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Abstract

Existence and asymptotic behavior of the Stoneley surface wave at vac-
uum/porous medium interface are investigated in the low frequency range. It
is shown that the Stoneley wave possesses a bifurcation in the vicinity of crit-
ical wave number kcr. It is proven also that within the k-domain of existence,
the Stoneley wave cannot appear for certain values of elastic moduli of the
solid phase. Asymptotic formulae for the phase velocity of the Stoneley wave
are presented.

Introduction
This paper develops the ideas of the work presented in [1]. Let us remind that paper
[1] is devoted to the asymptotic analysis of the surface waves at a free interface of a
saturated porous medium in the low frequency range. It was proven the existence
of two surface modes: the Stoneley wave and the generalized Rayleigh wave. It was
shown that the generalized Rayleigh wave is always possible and propagates almost
without attenuation. Unlike high frequency limit, where the Stoneley mode exists
always [2,3], at low frequencies it possesses a bifurcation in the vicinity of critical
wave number kcr and can appear only if its wave number k is bigger then kcr. It is
strongly attenuated mode. Such intricate behavior of the Stoneley wave results from
the bifurcation of the Biot slow bulk wave (P2) in the low frequency range [4,5].
The focus of this paper is on the research of domains of existence for the Stoneley
surface wave depending on elastic parameter of the porous medium skeleton. We
will show that within the k-domain of existence, the Stoneley wave cannot appear
for certain values of elastic parameters of the solid phase.

1. Problem Statement

1.1. Mathematical model

Consider two semi-in�nite spaces, Ω− and Ω+, having a common interface Γ. Let the
region Ω− be occupied by a saturated porous medium and the region Ω+ be occupied
by the vacuum. In dimensionless variables the set of balance equations describing a
�uid-�lled porous medium has the following general form (x ∈ Ω−, t ∈ [0, T ]) [6,3]:
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Mass conservation equations

∂ρF

∂t
+ div

(
ρFvF

)
= 0,

∂ρS

∂t
+ div(ρSvS) = 0. (1.1)

Here, ρ is the partial mass density, v is the velocity vector and indices F and S
indicate �uid and solid phases, respectively.

Momentum conservation equations

ρF

[
∂

∂t
+ (vF

j ,
∂

∂xj

)

]
vF

i −
∂

∂xj

T F
ij + Π(vF

i − vS
i ) = 0,

ρS

[
∂

∂t
+ (vS

j ,
∂

∂xj

)

]
vS

i −
∂

∂xj

T S
ij − Π(vF

i − vS
i ) = 0. (1.2)

Here TF and TS are the partial stress tensors and Π is a positive constant.

Balance equation for the porosity

∂n

∂t
+

(
vS

i ,
∂

∂xi

)
n + n0div(vF − vS) = −(n− n0), (1.3)

where n is the porosity and n0 is its initial value, assumed to be constant. Stress
tensors have the form:

TF = −pF1− β(n− n0)1, pF = pF
0 + κ(ρF − ρF

0 ), (1.4)

TS = TS
0 + λSdivuS1+2µSsymgraduS + β(n− n0)1. (1.5)

Here pF is the pore pressure; pF
0 and ρF

0 are the initial values of pore pressure
and �uid mass density, respectively; κ is the constant compressibility coe�cient of
the �uid; β denotes the coupling coe�cient of the �uid and solid components; TS

0

denotes a constant reference value of the partial stress tensor in the skeleton, λS

and µS are the Lamé constants of the skeleton; uS is the displacement vector for
the solid phase with

vS =
∂uS

∂t
. (1.6)

Let us linearize the system (1.1)-(1.3) about some equilibrium state. The simplest
case arises when in the equilibrium state the �elds have the following constant
values: ρF = ρF

0 , ρS = ρS
0 , vF = 0, vS = 0, and n = n0. After the formal

introduction of the displacement vector for the �uid phase uF and linearization, the
system (1.1)-(1.3) takes the following form:

∂ρF

∂t
+ rdiv∂uF

∂t
= 0, (1.7)
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∂ρS

∂t
+ div∂uS

∂t
= 0, (1.8)

r
∂2uF

∂t2
+ grad(pF + βn) + Π

∂

∂t
(uF − uS) = 0, (1.9)

∂2uS

∂t2
− µS∆uS − (λS + µS)graddivuS − βgradn− Π

∂

∂t
(uF − uS) = 0, (1.10)

∂n

∂t
+ n0div

∂

∂t
(uF − uS) = −(n− n0), (1.11)

where r = ρF
0 /ρS

0 .
The general problem of propagation of elastic waves through a bounded space is
complicated. We con�ne ourselves to the consideration of a 2D problem (xy plane).
This assumption does not limit the generality for the plane boundary Γ. We in-
vestigate surface waves on the interface of a porous medium which occupies the
semi-in�nite space y > 0 (region Ω−) and is bounded by the vacuum, which �lls the
semi-in�nite space y < 0 (region Ω+).

