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Abstract

Considering a system of two coupled identical chaotic oscillators, the paper

�rst establishes the conditions of transverse stability for the fully synchronized

chaotic state. Periodic orbit threshold theory is applied to determine the bifur-

cations through which low-periodic orbits embedded in the fully synchronized

state lose their transverse stability, and the appearance of globally and locally

riddled basins of attraction is discussed in terms of the sub-, respectively super-

critical nature of the riddling bifurcations. We show how the introduction of a

small parameter mismatch between the interacting chaotic oscillators causes a

shift of the synchronization manifold. The presence of a coupling asymmetry

is found to lead to further modi�cations of the destabilization process. Finally,

the paper considers the problem of partial synchronization in a system of four

coupled Rössler oscillators.

I. INTRODUCTION

In the early 1980's, Fujisaka and Yamada [1] showed how two identical chaotic os-

cillators under variation of the coupling strength can attain a state of complete syn-

chronization in which the motion of the coupled system takes place on an invariant

subspace of phase space, the synchronization manifold. This type of chaotic syn-

chronization has subsequently been studied by a signi�cant number of investigators,

and a variety of applications for chaos suppression, for monitoring and control of

dynamical systems, and for di�erent communication purposes have been suggested

[2, 3]. In addition to various electronic systems [4, 5], synchronization of identical

chaotic oscillators has also been investigated for laser systems [6], for coupled su-

perconducting Josephson junctions [7], and for interacting electrochemical reactors

[8].

Similar phenomena are of interest in connection with a variety of di�erent biological

[9, 10] and economic [11] systems. It has long been recognized, for instance, that

the insulin producing �-cells of the pancreas produce complicated patterns of spikes

and bursts in their membrane potentials [12], and these dynamics may also become

chaotic [13]. The �-cells interact with one another via the di�usive exchange of

ions and small molecules through gap junctions, and, as experiments show [14],

this interaction can lead to synchronization of larger groups of cells in an islet

of Langerhans. In the �eld of macroeconomics, individual sectors and industries

interact via the exchange of goods and units of capital, and this interaction may

cause the industries to synchronize their individual commodity and investment cycles

so as to produce the well-known business cycles [15].
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For systems of three (or more) coupled identical chaotic oscillators, one can observe

the phenomenon of partial synchronization [16] where some of the oscillators syn-

chronize while others do not. This phenomena is again of interest in connection

with the development of various communication systems. In the biological systems

one often encounters large ensembles of interacting cells or functional units, each

displaying complicated nonlinear dynamic phenomena. With dominating local (i.e.,

nearest-neighbor) coupling, such ensembles trend to display various forms of trav-

eling waves and spatiotemporal chaos [17]. With dominant global coupling, on the

other hand, i.e., when each oscillator is coupled to a mean �eld produced by the

average dynamics of the whole ensemble of oscillators, one can observe the phe-

nomenon of clustering [18, 19]. The fully synchronized state splits up into groups of

oscillators such that the oscillators within each group maintain synchrony, but there

is no synchronization between the groups.

An important question that arises in connection with the synchronization of iden-

tical chaotic oscillators concerns the form of the basin of attraction for the fully

synchronized chaotic state, i.e. for which initial conditions will the oscillators be

able to synchronize if they are started out of synchrony? Other important questions

relate to the stability of the synchronized state to a small parameter mismatch be-

tween the interacting oscillators and to the behavior of the coupled system, once the

synchronization breaks down. Studies of these and related phenomena have lead to

the discovery of variety of new phenomena, including riddled basins of attraction

[20], soft and hard riddling bifurcations [21], and on-o� intermittency [22]. Interest-

ing is also the particular form of chaos-hyperchaos transition [23, 24], that occurs in

connection with the loss of complete synchronization.

The purpose of the present paper is to illustrate some of the basic phenomena

that one can observe in connection with chaotic synchronization in time-continuous

systems. Our presentation is based on a series of recent publications in which we

have investigated riddling and blowout bifurcations in systems of coupled Rössler

oscillators [25, 26, 27] and coupled pancreatic �-cells [28]. Periodic orbit threshold

theory [29, 30] is applied to a system of two coupled Rössler oscillators in order to

determine the bifurcations through which low-periodic orbits embedded in the fully

synchronized chaotic state lose their transverse stability. The appearance of locally

and globally riddled basins of attraction is discussed in terms of the sub-, respectively

supercritical nature of the riddling bifurcations in which the �rst low periodic orbit

loses its transverse stability. We show how the introduction of a small parameter

mismatch between the interacting oscillators and of a coupling asymmetry modi�es

the riddling bifurcation. The signi�cance of other stable states in the vicinity of the

synchronized chaotic state is discussed, and the paper also presents some preliminary

results on clustering in systems of many coupled chaotic oscillators.
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II. TRANSVERSE STABILITY OF THE SYNCHRONOUS ATTRAC-

TOR

We consider a system of two coupled oscillators of the form:

dx

dt
= f(x) + C(y � x);

dy

dt
= f(y) + C(x� y): (1)

Here x and y represent the state variables for the oscillators, and the matrix C

stands for the coupling. The nonlinear function f determines the dynamics of the

individual system without coupling. For simplicity, we consider a diagonal coupling

matrix C = diagfd1; d2:d3g where d1, d2, and d3 are parameters measuring the

coupling strength.

