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Gibbs measures for all temperatures T < 1 concentrated on spin configurations that have overlap 
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Dirac measures concentrated on a single point. If ~ -+ a, as N j oo for a small enough, we show 
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on a disjoint union of balls around the previous points, but we cannot construct the infinite volume 
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I. Introduction 

Disordered spin systems are one of the topics of highest current interest in mathematical 
statistical mechanics. Generally speaking, depending on the particular types of'.models, the effects 
of disorder may be either weak, in the sense that the model can be reasonably well approximated 

by a ordered one, or strong, in the sense that genuinely new phenomena appear that are pertinent 
to randomness. Prototypical systems of the latter kind are spin glasses, and in particular their low-
temperature properties. While on the heuristic level a rather coherent theory has been developed 
at least for a mean field version, the Sherrington-Kirkpatrick mo~el [SK] (for a review see [M]), 
from a mathematical point of view these models are extremely difficult to analyse and virtually no 
results are know, even on the mean field level. In order to progress in the understanding of such 
models, it is highly desirable to have a class of models that intermediate between simple 'almost 
ordered' models and spin glasses and that are amenable at least in part to a rigorous analysis. 

Such models are in fact provided by what is commonly known as the Hopfield model [Ho], and 
their analysis has attracted increasing attention of mathematical physicists over the last years. 

Let us describe this model. We set A= {1, ... , N} and SA = {-1, l}N the space of functions 

a: A~ {-1, l}. We call a a spin configuration on A. We shall write S = {-1, l}JN for the space 

of half infinite sequences equipped with the product topology of discrete topology on {-1, 1}. We 
denote by BA and B the corresponding Borel sigma algebras. We will define a random Hamiltonian 
function on the spaces SA as follows. Let (n, :F, IP) be an abstract probability space. Let t = 
{tf}i,µEJN be a two-parameter family of independent, identically distributed random variables on 

this space such that IP(tf = 1) = IP(tf = -1) = ~· For a given non-decreasing integer valued 
function M: IN~ IN we denote by :FN the sub-sigma algebra generated by the random variables 

{tf}~~rf:(N). We will occasionally denote this sub-family of random variables by tlN· The 

Hopfield Hamiltonian on SA is then given by 

l M(N) 

HN[w](a) = - 2N :E :E tf(w)tj'(w)aiO"j 
(i,j)EAXA µ=1 

(1.1) 

Note that of course HN[w](a) is :Fwmeasurable. In (1.1) we have made all dependences on the 
random parameter w explicit. In. the sequel we will drop this whenever no confusion may arise. 

The Hopfield model has in fact been proposed in the context of neural networks as a model for 

autoassociative memory. The interpretation of the above objects in this context is the following: 

A is a (completely connected) set of N neurons, each of which can be in two states, +1 or -1. An 

element of SA then describes the state of the neural network. The M families of random variables 
{ tf} iEA are thus M randomly chosen states: of the network, called 'patterns'. Functioning of the 
memory is interpreted (see e.g. [A]) in that a Markovian time evolution set up in such a way that 
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its invariant measure is a Gibbs state1of the Hamiltonian (1.1) should have a long time behaviour 
that allows to discern whether the initial condition was close to one of the patterns or not. This 
phenomena is clearly rel~ted to the question of breaking of ·ergodicity in the infinite volume limit 
(i.e. in the limit as N j oo) of this system and thus to the existence and nature of the infinite 
volume Gibbs states associated to the Hopfield Hamiltonian. Thermodynamic properties of this 

model have thus a direct interpretation in the neural context. 

The properties of this model depend crucially on the choice of the function M(N). If M(N) = 
1, it is trivially equivalent to the Curie-Weiss ferromagnet by a simple change of variables. If M( N) 
remains bounded, rather standard methods can still be applied to give a complete characterization 
of the Gibbs measures that in fact show the desired features of a perfect memory below the critical 
temperature [AGSl,H). We would like to point out here that this case had previously been treated 
extensively and with mathematical rigor in papers by Pastur and Figotin in 1977 [FP1,FP2). These 
remarkable articles which appear to have been fallen largely to oblivion are by the way to our 
knowledge the first in which the models like (1.1) have been proposed as simplified models of spin 
glasses. 

For unbounded M the situation becomes more complicated, and the results will depend on 
the allow rate of growth. Koch and Piasko [KP) and Gayrard [G) have proven that essentially the 
same results as for bounded M can be proven if M(N) ~ \: 1;. :for faster growth rates, no rigorous 
results on the Gibbs states are available, but heuristic results indicate that the memory should 

function properly as long as M( N) ~ a.N, for small enough a.. This idea is also supported by 
rigorous results of Newman [NJ and Komlos and Paturi [KP a) on the structure of the local minima 
of the Hamiltonian. It is also believed that the precise structure of the Gibbs states in this regime 
is already fairly complicated and will depend on the precise growth properties of M(N) [AGS2). If 
M(N) ~ a.cN, it is expected that the picture changes qualitativ_ely completely. In fact, the faster 
M(N) is allowed to grow, the more the model resembles a spin glass, since the effective couplings 
Jij = JM L:!1 tftj converge to i.i.d. Gaussian r.v.'s as M j oo. It is in this sense that the 
.Hopfield model provides a family of models intermediating between ferromagnets and spin glasses. 

Recently, Shcherbina and Tirozzi [ST] have proven that if ~ l 0 as N j oo, the free energy 
of this model converges in probability to the free energy of the Curie-Weiss model (see e.g. [E) 
for mathematical results concerning this model). Later, Koch [K) has obtained interesting upper 
and lower bounds on the expectation of the free energy that imply in particular the convergence 
of this quantity to the free energy of the Curie-Weiss model as N j oo under the condition that 
M(N)/N l 0 (without hypothesis on the speed). As has been noted already in [BG), his proof can 
easily be modified to yield the .IP-almost sure convergence of the free energy under this hypothesis, 

1 We follow common practice and use the terms Gibbs state and Gibbs measure synonymously. 
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the proof being considerably simpler than the one in [ST]. 

The purpose of the present paper is to provide a complete analysis of the Gibbs states of the 
Hopfield model under the same hypothesis on M. We will also give a somewhat weaker results on 
the Gibbs measures in the regime M(N) = a.N, with a ~ a0 , for some (ridiculously) small a.o. To 
give a precise formulation of our results, let us fix our notations. 

For 71 E JN, we denote by 9~ . .B,h[w] the random probability measure on (SA, B(SA)) that 
assigns to each a E SA the mass 

(1.2) 

where z~ . .8,h[w] is a normalizing factor usually called partition function. The quantity 

(1.3) 

is called the free energy. Note that all these quantities are F wmeasurable. The parameter f3 is 
the inverse temperature and his called a magnetic field aligned on the pattern C', and 9~ . .8,h[w] is 
called a finite volume Gibbs state with magnetic field. An important observation is that the value 
of the measure 9~ . .8,h[w](a) does depend on a only through the quantities 

N 

m~[w](a) = ~ L ~f[w]ai, µ = 1, ... , M 
i=l 

(1.4) 

called overlap parameters, since the Hamiltonian may be written in the form 

M 

HN[w](a) =-{JN L (m~[w](a)/ 
µ=1 . 

This suggests to define the random map 

MN[w]: SA~ IRM 

a~ MN[w](a) = (m}v[w](a), ... , m~[w](a)) 
(1.6) 

and the measures Q1,.8,h[w] on (IRM, B(IRM)) that are induced by 9~,,B,h[w] through the map 
MN[w], i.e. 

(1. 7) 

In fact, these induced measures determine the original measures uniquely, since 

(1.8) 
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while on the other hand, as will become evident, the induced measures are "less random" in some 
sense and thus easier to control. (E.g., if M = 1, the induced measures are entirely deterministic 
and the dependence on the random parameter is only through the map M). Note that of course for 

fixed N, MN[w] takes only values in the set {-1, -1 + 1, -1+fn ... ,1 - 1, l}M and Qk,,a,h["!] 
is an atomic measure concentrated on this set. 

We want to study our model in the limit as N j · oo, and are primarily interested in the case 
where M is unbounded. We therefore want to work on the measure space (IRJN, !3(IRJN)), with 
IRIN understood to be the space of infinite sequences equipped with the product topology of the 
euclidean topology of IR. For notational simplicity we will identify the measures Qk,,a,h[w] with 
their extensions to IRJN obtained by tensoring them with the Dirac-measure concentrated at 0. 

