢ € E. Then X; is atomless a.s. for every t > 0 and initial state p € M(E).

Our next lemma is the following:

Lemma 15 (Image property) Let E, F be Polish spaces, let 9 : E — F be continuous and
let & = (£%)*€E and n = (n¥)Y<E be Hunt processes in E, F, respectively, satisfying

W) =n"  (w€B, t20) (2.17)
Assume that ap € BL(F), Br € B(F) and let ag € B (F), pr € B(E) be given by
ag:=apot and PBg:=Lro1. (2.18)
Let X be the (&, ag, BE)-superprocess with initial state p € M(E). Then
Vi=Xoyp™  (t20) (2.19)

is the (n, ar, Br)-superprocess with initial state p o h™L.

Proof Let PP and PF denote the semigroups associated with the processes ¢ and 7, respec-
tively. Formula (2.17) implies that PZ(f o 4) = (Pf'f) o4 for all f € B(F). Using this
fact and (2.18) it is not hard to show that also UF(f o) = (UL f) o4 for all f € B, (F),
where UP = U(¢, ag, fr) and UF = U(n, ar, Br) are the log-Laplace semigroups of X and ),
respectively. Let (F;);>0 be the filtration generated by X. Then, for all0 < s <t

E[6_<Xt°¢_1,f> |‘7:s] — E[6_<Xtafo¢> |~7:s] = e_<XSaUtE—s(fo¢)>

2.20
— e_<Xsa(UtIisf) 0’(ﬁ> — e_<Xs Ow_laUtF—‘sf) (f € B+(F)) ( )

This shows that (X} 01/)*1),520 is a Markov process and that its transition probabilities coincide
with those of the (1, ar, 8r)-superprocess. Since v is continuous, X; o ¢! has continuous
sample paths. ]

The following simple observation will be useful later.

'Tf ;1 has an atom then (2.16) is obviously violated. Conversely, if 1 has no atoms then, using tightness, it
is not hard to show that for every £ > 0 there exists a Borel measurable partition {A1,..., A,} of E such that
u(A;) <e (i=1,...,n), which in turn implies (2.16).
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Lemma 16 (Preserved sets)
(a) If F C E is measurable and P*[§, € F]=1Vt >0 (z € F), then

PHX, e M(F)]=1 Vt>0 (v € M(F)). (2.21)
(b) If F C E is a Gs-set and P*[§ € F, ¥Vt >0, & € FVt> 0] =1 (z € F), then
PHX, e M(F)VE>0] =1 (u € M(F)). (2.22)

Proof Statement (a) follows from (2.14.i) while (b) follows by applying Lemma 15 to the
inclusion map F' C E, where we use that the restriction of £ to F' is again a Hunt process.
The assumption that F' is a Gs-set guarantees that F' is a Polish space and that the event
{X, € M(F) ¥Vt > 0} is Borel measurable. |

We conclude this section by constructing superprocesses with time-inhomogeneous underlying
motion. Let & = (¢% ”‘) s2)€E he o time-inhomogeneous Hunt process as defined at the end
of the last section, and assume that & € B, (E), 8 € B(E). Let £ be the time-homogeneous
Hunt process in (2.6) and let X denote the (£, ¢, B)-superprocess. Using Lemma 13 we see
that Xt 0s®H ig concentrated on {s+t} x Es4y a.s. Vt > 0. Since X% ®H has continuous sample
paths and since {&; @ u: t > 0, u € M(E;)} C M(E) is closed, there exists a process X
with continuous sample paths in M(E) such that X, € M(E,4;) for all £ > 0 and

AP = 651 ® XDH. (2.23)

Set M := {(t,n) € [0,00) x M(E) : p € M(E})}. Tt is not hard to check that X =
(X )( WEM ig a time- inhomogeneous Hunt process with continuous sample paths, and

ol X)) = e~ Ustf) 1> 5>0, pe M(E,), f e Bi(E)), (2.24)

where (Us 1 f)seo =: v € B({(s,z) € [0,t] x E : x € Es}) solves the equation

Us = s,tf + /t Ps,r (ﬁrur - 047"“72") dr (S € [Oat])' (2'25)

Here a;(z) := &(t, z), Bi(z) == B(t, z) ((t,z) € E), and (P, t)t>s>0 is the (time-inhomogeneous)
semigroup associated with £. We call X' the (time-inhomogeneous) (£, o, B;)-superprocess and
we call (Us1)i>s>0 the (time-inhomogeneous) log-Laplace semigroup associated with X.

2.2.3 Historical superprocesses

Let ¢ = (¢%)*€F be a Hunt process in a Polish space E and let £ = (£5%)520, w€DE[0:s] he the
associated path process, defined as in (1.14). Identify, as usual, Dg [0, s] with the subspace of
Dg|0,00) consisting of paths stopped at time s, and define E C [0,00) x Dg|0,00) by

E:={(s,w):s >0, w € Dgl0,s]}. (2.26)

Then (£5)(s: W)EE ig 5 time-inhomogeneous Hunt process (see [DP91, Proposition 2.1.2]). If
X is a (£, a, B)-superprocess, then by definition the historical (£, o, 8)-superprocess X is the
(time-inhomogeneous) (€, é4, B;)-superprocess, where &;(w) := a(w(t)) and fB;(w) = B(w(t))
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((t,w) € E’) We are now in a situation where we can prove some of the elementary properties
of historical superprocesses mentioned in the Section 1.

Proof of formula (1.15) If é is the path process associated with a Hunt process £, started
at time s > 0 in w € Dg[0,s], then & := my1(€s44) (t > 0) gives back the original Hunt
process ¢ started in 7,(€;). Moreover, the map (,w) — w(t) from E into E is continuous.
(Note that this is true even though the map w — w(t) from Dg[0,00) into E is in general
discontinuous.) Therefore, Lemma 15 (the image property of superprocesses) shows that if
(A?t)tZs is the historical (¢, a, 8)-superprocess started at time s > 0 in ji € Dg[0, s, then

A

Xyi=Xgppomyl,  (£>0) (2.27)

is the (nonhistorical) (¢, a, B)-superprocess started in j o 7 L. ]

One of the driving ideas behind the development of historical superprocesses has been the
desire to have a means for distinguishing those parts of the population that descend from
different ancestors. However, all that a path in Dgl0,t] tells you is where in space these
ancestors have lived in the past. Let us say that the underlying motion £ has the distinct path
property if the law of (£s)s¢jo,g (considered as a Dgl0,t]-valued random variable) is atomless
for every t > 0 and for every initial state {;, = z € E. This is called ‘Property S’ in [Daw93,
Definition (12.2.2.6)], and occurs as formula (3.18) in [DP91]. In this case, one imagines that
different ancestors follow a.s. different paths, and therefore it should be possible to recognize
an ancestor from its path. As an immediate consequence of Lemma 14, one has the following;:
(An analogue of this result in a spatially homogeneous setting, but for more general branching
mechanisms, can be found in [DP91, Proposition 4.1.8 (b)].)

Lemma 17 (Atomless historical superprocesses) If¢ has the distinct path property, then
X, is atomless a.s. ¥t > 0.

The following lemma, which is an immediate consequence of Lemma 15 (the image property),
shows that one can always extend the space of a superprocess with Feller underlying mo-
tion, such that the new underlying motion has the distinct path property, and the historical
superprocess is atomless. (Compare [DP91, Remark below Proposition 3.5].)