Although system (1) has a relatively simple form, it incorporates important features

of a large class of coupled oscillator systems and, as we will show, it manifests a great

variety of complex behaviors. Hence, Eq. (1) can be regarded as a model for the

qualitative description of many di�erent phenomena that arise in coupled oscillator

systems.

An important feature of system (1) is that the hyperplane x = y is invariant. This

set is usually called the synchronization manifold. The invariance implies that if

at a given time t1 the states of the two oscillators coincide x(t1) = y(t1), then

they will coincide for all subsequent moments x(t) = y(t). The motion within

the synchronization manifold is described by the equation for the single oscillator

_x = f(x).

If we consider models of real-world systems, it is naturally to assume that there exists

an attracting set A for the single uncoupled oscillator, i.e. x(t) ! A with t ! 1

for all initial conditions from some neighborhood of A. We con�ne our analysis to

the case where the set A is chaotic. As a speci�c example, we consider a Rössler

system with an isochronous attractor determined by the following right-hand side:

fR =

0
B@

�x2 � x3
x1 + ax2

b + x3(x1 � c)

1
CA (2)

with the constants a = 0:42, b = 2:0, and c = 4:0. Illustrations of how similar

approaches work for a model of chaotically spiking pancreatic �-cells may be found in

our papers [27, 28]. The �-cell model [31] is a sti� system of di�erential equations in

R3. The attractors of the corresponding individual oscillators are shown in Fig. 1(a)

for the Rössler oscillator and in Fig. 1(b) for the biological cell model, respectively.

In both cases the synchronization manifold of the coupled system (1) contains a

chaotic attractor A = f(x; y) : x = y 2 Ag. The stability properties of this

attractor constitutes the main problem of identical synchronization. In the following,

we will refer to A as the synchronous attractor. We will say that the system becomes

synchronized if the set A is asymptotically stable, i.e. (x; y) ! A with t ! 1 for

some open set of initial conditions U in full phase space. As we shall see later, the
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Figure 1: Typical attractors of the Rössler system (a) and of the pancreatic �-cell

model (b).

coupled oscillators can become synchronized for su�ciently strong coupling. If the

condition kx(t)� y(t)k ! 0 as t!1 holds for all initial conditions from U = R6,

then we have global identical synchronization. Strictly speaking, the above de�nition

depends on the choice of the attractor A. Hence, in the case of a multistability for

the individual oscillator, the situation may arise where one synchronous attractor is

stable while, for the same coupling, another is not.

The largest transverse Lyapunov exponent �? provides a measure of the average sta-

bility of the synchronized chaotic state with respect to perturbations perpendicular

to the synchronization manifold. As long as �? is negative, the synchronized state is

at least weakly stable [32]. The transition in which �? becomes positive is referred

to as the blowout bifurcation. This transition may lead to an abrupt loss of stability

for the synchronized chaotic state. Alternatively, one may observe the interesting

form of bursting behavior known as on-o� intermittency. Immediately after the

blowout bifurcation, as long as �? is still relatively small, a trajectory started near

the synchronized chaotic state may spend a long time in the neighborhood of this

state. However, sooner or later the repelling character of the synchronized state

manifests itself, and the trajectory exhibits a burst in which it moves far out in

phase space. Provided that the trajectory does not ��nd� another limiting state or

diverge to in�nity, after some time it will return to the neighborhood of the synchro-

nized state, and the process will continue to repeat itself in an apparently random

manner. On-o� intermittency is distinguished from other, more conventional, forms

of intermittency by the fact that the laminar phase is chaotic.

Riddled basins of attraction may be observed on the other side of the blowout bifur-

cation where �? < 0. Even though the synchronized chaotic state is now attracting

on the average, particular orbits embedded in this state may be transversely unsta-

ble. As a result one can observe a situation where the synchronized chaotic state

attracts a positive Lebesgue measure set of points from its vicinity. Arbitrary close

to any such point, however, there will be a positive Lebesgue measure set of points

that are repelled from the synchronized state. The transition in which the �rst orbit

on the synchronized state loses its transverse stability is referred to as the riddling

bifurcation. As we shall show, this bifurcation may be either sub- or supercritical

in nature, and the type of criticality has a signi�cant in�uence on the character of
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the riddling behavior.

The fact that the synchronization manifold has a simple geometrical structure (i.e.

just a hyperplane) gives us an easy way to introduce a coordinate system that can

separate the state variables into the longitudinal � = x + y coordinates and the

coordinates � = x � y transverse to the synchronization manifold. Then for all

synchronous motions we have � = 0 and

x(t) = y(t) = s(t); _s = f(s); �(t) = 2s(t): (3)

Stability of the attractor A within the synchronization manifold follows from the

stability of the attractor A for the individual oscillator. Hence, the main problem

is reduced to an analysis of the stability of the synchronous attractor along the

transverse directions �. The local analysis for transverse perturbations Æ� brings us

to the following equation:

Æ _� = [Df(s(t))� 2C]Æ�; (4)

where s(t) is the considered synchronous motion (3). Equation (4) can be obtained

as the transverse part of the variational equation for the synchronous solution (3):

Æ _� = [Df(s(t))� 2C]Æ�; Æ _� = Df(s(t))Æ�: (5)

Hence, the local stability properties of the synchronous attractor A are given by the

stability properties of the equilibrium Æ� = 0 of system (4) with s(t) 2 A.

