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In memoriam of Prof. Cli�ord Ambrose Truesdell whose work in continuum mechanics

created new standards of research in �eld theories

Abstract

The paper contains a brief presentation of a macroscopical thermodynamic

model of poroelastic materials with many �uid components. A particular em-

phasis is placed on a Lagrangian formulation of the model and, consequently,

on a consistent formulation of �eld equations on the reference con�guration of

the skeleton (solid phase of the mixture). It is demonstrated that the model

possesses an identical structure as that in the pioneering work of C. A. Trues-

dell on the continuum mixture of �uids. An issue of porosity as an additional

microstructural variable is particularly exposed.

1 Introduction

The classical continuum theory of mixtures whose development was started in 1957

by the famous papers of C. A. Truesdell [1] is primarily designed to cover systems of

many �uid components. In 1982 R. M. Bowen [2] (see as well: [3]) has extended this

classical �eld on mixtures whose one component is a solid. This has put theories of

porous materials on the same footing as mixtures of �uids. During the last twenty

years this �eld of research developed rapidly and in the meantime enhances such

systems as suspensions, mixtures of granular materials saturated or not saturated

with a �uid and many others.

In spite of this development there are still some controversies concerning a construc-

tion of nonlinear models in which large deformations of the skeleton are incorporated.

This is related to the fact that in contrast to mixtures of �uids a solid component

(skeleton) yields naturally a Lagrangian description of the system. R. M. Bowen

was using in his papers a mixed description - Lagrangian for the solid skeleton and

Eulerian for the �uid - but such an approach leads to technical di�culties in applica-

tions of the model, in formulation of boundary conditions etc. For this reason I have

proposed in 1995 a di�erent way of description of two-component porous materials

[4]. This may be extended to many components and �rst results for multicomponent

porous materials have been published in the work [5].

In this work we present a full structure of a Lagrangian model of a poroelastic

material in which there may be more than one �uid component and the kinematics

of the skeleton is formulated in the Lagrangian way.
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In Sect. 2 we de�ne the Lagrangian description of multicomponent systems and

introduce various kinematical quantities analogous to those appearing in Truesdell's

theory of �uid mixtures.

In Sect. 3 we present partial balance equations in the Lagrangian description in their

global and local form. It is emphasized that in contrast to such balance equations

for single continua they contain convective contributions whose form is objective.

We also present a balance equation for the microstructural �eld of porosity and

justify its macroscopic form on phenomenological grounds. This extension of the

microstructural model has been proposed in papers [6], [7].

Section 4 contains a discussion of thermodynamic admissibility of constitutive rela-

tions for poroelastic materials with ideal �uid components. The whole development

is fully macroscopical in contrast to many other works on this subject which are

based on the notion of so-called true (real) densities. These may be introduced in

the present model if needed on any stage of development but they are not neces-

sary for the formulation of the consistent mathematical model. In order to be more

speci�c we limit the attention solely to isotropic systems.

Section 5 is devoted to the speci�cation of some special models which have an

important practical bearing. In particular we discuss the simplest model of a two-

component poroelastic material.

In Conclusions we indicate advantages of the Lagrangian description for both a

theoretical development as well as for numerical evaluations of the boundary value

problems.

2 Porous medium as a mixture. Reference con�gu-

rations, Lagrangian description

The construction of the theory of mixtures of �uids proposed by C. Truesdell [1] is

based on the Eulerian description of motion of components. As a continuum model

it is based on the assumption that at each point of the space of con�gurations <3

all components are present simultaneously. Their various contributions are charac-

terized by di�erent concentrations (fractions of partial mass densities to the total

mass density) as well as by their own velocity �elds.