Lemma 18 (Extended historical superprocess) Let G be the generator of a Feller process
€ in a compact metrizable space E, and let « € C+(E), f € C(E). Let n be a Feller process
in a compact metrizable space F such that 1 has the distinct path property. Let G' denote
the generator of the Feller process (€,7n) in E X F, where for given initial conditions, & and n
evolve independently. Put o/ (z,y) := a(z) and '(z,y) := B(z). Let 9y denote the projection
from Dgy«p[0,t] to Dg[0,t]. Let ji, p be finite measures on Dg|0, s|, Dr[0, s], respectively, and
assume that p is atomless. If X' is the historical (G', o, 8')-superprocess started at time s in
i ® p, then

X=Xl oyt (t>5) (2.28)

is the historical (G, a, B)-superprocess started at time s in ji. Moreover, 2\?{ is atomless a.s.
Vt > s and its underlying motion has the distinct path property.

(For example, one may take for 7 Brownian motion on the unit circle.)

We return to the more general case of Hunt underlying motion.
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Lemma 19 (Finite dimensional projections) Let X be a (¢, o, 8)-superprocess with log-
Laplace semigroup U = U(&, o, B) and let X be the associated historical (€, o, B)-superprocess.
Then, for alln >0, 0=1t) <t; < -+ < ty+1, and f € BL(E"2),

E't"’ i [e_ fDE[o,th] /\?tn+1 (dw)f(’wto, . ,wth)
N (2.29)
—e fDE[O;tn] M(dW)Utn+1_tnf(wto, ceey Wiy - )(wtn).

Conversely, any Markov process X with time-dependent state space Dgl0,t] and continuous
sample paths, satisfying (2.29), is the historical (€, o, B)-superprocess.

Proof The fact that X satisfies (2.29) can be found in [DP91, Theorem 2.2.5 (b)] or [Daw93,
Theorem 12.3.4]. Conversely, if a Markov process X satisfies (2.29), then, for all 0 < k < n,

Etk; [ fDEOtn+1] tn+1(dw)f(wtoa"'awtn+1)

_ 6_fDE[O,tk]“(dw)fk(wtoa“' ’wtk), (2:30)
where we have inductively defined functions f; € B, (E"*!) by
frnr1(zoy -y Tny1) = f(zoy- -, Tny1), (2.31)
fl(xo, - ,.Tl) 5:utl+1—tlfl+1($0a e, X, )(.’El) (k’ <Il< n)
The expectations in (2.30) clearly determine the transition probabilities of X' uniquely. n

Note that formula (2.30) says that, if F(w) := f(wy,,...,ws,,,) and U is the (time-inhomo-
geneous) log-Laplace semigroup of X, then

Z’A{tkytn+1F(w) = fk(wtoa e awtk)- (232)

Lemma 20 (Mean of historical superprocess) Let X be the historical (&, a, B)-super-
process. Then, for any p € M1(E) and m > 0,

B[] (dw) = m e Jo Blws)ds PH[(£,) ey € dw] (> 0). (2.33)

In particular, if « =0 then X, is deterministic and given by the right-hand side of (2.33).

Proof By Lemma, 12, the mean of a superprocess does not depend on the activity. Therefore,
it suffices to prove that the historical (£, 0, 3)-superprocess is deterministic and given by the
right-hand side of (2.33). Define X;(dw) (¢ > 0) by the right-hand side of (2.33). Let U =
U(&,0,3) denote the log-Laplace semigroup of the (non-historical) (£, 0, 8)-superprocess. Since
a = 0, U coincides with the linear semigroup V in formula (2.12). It follows that, for n > 0,
0=ty <t; <+ <tpy1,and f € By (E"?),

/ ‘XA‘trH—l (dw)f(wtoa s 7wtn+1)
DEel0,tn+1]

tn 1
- / medo™ B g, ) PRIE) seiog € dul
DE[O tn+1]
tn 1
— mEH [efo i 5(§s)d3f(£t .. __’gth)] (2.34)
tn 1
= mB [y PEN g BENs e e l(E)eion ]

:mE“[ Jo" B&) dsf(§toa---,§tn)] Z/D o ‘];etn(dw)f(wtoa---’wtn)a
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where

f(an s 7$n) = utn+1—tnf(w03 <oy Ty )(xn) (235)

Thus, X satisfies (2.29). Since X is a Markov process with continuous sample paths it follows
from Lemma 19 that (X});>0 is the historical (£, 0, 3)-superprocess started at time 0 in mu. B

The following lemma will be important in the proof of Lemma 10.

Lemma 21 (Preserved past property) Let X be the historical (€, a, 8)-superprocess started
at time s > 0 in ji € Dgl0, s].
(a) If F C Dgl0, s] is measurable, then

PSR, 0 7r[ g EM(F)=1 Vi=>s (b € M(F)). (2.36)
(b) If F C Dgl0,s] is a Gs-set, then

PR omgl e M(F)VE>s] =1 (b€ M(F)). (2.37)

(¢) If F,F° C Dg[0,s] are Gs-sets, then

,A ~ ! f—
Ps”[l{?@owﬁﬁs](F>>°} Ligongt (0 V8 282 s|=1. (2.38)
Proof Recall the definition of E in (2.26) and set F := {(t,w) € E : t > s, o,s](w) € F}.
If F is measurable then F is measurable. Moreover, since TMo,s] 18 the pointwise limit of a
sequence of continuous functions (compare [EK86, Proposition 3.7.1]), F is a Gs-set when F
is a Gs-set. The path process ¢ satisfies

POl E) e FVE>d, (LE ) eFVt>s=1 ((s,w)eF). (2.39)

Therefore (a) follows from Lemma 16 (a) and (b) follows from Lemma 16 (b). To prove (c),
use the branching property (Lemma 11) to write

Do o N o A T Y (2.40)
Then, applying (b) to F' and F*€,

th,u ° ,n_—l

~ ,1
[O’S](F) — XtS F”O’fr[

(F)-i—Xs JApefn 7r—1 (F) — <)2ts,1Fpo7r

[0,5] 1)4+0 Vt>s as.

(2.41)
Applying the strong Markov property to the stopping time inf{t > s : A?ts’lF H =0} it is not
hard to see that

0,5] (0,5

R !
{XS lFuoﬂ'[T]ls]>0} S 1{2:,1Fu07r|;),18]>0} Vt Z t Z S a.S., (242)

which proves (c). |
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2.2.4 Historical binary branching particle systems

Historical binary branching particle systems can be introduced in much the same way as
historical superprocesses. First, binary branching particle systems whose underlying motion
is a Hunt process ¢ with cadlag sample paths in a Polish space E, are defined through their
generating semigroup, which in turn is defined via the unique solution to a Cauchy integral
equation of the form (2.8). If { is such a Hunt process and b,d € B, (E), then the historical
(¢, b, d)-bin-bra-process X is the (time-inhomogeneous) (f b, d)-bin-bra-process, where £ is the
path process associated with ¢ and b(¢, w) := b(w(t)), d(t,w) := d(w(t)). Because this is very
similar to what we have already seen, we skip the details.

Many of the elemantary properties of historical superprocesses have analogues for historical
binary branching particle systems. For example, if the underlying motion has the distinct path
property, then the historical binary branching particle system at time ¢ > 0 is a.s. a simple
point measure. (One way to prove this is to use Poissonization and Lemma 17.) Also the
formula for the finite dimensional projections of a historical superprocess (Lemma 19) has a
straightforward analogue for particle systems.