III. CONDITIONS FOR SYNCHRONIZATION

The methods for obtaining the conditions of synchronization described in the litera-

ture [1, 3, 25, 27, 33] are mainly based on an investigation of equation (4), i.e. they

exploit local analysis. We can roughly divide them into two groups: analytical and

numerical.

A. Analytical methods.

Applying the Lyapunov function criteria with the function V = kÆ�k2 to equation

(4) we obtain the following su�cient conditions for synchronization [33, 34]:

Æ�T (DfT (s) +DfT (s)� 4C)Æ� < 0 (6)

provided that (6) is ful�lled for all points s of the attractor A and for all nonzero

Æ�. In Fig. 2 we show the region D1 of synchronization determined by Eq. (6) for

our coupled Rössler systems. More precisely [27], if the coupling parameters sat-

isfy d2 > a=2 and (d1; d3) 2 D1 then the attractor A (see Fig. 1(a)) of system (1)

is synchronized. Note, that all three coupling parameters must be �large enough�

to guarantee the synchronization. This observation is in agreement with the re-

sults obtained by Pecora et al. [3], stating that coupled Rössler systems exhibit a

desynchronization transition with increasing d1 in the case where d2 = d3 = 0.
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Figure 2: Regions of synchronization obtained by di�erent methods. Curve 1 corre-

sponds to the Lyapunov function method; curve 2 is the blowout bifurcation curve;

curve 3 delineates the transverse stability region for the equilibrium point O. Here

d2 = 1 is �xed.

Another analytical method [25], which allows us to approximate the synchroniza-

tion region, is based on a calculation of the transverse stability of some simple

synchronous orbit of coupled system (1). As an example, consider our system of

coupled Rössler oscillators. It is known that, in the individual system, near the

chaotic attractor there exists a saddle equilibrium point, cf. point O in Fig. 1(a).

We can determine the transverse stability properties for this point analytically [25]

and compare the results with other criteria for synchronization. The transverse

stability region of the equilibrium point is shown in Fig. 2 as the upper-right re-

gion delineated by the dashed line. Comparing with the exact desynchronization

threshold in the next section, we will show that at least for the considered Rössler

system, this method gives a reasonable approximation to the synchronization region

for the chaotic attractor. The advantage of the above method is that it provides

a relatively simple analytical expression, which can be used for any coupling ma-

trix C. For example, we have showed in [25] that for �rst-component coupling

d2 = d3 = 0, the equilibrium undergoes a similar desynchronization transition at

large d1 as the chaotic attractor itself. Sometimes, this approach also allows us to

determine whether the riddling bifurcation is sub- or supercritical [25].

B. Transverse Lyapunov exponents and low-periodic orbits

The minimal condition for transverse stability of the fully synchronized state is to

have the transverse Lyapunov exponents associated with Eq. (4) to be negative [3].

Generally speaking, these exponents depend on the orbit s(t). Numerical �long-
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time� simulations reveal the average transverse stability of the chaotic attractor or

the transverse stability of typical orbits embedded in the attractor. In the following

when speaking about transverse Lyapunov exponents we understand those calcu-

lated along the typical orbit, unless another orbit is explicitly mentioned. For the

case of coupled Rössler systems, the region where the transverse Lyapunov expo-

nent is negative is shown in Figure 1 as curve 2. The negativeness of the transverse

Lyapunov exponents ensures only the transverse stability of the chaotic attractor

in �average� while some non-typical, transversely unstable orbits may still exist in

the attractor. Hence, we conclude that negativeness of the transverse Lyapunov

exponents gives only the necessary conditions for synchronization. To obtain the

precise desynchronization threshold it is necessary to investigate the transverse sta-

bility of non-typical orbits in the attractor, for example, saddle periodic cycles. The

importance of the unstable periodic orbits for the description of the properties of

chaotic attractors was pointed out in [35, 36] and, in particular for the blowout

bifurcation, in [37, 38, 39]. In connection with the stability properties of the fully

synchronized chaotic state, unstable periodic orbits may determine the riddling bi-

furcation, i.e. the moment when the �rst orbit on the attractor loses its transverse

stability [3, 25]. Figure 3 shows a two-dimensional stability diagram for the low-

periodic orbits embedded into the chaotic attractor. Thin curves delineate regions of

transverse stability for each of these orbits (up to period-4). The bold curve denotes

the blowout bifurcation. The right-upper envelope of the thin curves determine

when the �rst of the considered periodic orbits loses its transverse stability, i.e. it

approximates the riddling bifurcation. Here we have assumed that the desynchro-

nization thresholds for high periodic orbits are closer to the blowout bifurcation and,

hence, do not contribute directly to the riddling. Figure 4(a) shows the transverse

stability threshold for the period-10 orbit, cf. Fig. 4(b). Note how close this orbit

is to the blowout bifurcation curve. A possible ad-hoc explanation of this fact can

be that high-periodic orbits for the Rössler system with the considered parameter

values cover the attractor rather �uniformly� and their average properties are close

to the corresponding properties of the chaotic attractor. Additional evidence for

the importance of low-periodic orbits in the desynchronization of our system will

be given in Secs. IV and V. In particular, we will show how the structure of the

riddled basins can be explained by exploring transverse bifurcations associated with

the period-1 orbit. As previously mentioned we have performed a similar analysis

for a system of two coupled pancreatic cells [27]. It is interesting to note the high

degree of qualitative concordance with the results for the coupled Rössler systems.