1.2. Boundary conditions

On the interface y = 0, separating the porous medium and the vacuum, the following
linearized boundary conditions, which are consequences of the general conditions
[2,3], have to be satis�ed:
1) the total stress vector must vanish

(∂uS
1

∂ y
+

∂uS
2

∂ x

)
|y=0 = 0, (1.12)

(
λS divuS + 2µS ∂uS

2

∂ y
− κ(ρF − ρF

0 )
)
|y=0 = 0, (1.13)

2) the relative normal velocity must be equal to zero, i.e. the pores at the interface
are completely closed

∂(uF
2 − uS

2 )

∂ t
|y=0 = 0. (1.14)

Our goal is to prove that the boundary value problem (1.7)-(1.14) has solutions in
the form of surface waves, i.e. solutions which decrease su�ciently fast as |y| → ∞.
For this purpose we will investigate the propagation of a harmonic wave whose
frequency is ω, wave number is k, and its amplitude depends on y. The frequency
ω is sought as a function of the real wave number k ∈ R1. Thus, Re(ω/k) de�nes
the phase velocity of waves, while Im(ω) de�nes the attenuation. Below we study
the propagation of the surface waves in the low-frequency range. We give attention
mainly to the Stoneley surface wave.
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2. Surface waves at a free interface of a porous
medium

2.1. Construction of solution

Solution in the region Ω− (porous medium half-space) is sought in the following
form [1-3]:

uF = gradϕF + rotΨF , uS = gradϕS + rotΨS, (2.1)

where ΨF = (0, 0, ψF ) and ΨS = (0, 0, ψS). Consequently, in the explicit form one
has

uF
1 =

∂ϕF

∂x
+

∂ψF

∂y
, uF

2 =
∂ϕF

∂y
− ∂ψF

∂x
,

uS
1 =

∂ϕS

∂x
+

∂ψS

∂y
, uS

2 =
∂ϕS

∂y
− ∂ψS

∂x
.

Here unknown potentials are sought as

ϕF = AF (y) exp (i (kx− ωt)) , ϕS = AS (y) exp (i (kx− ωt)) ,

ψF = BF (y) exp (i (kx− ωt)) , ψS = BS (y) exp (i (kx− ωt)) . (2.2)

Simultaneously,

ρF − ρF
0 = AF

ρ (y) exp (i (kx− ωt)) , ρS − ρS
0 = AS

ρ (y) exp (i (kx− ωt)) ,

n− n0 = A∆ exp (i (kx− ωt)) . (2.3)

Substitution of (2.1) into (1.7)-(1.11) and the following insertion of expressions
(2.2), (2.3) result in three equations for the unknown amplitudes AF (y), AS(y),
and BS(y)

(
c2
f (

d2

d y2
− k2) + ω2

)
AF +

(
βωn0

r (i + ω)

(
d2

dy2
− k2

)
+

iΠω

r

) (
AF − AS

)
= 0, (2.4)

(
d2

dy2
− k2 + ω2

)
AS −

(
βωn0

i + ω

(
d2

dy2
− k2

)
+ iΠω

) (
AF − AS

)
= 0, (2.5)

(
d2

dy2
− k2 +

ω2

c2
s

− iΠω2r

c2
s (ωr + iΠ)

)
BS = 0, (2.6)

and in four algebraic relations for BF (y), A∆(y), AS
ρ (y), and AF

ρ (y) as follows:

BF =
iΠ

ωr + iΠ
BS, (2.7)
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A∆ = − n0ω

i + ω
(

d2

d y2
− k2)(AF − AS), (2.8)

AS
ρ = −(

d2

d y2
− k2)AS, (2.9)

AF
ρ =

rω2

c2
f

AF +
1

c2
f

(
βωn0

i + ω

(
d2

dy2
− k2

)
+ iΠω

) (
AF − AS

)
= 0, (2.10)

where
cf = UF /US

|| < 1, UF =
√

κ

and
cs = US

⊥/US
|| < 1, US

⊥ =
√

µS/ρS
0 .