2.3 Compensated h-transforms and weighted superprocesses
2.3.1 Preliminaries from semigroup theory

Let E be a compact metrizable space and let C(E) be the Banach space of continuous real
functions on F, equipped with the supremum norm, denoted by || - ||. Let S = (S;);>0 be
a semigroup of bounded linear operators on C(E). By definition, S is strongly continuous
if limy,0 ||Sef — fIl = 0 for all f € C(E). S is positive if f > 0 implies S;f > 0 (¢ > 0).
For A € R, let us say that S is A-contractive if ||Sif|| < eM||f]| (¢ > 0). The following
version of the Hille-Yosida theorem can easily be derived from [EK86, Theorem 4.2.2 and
Proposition 1.1.5.(b)].

Lemma 22 (Hille-Yosida theorem) A linear operator G on C(E) with domain D(G) is the
generator of a strongly continuous, positive, A-contractive semigroup S on C(E), with A € R,
if and only if
(i) G is closed,
(i) D(G) is dense in C(E),
(ili) Gf(z) < Af(z) whenever f € D(G) assumes its mazimum over E in a point x € E
with f(x) >0
(iv) For all f € D(QG) there ezists a continuously differentiable u : [0,00) — C(E)
such that ug = f, us € D(G), and %ut =Gu; (t>0).
(2.43)
The function u in (iv) is unique and given by Sif = us (t >0, f € D(Q)).

If S is a strongly continuous, positive semigroup, and instead of the A-contractivity, S satisfies
the stronger requirement that S;1 =1 (¢ > 0), then S is called a Feller semigroup.

Let G be the generator of a strongly continuous, positive, A\-contractive semigroup on C(E)
and let o € C4(FE), p € C(E). By definition, a mild solution to the Cauchy problem (1.7) is a
continuous function u : [0,00) — C(E) satisfying

uy = Sif + /Ot Si_s (ﬂus — auf) ds (t>0). (2.44)
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By definition, u is a classical solution to (1.7) if ¢t — wu, is continuously differentiable in C(E),
us € D(G)NC(E) for all t > 0, and (1.7) holds. Every classical solution is a mild solution.
For classical solutions one has the following comparison result.

Lemma 23 (Sub- and supersolutions) Fiz T > 0 and assume that u is a classical solution
to (1.7) on [0,T]. Assume that @ : [0,T] — C(E) is continuously differentiable, 4y € D(G) for
allt € [0,T] and

2.45
IaO Sfa ( )

where f € C(E). Then tup < up. The same holds with all inequality signs reversed.

{ Sy <Gy + Py — au? (€ [0,7T)),

Proof This is a standard application of the maximum principle. Set g; := Gﬂt—l—ﬁﬂt—aﬂ%— %dt
and Ay :=u; — 4 (¢ € [0,T]). Then A solves

(2.46)

{ %At =GAi+ AL — & (ut + ﬂt)At + gt (t € [O,T]),
Ao=f — 1.

We will show that Az > 0. Let y be a constant such that A+3(z) —a(z) (u(x) + i (z))+v < 0

for all (¢,7) € [0,7] x E, where X is the constant in property (2.43.iii). Then A; := €A,
solves

{ %At:(G—)\)At—l‘ {N+ B — a(ug + @) + 7} A + gre? (t € [0,T]), (2.47)

Ao=f — ag.

Imagine that A;(z) < 0 for some z € E. Then A must assume a (strictly) negative minimum
in some point (¢,z) € (0,7] x E. But in such a point one would have %At(m) < 0 while
(G — N Ay(z) > 0 by property (2.43.iii) and {\ + (z) — a(x) (ug(z) + s () +v(z) YAy () > 0,
which contradicts (2.47). The same proof works with all inequality signs reversed. n

Existence of solutions to (1.7) is guaranteed by the following lemma.

Lemma 24 (Classical and mild solutions to a semilinear Cauchy problem) For each
f € C(E) there ezxists a unique mild solution u of (1.7) up to an ‘explosion time’ T, with
limpr [Ju|| = oo if T is finite. Upf = uy (t < T') defines a continuous map from C(E) into
itself. If f € D(G) then the mild solution to (1.7) is a classical solution. The time T is infinite
if f >0, in which case also u >0, or if a = 0.

Proof The statements about mild solutions follow from [Paz83, Theorems 6.1.2 and 6.1.4] and
the statement about classical solutions from [Paz83, Theorems 6.1.5]. If f € D(G) N C4(E),
then using Lemma 23 it is easy to prove that the classical solution to (1.7) satisfies 0 < u <
eOHIBIY| £, Since D(Q) is dense, C,(E) is the closure of its interior, and U; is continuous,
the same bounds hold for mild solutions. The fact that solutions do not explode in the linear
case o = 0 follows from [Paz83, Theorem 6.1.2]. |

2.3.2 Superprocesses with Feller underlying motion

Let E be compact and metrizable, G the generator of a Feller semigroup (P;)s>o on C(E),
a € C+(F) and B € C(E). Then one has the following:
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Lemma 25 (Feller property of superprocess) Let X be the (G, «a, 3)-superprocess with
log-Laplace semigroup U = U(G,a, B). Then X is a Feller process. For each f € C.(F), the
map (t,x) — U f(z) from [0,00) X E into [0,00) is continuous.

Proof Since E is compact, the space M(E) is locally compact. By [Paz83, Theorem 6.1.4],
(t,z) = Uy f(z) is jointly continuous in ¢ and x whenever f € C,(FE). Therefore, and by (1.8)

E””[e_<xtn’f>] —>E“[6_<Xt’f)] as  Up = Y, by —t (f € CL(E)). (2.48)

By the Stone-Weierstrass Theorem, the linear span of all functions of the form y — el
with f € C(F) and f > 0 is dense in the space Co(M(E)) of continuous functions on M(FE)
vanishing at infinity. Thus, (2.48) implies that LH~ (X}, ) = L#(X}) whenever p, = p, tn, — t.
It is not hard to see that the semigroup of X maps functions vanishing at infinity into functions
vanishing at infinity, and therefore X is a Feller process. n

2.3.3 Compensated h-transforms of Feller processes

Proof of Lemma 2 (first part) Let (P;);>0 be the Feller semigroup with generator G.
Define a linear semigroup S = (S;);>0 on C(E) by

1
Sif = TR(f) (20, [ €C(B)). (2.49)
Since h is bounded away from zero and (P;);>¢ is a Feller semigroup, lim;_,¢ ||S¢f — f|| = 0
for all f € C(E), ie., S is strongly continuous. Set A := [|§%||. An elementary comparison

argument based on Lemma 23 shows that P,h < eMh (¢t > 0). It follows that ||S;f|| =
I+ PRI < IFIIEPe(R)]| < X £l so S is A-contractive. Obviously, S is positive. It is easy
to see that the generator G of S is given by
Gf = %G(hf) with D(G) := {f € C(E) : hf € D(G)}. (2.50)

Since S is a strongly continuous, positive, A-contractive semigroup, its generator G satisfies
the properties (2.43.i-iv). Let G" be the operator defined in (1.16), ie., G* = G — %
with D(G") = D(G). Using Lemma 22 we see that G" is the generator of a 2\-contractive
semigroup. Indeed, if f € D(G") assumes a nonnegative maximum in z, then G"f(z) =
(G — %) f(z) < 2\f(z), and therefore G" satisfies property (2.43.iii). Moreover, G" satisfies
property (2.43.iv) by Lemma 24. It is easy to check that u; := 1 (¢ > 0) solves %ut = Ghu,
and therefore G generates a Feller semigroup.