IV. MECHANISMS OF DESYNCHRONIZATION

A. Blowout bifurcation and desynchronization thresholds.

Blowout takes place when the transverse Lyapunov exponent of the synchronous

chaotic set becomes positive and this set becomes a repellor on average. The curve

where this bifurcation occurs in coupled Rössler systems is shown in Figs. 2 and

3. The region of weak synchronization is delineated by the blowout curve. In
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Figure 4: Transverse stability region for the period-10 cycle (a). The boundary is

shown by the solid black line. The cycle is shown in (b). The blowout curve (heavy

gray line) and the boundary of the stability region for the period-1 cycle (dashed

line) are shown for comparison.

this region it is possible to observe not only complete synchronization but also on-

o� intermittency of the orbits to the synchronization manifold [22] caused by the

existence of transversely unstable periodic orbits.

As we have seen in the previous section, synchronization can be achieved when all

three coupling parameters d1, d2, and d3 are su�ciently large. For example, having

only one-component coupling in the coupled Rössler systems, i.e. d2 = d3 = 0, we

observe a desynchronization transition with increasing coupling parameter d1 [3].
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An interesting case may also be observed when d1 = 0:14 and d2 = 1:0 are �xed

and d3 is increasing, cf. Fig. 5. Under these conditions we �nd synchronization-

desynchronization-synchronization transitions. This phenomena arises because of

the multivalued form of the blowout bifurcation curve in the bottom part of the

bifurcation diagram in Fig. 4(a).

−2.2 −2.0 −1.8 −1.6
−0.3

−0.1

0.0

0.1

0.2
λ

max

d3

Figure 5: Nontrivial behavior of the largest transverse exponent for d1 = 0:14,

d2 = 1:0 and d3 as indicated in the �gure.

B. Riddling bifurcations.

As it follows from Sec. III and Fig. 3, a large part of the riddling bifurcation curve

(the rightmost envelope of the thresholds for individual periodic orbits) corresponds

to the loss of transverse stability for the period-1 cycle. All the possible riddling

bifurcations in the considered case include transverse period-doubling, pitchfork

and Neimark-Sacker bifurcations of cycles of period 1, 2 and 3 [25] (The Neimark-

Sacker bifurcation is also referred to as a secondary Hopf bifurcation of a torus-

birth bifurcation). For the purpose of illustration, we con�ne our attention to the

parameter values where the period-1 cycle plays the most important role. With this

aim we introduce a new coupling parameter d such that its variation corresponds to

a motion along the scan R1R2 in Fig. 3. In terms of this new parameter, our system

has the form (1) with the coupling matrix

C = diagfd� 0:6; 1:0;�3:1d+ 0:7g: (7)

The scan was chosen in such a way that the region of complete synchronization in

the middle of the scan is bounded by the points R1 and R2, which both correspond

to riddling bifurcations for the period-1 cycle. Point R1 (d = 0:2408) corresponds

to a supercritical period-doubling bifurcation and R2 (d = 0:7360) to a subcritical

pitchfork bifurcation. Let us now investigate the associated bifurcations by the

continuation technique. As we will show, the nature of these bifurcations play an

important role for the global dynamics of the system. Figure 6 shows a schematic
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overview of the bifurcation diagram versus parameter d for the period-1 cycle and the

associated bifurcations. The horizontal line in the middle of the �gure corresponds

to the period-1 cycle. This line is dashed for the parameter values where the cycle

is transversely stable and has a single unstable longitudinal multiplier, i.e. in the

parameter interval between points R1 and R2. The dotted part of the line indicates

parameter values for which the period-1 cycle is transversely unstable. At d = 0:241

(point R1) the period-1 cycle undergoes a transverse supercritical period-doubling

bifurcation, cf. point PD, and an asynchronous period-2 cycle appears. When

decreasing the parameter d, this period-2 cycle becomes stable at point P (d =

0:220). The evolution of this cycle in phase space is shown in Fig. 7(a). A Neimark-

Sacker bifurcation takes place at d = 0:201 (point H) and gives rise to a stable

asynchronous torus, cf. Fig. 7(b), which is destroyed at d = 0:197. Iterations of the

Poincaré map produce the asynchronous chaotic set displayed in Fig. 8. Similarly,

the right part of the bifurcation diagram in Fig. 6 shows bifurcations with increasing

parameter d: P is a subcritical pitchfork bifurcation (point R2), which leads to the

appearance of two mutually symmetric, doubly unstable period-1 cycles outside the

synchronization manifold.

