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Abstract

The paper presents a unified approach to local likelihood estimation for a broad
class of nonparametric models, including e.g. the regression, density, Poisson and
binary response model. The method extends the adaptive weights smoothing (AWS)
procedure introduced in Polzehl and Spokoiny (2000) in context of image denois-
ing. Performance of the proposed procedure is illustrated by a number of numerical
examples and applications to estimation of the tail index parameter, classification,
density and volatility estimation.
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2 local likelihood modeling by adaptive weights smoothing

1 Introduction

Local modeling is one of the most useful nonparametric methods. We refer to the book by

Fan and Gijbels (1996) for a rigorous discussion of the local linear and local polynomial

estimation for regression and some other statistical models and many other references.

An extension to the local likelihood approach is discussed in Tibshirani and Hastie (1987),

Staniswalis (1989), Loader (1996), among others.

This paper proposes a new approach to local likelihood modeling which is based on

the idea of structural adaptation and extends the Adaptive Weights Smoothing (AWS)

procedure from Polzehl and Spokoiny (2000) (referred to as PS2000 in what follows).

The main idea of the AWS estimator is to describe in a data-driven iterative way a

maximal possible local neighborhood of every point in which the local parametric as-

sumption is justified by the data. The method is based on a successive increase of the

local neighborhoods around every point Xi and a description of the local model within

such neighborhoods by assigning weights to every point that depend on the result of

the previous step of the procedure. The original AWS procedure was proposed for the

regression model in the context of image denoising. The numerical results from PS2000

demonstrate that the AWS method is very efficient in situations where the underlying

regression function allows a piecewise constant approximation with large homogeneous

regions. The procedure possesses a number of remarkable properties like preservation

of edges and contrasts and nearly optimal noise reduction inside large homogeneous re-

gions. It is also dimension free and applies in high dimensional situations. However, the

assumption of the regression model with additive errors considered in PS2000 restricts the

domain of applications of the AWS method. Here we extend the approach from PS2000

to a broad class of nonparametric models including the binary response model, inhomo-

geneous exponential and Poisson models etc. having local exponential family structure.

We also apply in a unified way the AWS method to different problems like density or

intensity estimation, classification, tail index estimation and volatility modelling.

The paper is organized as follows. Section 2 describes the considered model and

presents the main examples. Different methods of local modeling are discussed in Sec-

tion 3. The local likelihood AWS procedure is given in Section 4. Section 5 discusses one

important feature of the method which we call the “propagation condition”. Section 6

demonstrates how the AWS method can be applied to the problem of density estimation
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in IRd for d ≤ 3 . Section 7 explains how AWS can be applied to volatility estimation of

financial assets. Estimation of the tail-index parameter by the AWS method is discussed

in Section 8. The classification problem is considered in Section 9. Section 10 briefly

discusses the main advantages of the proposed method. Finally, Section 11 presents

one theoretical result about local exponential family models which justifies our adaptive

method.

2 Model and problem

This section describes the proposed method starting from a preliminary discussion. Sup-

pose we are given random data Z1, . . . , Zn of the form Zi = (Xi, Yi) . Here the Xi ’s are

valued in a metric space X and determine a location. Each Yi , valued in another metric

space Y , is viewed as “observation at Xi ’. For ease of exposition, we restrict ourselves

to the case of independent Zi . We also suppose that the distribution of each “observa-

tion” Yi depends on the “location” Xi via a finite dimensional parameter θ which may

depend on the location Xi . We illustrate this set-up by means of a few examples.

Example 2.1. [Local constant Gaussian regression] Let Zi = (Xi, Yi) with Xi ∈ IRd

and Yi ∈ IR following the regression equation Yi = θ(Xi)+ εi with a regression function

θ and i.i.d. Gaussian errors εi ∼ N (0, σ2) .

Example 2.2. [Local Bernoulli (Binary response) model] Let again Zi = (Xi, Yi) with

Xi ∈ IRd and Yi being a Bernoulli r.v. with parameter θ(Xi) , that is,

P (Yi = 1 | Xi = x) = θ(x) and P (Yi = 0 | Xi = x) = 1 − θ(x) . Such models arise

in many econometric applications, they are widely used in classification problems and

digital imaging.

Example 2.3. [Local Exponential model] Suppose that every Yi is exponentially dis-

tributed with the parameter θ = θ(Xi) , that is, P (Yi > t | Xi = x) = e−t/θ(x) . Such

models are applied in reliability or survival analysis. They also naturally appear in the

tail-index estimation theory.