The fact that the laws of the Feller processes &,&" with generators G, G" are related by
(1.17) will be proved in the next section.

2.3.4 Weighted superprocesses

Proof of Lemma 3 Denote the log-Laplace semigroups of X and X" by U = U(G, o, B)
and UM = U(G", ha, B + G2), respectively. By Lemma 24, for every f € D(G") NC4(E), the
function u; = U(hf) is a classical solution to the Cauchy problem

9, _
{ grur = Gug + fuy —aui (¢ >0), (2.51)

Uug = hf
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A little calculation shows that uf := %ut is a classical solution to the Cauchy problem

{ Ffognt s Ot hetir 20, o

and therefore U} f = +Uy(hf) for all f € D(G") N C4(E). Since D(G") is dense in C(E) and

C+(E) is the closure of its interior, it follows that

UN() = TUhS) (620, € Cy(E)). (2.53)

It is clear that the process X" defined in (1.18) is a Markov process with continuous sample
paths. To see that X" is the historical (G", ha, B+ %)—superprocess, by Lemma, 19, it suffices

to check that X" satisfies (2.29) for the log-Laplace semigroup U4”. This is easily done, since
we have

E[ — JDp0,tna] b (dw) f(wyy, ... wy,,,) ‘Xt’Z _ M]
_ E[e_ Jo0,tmsa] (Wt yy) Xty (dw) f (Wi, - -y Wi ) ‘ (hom )&, = M]
_ E[e_ Jp0,tmia] Ko (dw)(wy ) (Wi -y Wiy ‘ftn _ (ho th)_lu] (2.54)
_ o Jpsiot hwe,) ™ (dw)lUs, gy~ AR () fwig, - - - s Wty ) Huwe,)
e JDp0.n] p(dw)df, _y f(wyg, ... wy,, ')(wtn)_

Proof of Lemma 2 (continued) We need to prove formula (1.17). Let X be the (determin-
istic) historical (G, 0,0)-superprocess started in Xy = §, and set

XMAw) = h(w) X (dw) (¢ >0). (2.55)

By Lemma 3, X" is the historical (G*,0, %)-superprocess started in Xy = h(z)d, and there-
fore, by Lemma 20,

(i) /?t(dw) PT[(&s)sep0,4 € dw],

N t Gh (2.56)
(i) A&P(dw)=h(z) elo & 05 pie) o € du),
Combining (2.55) and (2.56) we arrive at (1.17). n

2.4 Proofs of the main results
2.4.1 The infinitesimal survival probability
In this section we prove Proposition 5.

Lemma 26 (Eventual extinction) One has Uioo | p as t 1 co. If sup,cpUioo(z) < oo for
somet > 0, then

PHX, =0 t-eventually| = e~ {u;p) (b€ M(E)) (2.57)
and Ugp = p for all t > 0.
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Proof Since the zero measure is an absorbing state, {X; = 0} = {X, = 0 Vr > t} a.s. and
therefore {&;, = 0} 1+ {X; = 0 t-eventually} a.s. as ¢, 1 co. Thus, taking the limit in (1.22),
we see that Uoco | p. If sup,cpUioo(z) < oo for some ¢t > 0, then (u,Uioco0) | (u,p) for all
p € M(E) and therefore, taking the limit in P*[X; = 0] = e (¥ we arrive at (2.57).
Formula (1.8) shows that U; is continuous with respect to bounded decreasing sequences and
therefore Usp = Uy (limgpo, Us00) = limgpo, Upts00 = p for all ¢ > 0. |

Lemma 27 (Extinction versus explosion) If sup,.pUioc0(z) < oo for some t > 0, then

P“[tl_i)m (X, 1) = 00 or Xy = 0 t-eventually | = 1 (€ M(E)), (2.58)
and
tlim Ui f(z) = p(x) Ve e E, feC(E), f>0. (2.59)

Proof The proof of [FS02, Lemma 12] carries over to our situation and shows that (2.58)
holds. This implies that for any z € E and f € C(E) with f > 0,

tl_i)m Uif(z) = tl_i)m —log B% e~ %] = —log P%[X; = 0 t-eventually] = p(z). (2.60)

Even though the underlying motion has the Feller property and «, 8 are continuous functions,
p need not be continuous in general, as is illustrated by the following examples, which we give
without proof.

Example 28 (Discontinuous infinitesimal survival probability) Let ¢ be the determin-
istic Feller process in [—1,1] given by the differential equation

re=1-(&)° (t>0). (2.61)

Let X be the superprocess in [—1, 1] with underlying motion &, activity a(x) := 1, and growth
parameter f(x) := —x. Then

1 ifz=-1

0 fren 26

—log Pl [Xt =0 t—eventually] = {
Let Y be the superprocess in [—1,1] with underlying motion &, activity a(z) :== =z V 0, and
growth parameter B(z) :=x V 0. Then

oo ifr=-1

1 ifze(-1,1). (2.63)

—log P’ [yt =0 t—eventually] = {

Nevertheless, one has the following:

Lemma 29 (Continuity of the infinitesimal survival probability) If sup,cgUioo(z) <
oo for some t > 0 and infcp p(z) > 0, then p is continuous.

Proof Our strategy will be to prove that the event that X gets extinct depends in a continuous
way on the path of X, and therefore, by the Feller property, on the initial condition. To do
this, we show that by observing X for a finite time, one can be almost certain whether X will
get extinct or not.
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Set

p:= inf p(z) and P := supp(x). (2.64)
- el 2€E
Note that by (2.57),
—{p, 1)p < P'[X, =0 teventually] < e_w’ Lp (b € M(E)). (2.65)

Fix ¢y € E. We will show that p is continuous at zg. Let 0 < ¢ < C < oo and ¢,&” > 0
be arbitrary. Choose continuous functions fo, f1, feo from [0,00) into [0, 1], summing up to
one, such that 1jgc/9) < fo < 1jo,¢) Lieo] < f1 < 1pe/2,2¢), and 1pce) < foo < liojoo)- By
Lemma 27, there exists a 1" > 0 such that

E%o[fy((Xr,1))] < €. (2.66)

Let d be a metric generating the topology on E. By Lemma 25, we can choose § > 0 such
that for all z € E with d(z,z¢) < d:

| oL, (er, )] = B[, (%, D) <" (dlw,0) <6, 7 =0,1). (2.67)
Write

Po= [Xt =0 t-eventually Edm[ Z fr((Xp, 1) l{Xt:O t-eventually}]

r=0,1,00
= Z E’ [fr(<XT,1))PXT [X; =0 t—eventually}]. (2.68)

r=0,1,00
Then it follows from (2.65) that

E% [fo((Xr,1)] — (1 — e~P) < E* [fo({(Xr,1))] e ~P

< po [Xt =0 t-eventually]

2.69
< B [fo({(Xr, 1))] + B [f1((Xr, 1)] + B [fuo((Xr, 1))] e =2 (2.69)
< B [fo((%r, 1))] + (€ +") + e OP  (d(z,m0) < 0).