0.
19

7

0.
19

0.
20

1

0.
21

5
0.

21
7

0.
22

0

0.
24

1

weak stability of the synchronous state

complete
synchronization

0.
73

6

0.
8

0.
70

8

0.
70

6

d

�����������
�����������
�����������
�����������

�����������
�����������
�����������

�����������
�����������
�����������

�������
�������
�������
�������

�������
�������
�������

�������
�������
�������

R 2R 1

����
����
����

����
����
����

����
����
����
����

stable torus
chaotic set

stable asynchronous

PD

PD

NS

NS

NS

NS

PPD

P

P

SN

SN

asynchronous
chaotic saddle

asynchronous
chaotic saddle

asynchronous
chaotic saddle

asynchronous
chaotic saddle

period−1
synchronous
cycle

Figure 6: Bifurcation diagram for the period-1 cycle and associated bifurcations

versus the coupling parameter d. Points R1 and R2 denote moments when the

transverse stability of the period-1 cycle is changed.

Important observations to be made from the bifurcation diagram in Fig. 6 are the

following:

- the region of complete synchronization of the synchronous chaotic set is 0:241 <

d < 0:736;

- the region where the synchronous set is transversely stable on average (i.e. weakly

or asymptotically stable) is approximately 0:19 < d < 0:80;
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Figure 7: (a): Evolution of the period-2 asynchronous cycle in phase space for the

parameter interval 0:201 < d < 0:241. A stable cycle is shown as a solid line. (b):

Stable asynchronous torus at d = 0:2. Projection onto the (x1; y1) plane.
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Figure 8: Projections onto the (x1; x3) plane of the invariant set of the Poincaré

map for d = 0:197.

- there exists an asynchronous chaotic saddle even for parameter values of complete

synchronization (0:708 < d < 0:736);

- there are parameter regions with coexistence of the weakly stable synchronous

chaotic set and a stable asynchronous cycle (0:201 < d < 0:220), a stable asyn-

chronous torus (0:197 < d < 0:201), and a stable asynchronous chaotic set (d <

11



0:197);

- when increasing the parameter d to the right side of R2, there are no stable asyn-

chronous sets at least not associated with the bifurcations shown in Fig. 6.

In the next section, we will make use of the above information to explain the struc-

ture of the riddled basins that can be observed in our coupled Rössler system.

V. INFLUENCEOF RIDDLINGBIFURCATIONSONRIDDLED BASIN

STRUCTURES.

Riddled basins of attraction [20, 22] may be observed after the riddling bifurcation

where the maximal transverse Lyapunov exponent is still negative for typical tra-

jectories. Hence the parameter region where riddling may occur is bounded by the

blowout bifurcation curve from one side and the riddling bifurcation from another

side. With respect to the coupling parameter d, this region consists of two pieces:

0:19 < d < 0:241 and 0:736 < d < 0:8, cf. Fig. 6. It follows from this �gure that the

basin of the synchronous chaotic set is riddled with points belonging to the basin

of a stable asynchronous period-2 cycle for the parameter values 0:201 < d < 0:220.

Similarly, the basin will be riddled with points attracted to an asynchronous torus

for 0:197 < d < 0:201, and to a stable asynchronous chaotic set for 0:19 < d < 0:197.

For other parameter values where riddling occurs we may observe either attractor

bubbling or riddling with points diverging to in�nity. The �rst situation generally

arises when the riddling bifurcation is supercritical [40]. Therefore, riddling with

in�nity is expected for the parameters 0:736 < d < 0:8. Additional evidence for

this will be given in Sec. VIII, where we consider the problem of boundedness of the

solutions of the coupled system.

In view of the above considerations, we calculated two-dimensional cross-sections of

the basins of attraction for di�erent values of d. Figure 9 corresponds to d = 0:204.

Black points denote initial conditions that converge to the asynchronous period-

2 cycle and white represents points converging to the weakly stable synchronous

chaotic set. For d = 0:75, cf. Fig. 10 we have obtained the basin of attraction

(white points) riddled with points (black points) from which the trajectory diverges

to in�nity.

Some of the tongues of the riddled basins are clearly seen in Figs. 9 and 10, cf.

points P1. The probability to diverge from the synchronization manifold is highest

when the initial conditions are chosen in the neighborhood of these points. In

the both cases the points P1 belong to the period-1 synchronous cycle embedded

in the chaotic set, i.e. the cycle which loses its transverse stability �rst. Hence,

the neighborhood of this cycle is most exposed to escapes from the weakly stable

synchronization manifold for the chosen values of the coupling parameters.

In order to identify the location of the other tongues of the riddled basin, we have

investigated the long term behavior of trajectories starting from the following set of

points: � 2 A, � = (0:01; 0; 0), i.e. with longitudinal coordinates at the synchronous

set and a small transverse perturbation. The projection of this set onto (x1; x2) plane
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Figure 9: Riddled basin of attraction for the synchronous chaotic set (white points)

with d = 0:204. Black points represent initial conditions from which the trajectory

is attracted to the stable period-2 asynchronous cycle. P2 is the point of intersec-

tion with the period-2 cycle, P1 with the period-1 synchronous cycle. 1 and 2
are the coordinates on the considered plane such that 2 = 0 corresponds to the

synchronization manifold.