Before we formulate our Theorems, some general remarks on Gibbs states in mean field models 
need to be made. As is well known, as opposed to 'normal' models of statistical mechanics, there 
is no neat characterization of infinite volume Gibbs states as solutions of the DLR-equations (see 
e.g. [Ge]) and therefore they can only be constructed as limit points of sequences of finite volume 
measures. To ensure convergence and to lift degeneracies, that is 'to pick out its extremal measures', 
it is customary to add 'magnetic fields' which are taken to zero after the infinite volume limit is 
performed. This was also the reason for defining the measures in ( 1.2). As we also want to know 
whether we have found all such measures, we have to give a more precise definition of what we 
shall mean by a limiting Gibbs measure for a Hamiltonian H. To do this, let f : IN ~ IR be a 

real-valued function on the integers with bounded sup-norm. For such a function we define the 
measures 

(1.10) 

where Ji denotes the value of f at site i. The measures defined in (1.2) are of course particular 

examples where A= hti[w]. We denote by Q}.f,~[w] the corresponding induced measures. 

We will say that 9,a (resp. Q,a) is a limiting Gibbs measure (resp. limiting induced measure) 
for the Hamiltonian H, if there exists a sequence of integers Nz tending to infinity as l j oo and a 
sequence of functions J(k) such that llJ(k) 11 00 l 0 as k j oo, such that 

respectively 

( (lo>) 
Q13[w] = w - lim lim 913

1 N [w] 
kToo ZToo ' 1 

Q13[w] = w - lim lim Q13U~»[w] kToo ZToo ' 1 

(1.11) 

(1.12) 

(We use the symbol w - lim to denote the weak limits of probability measures). Note that both the 
sequences Nz and J(k) may be random variables depending strongly on t (and in general at least 
one of them will have to be random for the limits to exist). 
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With these notions, we are ready to announce our first Theorem: 

Theorem 1: Assume that M is non-decreasing and satisfies limNioo M}J{) 0. Let a±(f3) 

denote the largest (resp. smallest) solution of a= tanh(f3a). Then, for all f3 ~ 0, 

(i) 
w - lim lim Qi 13 h[w] = 6::5=(/3)e'1, IP - almost surely 

h-+0± Njoo , • (1.13) 

where the limits are understood in the sense of weak convergence of probability distributions; 

500 denotes the Dirac-measure_ concentrated on a±(f3)e11 and f.11 is the n-th unit vector in a±(f3)e'1 't 

IRM. 

(ii) Moreover, any limiting induced measure for the Hamiltonian (1.1) is a convex combination of 

the measures in ( 1.13) 

Remark: Note that for f3 ~ 1, a+(f3) = a-({3) = 0 so that in this case there is a unique limiting 
measure. For f3 > 1, the measures for different 'T/ and different signs of h are all distinct and by the 
second statement of the theorem can reasonably be seen as the extremal measures. Note however 
that here as in general for mean field models, not all convex combinations of the extremal measures 
are themselves limiting measures. 

We believe that our condition on M is the weakest possible under which the conclusions of 
Theorem 1 can hold. 

Our next theorem will be concerned with the case where ~ > 0. For 5 > 0, we will write 
a( 5, f3) for the largest solution of the equation 

6a = tanh(f3a) 

We denote by II · II the l 2-norm on IRM. Given that limNioo M~V) = a, we set, for fixed {3, 

Finally, we put 

u 
(v,s)EJNx{-1,+l} 

With this notation we can announce our second theorem 

B(v,s) 
p 

(1.14) 

(1.15) 

(1.16) 

Theorem 2: There exists a 0 > 0 such that if lim MJ:') = a, with a < a 0 , then, for all 

f3 > 1+3fo, if p2 > C (a(l - 2...ja,{3))312 a118 l ln al 114 , for almost all w, 

(1.17) 
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Remark: Theorem 2 suggests of course that there should exist limiting Gibbs states with support 
in just one of the balls B~s,v); in the case a = 0 we have constructed these as li~its by adding a 
small magnetic field: Unfortunately, if a > O, we have not been able to do this, and the construction 
of the limiting measures remains an interesting open problem. However, Theorem 2 excludes in 
particular that any of the so-called mixed states (which have been shown to be associated to local 
minima of the Hamiltonian; see [AGS,N ,KPa]) give rise to Gibbs states in this regime of parameters. 

Remark: From the properties of the solutions of equation (1.14) (in particular a(8,/3) rv (/3 - 8) 
for f3 - 8 small) it follows that the set Bp, with the minimal allowed value of p inserted is a union 
of disjoint balls as long as f3 > l-c~ 114 • Note that the power 1/4 in this equation may not be 
optimal; indeed it is expected from the heuristic analysis of Amit et al. [AGS2] that for /3 > l-~va 
the model should show 'perfect memory', i.e disjoint Gibbs states for each pattern. The region 
f3 < 1+1.;a is the paramagnetic phase where uniqueness of the Gibbs state is expected to hold. For 
rigorous results on this domain see [ScT]. The more complicated region in-between is what Amit 
et al. call a spin glass phase. 

Remark: In [BG] the analogue of Theorem 1 for the dilute Hopfield model has been proved under 
the hypothesis that M < \~ 1;" and that the dilution rate, p(N), satisfies p(N)N j oo. As has 
already been pointed out in [BG], the fact that here we have proven Theorem 1 under the weaker 
hypothesis 1iJ l 0 implies that the_ conclusions of Theorem 1 hold for the dilute model under the 

conditions p(N)N i oo and p(:rnN l 0. 

An obvious question that remains is of course that of the nature of the limiting Gibbs measures 
as measures on the spin-space, i.e. on ( S, B). In mean field models one is used to the fact that 
these are product measures, and under the hypothesis of Theorem 1 this is indeed the case here: 

Theorem 3: Under the assumptions and with the notation of Theorem 1, 

w - lim lim 9~ N h[w] = B±11 (f3) [w] IP - almost surely h-+±0 Njoo f-'• ' a 
(1.18) 

where B;f[w] denotes the product measure on {-1, l}liV with the marginal measure on ai given by 

the Bernoulli measure on {-1, 1} with mean l£a. 

Remark: Theorem 3 is all but a Corollary' of Theorem 1, and follows, as we will see with very 
little work from the estimates we will use to proof Theorem 1. The crucial point that is needed to 

obtain the product structure of the limiting Gibbs measures is that the limiting induced measures 
are degenerate (i.e. concentrated on a single point). It is an interesting question whether this 
property does or does not extend to sm8.ll but finite values of a:. We should like to mention that 
factorization of the limiting measures is also tied to the so-called 'self-averaging' of the Edwards-
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Anderson parameter (the spatial average of the square of the Gibbsian expectation of the ai) and 
thus, via recent work of Pastur, Shcherbina and Tirozzi [PST] to the validity of the so-called 'replica 
symmetric solutions' of (AGS]. We do not want to enter into any details here but refer the interested 
reader to [PST] 2 

Under the assumption that M(N) is bounded, the statement of Theorem 3 has previously been 
obtained by Comets [Co]. 

The remainder of this article is organized as follows. In the next section we will introduce 
a smooth version of the induced measure for finite N that will converge to the same limit as Q 
but will be easier to treat using Laplace's method. We will write an explicit expression for the 
density of this measure in the form exp ( -(3 N if! ( x)) / Z for an explicitly given random function if!. 

In Section 3 we analyse the structure of the global minima of this function, and in Section 4 we use 
these results to prove the theorems. An appendix contains the proof of a bound on eigenvalues of 
a certain random matrix that is used frequently. 

Aknowledgements: We would like to thank the Institut fiir Angewandte Analysis und Stochasti'.k, 
Berlin, the Centre de Physique Theorique, Marseille, and the Universite de Toulon et du Var for 
their kind hospitality that made this collaboration possible. 

II. Some technical preparations 

To prove the theorems announced in Section 1 we will introduce a smooth version of the 
induced measures by convoluting Q with a Gaussian measure. We denote as usual by NM(µ, a) the 
Gaussian measure on IRM with mean µ and variance a. We will also identify this measure with the 
measure on IRJN obtained by tensoring it with the Dirac-measure concentrated at zero. We de:fi~e 

(2.1) 

(In the physics literature, this is known as the Hubbard-Stratonovich transformation [HS]). The 
point here is that since NM{N)(he11, [f3NJ-11I) ~ 80 as N j oo, and h ~ 0, the convergence 

properties of Qfv.,,8,h[w] are the same as those of Qfv.,,8,h[w], i.e. we see immediately that 

Lemma 2.1: Let A E B(IRJN) be any cylinder set~ Then, 

lim lim Qi~ h[w](A) = lim lim Qjy ~ h[w](A) 
h--.O Njoo ,,..,, h--.O Njoo ,,..,, 

(2.2) 

provided that one of the two limits exists. 

2 We are grateful to L. Pastur and M. Shcherbina for discussions on this issue. 
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A slightly sharper different result will be used to prove Theorem 2. 

On the other hand, Q1,,a,h[w](A) is absolutely continuous (as a measure on f!lM) and we get 
an explicit expression for its density. 