One can prove [1-3] that a solution to (2.4)-(2.6) exists and has the form
(

AF

AS

)
= C1

(
RF

1

RS
1

)
exp(−γ1 y) + C2

(
RF

2

RS
2

)
exp(−γ2 y), (2.11)

BS = Cs exp(−γs y). (2.12)

Here

γs =

√
k2 − ω2

c2
s

+
iΠω2r

c2
s (ωr + iΠ)

, (2.13)

functions γj, j = 1, 2 are de�ned from the equation (we consider simpli�ed case
when β = 0)

(
γ2

j

k2
− 1

)2

+
ω

k

(
ω

k

(
1 +

1

c2
f

)
+ i

Π

k

(
1 +

1

rc2
f

))(
γ2

j

k2
− 1

)

+
1

c2
f

ω3

k3

(
ω

k
+ i

Π

k

(
1 +

1

r

))
= 0 (2.14)

and corresponding eigenvectors are given by

(RF
1 , RS

1 ) =
(
RF

1 ,
iΠω

k2

γ2
1

k2 − 1 + ω
k

(
ω
k

+ iΠ
k

)RF
1

)

(RF
2 , RS

2 ) =
( iΠω

k2

rc2
f

(
γ2
2

k2 − 1
)

+ ω
k

(
rω

k
+ iΠ

k

)RS
2 , RS

2

)
. (2.15)
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The constants C1, C2, and Cs are as yet undetermined.
It should be emphasized that we are interested in the solutions in the form of surface
waves, i.e. in the solutions which attenuate with y. Thus, solution (2.11), (2.12)
bounded in y requires that:

Re γs > 0, Re γj > 0, j = 1, 2. (2.16)

The latter means that frequencies of all surface waves, which propagate at the free
interface of a porous medium, should satisfy conditions (2.16).
As is earlier proven [1-3], functions γj, j = 1, 2 have di�erent structure in low and
high frequency ranges. In this paper we investigate in more detail the low frequency
range, i.e. long waves. Asymptotic expansion of equation (2.14) with respect to
small wave number k results in two solutions:

γ̃1 =

√√√√1− iω̃
1

k̃

(
1 +

1

rc2
f

)
− ω̃2

c2
f

c2
f + 1

rc2f

1 + 1
rc2f

+ O
(√

k̃
)

(2.17)

and

γ̃2 =

√
1− ω̃2

1 + r

1 + rc2
f

+ O
(√

k̃
)
, (2.18)

where γ̃j = γj/k, j = 1, 2, ω̃ = ω/k, k̃ = k/Π.
Obviously, leading terms in expansions (2.17), (2.18) have di�erent orders. Let us
remind that the Biot slow wave (P2) does not propagate if its wave number k is less
then critical value [1,4,5]

kcr ≈ cf

(
1 +

1

2rc2
f

)
Π . (2.19)

It is fully attenuated mode. If k > kcr then P2 wave begins to emerge. This fact
is also illustrated by equation (2.14), since it reduces to the second order if k = 0.
Consequently, solutions (2.17), (2.18) are of di�erent order and we conclude that P1
and P2 waves have various hierarchy in the domain Dcr = {k | k ≤ kcr} [7,1]. Thus,
terms of di�erent order appear in the solution (2.11). However, for y ≥ 0 the �rst
term in (2.11) is negligible except in a narrow region, or layer, near y = 0. In this
layer, which is roughly of width kcr, the term exp

( − γ1 y
)
drops rapidly from its

value of 1 at y = 0 to nearly zero. We say that solution (2.11) has a layer of rapid
transition at y = 0. This layer is called a boundary layer (it occurs at a boundary
point of the region considered).
However, expansion (2.17) is not uniformly valid throughout the k-domain of inter-
est. Namely, (2.17) fails in a vicinity of the bifurcation point kcr [1]. The procedure
of the construction of suitable expansion for γ1 in a neighborhood of kcr will be
discussed in detail in subsequent sections.
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2.2. Dispersion equation

By substituting (2.11),(2.12) into the boundary conditions (1.12)-(1.14) one obtains
the following system of equations for unknown constants C1, C2, Cs:

γ̃1C1R
S
1 + γ̃2C2R

S
2 +

i

2

(
γ̃2

s + 1
)
Cs = 0, (2.20)

(γ̃2
1 − 1)C1R

S
1 + (γ̃2

2 − 1)C2R
S
2 + 2c2

s(C1R
S
1 + C2R

S
2 )