Figure 10: Riddled basin of attraction for the synchronous chaotic set (white points)

with d = 0:75. Black points correspond to initial conditions diverging to in�nity.

has a form similar to the Rössler attractor. For a �xed d = 0:75 (this corresponds

to Fig. 10), we can distinguish two types of points: points that eventually converge

to the synchronization manifold and points that diverge to in�nity. The points

diverging to in�nity are shown in Fig. 11a in black color. Inspection of the �gure

clearly shows that the densest parts are located near the synchronous period-1 cycle.

In order to explain the remaining structure of the basin in Fig. 11(a), we have used

the Poincaré section S, cf. Fig. 1, of the individual Rössler oscillator. Figure

12(a) shows the invariant attracting set of this map. Considering this set to be

one-dimensional, we have constructed the one-dimensional map h : x3 ! h(x3)
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acting on this set, cf. Fig. 12(b). The �xed point P of this map corresponds to the

transversely unstable period-1 cycle. We will consider the orbits that start from the

di�erent preimages of P : P�1, P�2, P�3
1;2 , P

�4
1;2;3;4, and so on. These orbits approach

the period-1 cycle in one, two, three, and four loops, respectively. In this way,

considering di�erent preimages of the �xed point P , we may �nd di�erent orbits

of the Rössler system which after some number of loops enter the neighborhood of

the period-1 cycle and, hence, share the property of transverse instability with the

period-1 cycle. These orbits form the skeleton of the riddling structure in Fig. 11(a).

The orbits starting from P�4
1;2;3;4 are shown in Fig. 11(b). We observe that these orbits

correspond to the most transversely unstable parts of the synchronized attractor.

Figure 11: (a): Given a point on the synchronous attractor, we add a small �xed

transverse perturbation � = (0:01; 0; 0). For the obtained initial condition, the point

is marked black if the orbit diverge to in�nity. (b): Orbits starting from P�4
1;2;3;4.

Figure 12: Invariant set of the Poincaré map for the individual Rössler oscillator

(a). One-dimensional map acting on the invariant set (b).

To conclude this section, we note that the transverse stability properties of the low-

periodic orbits are very important for explaining the onset of riddling and describing

the structure of the riddled basin for coupled systems.
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VI. NONIDENTICAL SYSTEMS.

A. �Shift� of the synchronization manifold for strong coupling.

One of the most important questions in the synchronization problem relates to the

sensitivity of the synchronized state to a mismatch in the parameter values between

the interacting systems. Some general estimations where obtained by Johnson et

al. [41]. Using a similar approach, we have obtained asymptotic estimations of the

solutions for a special type of parameter mismatch [27]. The observed phenomena

manifested themselves as a shift and broadening of the synchronization manifold.

We assume a special form of the mismatch, namely, that the coupled system can be

written as
_x = f(x) + "g + C(y � x);

_y = f(y) + C(x� y);
(8)

where " is a parameter that measures the magnitude of the mismatch and g is a

constant vector. f is a smooth function. Despite its special form, Eq. (8) has a wide

scope of applications. Examples are:

- two coupled systems with a mismatch of parameters that are included in an additive

way (e.g., two coupled Rössler systems with di�erent parameters b);

- two coupled systems of the form (1) with a constant external force acting on one

of the oscillators (e.g., two coupled �-cells with an additional constant leak current

[27]);

- two coupled systems with external forces where the frequency of the external force

is much smaller than the natural frequency of the individual oscillator.

We have shown [27] that for the vector coupling C = �I, where I is the identical

matrix, the following asymptotic estimation holds:

�����(t)�
g

2�

���� � L
lg

�2
; (9)

where the inequality and modulus j � j should be considered componentwise. L is

some constant that does not depend on coupling or mismatch. l is a constant that

expresses the smoothness of the system, namely, kDf(s(t))k � l for the motion on

the attractor. Finally, as before, � is a value of the transverse coordinate measuring

the distance from the synchronization manifold. In the derivation of (9), we assumed

smallness of the mismatch, "� l and "� �. Moreover, we supposed that coupling

is su�ciently strong to guarantee complete synchronization in the system without

mismatch.

As a consequence of the obtained inequality, the in�uence of a parameter mismatch

can be regarded as the superposition of the following e�ects:

� A parallel shift of the synchronous motion from the synchronization manifold

by an amount g=2�;

� the amplitude of chaotic bursts around the shifted state is of the order 1=�2;
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� for large coupling strength �, the bursts become small compared to the shift,

and one can numerically observe the phenomenon of generalized synchroniza-

tion where kx(t)� y(t)k ! const 6= 0.

Despite of the fact that the inequality (9) was proved for a vector coupling, numerical

simulations show that qualitatively the same e�ects take place for other coupling

matrices C.

Figure 13 illustrates the obtained result in the case of two coupled Rössler systems.

Three orbits are plotted with the coupling parameters � = 2, 6, and 12, respectively.