A model of porous materials requires an extension of this approach. On the one

hand side it must account for large deformations of a solid component of the mix-

ture which describes the behaviour of the skeleton of the porous medium. This

indicates the necessity of the Lagrangian description which has been in part (solely

to the solid component) employed by R. M. Bowen [2]. On the other hand a de-

scription of the microstructure must be extended as its properties are described not

only by concentrations but also by a volume fraction of voids called porosity. This

is particularly visible when the porous material consists only of the solid compo-

nent, i.e. the mass densities of �uid components are all identically zero. Then the
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concentrations are also zero but the microstructure is not trivial. This additional

�eld requires an additional equation and in the above mentioned paper Bowen pro-

posed an evolution equation describing its relaxation properties. An alternative

approach has been proposed earlier for granular materials by M. A. Goodman and

S. C. Cowin [8]. In their paper the authors proposed a second order equation for

a microstructural behaviour. Such an approach related to the so-called principle of

self-equilibrated forces has been modi�ed by K. Hutter and B. Svendsen [9] and is

applied in the description of avalanches with abrasion [10]. In this paper we rely on

a balance equation for porosity introduced in my own works [6], [7].

We consider a porous medium whose channels are �lled with a mixture of A �uid

components. The model is constructed on a chosen reference con�guration B0 of the

solid component, i.e. all �elds are functions of a spatial variable X 2B0, and time

t 2 T . We consider a thermomechanical model in which the governing �elds are as

follows:

1. �S � mass density of the skeleton in the reference con�guration,

2. ��; � = 1; : : : ; A � partial mass densities of �uid components refering to the

unit volume of the reference con�guration of the skeleton,

3. �xS � velocity �eld of the skeleton,

4. FS � deformation gradient of the skeleton,

5. �x�; � = 1; : : : ; A � velocity �elds of �uid components,

6. �S - absolute temperature of the skeleton,

7. ��; � = 1; : : : ; A � absolute temperatures of �uid components.

8. n � porosity (the volume fraction of voids).

Further in this work we assume that temperatures of components are the same

� = �S = �1 = : : : = �A: (1)

>From the thermodynamic point of view little has been done for continuum theories

of mixtures in which this condition is not satis�ed (e.g. [11]). Some semi-kinetic

models have been proposed for ionized gases (plasma).

The above �elds are related to their Eulerian counterparts in the following way

�St (x; t) := �S
�
f�1 (x; t) ; t

�
JS�1

�
f�1 (x; t) ; t

�
;

��t (x; t) := ��
�
f�1 (x; t) ; t

�
JS�1

�
f�1 (x; t) ; t

�
; � = 1; : : : ; A;

vS (x; t) := �xS
�
f�1 (x; t) ; t

�
; (2)

v� (x; t) := �x�
�
f�1 (x; t) ; t

�
; � = 1; : : : ; A;

n (x; t) := n
�
f�1 (x; t) ; t

�
;
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where the function of motion of the skeleton

x = f (X; t) ; (3)

is assumed to be at least twice continuously di�erentiable, i.e.

�xS =
@f

@t
; FS = Grad f : (4)

Hence the �elds �xS;FS must satisfy the following integrability conditions

@FS

@t
= Grad �xS; GradFS =

�
GradFS

�23T
: (5)

The reference con�guration B0 is chosen in such a way that it is identical with a

con�guration at the instant of time t = t0 for which

X 2B08F
S (X; t0) = 1: (6)

This choice of reference con�guration is convenient for systems in which the solid

component forms a skeleton whose topology does not change during the motion.

It is the case for modelling of rocks, it may or may not be the case for granular

materials, and it is certainly not the case for suspensions of solid particles which

appear, for instance, after liquefaction of a granular compact material.

For the above �elds �eld equations follow from general balance equations which we

discuss in the next Section.

3 Balance equations

We skip here axiomatic foundations for the integral representation of a general bal-

ance law. These may be found in Truesdell's book [12] which is after more than 30

years still the most important reference on this subject.