- M Lemma 2.2: Let Q1,,a,h[w](x) denote the density of Q1,,a,h[w] w.r.t. Lebesgue-measure on IR . 
Then 

Q1 ,a h[w](x) = ( ) ' ' J dMx exp -,BN4>1,,a,h[w](x) 

. exp (-f3N4>i.,.,,a,h[w](x)) 
(2.3) 

where 

(2.4) 

Remark: In (2.4) and in the sequel we introduced some convenient short-hand notations: ( ·, ·) 
stands for the inner product in IRM and l is regarded as a linear map from IRM to IRN (i.e. as 

an M by N matrix) when acting on a vector x E IRM (that is, (l(w)x)i = l:µ lixµ)· We will also 
write lt for the transpose of this matrix. 

Proof: To prove the lemma, just note that for any A E B(IRM), 

N M(N)(he'Tl, [,BNJ-1
) * Q1,,a,h[w](A) 

= J dMy NM(N)(he~, [JJN]-1)(A- y)Qi.,,/l,h[w](dy) 

= 2~ L NM(N)(he 71 ,[,BN]-1 )(A- MN[w](a))Qir,,a,h[w](a) 
crESN 

(2.5) 

Taking into account that Q is a probability measure to express Z as an integral, we arrive at the 
form claimed in Lemma 2.2. O 
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Note that the functional form (2.3) of the density Q with the explicit large parameter N in 
the exponent suggests naturally that the limiting measure will be concentrated at the minima of 
the function P. The main difficulty we have to deal with here is that the dimension of the domain 
of p N tends to infinity with N, if M( N) tends to infinity. Otherwise, i.e. if M is bounded, by the 
strong law oflarge numbers (SLLN) in Banach spaces ([LT], page 178), P1,,a,h[w] converges a.s. to 
the non-random, N-independent function 

1 1 
2(x - he11,x - he71 )- ;BlElncosh(,B((x)i) 

and the analysis of the limiting measures is a standard exercise in the application of Laplace's 
method of saddle point integration (see e.g. [AGSl]). In the cases we are interested in, the SLLN 
cannot be applied (and actually fails), and the analysis of the structure of the minima of the random 
function P is the main problem that we will have to solve in the next section. 

We remark here that the weak convergence of the infinite dimensional measures is of course 
equivalent to the weak convergence of the finite dimensional marginals they induce on IRk, for 
all k < oo (see e.g. Billingsley [Bi], page 30). Thus we denote by 7rk the natural projection 
'irk : IRIN -t IRk and by 

Q-71,k [ ] - Q-71 [ ] -1 N,,B,h W = N,,B,h W o 'Irk (2.6) 

the marginals induced on (JR\ B(IRk)). Note that for M(N) 2:'.: k, these marginals are always 
absolutely continuous, and their densities are obtained from those given in Lemma 2.2 simply by 
integrating over the coordinates xµ with M 2:'.: µ > k. Thus to prove Theorems 1 and 2, we have 
just to prove the analogous statements for the finite dimensional measures Qj;~,a,h[w] for all finite 
k. 

It will turn out useful to rewrite the function Pfv,,B,h in a somewhat different form. Namely, 
for arbitrarily chosen o, adding and subtracting a term Hx - he11, ~(x - he11)), (recall that e 
stands for the transpose of the M x N-matrix (, that is e ( is the M x M-matrix whose elements 
are ((f ()µ11 = '2:{:1 (f (i) we get that 

where 

oh2 
Pfv,,a,h[w](x) = qN,o[w](x - he71 ) + '111Jv,,a,h,o[w] (((w)x) + 2 

and w1Jv,,B,h,o[w] is a function from IRN to IR that is simply given by 

1 N 
'111Jv,,a,h,o[w ]( z) = N L 4>,e,h~£ ,o( zi) 

i=l 

9 
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with 
y2 1 

¢f3,h,6(Y) := 82 - {j ln cosh(J3y) - ohy (2.10) 

The point here is to choose the par~meter o in such a way that the quadratic form qN,6[w] is positive 
definite with probability tending to one, and to use the fact that 'I!1,{3,h,o is a very simple function 
whose minima are realized for just those z whose components are the minima of the functions 
¢(3,he'/ 16 • The difficult problem that remains (and that will be studied in the next section) is of 
course to find those x that are mapped to these z by the random mapping t. Before· turning to 
this, let us note that already now we can extract an interesting result on the free energy of the 
Hopfield model. Namely, if we define the finite volume free energy (we set the external field to zero 
for convenience) 

1 
fN,f3[w] := - J3N In ZN,{3,h=o[w] (2.11) 

it is easy to prove the following 

. Proposition 2.3: Set g5(J3) = minyEJR </J,a,6 and a = limNToo M}J1). Then for all J3 ~ 0 and for 
all 8 < i+i..;a and for IP-almost all w, 

g5(J3) + 2~ ln (o - 2)a(l - 8)) ~ li~\~f fN,,a[w] ~ li~t~P- fN,f3[w] ~ 9o(J3) (2.12) 

In particular, if a = O, the free energy converges almost surely and limNToo fN,,a[w] = go(J3) which 
equals the free energy of the Curie- Weiss model. 

Remark: The idea of the proof of this proposition, and in particular to .write <P in the form (2. 7). 
is originally due to Koch [K]. He actually proved (2.12) with fN,,a[w] replaced by IEfN,,a, but it is 
very easy to get rid of the expectation, as has already been shown in [BG]. In the case a = 0, a· 
result similar to Proposition 2.3 has also been given by Shcherbina and Tirozzi [ST]; in fact, they 
prove convergence of the free energy in probability, with bounds that are too weak to conclude 
almost sure convergence. Although their proof can certainly be improved to yield a.s. convergence, 
its main drawback is that it is unnecessarily complicated. 

In fact, the proof of Proposition 2.3 is immediate once we know that qN,6 is positive definite for 

8 < l+iv'a' with probability sufficiently close to one. This information is contained in the following 
theorem on maximal eigenvalues of random matrices. 

Theorem 2.4: Assume that tf are i.i.d. random variables satisfying IEtf = 0 and IE (tf / ~ 1, 
for all k > 1. Let B denote the M x M -matrix whose elements are 

N 

Bµv := (1 - 8µ,v) ~ :E tf ti 
i=l 

(2.13) 
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Then, for any c ~ 0, M ~ N and for N sufficiently large 

IP (llBll > 2 {J;F + cN-1/slnN) < { 4MN-c'1fk, V N - Nl/2 N-cN116 /2, 

where M* = max(M,N 213 ). 

if M ~ N2/3 
if M ~ :N2/3 

(2.14) 

This theorem will be used again in the next section, and we will give a simple proof in an 
appendix. The proof of Proposition 2.3 with the help of Theorem 2.4 is left as an exercise (or see 
[BG]). 

In the remainder of this section we state some properties of the function '1'1,{3,h,8[w]. They. 
follow in fact from the following lemma on the function </>{3,h,8: 

Lemma 2.5: The function </>{3,h,8: IR -t IR has the following properties: 

(i) For all {3, o and h, </>{3,-h,8(Y) = </>{3,h,8(-y) for ally E IR. 

(ii} Assume that h ~ 0 and let a( o, {3, h) denote the largest solution of the equation 
o(y - h) = tanh({3y) (the case h ~ 0 follows by applying (i)}. Then 

(ii.1) IfO < {3 ~ o, for all h ~ 0, </>{3,h,8 has a unique minimum at y = a(o,{3,h). a(o,{3,h) is a 
continuous function of h and limh-o a( o, {3, h) = 0. 

(ii.2} If {3 > 8, h > 0 and h sufficiently small, then </>{3,h,8 has two local minima, but a unique 
global minimum which is taken on at the point a( o, {3, h) > 0. 

(ii.3} If 8 < {3 < oo and h = O, then </>{3,h=0,8 has two global minima denoted by a±( E, {3), which 
are the strictly positive and negative solutions of8y = tanh({3y). Moreover, a-(8,{3) = 
-a+(8,{3) andlimh-o+ a(o,{3,h) = a+(8,{3). Note also that a+(8,{3) -t +1/8, as {3 j oo. 

(iii) For {3 ~ 8 and h ~ 0 sufficiently small, there exist strictly positive constants, 
oo > c+(o,{3,h) ~ c-(o,{3,h) > 0, such that for ally E IR, 

A.. ( ) • f ,,,_ ( ) c-(S,{3,h) . f ( )2 
'+'.8,h,o Y - Jrm. '+'{3,h,5 Y ~ 2 YoE{-a(8,~~h),a(8,{3,h)} Y - Yo 

and 

(2.15) 

(2.16) 

(iv) For all 8+ and {3 ~ 6+ 1 h ~ 0 small enough there exists a finite constant c > 0 such that for 
all E_ ~ 6+, 

IJ~1 r/J13,h,5+(y)- J~1rP/3,h,dY)I::; 16+ - Lic3a(L,,6,h) 

11 
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The proof of this lemma is of course just a standard exercise in real ap.alysis. For 6 = 1 it can be 

found e.g. in the book by Ellis [E); the modifications necessary to accommodate 6 ~ 1 are trivial; 

note in particular that a(o,{3, h) = a(l,{3/6, h0)/6. 