The presence of the shift away from the y1 = x1 is clearly observed. We can observe

also how bursts around the shifted state are damped with increasing of �. The

shift decreases linearly with 1=� while the bursts are damped as 1=�2. Figure 14

shows the orbit for � = 2 in the phase space as the projection onto (x1; y1) plane.

We observe that the motion takes place at some distance from the diagonal, which

represents the projection of the synchronization manifold. The nonzero width of the

shifted state is caused by the bursts. Again, it is of interest to note that qualitatively

the same phenomena are observed for a system of two coupled pancreatic cells [27].

0 200 400
0

0.01

0.02

0.03

α=2

α=6

α=12

t

x −y1 1

Figure 13: Behavior of the �rst component of the transverse coordinate for the

parameter mismatch g = (0:1; 0; 0)T with di�erent values of the coupling parameter

�.

B. In�uence of asymmetries on riddling bifurcations.

In the previous section we considered the case of strong coupling and full synchro-

nization. As the coupling is reduced, it is natural to consider the e�ect of a mismatch

on the riddling bifurcations. Here two cases may be distinguished: when the syn-

chronization manifold still persists in the presence of the parameter mismatch and

when it does not persists. The �rst case may be realised in the following asymmet-
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Figure 14: Projection of the orbit onto the (x1; y1)-plane for g = (0:1; 0; 0)T and

� = 2. Diagonal represents the projection of the synchronization manifold.

rically coupled system:

_x = f(x) + pC(d)(y � x);

_y = f(y) + (2� p)C(d)(x� y);
(10)

where the parameter p describes the asymmetry (provided that p 6= 1). This type of

coupling is of interest when studying the transition from one- to two-cluster dynam-

ics in ensembles of globally coupled identical chaotic oscillators [42]. Considering the

matrix C(d) as in (7), our calculations show that the subcritical pitchfork bifurcation

(occuring at d = 0:736, cf. Fig. 6) transforms into a transcritical bifurcation. Fig-

ure 15 shows schematically the perturbed and original bifurcations. The associated

saddle-node bifurcation occurs at d ' 0:7382. In the perturbed system, a dou-

bly unstable period-1 cycle approaches the synchronization manifold and exchanges

stability with the synchronous period-1 saddle cycle at the point T .

In the general case of mismatch between the subsystems, the description admits the

following form
_x = f1(x) + C(d)(y � x);

_y = f2(y) + C(d)(x� y):
(11)

In this case the synchronization manifold no longer exists. The transverse pitchfork

bifurcation is transformed into two isolated cycle branches, one of which undergoes

saddle-node bifurcations. Figure 16 illustrates this situation for the coupled Rössler

system, where f1 = f(x; b) as in Eq. (2) with parameters a = 0:42, b = 2:0, c = 4:0

and f2(x; b1) is the same right hand side but with b1 = 2:002. Then the values of

coupling parameter corresponding to bifurcations in Fig. 16: dSN = 0:7286, d0 =

0:7081, and d00 = 0:7056.
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Figure 15: Perturbation of the subcritical transverse pitchfork bifurcation for non-

symmetric coupling.
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Figure 16: Perturbation of the subcritical transverse pitchfork bifurcation in the

case of nonidentical oscillators.

VII. ARRAYS OF COUPLED OSCILLATORS: A SIMPLE EXAMPLE

Many aspects of the above approach may also be applied to investigate arrays of

coupled identical oscillators. Here we consider the case of four di�usively coupled

Rössler oscillators with periodic boundary conditions:

_xj = f(xj) + C(xj+1 + xj�1 � 2xj); j = 1; 2; 3; 4; x5 = x1; x0 = x4: (12)

An important property of arrays of coupled oscillators is that such systems usually

have many invariant hyperplanes in phase space [43]. Recall, that system (1) gen-

erally has only one invariant hyperplane x = y (the synchronization manifold), the

stability of which determines the onset of complete identical synchronization. In the

case of many coupled systems, the stability of di�erent invariant hyperplanes deter-
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mines the onset of partial synchronization or clustering, where the coupled system

splits into clusters of identically oscillating elements.

First, it is easy to check by substitution that the following equalities are admissible

for system (12):

�0 : x1 � x2 � x3 � x4;

�1 : x1 � x2; and x3 � x4;

�2 : x1 � x4; and x2 � x3;

�3 : x1 � x3; and x2 � x4:

Hence, the corresponding hyperplanes determined by these equalities are invariant

with respect to system (12). Note that the properties of the hyperplanes �1 and

�2 are the same because of the symmetry of the system. As in the case of two

coupled systems, the stability of some invariant set located in the hyperplane �0

guarantees the complete synchronization (kxi � xjk ! 0 with t!1 for i 6= j and

some open set of initial conditions). Similarly, the stability of a set located in �1

implies the partial synchronization when kx1 � x2k ! 0 and kx3 � x4k ! 0 with

t!1 for some open set of initial conditions. Hence, in order to obtain conditions

for the onset of partial synchronization it is necessary to investigate the stability

of invariant sets in the hyperplanes �1, �2, and �3. As in the case of two coupled

oscillators we may consider separately longitudinal directions along the hyperplanes

and directions transverse to the hyperplanes.