Therefore, for all z € E with d(z,zy) < 0:

‘P% [X, =0 t-eventually] — P [X, =0 t-eventually] ‘
< ‘P% [X, =0 t-eventually ] — E%o [fo((Xr,1))] ‘
+ | B0 [fo((Xe, 10)] = B [fo((¥r,1))]| (2.70)
‘Edw fo((Xr,1))] — P [X, =0 t-eventually]

<S(Q-eP)+(€+e"+e D)) +e"+ (1 —e D)+ (e + " +e7D)).

Since 0 < ¢ < C < oo and ¢’,€" > 0 are arbitrary, the right-hand side of (2.70) can be made
arbitrarily small. Thus, we have shown that for each € > 0 there exists a § > 0 such that

e P(@0) _ ¢—P®)| <e Vi E with d(z,z0) < 4. (2.71)
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This shows that p is continuous at zg. |

Proof of Proposition 5 Parts (a) and (b) follow from Lemmas 26 and 27. To prove part (c),
note that if f € C(F) satisfies Uy f = f for all t > 0, then u; := f (¢ > 0) is a mild solution
to (1.7), ie.,

t
f:Pthr/ P,(Bf —aff)ds  (t>0). (2.72)
0
Thus, )
lim ¢ \(Pif = f) = ~Jim ¢ [ Pu(8] — s ds = —Bf +af? (2.73)

which proves that f € D(G) and that (1.23) holds. Conversely, if f € D(G) N C4(E) solves
(1.23), then u; := f is a classical solution to (1.7) and therefore U;f = f for all ¢ > 0.

If inf, e p p(z) > 0, finally, then p is continuous by Lemma 29 and therefore p solves (1.23)
by parts (b) and (c). Moreover, part (a) shows that in this case there exists only one positive
fixed point of . |

Lemma 8 shows that the assumption that sup,cpUioo(z) < oo for some ¢t > 0 cannot be
dropped from Theorems 6 and 7. However, the reader may wonder if this condition is not
implied by the simpler-looking condition sup,¢y p(z) < co. To show that this is not the case,
we include the following example.

Example 30 (Nonuniform convergence of Uioo) There exists a generator G of a Feller
process in a compact metrizable space E, and a € C4(F), such that U = U(G, a,0) satisfies

(1) Upoo(z) < o0 Ve € E, t >0,
(i) U0 L0 as t 1 oo, (2.74)
(iii) supyecpUioo(z) =00  VE>0.

Proof Take E := [0,1]2. Define a Feller process £ = (£%)*€F in E by

£V = (z,ye ) ((z,y) € [0,1] x [0,1)),
. - (2.75)
& :={ Exj i)-u_m) Ei § Tj’ (z € [0,1),

where 7, (z € (0, 1]) is an exponentially distributed random variable with mean z, and 7 := 0.
It is not hard to see that £ is a Feller process. Let G denote its generator. Choose a € C, (F)
such that «(0,1) =0 and « > 0 elsewhere. Set

a(z,-) = inf{a(z,y) : y € [0,1]} (z € [0,1]). (2.76)

For fixed z € [0,1], the process ¢ restricted to {z} x [0, 1] is an autonomous Feller process,
and a(z,-) > 0 for > 0. Therefore, using (1.30), one has

Uroo(z,y) < (t>0, (z,y) € (0,1] x [0,1]). (2.77)

afz, )t

The superprocess X started in §(g,) (y € [0,1]) is concentrated on (0,ye ) at time ¢, if it
survives. Therefore, applying (1.30) to the process (X});>¢, we have for each € > 0 that

Uroo(0,y) < (t >¢€), where 6:=inf{a(0,e™"):t¢€ [e,o0]}. (2.78)

ot —e)
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This proves (2.74.i) and (2.74.ii). Now consider the process (1(g,11x{1}&t)¢>0- It is not too
hard to see that this is an autonomous superprocess without (i.e., with constant) underlying

motion, activity a(-,1) and growth parameter §(x) := —%. Therefore, (see (1.30)),
B(x) z
1 1) = = t 1]).
L{t(oo (0,1]><{1})(w’ ) Oé(.’L', 1)(1 — e_ﬂ(x)t) Oé(.’L', 1)(et/m — 1) ( > O’ TE (05 ])
(2.79)
We can additionally choose a(z,1) := e /%" (z € (0,1]). Then
;%L{t(ool(o,l]x{l})(x, 1) = (t>0). (2.80)

It follows that sup,c g Ui00(z) > sup,e Ui (001(g,1)x13)(*) = oo, which proves (2.74.iii).

2.4.2 Surviving lines of descent

In this section we prove Lemma 8. To prepare for this, we need some facts about Poisson
point measures. Let F be a Polish space. Then, for every u € M(FE), there exists a unique
(in distribution) random variable Pois(u) with values in N (E), such that

B[(1- fPosW) = =) (5 e BL(B)). (2.81)

If p is atomless, then Pois(u) a.s. takes values in the space N*(E) := {v € N(E) : v({z}) <
1 Vz € E} of simple point measures on E. Note that N*(E) is an open subset of N'(E), and
therefore a Polish space in the induced topology. We identify N*(E) with the space of finite
subsets of E. If y € M(E) is atomless, then a N*(E)-valued random variable v is a Poisson
point measure with intensity y if and only if (see [MKMT78, Proposition 1.4.7])

Plv(A) =0 = e HA)  (4eBE)). (2.82)

It is not hard to see that the event {supp(p) is finite} C M(E) is measurable and that
p + supp(p) is a measurable map from {supp(u) is finite } into N*(E). We start with a
technical lemma.

Lemma 31 (Finitely supported measures) Let E be a Polish space, let pi be an atomless
measure on E, and let Z be an M(E)-valued random variable such that

Plz(A) =01 =e HA)  (4eBE). (2.83)

Then ;
Plsupp(Z2) is finite] = { é Z; Zg; - .

Moreover, if u(E) < oo, then supp(Z) is a Poisson point measure with intensity p.

(2.84)

Proof Assume that y(F) < oco. Choose a metric, compatible with the topology on E, such that
the completion of F in this metric is compact. (This is possible on any separable metrizable
space.) Then F is totally bounded in this metric and therefore, for each n, we can choose a
finite covering of E with open balls of radius % By taking differences we can find, for each
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n > 1, a finite measurable partition A™ = {A ,(;:L)} of E such that each set Agn) has
radius < % It follows that

k k
E[gl{zwﬁn))w}] = Zz_; (1- ey < u(p). (2.85)

We can choose our partitions such that At is a refinement of A™. In this case

kn

) L samysgy T18uPP(Z)] asntoo as. (2.86)
i=1 ‘

Combining this with (2.85) we see that supp(Z2) is finite a.s. Moreover, formula (2.82) shows
that supp(Z) is a Poisson point measure with intensity u.

Assume, on the other hand, that y(E) = co. Since p is atomless, there exist? measurable
disjoint sets (B;);>o such that p(B;) > 1. Formula (2.83) shows that the events {Z(B;) > 0}
are independent and that

ip[ >0:§: 1— e MBI = . (2.87)

Therefore, by Borel-Cantelli,
P[Z(B;) > 0 for infinitely many 3] = 1, (2.88)

which proves that P[supp(Z) is finite] = 0. |

The following lemma gives a historical version of formula (1.11.i). Moreover, it shows that the
particles in Pois((U; f)u) are, in a sense, the ancestors of the particles in Pois(fX}).