The general form of this equation for a density ' (X; t) ; written for an arbitrary

domain P (t) whose motion is described by a velocity �eld V (X; t), is as follows

d

dt

Z
P(t)

' (X; t) dV =

I
@P(t)

� (X; t) �NdS +

Z
P(t)

 (X; t) dV; (7)

where� is the so-called �ux of ', and  is its volume supply. The �rst integral on the

right-hand side is evaluated over a closed surface @P of the domain P and describes

the transport through the surface. N is the �eld of unit vectors perpendicular to

the surface. If we perform the di�erentiation on the left-hand side and apply the

Stokes theorem we obtainZ
P(t)

�
@'

@t
+Div ('V��)� 

�
dV = 0: (8)
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We apply this relation to partial quantities listed in the previous Section. In order to

do so we have to �nd the kinematics of material domains for each component related

to the reference con�guration B0. Obviously for domains material with respect to

the skeleton we have V � 0. For �uid components we have to use the assumption

on the simultaneous appearance of all components in each point of the domain

Bt := f (B0; t) in the con�guration space. For the �-component we have then along

the trajectory

8x2Bt8x0
2N (x)�Bt

x0 = x + �x��t +O
�
�t2

�
=

= x + FS
�
f�1 (x0; t)� f�1 (x; t)

�
+ �xS�t +O

�
jx0 � xj

2
�
;

where N (x) is a neighbourhood of x. The limit in this relation �t ! 0 yields the

following velocity �eld for material domains of the �-component in the reference

con�guration of the skeleton

8X2B0
�X� (X; t) := lim

�t!0

f�1 (x0; t)� f�1 (x; t)

�t
= (9)

= FS�1 (X; t)
�
�x� (X; t)� �xS (X; t)

�
:

We call this �eld the Lagrangian velocity of the �-component.

Assuming that the balance equation (8) for a partial quantity '� holds true for any

material domain of the �-component we obtain in the standard way the following

local form of this equation

@'�

@t
+Div

�
'� �X� ���

�
= � a:e: in B0: (10)

Obviously �� denotes the corresponding partial �ux, and � is the partial volume

supply.

In particular we have

partial mass balance equations

@�S

@t
= �̂S;

@��

@t
+Div

�
�� �X�

�
= �̂�; � = 1; : : : ; A; (11)

partial momentum balance equations

@
�
�S�xS

�
@t

= DivPS + p̂S + �SbS;

@ (���x�)

@t
+Div

�
���x� 
 �X�

�
= DivP� + p̂� + ��b�; � = 1; : : : ; A; (12)
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partial energy balance equations

@

@t

�
�S
�
"S +

1

2
�xS2

��
= Div

�
QS �PST�xS

�
+ �SbS � �xS + �SrS + r̂S;

@

@t

�
��
�
"� +

1

2
�x�2

��
+Div

�
��
�
"� +

1

2
�x�2

�
�X�

�
=

= Div
�
Q� �P�T�x�

�
+ ��b� � �x� + ��r� + r̂�; � = 1; : : : ; A; (13)

balance equation of porosity
@n

@t
= �Div J+ n̂: (14)

In these equations, all functions are de�ned on the reference con�guration B0 of the

skeleton. In this sense we may call it the Lagrangian description even though partial

balance equations for �uid components contain convective parts with respect to the

corresponding Lagrangian velocities.

The two-point tensors PS;P� denote the Piola-Kirchho� partial stress tensors,

bS;b� are partial body forces, "S; "� are partial densities of the internal energy,

QS;Q� � partial heat �uxes, rS; r� are partial energy radiations, J is the �ux of

porosity, and all quantities with a hat denote productions.

The balance equation of porosity requires some justi�cation. We have argued in

previous works on this subject (e.g. [6], [7]) that the balance equation for n follows

from an averaging procedure for a representative elementary volume accounting for

geometrical properties of the microstructure. However this argument is not needed

if we make an extension of the continuous model of mixtures on the macroscopical

phenomenological level. In such a case a new scalar �eld satis�es in the most general

case a balance equation. Second order equations for microstructural variables ap-

pearing in some works on this subject indicate that most likely two variables rather

than one additional microstructural variable should be introduced and one of them

has to be eliminated from the model by substitution of one balance equation in

another. The most important question which must be answered in a model with an

additional balance law is if such a model can be mathematically well-posed � in par-

ticular in relation to additional boundary conditions which may be necessary. The

most prominent example for those di�culties appears within the extended thermo-

dynamics (e.g. [16]) where the extension of number of �elds and, consequently, an

extension of the hierarchy of �eld equations yields unsolved problems of boundary

conditions. Fortunately the above balance equation for porosity speci�ed for two-

component poroelastic materials does not require additional boundary conditions �

it possesses all properties of an evolution equation. As we shall see further thermo-

dynamic considerations indicate that the �ux J results from the di�usion (relative

motion of �uid components with respect to the skeleton), and the source n̂ describes

relaxation to the thermodynamic equilibrium.
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We make an assumption similar to this introduced by C. Truesdell for mixtures of