Consider the hyperplane �1. In order to obtain equations for the dynamics inside the

hyperplane, we substitute x1 = x2 = X and x3 = x4 = Y into (12). We obtain two

coupled systems of the form (1). It is clear, that equations for the dynamics inside

the hyperplane describe the endogenous motions of clusters, i.e. sets of identically

oscillating elements of an array. Transverse coordinates may be introduced in the

following way: �1 = x1 � x2 and �2 = x3 � x4. Similarly to the derivation of (4)

we may obtain the following linearized equations for the transverse perturbations to

the hyperplane �1:

Æ _�1 = [Df(X(t))� 3C]Æ�1 � CÆ�2;

Æ _�2 = [Df(Y (t))� 3C]Æ�2 � CÆ�1;
(13)

where X(t) and Y (t) are solutions of the system of two coupled oscillators (1).

Observe that we have six transverse and six longitudinal coordinates.

As an illustrative example, let us consider two coupled Rössler systems with vector

coupling C = �I. Figure 17 shows the largest transverse Lyapunov exponent (i.e.

the Lyapunov exponent for system (13)) versus the coupling parameter �. It can

be seen that after the loss of complete synchronization at �2 = 0:04 we have a

wide range 0:02 < � < 0:04 where this exponent is negative. This corresponds to

a stable, partially synchronous state with x1 = x2 and x3 = x4. Inspection of the

longitudinal dynamics [26] shows that for these parameters the hyperplane contains

a stable periodic solution. Hence, we have showed that for 0:02 < � < 0:04 there

exists a stable limit cycle in the hyperplane �1 which implies the existence of periodic

clusters with x1 = x2 and x3 = x4. Taking the symmetry into account, we conclude
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that there is also a stable limit cycle inside the hyperplane �2, which implies the

existence of periodic clusters with x1 = x4 and x2 = x3. Figure 18 illustrates both

clusters for � = 0:035. With di�erent initial conditions we may approach either of

these two clusters with an equal probability. It appears that in the considered case

the basins of attraction of these two attracting cycles are strongly mixed. This can

be seen on the two-dimensional cross-section of the basins in Fig. 19.
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Figure 17: Maximal Lyapunov exponent that determines the stability of the partially

synchronized motion x1 = x2 and x3 = x4 for system (12).

We have seen that partial synchronization in arrays of coupled oscillators is mediated

by the existence of stable invariant sets in the invariant hyperplanes (or manifolds).

The stability of these sets may be investigated by a decomposition into longitudinal

and transverse coordinates as in the case of two coupled oscillators.

VIII. CONCLUSION.

Let us conclude the paper by a discussion of the boundedness of the solutions to

coupled system. As discussed in Sec. V, for some parameter values there exist orbits

in the vicinity of the synchronization manifold, that diverge to in�nity while for

the other parameters the orbits are con�ned to some bounded domain in the phase

space. Moreover these two cases where observed even for a coupling strength strong

enough to guarantee weak synchronization.

In this section we present a general result that provides conditions for the existence

of a positively invariant region around the synchronized attractor [44]. A positively

invariant region (or trapping zone) is de�ned by the condition that trajectories that

enter the region will never leave it again.

Suppose system (1) satis�es the following conditions:

1. The coupling matrix is of the form C = �I;
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Figure 18: Two orbits that correspond to two clusters that can be realized in system

(12) for � = 0:035. (a): x1 = x2 and x3 = x4 for one set of initial conditions; (b):

x1 = x4 and x2 = x3 for another set of initial conditions.

2. For an individual oscillator equation x0 = f(x); x 2 Rn there exists an invariant

attracting set A and UA is a region of attraction of this set. (Instead of this condition

we may simply suppose the existence of positively invariant set UA [44]);

3. UA is convex.

Then for any � > 0 system (1) will have a positively invariant set UA � UA around

the synchronized attractor A in the phase space R2n.

We shall note that a strict mathematical formulation of the above theorem is given

in [44]. There we additionally suppose a good local structure of the set UA. Note also

that existence of the positively invariant region is proved for values of the coupling

parameter corresponding not only to complete synchronization but also to weak

synchronization and to the desynchronized regime. This bring us to the conclusion

that the vector coupling scheme, in general, does not exhibit riddling with in�nity.

Moreover, in view of this result, riddling with in�nity may be expected when the

coupling matrix C di�ers signi�cantly from identical. These observations are also

supported by our calculations in Sec. V.

Let us �nally conclude that the system of two coupled oscillators is important for

studying many nonlinear phenomena. The importance of studying objects with

invariant hyperplanes is clear not only from the point of view of complete identical

synchronization of two coupled systems. This is also one of the widely accepted
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Figure 19: Two dimensional cross-section of the phase space determined by x1i = 1:0,

x4i = 1:0, x2j = 1:0, and x3j = 1:0 where i = 1; 2; 3; 4 and j = 1; 2; 3. A grid 70� 70

is used. A square is painted black if the orbit with initial conditions from the center

of the square converges to the cycle corresponding to the x1 = x2, x3 = x4 cluster.

approaches for studying partial synchronization in arrays of coupled oscillators.
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