Let us define the sets 
(2.18) 

Taking into account the definition of Y!%-,(3,o,h given by (2.9) we immediately have the following 

Corollary 2.6: With the notation from Lemma 2.5 we have that 

(i} For all 1 ~ 'T/ ~ M(N) and for all h > 0, 'I!1,(3,o,h has a unique global minimum which is 
realized for 

z = a(o,{3, h)t1 (2.19) 

(ii) If h = 0, then w1,(3,8,h=O takes on its absolute minimum for all points z E eN(a+(o,{3)). 

{iii) For all h;?:: 0 and for {3 > 6, we have that 

ilt'.ii-,13,s,h( z) - J~}z </>{l,h,s(y) ::; c+(~:· h) Hz - a( 6, /3, h )€~11' (2.20) 

and 
w11 ( ) • f A.. ( ) > c-(o,f3,h) · f 11 Cll 2 

N,(3,o,h z - Jrm 'P(3,h,o y - 2N CE~N(~o,(3,h)) z - (2.21) 

The lower bound (2.21) will be used in the next section to obtain probabilistic bounds on the 

minima of the function <.I?. 

III. The global minima of the function <.I? 

The present section contains the central estimates of this paper. In particular we will localize 

the positions of the absolute minima of our function <1?1,,13,h[w] and control its behaviour near them. 

All these results will hold with probability tending to one fast enough. To simplify our notation, 

we will drop in this section the arguments win all random functions, as well as indices referring to 

the system size N, whenever no confusion may arise. In particular, we will write simply l for the 

matrix llN· 

From the results of the preceeding section, in particular Corollary 2.6, it is clear that the minima 

of this function sh~mld be near those points x E IRM for which lx E £(a), where a= a(o,{3,h). Of 

course, we can immediately identify 2M such points, namely x<v,s) = sa( Ov1 , • .. , Ovµ., . .. , OvM) E 

12 



IRM, with v E {1, ... , M} and s E {-1, +1}~ The first result of this section is that if M/N is 

sufficiently small, all possible solutions must be very close to these. The precise formulation of this 

statement is the following 

Proposition 3.1: For p ~ 0, define the set 

'Rp = {x E IRM: inf llx - x(v,s)ll > p} 
v,s 

Given a, 0 < a :::; 1, there exists strictly positive constants a 0 , co, c1, and c2 such that if 1;J :::; ao, 

then for all ES Eo and p2 ~ a2 (c1 (:,log~) 
114 + 2J1i) 

IP ::lxE'R-p inf -ll~x - zll2 < € :::; e-Nc2 a.•2 log~ + p(N) ( 
1 ) ( 128)1/4 

zEl'(a) N 
(3.1) 

where p(N) is such that ~';=1 p(N) < oo. 

In particular, if limNioo 1;J . = 0, there exists strictly positive constants co and c1 such that if 

0 < c:::; Eo and p2 > a 312c1(dog ~)1 14 then 

IP (:ixE'R-p inf _!_ll~x - zll2 < c i.o. ). = 0 
zEE(a) N 

(3.2) 

Proof: The first step in the proof of (3.1) consists in getting an a priori estimate on the modulus 

of those x for which the event considered may possibly occur. Here we will make use of Theorem 

2.4. Note first that by the Schwarz inequality, ll~x - zll2 < c implies that, since llzll = a.JN, 

(3.3) 

By Theorem 2.4, we may choose r*(M, N) = 2J!j+o(N-1l 6 ln N) such that on a subset AN c n, 
satisfying IP(AN) ~ 1 - p(N) with ~N p(N) < oo, 

Ill!- l~lll S r*(M, N) (3.4) 

Therefore, (3.3) implies that if w E AN, then the event in (2.1) can only be realized for x satisfying 

(3.5) 

Define 
-{ M. a-..fi a+..fi} 'Re= x E IR · v'i+T*. :::;_ llxll :::; v'f=r* (3.6) 
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and set Re.,p =Re. n Rp. By the above argument, we may conclude that 

IP(3xE'R. inf . Nl lltx - zll 2 < E) <5: p(N) +IP (3xE'R. inf Nl lltx - zll 2 < E, AN) (3. 7) 
P zEc(a) p,c zE&(a) 

Although in the left hand side of (3.7) we have considerably reduced the range of x-values 
we need to control, the fact that we need to control an event for a continuous set of points x still 
poses a problem. The idea to overcome this difficulty is to regard the inequality lltx - zll 2 < EN 
as a set of N approximate equations and to use the first [1' N] of them to fix x up to a· small 
error. Thus, given 'Y E ]O, 1] we decompose the M x N matrix t into an M x [;N] matrix °"t, 
ar = tf; i E {1, .. ., [;N]},µ E {1, .. ., M}) and an 
M x (N - [IN]) matrix{, (fr=: tf+bNJ; i E {1, ... , N - [TN]},µ E {l, ... , M} ). Using Theorem 

2.4 just as before, we see that we may choose r*(M,{N) = 2# + O(N-116 ln N) and r*(M, (1-

!)N) = 2J(i-~)N +O(N-1 l 6 lnN), such that on a subset n :JAN :JAN satisfying IP(AN) ~ 
1 - fi(N) with ~N fi(N) < oo we have 

Let us also define 

-T-
1I - t t <5: r*(M, ;N) ;N 

ee 
1I - (1 =- ;)N <5: r*(M, (1- !)N) 

E(a) =: {z E .mhNJ: Vi E {l, .. .,[;N]},zi E {-a,a}}, 

f_(a) =: { z E .mN-['YN] : Vi E {1, ... , N - [IN]}, Zi E {-a, a}} 

With this notation we get that 

IP (3xE'R. inf Nl lltx - zll 2 < E, AN) < p,• zEc(a) -

(3.8) 

IP (3xE'R.p,• { i!!;f lltx - zll 2 <EN} n { inf ll{x - ~11 2 <EN} ,AN) + p(N) (3.9) 
zE&(a) ~Ef(a) 

<5: L IP (3xE'R.p,• { lltx - zll 2 < EN} n { inf ll{x - ~11 2 < EN}' .AN) + fi( N) 
_ ~Ef(a) 

zE&(a) 

Given z E E(a) let us choose xo = xo(z) E Rp,e. such that ll"txo - zll 2 < EN. Notice that if such 
an xo does not exist, then the set {3xE'R.p,•; ll"tx - zll 2 < EN} is empty. By construction, x0 (z) 
is a random variable which is a( [)-mesurable. We will now show that all points x that verify 
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ll(x - zll 2 < cN are close to x0 • Set x = xo(z) +Ex. using the Schwarz inequality, we see that if 

ll(x - zll2 < cN and ll(xo - zJj 2 < cN, then 

ll~Exll ::; II~( xo +Ex) - zll + llz - ~xo II ::; 2..;;Ji (3.10) 

On the other hand, on AN we have that 

11~;!12 = (ox,~} Ox) 2'. ll8:i:ll 2 (1- r*(M,-yN)) 

Therefore, on AN, (3.10) implies 

and so 

ll E 112 < .4€ A 

x - 1(1- r*(M,1N)) = c 

IP (::ixE'R. • { ll~x - zll 2 < cN} n { inf ll~x - ~11 2 < cN}, AN) 
p, ~E£(a) -

. (3.11) 

(3.12) 

:,; IP ( 35x,xo+sxE'li,,, {II(( Xo +Ox) - z11 2 < EN} n {~~Na} II{( Xo +Ox) - ;;_11 2 < EN}' AN) 
. ::; IP (::isx:x0 +8xE'R. 11. ll8xll2<€ inf II~( Xo +Ex) - ~11 2 < cN, AN) p,• - ~E£(a) -

· ::; IP ( inf ll~xo - ~11 2 < 2N ey, AN) 
~E£(a) -

(3.13) 
where in the last line we have used that on the set AN, if ll{(xo +Ex) - ~11 2 ::; cN and llExJl 2 ::; € 
are satisfied, 

ll{xo - ~11 2 
::; (.;;Ji+ Je(l -1)N(l + r*(M, (1-1)N)))

2 

::; 2N [c + €(1 -1)N(l + r*(M, (1 -1)N))] 

= 2Nc [l + 4(1-1)(1 + r*(M,(l -1)N))l 
1(1- r*(M,1N)) 

= 2Ney. 
To estimate the last line in (3.13) we will use the following elementary observation: 

Lemma 3.2: If (Yi)~1 is a family of positive random variables and C ~ 2 then 

(3.14) 

{ ~ tY;:,; E} c { #{i;Y;:,; CE}> (1- ~)K} (3.15) 

Using this Lemma for C to be chosen later, we get 

IP ( inf ll~xo - ~11 2 < 2Ney,AN) 
~E£(a) -

~IP (::iI:IIl>(l--b-)N(l-')') viEI [{l({xo)i - al 2 ~ 2CeY} u {l({xo)i + al 2 ~ 2Cer}J) (3.16) 

:,; G~ = ~m [IP ( {l({xoh - al 2 :,; 2CeY} u {l({xoh + al 2 :,; 2CE-Y}) l(l--y}(l--b}N 
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where in the last step, we have used that, for any subset 1 of {1, ... , N - b N]}, given~, the random 
variables (({xo)i)iEI form a family of independent identically distributed random variables. This 
is true given ~' since x 0 is a random variable which is a(~)-measurable by .construction. Thus we 
are left to bound the probability in the right han.d side of (3.16). Let us state this· as a Lemma: 

Lemma 3.3: There exists v = v( E, a, 'Y, C, ~) > 0 such that: 

IP ({l({xo)i - al 2 ~ 2CeY} U {l({xoh + al 2 ~ 2CeY}) ~ e-H.i?-2
-;{-) (3.17) 

where E1 = J2C ey. 