�uids [1] that the bulk productions of mass, momentum, and energy vanish, i.e. the

corresponding balance equations reduce to conservation laws. Hence

�̂S +

AX
�=1

�̂� = 0; p̂S +

AX
�=1

p̂� = 0; r̂S +

AX
�=1

r̂� = 0: (15)

Under these conditions we can introduce bulk quantities which correspond to those

introduced by Truesdell for �uid mixtures which satisfy conservation laws of a single

component continuum. Due to the fact that we have chosen one of the components -

skeleton - as the reference the form of these laws di�ers from the classical Lagrangian

form of conservation equations of a single continuum. Namely by addition of partial

mass balance equations (11) we obtain

@�

@t
+Div

�
� _X

�
= 0; � := �S +

AX
�=1

��; � _X :=

AX
�=1

�� �X�: (16)

Hence for the single component bulk description we have to identify in relation (8):

V � _X. This Lagrangian mean velocity takes over the role of the barycentric velocity

of the classical mixture theory. However in contrast to the Eulerian description the

Lagrangian mean velocity is relative, i.e. similarly to the Lagrangian velocities �X�

it is objective. The above de�nition yields the following conservation laws

momentum
@ (� _x)

@t
+Div

�
� _x
 _X�P

�
= �b; (17)

� _x :=�S�xS +

AX
�=1

���x�; �b := �SbS +

AX
�=1

��b�;

and the bulk Piola-Kirchho� stress tensor P is de�ned by the relation

P := PI � F
S

(
�S _X
 _X+

AX
�=1

��
�
�X� � _X

�


�
�X� � _X

�)
; (18)

PI := PS +

AX
�=1

P�;

energy

@

@t

�
�

�
"+

1

2
_x2
��

+Div

�
�

�
"+

1

2
_x2
�
_X+Q�P

T
_x

�
= �b � _x+ �r; (19)

where the bulk internal energy density is de�ned as follows

�" := �"I +
1

2

"
�SCS �

�
_X
 _X

�
+

AX
�=1

��CS �
�
�X� � _X

�


�
�X� � _X

�#
;

7



�"I := �S"S +

AX
�=1

��"�; CS := FSTFS ; (20)

and the bulk heat �ux has the form

Q = QI+

+
1

2

"
��S _X
 _X
 _X+

AX
�=1

��
�
�X� � _X

�


�
�X� � _X

�


�
�X� � _X

�#
CS;

QI := QS +

AX
�=1

Q� � �S"S _X+

AX
�=1

��"�
�
�X� � _X

�
+ (21)

+PSTFS _X�

AX
�=1

P�TFS
�
�X� � _X

�
;

as well as the radiation

�r := �SrS +

AX
�=1

��r� � �SbS � FS _X+

AX
�=1

��b� � FS
�
�X� � _X

�
: (22)

The formal similarity of these relations to the corresponding relations of the �uid

mixture theory is obvious. Technical di�erences are related to the fact that one of

the components is solid and, secondly, as the reference we have chosen this solid

component rather than a mean barycentric motion of Eulerian description.

4 Field equations and thermodynamic admissibility

for isotropic materials

Thermodynamics of mixtures of �uids needed more than 10 years since the publica-

tion of Truesdell's paper [1] to start to develop. The pioneering work of I. Müller [13]

contains the most fundamental extention of the Clausius-Duhem inequality which

has been used as a condition for thermodynamic admissibility of various single co-

moponent models. It is the assumption that the heat �ux and the entropy �ux are

not related to each other by a classical universal Fourier relation: h =
q

�
. The review

of basic results for mixtures following from this extention can be found in the book

[14].

The formal thermodynamic construction of a continuous model proceeds as follows.