Lemma 32 (Poissonization of historical superprocess) Let X be the historical (G,a,B)-
superprocess started at time s > 0 in i € M(Dg[0,s]). Assume that ji is atomless. If U is a
N (Dg|0, s + t])-valued random variable such that, for a given f € BL(E) and t > 0,

P[0 € -|(&X)s<r<stt) = P[Pois((f o Tsyt)Xst) € - |Xsys]  as., (2.89)
then ¥ o 71'[615] is a Poisson point measure with intensity (U f o 7).

Proof Since /i is atomless, by (2.82), it suffices to show that for all A € B(Dgl0, s])

Plpomgl (4) = 0] = e~ US o m)it(4), (2.90)
By (2.89),
N v -1
P[I) o 71_[6,15] (A) — O] — EBSH [6_(f o 7Ts+t)Xs+t o 7T[0,s] (A)] (2_91)

2To see this, choose partitions A™ as above. For each n, there must exists an i, such that p(A(")) =0
Since A™*1) is a refinement of A, we can organize it so that A(n) D AE"LI) Set A® ==, A("), which
may be the empty set or a set consisting of one point. Then u(E\AEZ)) 1T u(E\A*®) = oo since p is atomless.
Thus we can find an n such that u(E\Al(v:)) >1and u(Az(:)) = 0o. Repeating this procedure, we see that the

set Ag:) may be further split into a piece with mass > 1 and a piece with mass infinity, and the statement
follows by induction.
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By the branching property (Lemma 11) and by Lemma 21 (a), we can rewrite the right-hand
side of this equation as

ES laji [e_(f °© 7Ts+t)£s+t °© W[B}s] (A)]Es, lacfi [e_(f °© 7Ts+t)A?s+t ° W[B}S] (A)]
(2.92)

A~

_ S 1A/1[e—<(f°7fs+t)Xs+ta 1)] .

From the relation between a historical superprocess and its associated superprocess (2.27) it
is obvious that

ES Lafi [e—<i’s+t o, N = e=(ap) oms L US) (2.93)

It follows that
Ly’ [e_(f 0 Moy ) Kot © o) (A)] — o~ Ufoms)i(A) (2.94)
Combining this with (2.91) we see that (2.90) holds. n

The proof of Lemma 32 has the following corollary.

Corollary 33 (Surviving lines of descent) Let X be the historical (G, a, B)-superprocess
started at time s > 0 in i € M(Dg[0, s]). Assume that i is atomless. Then, for any t > 0,

Plsupp(X,1 o 7'('[_015}) is finite] =1 < {(fiom, L,U0) < 0. (2.95)

Moreover, if (fi o 7, *,Uo0) < 0o then supp(Xsy o W[Bls]) is a Poisson point measure with
intensity (Upoo o ms)fi.

Proof Letting f 1 oo in (2.94) we see that

PHRA,  ompli(A) = 0] = e~ U0 e TIAA) (4 € B(Dg[0, 5])). (2.96)
Now the statements follow from Lemma 31. [ |

Proof of Lemma 8 If sup,.pU;00(z) < oo for some ¢t > 0, then (u,U;00) < oo for all
p € M(E). On the other hand, if sup,cpUioo(z) = oo for all ¢ > 0, then we can find
p € M(E) such that (u,Uzoo) = oo for all ¢ > 0. To see this, choose strictly positive (€5)n>0
such that ), -,e, = 1. Choose t, 1 oo and z,, € E such that U, oco(zy) > el and choose
p =3 p>0 Enda,- Then (u, Uy, 00) > 37~ emUs, (Tm) > 305 EmUty, (Tm) = o0.

The log-Laplace semigroup U’ = U(G', o/, B') satisfies Uj(f o)) = (U f) o) where 1) denotes
the projection from E’ to E (see Lemma 15). Therefore (i) implies that (u ® £,Ujoco) < oo
for some t > 0, which by Corollary 33 implies (ii). On the other hand, if (i) does not hold,
then there exists a y € M(FE) such that (u ® £,U{cc) = oo for all ¢ > 0, and in this case
Corollary 33 shows that (ii) does not hold. Finally, since X; = &/ o 9y}, (ii) implies (iii). ™

Proof of Lemma 10 We prove the following, slightly more general result.

Lemma 34 (Immortal lines of descent) Let X be the historical (G, a, B)-superprocess
started at time 0 in p € M(E). Assume that ¢ > 0 and that sup,cpUroo(z) < oo for all
t > q, where U =U(G,a, ). Then

(i) supp(X, o 7r[_01t]) is finite Vt,r > 0 such that t +q <r a.s.
(ii) supp(&X; o W[B}t]) > supp(X o W[B}t]) Vi,r,7" >0 such that t + g <r <7’ as.

(2.97)
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Proof Let us introduce the shorthand
X = Xomgly  (0<t <), (2.98)

Let D C [0,00) be countable and dense. The implication < in (2.95) also holds if ji is not
atomless; this can be proved by extending the space F as in Lemma, 8. Therefore,

supp(é\?‘t,r) is finite Vi,re€ D, t+qg<r a.s. (2.99)

Let O be a countable basis for the topology on Dg[0,#]. Conditioning on X; and applying
Lemma 21 (c), we see that

Lz, 0500 < Yt 0500 7 ">0,teD, 00, t<r<r as. (2.100)
It follows that
supp(.i’t,r:) C supp(/'\?t,r) Vr,r'>0,teD, t<r<r as. (2.101)
This implies that
supp(X) C supp(X,) V' >0, t,r €D, t+qg<r<r as, (2.102)
where the right-hand side is finite by (2.99). Therefore (2.99) can be sharpened to
supp(AA.’t,,n:) is finite Vr'>0,t€ D, t+qg<7r as. (2.103)
Since
supp(/\?t/,rf) = T[o,¢] (supp(i’t,rz)) Vi'or'>0,teD, t+q<t+q<r as, (2.104)
formula (2.103) can be further sharpened to
supp(é\?t/’wr) is finite V¢',7' >0, ' +q¢<r’ as. (2.105)

This proves (2.97.1). Moreover, by (2.101) and (2.105)

supp(Xy ;) = g, (supp(Xy,1)) C o ) (supp(Xy,)) = supp(Xy )

(2.106)
Vi'r,r' >0, teD, ' +qg<t+q<r<r as.
Therefore (2.102) can be sharpened to
supp()f”t:,rf) C supp()\?t:,,«) vi'rr' >0, ' +g<r<r as., (2.107)
which proves (2.97.ii). n
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2.4.3 Proof of the main theorems

Our first and crucial proposition in this section shows that it is possible to embed a collection
I of ‘immortal’ lines of descent in certain historical superprocesses. We then identify these im-
mortal lines of descent as a historical binary branching particle system. Finally, we generalize
our results in a number of steps, until we arrive at the statements in Section 1.5.

Recall the definition of the distinct path property before Lemma 17.