Proof: Without loss of generality we can assume that x0 = ( xb )~1 satisfies: 
x5 ~ x~ ~ ... ~ xf{ ~ 0. This follows since x0 is a(~)-measurable and since for any i E {1, ... , N -
['yN]} the random variables ({n~1 that appear in ({xo)i = ~!1 {rxtf are independent of~. 
Moreover given x0 , the random variables ({xo)i for i E {1, .. . ,N-[1N]} have the same distribution 

as ~;=l ~f lxtfl. Given 0 < v < 1, we define the a(~)-measurable random variable, t, by 

t =sup{•> 0: t(x~)2 S a2(1-v')} 
µ=1 

(3.18) 

if such at exists. To ensure the existence oft we will have to impose conditions on our parameters, 
which we derive now. Obviously, t exists if and only if (x5)2 ~ a2(1 - v2). Since x 0 E Rp,e, 

p2 ~ llxo - x(1,1) 112 = ( x6 - a )2 + L ( xtf )2 
µ~2 

= a2 
- 2x6a + llxoll 2 

~ -2ax6 + a2 + a2 (1 + €) 

(3.19) 

A - (i+/3)2 where we have set 1 + € = l-r*(M,N). Solving this inequality for x5, we see that this condition is 
certainly satisfied if 

p2 ~ a 2 [1-2~ + 1 + €] 
Let us now show that if (3.20) holds, then 

t+l < jffl+€ x a --o - 2 

Obviously, under our assumptions 

t+l 
(t + 1) (x~+1) 2 ~ L (xtf) 2 ~· llxoll 2 ~ a2(1 + €) 

µ=l 

and since (3.20) implies that t ~ 1, (3.21) follows. 
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We assume from now on (3.20) and define the random variables 

t 

Xt = Lxtt~r 
µ=1 

m 

Yt = L xft~r 
µ=t+2 

Z = ,,..t+l tt+l 
t - "'O f:.1 • 

It follows from (3.23) and the definition oft that these random variables satisfy 

JEX[ ::; a2(1 - v 2 ) 

IEY/ ::; a2 (€ + v 2 ) 

1z,1sa{ffl 
It remains to estimate 

IP ( X t + yt + Zt E [ - a - f.
1

, -a + c1
] U [a - f.

1
, a + c1

]) 

with t 1 = ../2Cey. Let us introduce the random (o{t)-measurable) intervals 

(3.23) 

(3.24) 

J+ = [a - xg+i - c1
, a - xg+i + c1

] and J- = [-a - xg+i - c1, ~a - xg+i + c']. notice that since 
~i+1 , Xt and yt are symmetric random variables we have: 

IP (Xt + yt + Zt E [-a - c1
, -a+ c1

] U [a - f.
1

, a+ c1
]) = IP (Xt + yt E J- U J+) (3.25) 

By conditioning on the events {Xt ~ 0, yt > O}, {Xt ~ 0, Yt ::; O}, {Xt < 0, Yt < O} and 
{Xt < 0, yt > O} and using the trivial upper bound 1 for the conditional expectations in the first 
three cases we obtain: 

1 
IP (Xt + yt E J- U J+) ::; 4 {3 +IP (Xt + Yt E J- U J+IXt < 0, yt > 0)} 

3 1 1 ::; 4 + 4IP (Xt + yt E J+!Xt < 0, yt > o) + 4IP (Xt + yt E J-IXt < 0, Yt > o) 
(3.26) 

where we have chosen f.1 small enough in order that J+ n1- = 0. The exponential Markov inequality 
and (3.24) yield the bound 

IP (Xt + Yt E J+IXt < 0, yt > o) ::; IP (Yt >a - x~+l - c'!Yt > 0) 

(
- ( 1 - yi(l + €)/2 - £

1 /a r) 
::; 2 exp ( .. 2 ) . 2 c+ v 

(3.27) 

Because the Xt are symmetric r.v. >s, the Chebyshev inequality can be used to get the bound 

IP (x ·v· 1· ) ( ·t+l 'I ) (1 - v
2 )a2 

t + I. t E J- Xt < 0, yt > 0 ::; IP Xt < -a - x 0 + c Xt < 0 ::; ( ') 2 a- f. 
(3.28) 
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If finally v is chosen such that 

( 

( 1 - J ( 1 + f.) / 2 - €
1 /a )2 ) 1 v2 a 2 

2exp - 2(€A + v2 ) < -2 ( ')2 - a-€ (3.29) 

and if €1 is small enough, combining (3.27) and (3.28) we arrive at 

(3.30) 

which proves the Lemma. O 

We now continue the proof of the proposition. Inserting the bound from Lemma 2.3 into (3.16) 
it follows that 

IP (:ixER. inf Nl lllx - zll 2 < E, AN) 
p,c zEE(a) 

~ 2-rN((l -1')~)e-H1?-2~)c1--r)(1--b-)N + f>(N) 
(1-1')c 

~ eN [ 'Y ln 2+(1--y)( -b- ln c+ Ccl ln 6 )-t( v2
2 -2 ~ )<1--y)(l- -b-)] + .f>( N) 

(3.31) 

where the factor 2-rN takes into account the sum over z, and in the last line we have made use of 
Stirling's formula [Ro] to bound the binomial coefficient. We want show that under the conditions 
on € and p stated in the proposition, we can choose the parameters C, 1' and v such that the 
coefficient of N in the exponent in the last line of (3.31) is negative. Obviously, this requires first 

of all that v2
2 

- 2~ be positive and sufficiently large. It is thus reasonable to fix v2 = 8€1 /a. Given 
this choice, we then choose 1' and C such that, the positive terms in the exponential are balanced 
by, say, one half of the negative terms. It is easy to verify that this is true with C = 2: 2

6 log 1;28 

and 1' = ~:, so that with this choice we get 

IP (:ixER. inf Nl lllx - zll 2 < E, AN) ~ e-Nv2 
/
64 + f>(N) p,• zEE(a) 

. (3.32) 

Recalling that €1 still depends on 1' and C, we obtain as explicit relation between v and E, for. our 
choices 

a2vB 2 ( 222€ a2 ) 1/4 
€ = 2221n ill or v = ---;;,2 ln 21s € 

v2 

(3.33) 

where the constants 2z have not to be taken too seriously. To conclude the proof, we only have to 
verify that under the hypothesis on p and € stated with these choices Eqs. (3.20) and (3.29) are 
satisfied. To make the analysis of these conditic:>ns transparent, we will assume and use that a and 
E/ a2 are small compared to one and keep only the leading terms in these quantities. This means 
that in particular€ (defined after (3.19)) is approximately given by 

A ~ {fr €~2 -+2 -
a2 N 

(3.34) 
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Using this, inserting (3.34) into (3.20) we get the final bound on p as 

[(
222 2 )1/4 .@ 

p2 ;::: a2 a2 € In 2~s € + 2 V N J (3.35) 

Proceeding in the same way with (3.29), one finds that it is satisfied if 

~ln _:__ ((222€ ln __:::_)1/4 + 4 {ii) < (1- _1 )2 
4 a2 a2 215 E V N - J2 (3.36) 

This gives in general an upper bound on E, and if a -::j:. 0 also seems to imply a lower bound on f. 
This is, however, only due to our choice of v 2 which was done as to allow E to be as large as possible 
and it is easy to verify that Proposition 3.1 really holds for all €::; Eo, where Eo is determined by 
(3.36). However, as we will see later, in our applications €will have to be taken larger than fo, 
(3.36) will in particular be the reason for an upper bound on admissible values of a. This ends the 
proof of Proposition 3.1. 0 

Proposition 3.1 will be used directly in the next section to prove our main theorems. 

IV. Proof of the Theorems 

In this chapter we will prove the theorems announced in Section I using the results obtained 
in the last two sections. Our strategy is to first prove the analogues of Theorems 1' and 2 for the 
measures Q. Statement (i) of Theorem 1 then follows by Lemma 2.1, while Theorem 2 will be 
the issue of a short computation, with statement (ii) of Theorem 1 essentially a simple Corollary. 
Finally we will proof Theorem 3. We find it convenient to work with the Laplace transforms of the 

finite dimensional marginals of the measures Qfr,{3,h which we denote by .Cj/~13 ,h[w](t), i.e. 