We need �eld equations for the following �elds

F :=
�
�S; ��;FS; �xS; �x�; �; n

	
; � = 1; : : : ; A: (23)
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They follow from the balance equations (11), (5), (12), (19), (14). However, in order

to transform these equations into �eld equations we have to perform the so-called

closure. Namely the following quantities

R :=
�
�̂�;PS;P�; p̂�; "I;QI ;J;n̂

	
; � = 1; : : : ; A; (24)

must be speci�ed in terms of �elds and their derivatives in order to close the system.

This is the constitutive problem de�ning materials contributing to the mixture. The

mass and momentum sources for the skeleton do not appear in the above list because,

according to (15), they are not independent. Let us remark that in many cases of

practical bearing additional constitutive relations may have the form of evolution

equations. For instance this is the case when the skeleton has some plastic proper-

ties, or when mass sources result from chemical reactions or adsorption/desorption

processes. We do not consider such problems in this work and limit further our at-

tention to the so-called poroelastic materials. Then the set of constitutive variables

is as follows

C :=
n
�S; ��;FS; �X�; �;G; n;N

o
; � = 1; : : : ; A; (25)

G := Grad �; N :=Gradn:

Usually this set is still much too complicated for the full thermodynamic analysis and

one considers simpler models. For example in the case of a simple two-component

isotropic model of isothermal processes without mass exchange scalar constitutive

functions depend on the following set of constitutive variables

Csimple :=
�
�F ; I; II; III; IV; V; V I; n

	
; (26)

where the six invariants I; : : : ; V I are de�ned as follows

I := trCS; II :=
1

2

�
I2 � trCS2

�
; III := detCS; (27)

IV := �XF � �XF ; V := �XF �CS �XF ; V I := �XF �CS2 �XF ;

with �XF being the Lagrangian velocity of the single �uid component: � = F . We

present some results for such a model further in this paper.

The fundamental assumption of a continuous modelling has the form of the following

constitutive relation

R = R (C) ; (28)

where the mapping is assumed to be at least once continuously di�erentiable.

The constitutive functions (28) are said to be thermodynamically admissible if any

solution of �eld equations satis�es identically the following entropy inequality

@ (��)

@t
+Div

�
�� _X+H

�
� 0; � = � (C) ; H = H (C) : (29)

This is the Lagrangian form of the second law of thermodynamics proposed by I.

Müller for mixtures.
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As shown in 1973 by I-Shih Liu (e.g. see [15]) the limitation to solutions of �eld

equations can be eliminated from the above formulation by means of Lagrange mul-

tipliers. The equivalent form of the second law is then as follows. For all �elds the

following inequality must be ful�lled identically

@ (��)

@t
+Div

�
�� _X+H

�
� �S

�
@�S

@t
� �̂S

�
�

�

AX
�=1

��

�
@��

@t
+Div

�
�� �X�

�
� �̂�

�
�

��S �

�
�S

@�xS

@t
�DivPS � p̂S + �̂S�xS

�
�

�

AX
�=1

�
� �

�
��
�
@�x�

@t
+ �X� �Grad �x�

�
� DivP� � p̂� + �̂��x�

�
�

��F �

�
@FS

@t
�Grad �xS

�
� �n

�
@n

@t
+DivJ� n̂

�
� (30)

��"

�
@�"

@t
+Div

�
�" _X+Q�P

T
_x

��
� 0;

where the Lagarange multipliers � :=
�
�S;��;�S;��;�F;�n;�"

	
are fuctions of

constitutive variables C.

The exploitation of the inequality is now standard. Applying the chain rule we

separate a linear part which must vanish. This yields relations for multipliers and

some restrictions of constitutive relations. The remaining nonlinear part of the

inequality de�nes the dissipation in the system. We skip here a discussion of fully

general restrictions of constitutive relations. These can be found in the paper [5] and

in the book [15]. We present their particular cases further in this work. However

it is worthwhile to expose the structure of the dissipation for constitutive variables

C in which we leave out the dependence on G and N. After some calculations we

obtain the following so-called residual inequality

D :=

AX
�=1

�
�� � �S

�
�̂� + �nn̂+

+

AX
�=1

�
�
� � �S

�
� (p̂� � �̂��x�)� �S � FS

AX
�=1

�̂� �X� � 0; (31)

where the multipliers are given by the relations

�S = �S
�
@�

@�S
� �" @"