Proposition 35 (Embedded tree) Let X be the historical (G, a, @) -superprocess started at
time 0 in u € M(E). Assume that p is atomless and that the Feller process with generator G
has the distinct path property. Then X may be coupled to a random set I C Dg[0,00), such
that the random sets Iy := {mp y(w) : w € I} are finite for all t > 0 and satisfy

P[I; € -|(Xs)o<s<t] = P[Pois(X;) € -|X] as. Vt>0. (2.108)

If in addition, U = U(G,a,a) satisfies sup,epUpoo(z) < oo for some t > 0, then p :=
limyyoo Usoo = 1 and I may be chosen such that moreover

I, = supp(&, o w[?)lt]) r-eventually YVt >0 a.s. (2.109)

Proof Identify, as usual, finite subsets and simple point measures. For each T > 0, let I(7)

be a random finite subset of Dg[0,T] such that

P[I™) € -|(X)o<i<r] = P[Pois(¥r) € - |Xy]. (2.110)
Put .
L7 = {mppg(w) 1w € 1M} = supp(IM omly (0t <T). (2.111)

Using the fact that X, is a.s. atomless by Lemma 17, conditioning on (/'\?s)ogsgt, applying
Lemma 32 and the fact that the function 1 is a fixed point of U (G, , @), we find that

PII™) € - |(X,)o<s<t] = P[Pois(X)) € -|X)] as. VO<t<T. (2.112)

Thus, we can satisfy (2.108) up to a finite time horizon 7. To let T' 1 oo, we need to take a
projective limit. For 0 < S < T, define a map s : N*(Dg[0,T]) - N*(Dg[0, S]) by

sz,T(J) = {ﬁ[o,s](w) Tw e J} (J € N*(DE[O,T])) (2.113)

Then (2.112) shows that the random variables ((/ff't)ogth, IM))p satisfy the consistency re-
lation L£((X)o<i<s, psr(IT))) = L((X)o<i<s, 1) (0 < § < T). Note that ((&)o<i<r, ")
takes values in the Polish space Cp0,00)[0,7] X N*(Dg[0,T]). Let N () be the space of all
countable subsets I C Dg|0,00) such that ¥r,.0(I) := {mor(w) : w € I} is finite for all
T > 0. Equip V() with the o-field generated by the mappings 97,0 : N(®) — N*(Dg[0,T))
(T > 0). Taking the projective limit of the variables ((22t)0<t<T, I (T))T>0, we can construct 3
a random variable (X, I) with values in Cp g 00)[0, 00) x () such that ((X})o<i<t, ¥1,00())

3Let (En)n>1 be Polish spaces and let 9,,m : En — E; be measurable maps satisfying ¥m k © ¥n,m = ¥n
(k <m < n). Let Ex be an arbitrary set and let ¥oo,n : Ecc — En (n > 1) be maps satisfying oo,n © ¥Yn,m =
oo,m (1 < m < n). Assume that for each sequence (zn)n>1 of points in (Ey)n>1 satisfying ¢n,m(n) = Tm
(1 <€ m < n), there exists a unique point * € Es such that £, = Yeo,n(z) (n > 1). Equip Fo with the
o-field generated by the maps {¢)oo,n : m > 1}. Let (ttn)n>1 be probability measures on the spaces (En)n>1
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is equal in distribution to ((A?t)ogth, IM) for all T > 0. Tt follows that X is the historical
(G, a, av)-superprocess started at time 0 in gy € M(E) and I is a random set satisfying (2.108).

Assume that sup,cpUi00(z) < oo for some ¢ > 0. We must show that we can choose I
such that moreover (2.109) holds. First note that the function 1 is a positive solution to (1.23)
and therefore, by Proposition 5 (a), p = 1. Choose ¢ > 0 such that sup,¢pUio0(z) < oo for
all ¢ > q. Then, by Lemma 34, the random sets supp(é\?r ° W[B}t]) are finite and nonincreasing

inr >t+q for all ¢ > 0 a.s. Define random finite subsets I; C Dg[0,t] by

L= supp(é\?TOW[Blt]) V>0 a.s. (2.114)
r>t+q

Then (2.109) is fulfilled. Define I C Dg[0,o0) by
I :={w € Dgl0,00) : moq(w) € I; Vt > 0}. (2.115)

Then
Iy ={moy(w) :w eI} Vt>0 as. (2.116)

By Corollary 33,

P[supp()?ron[g}t]) € - |(2\?s)0555t] = P[Pois((ur_tooowt)é\?t) € - |2\?t] a.s. Vt,r>0,t+g<r.
(2.117)
Taking the limit 7 1 co we see that also (2.108) holds. n

Our next step is to identify the embedded tree I in Proposition 35 as a binary splitting particle

system. For ¢ > 0, define equivalence relations ZandRon T by
t— .
wr~v it wgy(w) = T (v),

t+

(2.118)
w o~ v iff 7 pqe)(w) = 7,44 (v) for some € > 0,

and let I;_, I; denote the collections of t, = equivalence classes in I, respectively. Define
counting measures X;_, X;+ on Dg|0,t] by

Xt— = Z 67r[0,t](w) (t > 0)’
wel;_
. (2.119)
Xii= > ngyw) (t>0).
wely

It is not hard to see that X = (Xt)tzo has right-continuous sample paths with left limits given
by X;—, and that
I;=X; as. Vt>0. (2.120)

Note that the ‘a.s.” and ‘vt > 0’ cannot be interchanged here, since X; is not a simple point
measure at those (random) times when |I;| < |I 4|, i-e., when splitting occurs.

such that pm, = pn o 11);},1 (1 £ m < n). Then there exists a unique probability measure po on Eo such that
Poo © Yoo = pn (n > 1). To see this, construct the product space [[>°, E, and let 7, (k > 1) denote the
projection from [[°2, En to H’Z:I E,. Define ¢y, : E, — HZ:l E, by ¢r := (Y1, ..,%k,k). Define measures
fir on HZ=1 E, by jix := pr o ¢;'. The measures (fir)r>1 are consistent, and therefore, by Kolmogorov’s
extension theorem, there exists a unique probability measure fioo on [[2; Eyn such that fiec o7 = fix (kK > 1).
Set Ex := {{(zn)n>1 € [I2, En : Yrp(zr) =21 V1 <1<k < N} and Eoo : [y, E- It is easy to see that fico
is concentrated on Ey for each N > 1 and therefore [loo is & measure on E,.. There exists a natural measurable
bijection from Fo t0 Eo and fie induces a measure po, on Eo with the desired properties.
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Lemma 36 (Identification of the embedded tree) X is the (G,c,0)-bin-bra-process
started at time 0 in Pois(u).

Proof By (2.120) and (2.108),
P[X; € -|(Xs)o<s<t] = P[Pois(X;) € -|X] as. Vt>0. (2.121)

Let X' denote the (G, ,0)-bin-bra-process started at time 0 in Pois(u). The log-Laplace
semigroup (Z/?s,t)og s<t of the historical (G, a, )-superprocess X and the generating semigroup
(Us,t)og s<t¢ of the historical (G, a, 0)-bin-bra-process X' are defined by the same Cauchy inte-
gral equation, hence

Ussf =Usuf  (0<s<t, f € Bpy(Del0, 1)) (2.122)
Therefore, we may reason exactly as in the proof of Lemma 1 to see that
POPOsW Xl ¢ .1 = P%[Pois(X;) € -] (>0, p € M(E)). (2.123)
Combining (2.121) and (2.123) we see that
PX;e-]=P[Xje-] (t>0). (2.124)

It follows from our definition of X that

~

X, = supp(X; o 71'[615]) as. V0<s<t. (2.125)

By a straightforward analogue of Lemma 21 (a) for historical particle systems, supp(X! o
w[_ols]) C supp(X!) a.s. V0 < s < t. Since the death rate of X' is zero, particles cannot get

0 S]) = supp(X’) a.s. VO < s < t. Since X! is a.s. a

simple point measure (which follows from (2.124) and the fact that X, is a.s. a simple point
measure), X' satisfies, in analogy with (2.125),

extinct, and therefore in fact supp(X} o

A~

X! = supp(X! o 71'[6’18]) as. V0<s<t. (2.126)
It follows from (2.124), (2.125) and (2.126) that
P(Xyy,...,Xp,) € -] =P[(X},....,X] )€ ] (0<t1 <ty <--<tn) (2.127)