£ 11'k [w](t) = f dkx e(t,x)Q 11 'k [w](x) N,{3,h j JR"ll N,{3,h 

= f dMx e(t,7r"Jcx)Q 11 [w](x) 
JJRM N,{3,h 

( 4.1) 

Recall that a+ ({3) denotes the largest solution of a = tanh({3a) and 7rk : IRIN ---+ IRk is the 
projection on the first k coordinates: x H 7rk(x) = (x1 , .. ., xk)· Throughout this section we will 
write r* = r*(M, N) for the upper bound on 1111 - ~II on AN (see (3.4)). Also we will write a 
shorthand for a( 8, {3, h), unless we want to point explicitly to the dependence of this quantity on 
the parameters. 

Proposition 4.1: Under the hypothesis of Theorem 1, VTJ E IN, Vk E IN and Vt E IRk, for 

almost all w we have 

( 4.2) 
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To prove the Proposition 4.1 we need the following lemma which in fact provides all the crucial 
estimates needed to prove our theorems. 

Lemma 4.2: For almost all w, for all but a finite number of indices N we have 

{i) 'v'(v, s) # (77, 1) 
0 < Q.11 [w] (B(v,s)) < e-c1{3N 

- N,/3,h p - ( 4.3) 

where 

c1 =ha - p (2h + 4la - hlr*) + p2 (2h + (1 + r*)c+(s, {3, h)) ( 4.4) 

and c+ = c+(8,{3, h) is the same constant as in Lemma 2.5. 

M 1-M. (ii} Let N, p and€ are such that the hypothesis of Theorem 1 are satisfied. Set L = W. and 

8+ = 1 !r* . Then, Vt E IRk 

( 4.5) 

where 

(4.6) 

with c3 > 0 a constant related to the constant c3 in Lemma 2.5. c- is the same as in Lemma 2.5. 

An immediate consequence of the lemma is the following 

Corollary 4.3: For almost all w, for all but a finite number of indices N, 

(4.7) 

We now give the proofs of Proposition 4.1 and of Theorem 2, assuming Lemma 4.2. The proof 
of the lemma will be given after that. 

Proof of the Proposition 4.1: We consider the case {3 > 1; the case {3 < 1 is much simpler and 

will be left to the reader. Since we assume that ~ l 0, this implies that for all N large enough, 

{3 > 8+. Let us write 
£71,k [w](t) = JC+ ~ J(v,s) 

N,{3,h L,,; ( 4.8) 
(v,s) 

where 

( 4.9) 
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and 
( 4.10) 

(4.11) 

Therefore, using ( 4.3) we get 

L J(v,s) ::::; e-c1f3N ePlltll2 L esa(t,?r1ce"') 

(v,s)#(71,l) (v,s)#(71 1l) ( 4.12) 
::::; 2M e-c1f3N e<P+a)lltll2 

For Jc, we have of course the bound given by (4.5). 

Finally, using Corollary 4.3 and the bounds ( 4.11), 

( 4.13) 

From these bounds we see that the proposition will be proven if we can choose our parameters 
such that c1 and c2 are sufficiently large while at the same time p = p N tends to zero. Let us first 
consider c2 • It is reasonable to fix 

( 4.14) 

in which case c2 ~ a(6-,j3,h)c3r*. At the same time, the hypothesis of.Proposition 4.1 are satisfied 

if we choose p = PN as 

p~ == a312(L,(3, h) [c1 ( 3C3 c~(tL:~.h1)) 
114 

(r*)1/4 (1n ;! ) 114 + r*a112(L,(3, h)] 
( 4.15) 

= a3120 ((r*)114 llnr*I) 

which tends to zero as desired. Finally, since p N tends to zero, for N large enough, c1 > 
tha(l, /3, h) > 0. From these observations, ( 4.2) now follows immediately. 0 

Proof of Theorem 2: We show first that the conclusion of Theorem 2 holds for the measures 

QN,/3,h=O· To do this, all we have to do is to show that, almost surely, QN,/3,h=o[w] (Rp) l 0, as 
N i oo, for suitably chosen p. For this we can of course simply use the bound ( 4.5) from Lemma 
4.2, with h and t set to zero. That is, we must estimate the minimal p for which e-f3Nc2 tends to 

zero. Following the same arguments as in the proof of Proposition 4.1 we see that this p can be 
chosen as 

( 4.16) 
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for some positive constant C, if a is sufficiently small and {3 > 8+ +a (this condition on {3 is needed 
in order that the term ~ln(c+(o+,f3,h) in (4.6) to be negligible). We recall that 8+ = i-i..;a ~ 
1+2..fo.. 

To extend this result to the original measures QN,{3,h=O, we use the fact that the gaussian 
measures N(O, 131N) is in the limit N j oo concentrated on a ball of radius 0( a), if lim sup ~ = a. 
Namely, having established that 

we define 

BP= {x E lRINldist(x,Bp) ~a} 

and by the definition of Q, we have thus 

1 - e-cN ~ QN,13(Bp) = 
= ({3N) M/2 { dMx JI{xEB,}(x) { e-1'fllx-m1J\2N,/3(dm) 

27f J JRM J JRM 

= ({32N)M/2 { dMxlI{xEB }(x) { e-1'f1Jx-m1J' 
7f J JRM P J JRM 

X [lI{llx-mll~a}(m) + lI{llx-mll>a}(m)] QN,13(dm) 

=I +II 

( 4.17) 

( 4.18) 

'( 4.19) 

where I and II refer to the two summands with the respective characteristic functions. We will 
see that the first term is what we want, while the second is small; in fact 

M/2 · 

II:<:; (~:) JJRM dMx JJRM e-1'f~ll•-mll' e-1'f(l-~)1lx-m1l' JI{llx-mlJ>a}(m)QN,13(dm) 

~ e-f3N"fa ({3N) M/2 { dMx . { e-~(l-"f)Jlx-mJl2 QN,13(dm) 
27f J JRM J JRM 

= e-f3N"fa _1_ [ l M/2 

1 - 1' 

( 4.20) 
for small enough 7. Note that we assume {3 > 1. If lim 1j§ = 0, this argument has to be modified 
slightly by replacing a in ( 4.18) by a suitably chosen c(M, N). We leave the details to the reader. 

To deal with the term I, we use that 

( 4.21) 
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Since fJ P C B p+a., this implies 

Q (B ) > 1 _ e-f3N1a./2 _ e-cN N,/3 p+a. - ( 4.22) 

and since o: is much smaller that the p from ( 4.16), this implies immediately Theorem 2 for Q. 0 

Proof of Theorem 1: Since (i) of Theorem 1 follows immediately from Proposition 4.1 and 
Lemma 2.1, to complete the proof of Theorem 1 we only have to verify statement (ii). But this 
is essentially a special case of Theorem 2. Since under its assumptions M / N l 0, we can choose, 
according to (4.16), p = p(N) N-dependent and tending to zero as N goes to infinity. Thus 
Theorem 2 implies for such M that limNioo QN,/3,h=o(Bo) = 1, IP - almost surely. Remembering 
the definition of limiting induced measures in Section 1, we require the slightly stronger statement 
that 

lim lim Q~~(Bo) = 1, IP - almost surely 
llf lloo lO Njoo ' 

( 4.23) 

To show this, one introduces as above for the general !-dependent measures the corresponding func-

tions ~~.~(z). The point is that these are uniformly continuous in f. In fact a simple computation 
shows that they even satisfy 

( 4.24) 

From this ( 4.23) is obtained easily by the same estimates as before. O 

Theorems 1 and 2 are now proven up to the proof of Lemma 4.2 which we present now: 

Proof of Lemma 4.2: Let us recall that 

We choose o = ON = 1_:r*, with r* as in Section 3, so that, for w E AN, the quadratic form qN,a[w] 
is positive definite. In the rest of the proof all statements concerning random variables will be 

understood to hold for w E AN. Let us first prove part {i). Recalling the definition of W (2.9,10), 
it is easy to see that 

( 4.25) 

Using this observation we may write 

( 4.26) 
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To get an upper bound on this term, notice first that \:/(v, s)-:/= (7J, 1) and Vx E B~v,s) 

h(a - 2p) ~ h(x, (sev - e11)) ~ h(a + 2p) ( 4.27) 

On the other hand, writing x - shev = x - saev + s(a - h )ev, the quadratic term can be written as 

where 

IRI :'::t; +Pia- hi)) 111! -iJ II $ (~
2 

+ pla- hi)) (2r*) 

Using this bound in the numerator and denominator of ( 4.25), we get 

where 

Q77 [w] (B(v,s)) < e-.BNh(a-2p)e.BN(pla-hl4r*) 3(v,s) . N,,B,h p - · 

J B(v,•> dM x e-.BN{ '11N,..S,•h,o((x)} 
3(v,s) := ---'p-· ---------

J n<11.1) dM x e-.BN { '111.r,..s,h,o(ex)} 
p 

( 4.28) 

( 4.29) 

( 4.30) 

( 4.31) 

To estimate the last quantity, we change coordinates in the integrals in the numerator and denom-
inator to x' = x - saev and x' = x - ae11, respectively. Moreover, we will use that 

( 4.32) 

Let B~ denote the ball of radius p centered the origin. We may then write 

(4.33) 

Now 
( 4.34) 

while Corollary 2.6 implies that 

( 4.35) 

Inserting these two bounds in ( 4.33) and, using that in the domain of integration llxll ~ p, .we get 

( 4.36) 
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and so :finally 

QTJ [w] (B(v,s)) < e-.BN{h(a-2p)-4pla-hlr*-p2 (1+p*)(c+(c,,B,h)+2oh)} 
N,,B,h p - . ( 4.37) 

which proves part (i) of Lemma 4.2. 