@�S

�
; �� = ��

�
@�

@��
� �" @"

@��

�
; �" =

�
@�

@�

��
@"

@�

�
�1

;
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�S�S = ��FS�T

AX
�=1

�
@�

@ �X�
� �" @"

@ �X�

�
; ���� = �FS�T

�
@�

@ �X�
� �" @"

@ �X�

�
;

�n = �

�
@�

@n
� �" @"

@n

�
: (32)

The �rst contribution to the dissipation function D (31) describes the dissipation

due to the mass exchange between components. The second contribution is the

dissipation due to the relaxation of porosity to its equilibrium value, say nE. Finally

the last contribution is the dissipation due to the relative motion of components. It

is known from the classical theory of mixtures that momentum sources are objective

solely in the combination with mass sources. This property is also present in the

model for poroelastic materials and, consequently, the second line in the de�nition

of D should be considered as a whole. There is no contribution of dissipation due

to the heat conduction because we have left out the dependence on the temperature

gradient G. The lack of dependence on the gradient of porosity N does not lead to

any simpli�cations in the dissipation.

The thermodynamic equilibrium state is de�ned by the requirement that D = 0 in

this state. It means that mass, momentum and porosity sources vanish in this state,

and simultaneously the dissipation function D reaches the minimum.

The second law of thermodynamics does not specify constitutive relations for sources

but it limits their form by the residual inequality. This statement can be made more

speci�c by the assumption that deviations from the thermodynamic equilibrium

are small. Then the dissipation becomes a quadratic function of nonequilibrium

variables. We present further the results of this simpli�cation.

5 Some special cases

Let us begin with a rather formal simpli�cation of the multicomponent model which

indicates a possible structure of energy, entropy and porosity �uxes. We assume

that the intrinsic parts of the internal energy "I and the entropy � are independent

of relative velocities �X�. This assumption is motivated by the fact that scalar

functions for isotropic materials must be at least quadratic in their dependence on

vector arguments. For small deviations from the thermodynamic equilibrium such

a dependence on �X� can be left out. If so then relations (32)4;5 for the multipliers

become quite explicit and we obtain

�
S = �"FS _X; �

�
= �"FS

�
�X� � _X

�
: (33)

Then restrictions following from the second law which we are not quoting in this

paper yield the following general form of �uxes for processes in isotropic materials
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with a small deviation from the thermodynamic equilibrium

Q =

AX
�=1

�
Q�

01+Q
�
1C

S +Q�
2C

S2
�
�X�;

H =

AX
�=1

�
H�

0 1+H
�
1C

S +H�
2C

S2
�
�X�; (34)

J =

AX
�=1

�
J�
0 1+J

�
1C

S + J�
2C

S2
�
�X�;

where the scalar coe�cients Q�
0 ; : : : ; J

�
2 are solely functions of equilibrium variables

Cequil = fI; II; III; ��; �; nEg : (35)

Particularly the last result is important because it allows to specify the equilibrium

porosity. Namely the balance equation of porosity (14) reduces in this case as follows

@nE

@t
= 0 =) �S

@nE

@�S
+

AX
�=1

��
@nE

@��
= 0; (36)

which is the partial di�erential equation for nE. It shows that nE can be left out in

the list (35) because it is not independent from the other variables.

In the simple case of two components the solution of the di�erential equation (36)

has the form

nE = nE

�
�F

�S

�
: (37)

The above simpli�cation of the dependence on relative velocities and the structure

of the dissipation function indicate as well the following structure of momentum and

porosity sources

p̂� � �̂��x� = ��FS �X�; n̂ = �
n� nE

�
; ��; � > 0; (38)

where parameters ��; � may depend on equilibrium variables.

We proceed to present the model for an important special case of the two-component

poroelastic material. This models the so-called saturated porous materials whose

components on the macroscopic level are the elastic skeleton and the ideal �uid.