Since X and X’ have right-continuous sample paths, X and X' are equal in distribution. =

Proposition 37 (Generalization to o > 3) Let X be the historical (G, a, B)-superprocess
started at time 0 in p € M(E). Assume that u is atomless and that the Feller process with
generator G has the distinct path property. Assume that v := a— 8 > 0. Then X can be
coupled to the historical (G, ,~)-bin-bra-process X started in Xy = Pois(u) such that

P[X; € - |(Xs)o<s<t] = P[Pois(&;) € -|X] as. Vt>0. (2.128)

If in addition U = U(G,a,B) satisfies supyecpUioo(xz) < oo for some t > 0, then p :=
limyoo Usoo < 1 and the coupling may be chosen such that moreover

supp(X;) D supp(X, o 7'('[6175]) r-eventually Vt>0 a.s. (2.129)
If in addition v = 0, then p = 1 and the coupling may be chosen such that equality holds
r-eventually in (2.129).
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Proof For v = 0 the statements follow from Proposition 35 and Lemma 36. To treat the case
v >0, set Ef := EU{t} where t is an isolated cemetary point not belonging to E. Define a
linear operator Gt on C(E') by

G'f(z):=Gf(z) + () (f(t) - f(z))  (z€E),
GH ) =0, (2.130)

where D(G1) consists of those f € C(E') such that the restriction of f to E is in D(G). Set,
moreover,
ol (z) := a(x) (x € E),
of () :=1.

Let XT denote the historical (GT, af, af)-superprocess started at time 0 in g € M(E) and let
X1 denote the historical (GT, af, 0)-bin-bra-process started at time 0 in Pois(u). For ¢t > 0, let
X, and X; denote the restrictions of z’\?f and Xj to Dg[0, t], respectively. We will show that
(/f’t)tzo, so defined, is the historical (G, a, §)-superprocess, and that (Xt)tzo is the historical
(G, a,7y)-bin-bra-process.

Note, first of all, that E is a closed subset of Ef and Dg[0,00) is a closed subset of
Dgt[0,00), and therefore X, and X; have continuous and cadlag sample paths, respectively.

Let (Fi)i>0 denote the filtration generated by Xf. Fix t > 0 and F € B(Dg[0,1]) and
define F' € B(Dgi[0,)) by Ft(w) := F(w) if w € Dg[0,t] and F(w) := 0 otherwise. Let U
and U denote the log-Laplace semigroups of the historical (GT, af, aT)—superprocess and the
historical (G, «, 8)-superprocess, respectively, defined as in (2.24). We need to show that, for
all0 < s <t

(2.131)

~

E[e— (% F )| 7] E[e—@g,F*)‘g]: (LU FY _ (&, U, F) as., (2.132)

which shows that X is a Markov process with the same transition probabilities as the historical
(G, a, B)-superprocess. Thus, we need to show that

Ul Flw) = U F(w)  (0<s<t, we Dgl0,s], F € B4(Dgl0,1])). (2.133)

It suffices to check (2.133) for functions F' that depend only on the value of the path at finitely
many times and therefore, by (2.32), it suffices to show that

Ui fiz) =thf(z) (>0, f € Bi(E)), (2.134)

where f1(z) := f(z) for z € E and ff(t) := 0. If additionally f € D(G) then ff € D(G') and
the function u! defined as uI := U, f1 is a classical solution to the Cauchy problem

{m% Gluf + lu} —al(w)?  (¢20), (2,139

“0 = ft.
The Feller process ¢! with generator G satisfies Pt [{;L = t] =1 for all ¢ > 0 and therefore, by

Lemma, 16 (a), for s > 0 fixed X is concentrated on t when XJ = 0. It follows that uI(’[) =0

for all ¢ > 0. Using this fact and (2.135), it is easy to see that the restriction u; of uI to E
solves the Cauchy problem

{ at“t Guy + Bug — au? (t > 0),

e 7. (2.136)
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which shows that (2.134) holds for all f € D(G) NC4(FE). Using the continuity of log-Laplace
semigroups with respect to bounded pointwise limits, this generalizes to f € B (FE).

The fact that (Xt)tzo is the historical (G, «, 7)-bin-bra-process is proved in the same way,
using the generating semigroups U(G',af,0) and U(G,a,v). Note that U(G',af, o) and
U(G', af,0) coincide on Byp11(E) and likewise U (G, o, B) and U (G, @,7y) coincide on By 11(E),
so that this comes down to the same fact about Cauchy problems that we have already checked.

Applying Proposition 35 and Lemma 36 we see that X1 and X1 may be coupled such that

P[X] € - |(Z)o<s<i] = P[Pois(X)) € -|&]] as. Vi>0, (2.137)

which implies (2.128). If in addition supmeEUtToo(w) < oo for some ¢t > 0, then pf :=
limyp o Z/{;r oo = 1 and the coupling may be chosen such that moreover

supp( Ag) = supp(&] o W[B,lt]) r-eventually Vi>0 a.s. (2.138)

Let W := {w € Dgt[0,00) : 1iy(r)=t} < l{w()=} YO < r < 7'} denote the space of paths that
are trapped in f, once they reach {. By Lemma 16 (b) and the fact that { is a trap for the
underlying motion, X7 is concentrated on paths that are trapped in §, once they reach {, and
therefore

supp(X;) = supp( J) NDg[0,t] = supp(XTOW[ ])HDE[O #] D supp(X, r Oy, t]) (2.139)
V0 <t <r a.s. Formulas (2.138) and (2.139) imply (2.129). Finally, for all z € E,
p(z) = —log P [X, =0 t-eventually| < —log Pl [Xg =0 t-eventually| = pi(z) =
(2.140)
|

In order to prove Theorems 4, 6, and 7, we only need to show the following:

Proposition 38 (Generalization to h # 1 and measures with atoms) Let X be the
historical (G, o, B)-superprocess started at time 0 in p € M(E). Assume that h € D(Q)
satisfies h > 0 and, for some vy € C4(E),

Gh + Bh — ah? = —~h. (2.141)

Then X can be coupled to the historical (G", ha, y)-bin-bra-process X started in Xy = Pois(hy)
such that

P[X; € - |(X)o<s<t] = P[Pois((hom)X) € -| 4] as. Vi>0. (2.142)

If in addition U = U(G, o, B) satisfies supycpUioo(z) < oo for some t > 0, then p =
limyoo Usoo < h and the coupling may be chosen such that moreover

supp(X;) D supp(X, o o, t]) r-eventually Vt>0 a.s. (2.143)

If in addition v = 0 then p = h and and the coupling may be chosen such that equality holds
r-eventually in (2.143).
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Proof Assume that y is atomless and that the Feller process with generator GG has the distinct
path property. Set X/(dw) := h(w;)X;(dw) (¢ > 0). By Lemma 3, X" is the historical
(G", o, B")-superprocess, where G is defined in (1.16) and o® := ha, B := B+ G2 Formula
(2.141) implies that

—y=p"—al <. (2.144)

Therefore the statements follow from Proposition 37. In order to drop the assumption that
1 is atomless and that the Feller process with generator G has the distinct path property,
extend X as in Lemma 18, and note that all functions (k,p, ...) do not depend on the extra
coordinate. The statements then follow by projection. |
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