Let us now prove part (ii). We have to estimate 

( 4.38) 

We treat the numerator and denominator in ( 4.38) separately. In particular, we will use a different 
choice for 6 in each of them. Consider first the denominator. Here we choose 6 = 6+ such that 

qN,6+ is strictly negative, which will be the case if 6+ = 1!r*. This gives 

( 4.39) 

where we have used (2.20) from Corollary 2.6 and where we have set 

cpo( 6) = Jr1 </>,a,h,c(Y) 

We now turn to the numerator in ( 4.38). Here we choose 6 = L = ~'f.~"Y with TN > 0 to be 
chosen later. This choice implies that qN,o_(x) ~ Ifllxll 2 • Using this time the bound (2.21) from 
Corollary 2.6, this yields 

r dMx e(t,11"1cx)e-,L3NcI>1,,e,h,o[w](x) 
Jnp 
= e-,BN1.p0(L) J, dM x e(t,11"1cx)e-.BN{qN,o(x-he")+w1,,e,h, 6 (ex)-1.po(L)} 

1lp 

~ e-,BN1.po(L) r dMx e(t,11"1cx)e -,BN{ 2'.fllx-he"i12+ e-(62/.l.8,h) inf(Et:N(ii") 11ex-(!12} 
Jnp 

~ e-,BN1.po(L)e:_€,L3Ne-(o-;,.8,h) { dMx e(t,7ri.x)e-,BN2'.fllx-he"ll 2 . 

JJR.M 

( 4.40) 

where in the last line we have made use of the bound (3.1) from Proposition 3.1. To do· this, we 
assume that the hypothesis of this proposition are satisfied. In particular, E depends of course on p. 
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Also, ( 4.40) holds on a subset AN C n whose complement has a probability that was bounded in 

(3.1). This estimate and the first Borel-Cantelli lemma will imply that the bounds we are proving 

are true for .IP-almost all w and for all but a finite number of values of N. 

Combining these two bounds, we arrive at 

( 4.41) 

Using point (iv) of Lemma 2.5, we see that 

2r* + TN(l - r*) 
(cpo(6+)- cpo(L)) ~ c3a(L,{3,h)(6+ - L) = c3a(L,{3,h) 2 1 - (r*) ( 4.42) 

~ c3a( L, {3, h )(2r* +TN) 

Thus, 

r dMX e(t,?rr.x)Qi,/3,h[w](x) ~ eh(t,?rr.e"l)e+213t-rN 
lnp ( 4.43) 

X e-.l3N[ !ec-(8- ,/3,h)-caa(L ,J3,h)(2r*+'TN )- /;fN {In( c+(c+ ,/3,h)(l+r*) )+I In 'TN I} J 

From this expression we see that TN = ~ is a reasonable choice (we exclude the trivial case M 

bounded where we would of course choose a l.arger TN); it means in particular that for small ~ it 
can be neglected in the first exponential in ( 4.43) (on the expense of slightly enlarging the constant 

c3). This yields ( 4.5) and concludes the proof of Lemma 4.2. O 

Finally, we come to the 

Proof of Theorem 3: What we have to do h~re is to show that the marginals of the Gibbs measure 

on any cylinder generated by a finite subset of the spin-variables converge to a product measure as 

stated. Thus we select a finite subset V C IN and let AC Bv denote a cylinder event. Of course, 

without restriction.of generality we can assume that A is the event A= {ai = si, Vi EV}. We will 
assume in the sequel that N is so large that V C {1, ... , N}. We denote by vc the complement of 

V in {1, ... , N}. Then 

( 4.44) 
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where we have used the abbreviation Jij = 2:!1 lflf. In terms of the 'local overlaps' my( a)= 
l~I :EieV lf ai, this can be re-expressed in the form 

Q"1 (A) =--l- ~ JIA(av)ef3~}11mv(uv)ll 2 +f3h1Vlmi(uv) 
N,{3 ,h ZT/ L.J 

N,{3,h uv CSv 

x L ef3N' (t llmvc(uvc )ll 2 +h'm~c(uvc H#ir(mv(uv ),myc (uvc ))) 
( 4.45) 

uvcCSvc 

Here N' = iv;12 and h' = h 1~ 1 . Of course the distinction between N,N' and IVcl is completely 
irrelevant in the limit N j oo. Now 

_1_ " {3N' (t llmvc (uvc )ll 2 +h'm~c(uvc )+#ir(mv(uv ),mvc(uvc ))) 
21Vcl L.t e 

uyc CSvc 

= (f3N')M/2 JdMxe-~(x,x)_l_ " ef3N'(mvc(uvc),(x+~mv(uv)+h1 e11 )) 
27r 2 IVc I L..i 

Uyc CSvc 

= (/3N')M/
2 

J dM _fl~' (x-~mv(uv)-h1 e 11 1 x-#irmv(uv)-h1 e11 ) _l_ " {3N'(mvc(uvc);x) 
27r xe 21Vcl L.t e 

uvcCSvc 

= e_131V,J' !IJmv(o-v)IJ2 -/3hjVJmi(o-v)-/3Nh2 (/32~') M/
2 

X J dM X e/3N' Jlf.1(x,mv(o-v ))+/3N' { -tJJx-h'e"IJ 2 +,,J;rr I;'EV' lnco•h /3(fx).;} 

( 4.46) 
Thus 

l:uv CSv JIA( av) J dM x ef3N' fVtr(x,mv(uv ))+f3N' { -} llx-h' e11 ll 2+~ 2:,evc ln cosh f3(ex),} 

l:uv CSv J dM X e{3N' ~(x,mv(uv ))+f3N' { -} llx-h' e'l 11
2+ fli.,' ,2:,evc ln cosh f3(ex)i} 

( 4.4 7) 
Now the integrals in ( 4.47) are exactly those we had to deal with in the proof of Proposition 4.1 
(excepting trivial modifications) and a re-run of that proof shows yields that, .IP-almost surely, 

"°"' JI (a ) II ef3a(f3)C'u, 
lim lim QT/ (A) = L..Juv CSv A V iEV ' 
h-+O Njoo N,{3,h "°"' · II. ef3a(f3)e7u, 

L..JuvCSv iEV 
ef3a(f3)e7 u, 

= L JIA( av) n -2 c-os_h_f3a-(f3-) 
uv CSv iEV 

( 4.48) 

which gives, together with the fact that a(/3) = tanhf3a(/3) gives the statement of Theorem 3. 00 

Remark: It is interesting to notice that in the proof of Theorem 3 the measures Q enter directly 
and not the actual induced measures Q. 
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Appendix 

In this appendix we present a proof of Theorem 2.4 on the eigenvalues of the matrix e~, 
namely 

Theorem 2.4: Assume that ~fare i.i.d. random variables satisfying IE~f = 0 and IE (~f)k :::; 1, 

for all k > 1. Let B denote the M x M -matrix whose elements are 

N 

Bµv = (1 - oµ,v) ~ L ~r~r 
i=l 

Then, for any z ~ 0, M :::; N and for N sufficiently large 

IP (llBll > 2 {iiFN• + zN-1/6 ln N) < { 4M N-z.Jlk, V N - Nl/2 N-zN 116 /2, 

where M* = max(M, N 213 ). 

if M ~ N2/3 
if M:::; N2/3 

Remark: It may be noted that (A.2) implies, in particular that, for all E ~ 0, 

(A.l) 

(A.2) 

(A.2') 

Remark: Note that the conditions on ~ are satisfied for symmetric Bernoulli variables. Up 
to trivial rescaling, they accommodate also all bounded centered r.v.'s. In the special case of 
symmetric Bernoulli variables, (A.2) holds with N 116 replaced by N 114 everywhere. 

In [BG] we have proven a related result for the matrix A= B +JI, namely-that llAll :::; e2VMfii 
with large probability. The proof of the present, somewhat sharper result uses the same techniques 
and some of the combinatorial facts that are proven there. The general strategy follows that of 
Fiiredi and Komlos [FK]. 