The thermodynamic admissibility following from the second law of thermodynamics

leads for isothermal processes without mass exchange to the following constitutive

relations (e.g. [17])

partial Cauchy stresses

TS := JS�1PSFST = @01+@1B
S + @2B

S2 � ��n (n� nE) 1;
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TF = �
�
pF � ��n (n� nE)

�
1; BS := FSFST ; (39)

where

@� = @� (I; II; III; �) ; � = 0; 1; 2; pF = pF
�
�F ; �

�
;

�n = �n
�
I; II; III; �F ; �

�
: (39)

porosity �ux and momentum source

J = nE �X
F ; p̂ = �FS �XF ; � = �

�
III; �F ; �

�
: (40)

Consequently the model is analogous to the model of simple mixtures of �uids (e.g.

[14]) in which interactions of components reduce to momentum sources and, what

is characteristic for poroelastic materials, to nonequilibrium changes of porosity.

We conclude these considerations with a few remarks concerning boundary condi-

tions. Very little has been done for the case of models with more than two compo-

nents. Therefore we limit the attention solely to this last case.

The natural condition on the boundary @B0 is the condition for the total loading.

If we denote by text the vector of force density on this surface which is controlled

from the external world then it must be taken over by the total stress vector, i.e.

text = PNj
@B0

; (41)

provided the interface @B0 does not possess any intrinsic structure of its own. This

may not be ful�lled by many porous materials which, for instance, may possess a

surface tension on contact surfaces.

In addition to this dynamical condition we have to formulate a kinematical condition

depending on a relative motion of components. The tangential component of this

vectorial condition has been intensively investigated and the early results of G. S.

Beavers and D. D. Joseph [18] have been con�rmed. In the case of ideal �uid

components this condition reduces to the following one

�XF � �XF �NN
���
@B0

= 0: (42)

The remaining normal component must be determined from investigations of a

boundary layer which is created by �uid components �owing out of the porous

material through a permeable boundary. A phenomenological model of this �ow

has been proposed by H. Deresiewicz and R. Skalak [19] and not much has been

modi�ed in this condition even though some questions seem to be still open. For

two porous materials in contact through the permeable interface @B0 this condition

has the form

�F �XF �N+ �0

��
pF

n

������
@B0

= 0; (43)

13



where the double brackets denote a jump, �0 is a phenomenological coe�cient of

surface permeablity, and the quantity in the brackets describes the di�erence of the

pore pressure on both sides of the interface. It is a kind of a driving force for the

�ow of the �uid through the surface.

It remains the problem of a boundary condition for the porosity. Note that the

equation of porosity does not contain a divergence of porosity. Consequently it is

a heterogeneous evolution equation rather than a real balance equation. For this

reason it does not require any boundary condition at all. This may not be the case

if we rely on the model proposed by Goodmann and Cowin in which the equation

for the microstructural variable does contain spatial derivatives.

6 Conclusions

The general framework of a nonlinear model of poroelastic materials reminds very

much this designed by C. A. Truesdell for mixtures of �uids. The Lagrangian formu-

lation of the present model is solely a technical issue which enables to incorporate

large deformations of the solid component but it does not change anything in the

�philosophy� of the construction of the model.

A new element grows only from the fact that we have to incorporate an additional

microstructural parameter into the model. The model presented in this work con-

tains only one such parameter � the porosity. However the experience with soil and

rock mechanics, mechanics of snow and glaciers indicates that the number of those

parameters must be larger in many problems of practical bearing. For example, it

may be tortuosity, double porosity, anisotropy of microstructure, plastic deformation

of the skeleton etc. In such cases the model must be extended even further but the

fundamental elements of the theory of mixtures would remain in such extensions.

Finally let us remark that the linear version of the model has been extensively

investigated and it seems to work very well, particularly in applications to acoustics

of porous materials. Nonlinear problems of poroelastic materials are being solved

usually by means of numerical methods for which the Lagrangian formulation is

particularly useful. In such a description a mesh of �nite elements or �nite volumes

does not have to be changed in time to follow the motion of �uid components.

Analytical results are very rare (e.g. [20]) because very little is known about the

form of constitutive relations for large deformations of the skeleton.
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