+2ic2
sγ̃sCs −

(
ω̃2r + iω̃

1

k̃

)
(C1R

F
1 + C2R

F
2 ) + iω̃

1

k̃

(
C1R

S
1 + C2R

S
2

)
= 0, (2.21)

γ̃1C1(R
F
1 −RS

1 ) + γ̃2C2(R
F
2 −RS

2 )− iCs

(
1− i

k̃ω̃r + i

)
= 0. (2.22)

Requesting that the determinant of this system must vanish yields the dispersion
equation for the de�nition of the frequencies of the surface waves. It takes di�erent
form depending on wave number [1]. Next we consider two cases: 1) the region
k ≤ kcr, where the Biot bulk wave does not propagate and 2) the small neighborhood
of the critical point kcr, where k > kcr and all three bulk waves, appearing in an
unbounded porous medium, exist.

2.3. The generalized Rayleigh surface wave

For wave numbers k ≤ kcr dispersion equation has the form [1]:

(
− ω̃2

0

1 + r

1 + rc2
f

+ 2c2
s − ω̃2

0r
)(

1− ω̃2
0

1 + r

2c2
s

)
− 2c2

s

√
1− ω̃2

0

1 + r

1 + rc2
f

√
1− ω̃2

0

1 + r

2c2
s

= 0,

(2.23)

where ω̃0 is the leading term of the asymptotic expansion for ω̃ (see [1] for the
details). It has been mentioned already, that the Biot slow wave does not propagate
with small wave numbers k ≤ kcr. Consequently, in this region wave properties
of a porous medium are very similar to those of an elastic solid and, as a result,
only one surface wave can appear at the free interface of a porous material. Indeed,
one can prove that dispersion equation (2.23) has a unique root, corresponding to
the generalized Rayleigh surface wave. Evidently, if r = ρF

0 /ρS
0 → 0 (limit passage

to elastic medium), than equation (2.23) is degenerated into the classical Rayleigh
equation:

PR(ω̃) =

(
2− ω̃2

c2
s

)2

− 4
√

1− ω̃2
√

1− ω̃2/c2
s. (2.24)
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Let us consider r to be a small parameter ε ≡ r that is indeed ful�lled by virtue
of physical meaning: r < 1. Asymptotic expansion for the root of (2.23) has the
structure:

ω̃0 = cR + εΩ1 + . . . , (2.25)

where cR is the speed of the classical Rayleigh wave in an elastic half-space and Ω1

obeys the equation:

Ω1
PR(ω̃)

dω̃
|ω̃=cR

=
(
1− c2

R

2c2
s

)(
3c2

R − 2c2
sc

2
f

)

+
√

1− c2
R

√
1− c2

R/c2
s

(
1− c2

R

c2
s − c2

R

− c2
R − c2

f

1− c2
R

)
. (2.26)

As is easily checked, provisos (2.16) are ful�lled for (2.25). Thereby, the solution
(2.11),(2.12) has a form of a surface wave. As it follows from (2.25), the generalized
Rayleigh wave propagates almost without attenuation in the region k ≤ kcr. These
results are consistent with those obtained for the classical Biot model [8,9].

2.4. The Stoneley surface wave

Next consider in more detail the surface modes, which can appear in a small neigh-
borhood of the bifurcation point kcr, where k > kcr and P2 bulk wave is propagatory.
Requesting that the determinant of the system (2.20)-(2.22) must vanish yields the
following dispersion equation, which holds true for any k:

γ̃1

(
iR1 +

1

2
(γ̃2

s + 1)(1− iR1)
rω̃ + iΠ

k

rω̃

)(
(γ̃2

2 − 1) + 2c2
s

−2c2
sγ̃sγ̃2(1− iR2)

rω̃ + iΠ
k

rω̃
− ω̃

(
rω̃ + i

Π

k

)
iR2 + iω̃

Π

k

)

−γ̃2

(
1− 1

2
(γ̃2

s + 1)(1− iR2)
rω̃ + iΠ

k

rω̃

)(
(γ̃2

1 − 1)iR1 + 2c2
siR1

+2c2
sγ̃sγ̃1(1− iR1)

rω̃ + iΠ
k

rω̃
− ω̃

(
rω̃ + i

Π

k

)
− ω̃R1

Π

k

)
= 0. (2.27)