The main ingredient is a bound on the expectation of the trace of high powers of B. It reads 

Lemma A.1: Let B be the matrix defined in Theorem 2.4. Then, for all k:::; N 116 , 

(A.3) 

Remark: Similar results have been given by Koch [K] and by Tirozzi and Shcherbina [TS]. We 
present an independent proof here. 
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Proof: (of Lemma A.l) First we write, with M = {1, ... , M} and N = {1, ... , N} 

(A.4) 

We think of the two sums as sums over sequences (µ0 , .•• , µk-l) E Mk, etc. For such a sequence 
we will denote by 

(A.5) 

the set of different values the sequence runs through. We may then arrange the sums in ( A.4) in 
such a way as to first sum over all possible subsets r1 C Mand r2 C N and then over all sequences 
for which the values run through exactly these subsets. Moreover, these sums will not depend on 
the exact subsets r 1 , r 2 , but only on their cardinalities. Thus 

k 1· min(k,M) min(k,N) (M) (N) 
IEtrB = Nk L L T 

8 
Ek,r,s 

r=l s=l 

(A.6) 

where 
(A.7) 

(µ.o·····""J&-l )EM.I& Cio.····i.l&-l )EN.I& 
{(µ.o, .. .,µ..1&-1 )}={l, ... , .. } {Cio •... ,i.1&-l )}={l, ...• •} 

Vz ""' ;tµ.z-1 

where the combinatorial factors in (A.6) count the number of subsets of given cardinality. Note 

that Ek,r,s does not depend on M or N. 

To estimate these last quantities, we think of the sums in (A.7) in a slightly different way. 
Let us denote by Yr,s the complete bipartite graph with vertex sets labelled by n = {1, ... ' T} 
and S = {1', ... , s'} (here the prime indicate that the points in the two sets are understood to 
be distinct), i.e. the graph with vertex set n u S and edge set n x S. Associating with each tiµ 

appearing in the expectation in (A. 7) an edge ( i, µ) of 9r,s, each term in the sum (A. 7) corresponds 
to a walk, w, of length 2k on this bipartite graph (i.e. a sequence of edges linking alternately the 
sets n and S) with the property that each vertex of 9r,s is visited at least once. Moreover, it is clear 
that any walk which passes over any given edge of 9r,s exactly once will give a zero contribution 
as the expectation of the corresponding product of tf's vanishes by assumption on the distribution 
of the t. Finally, the constraint µz f. µz_1 in the first sum forbids that a walk after arriving at a 
point i ES from a pointµ En returns immediately to the same pointµ. We denote by Wk(r, s) 
the set of walks that give a non-zero contribution. By our assumptions, we have that 

(A.8) 

The only new feature compared to the proof in [BG) is now the constraint on the walk not to 
return along itself after visiting a point in 8. As a main effect, this introduces a constraint on the 
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admissible values r and s for given k as we will see now. Let Wk be a walk in Wk( r, s ). Then the 
set of edges in Yr,a over which wk passes form a connected, bipartite graph on 'R x S which we will 
denote Gk. Let ( d1 , ••• , dr) and ( c1:, ... , Cr) denote the co-ordination numbers of the vertices of Gk 
in the sets 'R and S, respectively. Due to the constraint on the walk we these numbers must satisfy 

dz ~ 1 and cz ~ 2 (A.9) 

On the other hand, if L denotes the number of edges in Gk, then we have the following relation: 

On the other hand, 

which combine to 

s r 

:E cz = :E dz = L ~ r + s - 1 
l=l l=l 

8 

:Ecz ~ 2s, 
l=l 

r 

:Edi~ r, L ~ k 
l=l 

2s ~ k, r ~ k and r + s - 1 ~ k 

(A.10) 

(A.11) 

(A.12) 

Let us now first consider the case where r + s - 1 = k. We will moreover assume, for notational 
simplicity, that k is even. Then it is clear that the graph Gk is in fact a bipartite tree and that 
s = k/2 and r = k/2 + 1. Moreover, the coordination numbers of all the vertices of this tree in S, 
Ci, are equal to two. In [BG] it was proven that 

Lemma A.1: Let tk be a bipartite tree on 'Rx S with k = r + s - 1. Then the number, W(tk), 
of walks w on tk starting in IR and passing through each edge of tk exactly twice is given by 

W(tk) = k(r - l)!(s - 1)! (A.13). 

Using this result and noting that for any bipartite tree L::~=l di = L:::=l Ci = r + s - 1, we get 
immediately that 

IWk(k/2 + 1, k/2)1 = (k/2)!(k/2 - l)!k 

(A.14) 

= k( k - 1 ) (k/2)!(k/2- 1)! = k! 
k/2 - 1 . 

We will see that this is in fact the dominant term. 

Let us now turn to the case where r + s - 1 < k. In this case we follow Fiiredi and Komlos 
[FK] in associating to each walk win Qk(r, s) a code sequence consisting of k signs +, k signs -
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and 2( k - r - s + 1) labels ( x, y) E 'R, x S, in the following way: Following the walk, we label an 
edge passed by the walk+ if the walk arrives at a point not previously visited. We put a label - if 
the walk passes an edge for the second time that had previously been labelled +; in all other cases 
we call the step a 'jump' and put a label (x, y), with x the starting and y the endpoint of the jump. 
It is clear that the edges labelled + form a bipartite tree. The important observation here is that 
if we are given the order in which the sites are visited by the walk and the code sequence, then it 
is possible to reconstruct the walk. For, at any given time step, if our label is +,we have to go to 
the next site; if the label is (x, y), we go from x to y and if it is -, we go in the direction of the 
starting point of the next jump along the existing +-edges. Thus counting the number of possible 
code-sequences amounts to counting the number of walks. To do this, we first fix the times and 
labels of the jumps. Quite dearly, there are no more than 

( 2k ) (ST )2(k-r-s+l) 
2(r + s - 1) 

(A.15) 

possibilities (if the random variables tiu are symmetric and not only centered, the factor ( sr )2(k-r-s+l) 

may be replaced by (2rs )k-r-s+l, since all jumps, too, must occur use a given edge an even number 
·of times). This implies the slightly sharper mentioned in the remark following Theorem 2.4). Then, 
observe that the sequence of ±-:labels together with the order in which the walk visits the sites for 
the first time correspond exactly to a walk w of length 2( r + s - 1), and we can use Lemma A. l to · 
count these walks. The only remaining problem is to sum over the possible coordination numbers 
of the trees associated to the walks w. Now it is easy to convince oneself that any site in S that 
is not a starting point of a jump can have coordination number one. Moreover, it is clear that the 
number of jumps from S to 'R, is equal to half the total number of jumps. Setting l = k - r - s + 1, 
we see therefore that the sum over the coordination numbers in S yields a factor that is bounded 
by 

c1 , ... ,c 1 _z ~2 
c1-l+t1•·••C1~l 

~· c·=,.+•-l LJi=l • 

1= l = (T + l - 2) 
s - 1 

(A.16) 

where of course we assume l ::.:; s (and replace l bys in (A.16) otherwise). Putting these observations 
together we arrive at 

- ( ) (k - s - 1) IWk(r, s)I ::_:; (r + s - l)![rs]2 k-r-s+l s - 1 (A.17) 

Now put 

SN,M,k,r,s = ( :) ( ~) (r + s. - l)![rs]2(k-r-•+1) (k ~ ~ ~ l) (A.18) 

Our aim is to bound (A.18) uniformly in the allowed values of r and s for suitably chosen k. A 
simple calculation shows that for any admiss.ible r, 

SN,M,k,r,s+~ > l6(N - k/2 - 1) 
s k6 N,M,k,r,s 

(A.19) 
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so that if k is chosen as k ~ N 116 , we get that 

k/2 
~ S < 2S = 2 ( N) (M) (k/2 + r ~ l)![k/2)k-2(r-l)rk-2(r-l) L..J N,M,k,r,s _ N,!'vf,k,r,k/2 k/2 r 
a=l 

(A.20) 

As before, we find that 
SN,M,k,r+l,k/2 > B(M - k/2 - 1) 
s - k4 N,M,k,r,k/2 

(A.21) 

We now distinguish two cases: 

Case 1: If M ~ k4, from (A.21) we see that 

k/2+1 
~ S < 2S - 2 ( N ) ( M ) k' < Nk/ 2 Mk/2+l2k 
~ N,M,k,r,k/2 _ N,M,k,k/2+1,k/2 - k/2 k/2 + 1 ' - (A.22) 

Case 2: If M ~ k4 we get directly from (A.20) that 

k/2 
~ S < k S < 2k-1 Nk/2 k2k+2 L..J N,M,k,r,k/2 _ 2 N,M,k,r,k/2 _ 
r=l 

(A.23) 

Lemma A.l follows immediately from these bounds. 0 

Proof: (of Theorem 2.4) Theorem 2.4 follows from Lemma A:l by a simple application of the 

Tchebychev inequality. Namely, since the matrix B is symmetric, we have that 

(A.24) 

Inserting the bound from Lemma A.l into (A.24) yields (A.2) after some simple algebra. 00 
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