Here

R1 =
Π
k
ω̃

γ̃1
2 − 1 + ω̃(ω̃ + iΠ

k
)
, R2 =

Π
k
ω̃

rc2
f (γ̃2

2 − 1) + ω̃(rω̃ + iΠ
k
)
. (2.28)
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To choose appropriate expansions for the wave number k in a neighborhood of
kcr and for the frequency ω let us call to mind the construction of corresponding
expansions for the Biot bulk wave. It has been proven (we refer to [1,4] for details)
that P2 mode begins to emerge if its wave number k > kcr (see (2.19)). For any
small parameter ε and wave number

k = kcr

(
1 + ε2k2

)
+ ΠO(ε3) (2.29)

asymptotic expansion for P2 wave frequency ωP2 has the form:

ωP2 = −i Π Ωcr + εω1 + ΠO(ε2), ω1 = 2kcr

√
k2/A (2.30)

where
Ωcr ≈ 1/(2 r) + 2c2

f (1 + 3rc2
f − 2c2

f ),

A =
1 + c2

f

c2
f

+
1− c2

f

c2
fg(Ωcr)

√
g(Ωcr)

(
− r3(1− c2

f )
3Ω3

cr + 3r2(1− c2
f )

2(1− rc2
f )Ω

2
cr

−3r(1− c2
f )(1 + r2c4

f )Ωcr + (1− rc2
f )(1 + rc2

f )
2
)

> 0,

g(Ω) = Ω2r2(1− c2
f )

2 − 2rΩ(1− c2
f )(1− rc2

f ) + (1 + rc2
f )

2

and k2 = O(1) with respect to small parameter ε.
Similar to (2.29), (2.30), assume now that for the surface waves in a vicinity of the
critical point kcr

k =
Π

2rcf

(
1 + ε2k2 + · · ·

)
(2.31)

and
ω̃ = −iε + ω̃1ε

2 + · · · . (2.32)

In expansions (2.31), (2.32) we have to set a small parameter ε ≡ cf (this choice is
dictated by the limit problem). Radicals (2.17) and (2.13) remain to be valid for
any k. Thus, one obtains

γ̃2 = 1 +
1

2

(
1 + 2 r

)
ε2 + O(ε3) (2.33)

and
γ̃s = 1 +

1

2c2
s

(
1− 2r

)
ε2 + O(ε3). (2.34)

However, as it was mentioned above, expansion (2.17), which corresponds to P2
wave, fails in a neighborhood of the bifurcation point kcr. Solution for γ̃1 in a
vicinity of kcr is sought in the following form:

γ̃1 = Γ1ε
2 + Γ2ε

3 + · · · (2.35)
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By substituting (2.31)-(2.35) into (2.14) and (2.27), from the lowest approximations
one obtains the expressions for Γ1 and ω̃1 as follows:

Γ1 =
r(4c2

s − 1)
(
2(1 + 2 r)− 1

2c2s
(1− 2r)

)

(1 + 2 r)(1− c2
s)

(2.36)

and
ω̃2

1 = 2
(
k2 − 2r

)
. (2.37)

Finally, for wave number (2.31) dispersion equation (2.27) has the root:

ω̃St = −iε +

√
2
(
k2 − 2r

)
ε2 + O(ε3), (2.38)

which de�nes the Stoneley surface wave. Obviously, real solution for ω̃1 exists if
expression in right-hand side of (2.37) is positive. Therefore, similar to the Biot
bulk wave, the Stoneley surface mode has bifurcation behavior in a neighborhood
of the bifurcation point

kcr ≈ Π

2rcf

(
1 + c2

fk2

)
, (2.39)

where
k2 = 2r. (2.40)

Thus, if k2 ≤ 2r, i.e. k ≤ kcr, than the Stoneley wave does not propagate; it is
fully attenuated mode. Otherwise, if k2 > 2r, i.e. k > kcr, it begins to emerge with
velocity very close to the speed of P2 wave. Unlike high frequency limit (see [2,3]),
the Stoneley surface mode is strongly attenuated at low frequencies (leaky mode).

kcr 17 18
k

0.05

0.1

0.15

0.19

velocity

CSt

CP2

Figure 1: Velocity of the P2 wave (solid line) and velocity of the Stoneley surface
wave (dashed line): r = 0.1 and cf = 0.32 (water-saturated sandstone [5,10])

Fig.1 shows the calculated velocities of the Biot slow bulk wave and of the Stoneley
surface wave in water-saturated sandstone as functions of the wave number. One
sees that in the vicinity of kcr velocity of the Stoneley wave cSt = Re ω̃St is very
close but somewhat less than the speed cP2 of the P2 wave. Further deviation of
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cSt from cP2 results from the fact that only one term of asymptotic expansion to cSt

was taken into account (see (2.38)).
Next, let us verify whether solution (2.11), (2.12) indeed has a form of a surface
wave, i.e. whether conditions (2.16) hold true for (2.38), (2.31). It is easily seen,
that Re γs > 0 and Re γ2 > 0. However, Re γ1 is not always positive. Last statement
follows from the analysis of the leading term in expansion for γ1 (see (2.35),(2.36)).
Coe�cient Γ1 is a single-valued function of parameters r (the ratio of the initial
density of the �uid to that of the solid phase) and cs (the ratio of the shear wave
velocity to the speed of the longitudinal wave in an unbounded elastic medium). In
Fig.2 the plots of Γ1 are evaluated for r = 0.1 (water-saturated sandstone [5,10])
and for r = 0.06 (oil-saturated sandstone [5,10]). From the left plot (r = 0.1) it
is evident, that Γ1 < 0 and, consequently, Re γ1 < 0, if 0.41 < cs < 0.5. Thereby,
solution (2.11),(2.12) is not a surface wave. Hence we conclude that if elastic moduli
of the solid skeleton of a porous medium are such that the ratio of the speeds of the
shear and longitudinal waves cs ∈ (0.41, 0.5), then at low frequencies the Stoneley
surface wave cannot appear at the free interface of this porous medium. The case
r=0.06 gives similar result. Inspection of the right plot in Fig.2 shows that if elastic
moduli of the solid phase are such that cs ∈ (0.44, 0.5), then at low frequencies the
Stoneley surface wave does not exist at the free interface of this porous medium. One
can observe, that domain of non-existence of the Stoneley surface mode is getting
smaller as r decreases. It is interesting to note also, that upper limit for values of
cs, for which this surface wave cannot appear, is always 0.5, while lower limit is not
�xed and depends on r.

0.35 0.4 0.45 0.5 0.55 0.6
cs

0.02

0.06

0.1

G1

0.42 0.46 0.5 0.54
cs

0.002

0.006

0.01

G1

Figure 2: Coe�cient Γ1 as a function of cs: r = 0.1 (left) and r = 0.06 (right)

Comment. It is well known that for all elastic materials the ratio cs of the velocity
of the shear wave to that of the lon�tudinal wave varies as: 0 < cs < 1√

2
≈ 0.7 [11].

Above, we have considered only the crudest approximation to the Stoneley sur-
face wave. Certainly, one can construct next terms in the expansion (2.35) so as
to con�rm the statement on the domains of non-existence of the Stoneley mode.
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Continuing the calculations, one �nds

Γ2 = 2irω̃1
1− r − 4r2 + 8c4

s(1 + 2r)2 − 2c2
s(3 + 4r)

(1− c2
s)(1 + 2r)2c2

s

. (2.41)

Thus, above-made conclusions on the Stoneley wave remain valid.
It should be noted that the Stoneley surface wave has been registered experimen-
tally in the �uid-�lled porous natural rocks with closed surface pores at ultrasonic
frequencies [12]. Also the existence of this surface mode has been shown numerically
[13] for all values of the frame moduli on the base of the high frequency limit of the
Biot model. These experimental and numerical results are in good agreement with
our analytical predictions [3]. However, the transition region between low and fre-
quency ranges, i.e. the vicinity of the critical point kcr, has never been investigated.
As it follows from the preceding analysis, in the transition domain the Stoneley
mode exists not for all values of the skeleton moduli.

3. Conclusions
The results presented in the paper concern existence and asymptotic properties of
the Stoneley surface wave at the free interface of a �uid-�lled porous medium at
low frequencies. Asymptotic expansion (2.38) to the frequency of the Stoneley wave
shows that, similar to the Biot slow bulk wave, the surface mode has bifurcation
behavior in a vicinity of the critical wave number kcr. If wave number of the Stoneley
mode k ≤ kcr then it is fully attenuated. If k > kcr then it begins to emerge with
phase velocity very close to the velocity of P2 wave. Unlike high frequency range,
the Stoneley wave is strongly attenuated at low frequencies. It is a leaky mode. It
was proven also that within the k-domain of existence, the Stoneley wave cannot
appear for certain values of elastic moduli of the solid phase. As it follows from
(2.36), (2.16), the domain of non-existence of the surface mode is related to the
ratio of the velocities of the shear and longitudinal waves in a skeleton.
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