Example 2.4. [Local Poisson model] Suppose that every Yi is valued in the set N

of nonnegative integer numbers and P (Yi = k | Xi) = θk(Xi)e−θ(Xi)/k! , that is, Yi

follows a Poisson distribution with parameter θ = θ(Xi) . Such models are commonly

used in the queueing theory, in positron emission tomography (PET), it serves also as

the approximation of the density model, obtained by a binning procedure.
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Example 2.5. [Local constant volatility model] The observations Yt for the discrete

time t = 1, 2, . . . follow the conditional heteroscedastic model Yt = σtεt where the εt ’s

are independent standard normal innovations and σt is a time dependent parameter

(volatility).

All these examples are particular cases of the local exponential family model, see

Section 3.3 for more details.

Our set-up can be described by the following general varying coefficient parametric

model. Let (Pθ, θ ∈ Θ) be a family of density functions on Y where Θ is a subset in

a finite-dimensional space IRm . We assume that the family is dominated by a measure

P and denote p(y, θ) = dPθ/dP (y) . Moreover, we assume that all the measures Pθ

are absolutely continuous w.r.t. each other and write dPθ/dPθ′(y) = p(y, θ)/p(y, θ′) for

every pair θ, θ′ ∈ Θ .

We suppose that each Yi is, conditionally on Xi = x , distributed with the density

p(·, θ(x)) for some unknown function θ(x) on X . The aim of the data-analysis is to

infer on this function θ(x) . A standard approach is based on the assumption that the

function θ is smooth leading to its local linear (polynomial) approximation with a ball of

some small radius h of the point of estimation, see e.g. Tibshirani and Hastie (1987) or

Cai, Fan and Li (2000). Our approach is based on a slightly different assumption of local

homogeneity : for every point x ∈ X there exists a local neighborhood of x in which

the parameter θ is nearly constant. This assumption leads to an approximation of the

function θ(·) by a constant within this neighborhood. However, in the contrary to the

classical local approach, we allow for an arbitrary shape of the local neighborhoods. This

helps to consider in an unified way the models with smoothly varying parameters and

the “piecewise smooth” models whose parameters may jump with locations. Particular

cases of the latter models are “change point” models and non-smooth images. The

global parametric model is also naturally incorporated in this framework when the local

neighborhood of every point coincides with the whole space.

The procedure we describe below attempts to recover this neighborhood from the

data. Afterwards, the value of θ(x) can be estimated from the observations with Xi

lying in this neighborhood by a local maximum likelihood method. In the special case of

a global homogeneous model with θ(x) constant, this would lead to a global parametric

estimator of this parameter.
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To simplify the exposition, we do not consider the case when the distribution of

Yi depends on some nuisance parameter η . A specific example is given by regression

with unknown error distribution. Extensions of the method to such a situation are

straightforward.

The next section discusses the notions of global and local likelihood modeling.

3 Global and local likelihood modelling

First we discuss some well known methods of estimation under the global parametric

assumption.

3.1 Global parametric estimation

A global parametric structure simply means that the parameter θ does not depend on

the location, that is, the distribution of every “observation” Yi coincides with Pθ for

some θ ∈ Θ and all i . This assumption reduces the original problem to the classical

parametric situation and the well developed parametric theory applies here for estimating

the underlying parameter θ . In the sequel we consider the parametric M -estimator

θ̂ = θ̂(X1, . . . , Xn) of θ which is defined by minimization of a sum
∑n

i=1 M(Yi, θ) with

some function M(·, θ) :

θ̂ = arginf
θ∈Θ

n∑
i=1

M(Yi, θ).

Particular examples are given by the log-likelihood estimator, with M(y, θ) = − log p(y, θ)

being the minus log of the density p(y, θ) of Pθ , or by the least squares (least absolute

deviations) estimator with M(y, θ) = |y − f(x, θ)|2 (resp. |y − f(x, θ)| ). Here f(x, θ)

is a parametrically specified mean (resp. median) regression function.

3.2 Local estimation

A global parametric assumption can be too restrictive. A classical nonparametric ap-

proach is based on the idea of localization: for every point x , the parametric assumption

is only fulfilled locally in a vicinity of x . This leads to a local model L(Yi) = Pθ(x)

described by the parameter θ(x) , for all Xi from the local neighborhood of the point x .

This approach includes as particular cases change-point models with piecewise constant

function θ(x) and varying coefficients models with a smooth function θ(x) , see Hastie
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and Tibshirani (1993), Fan and Zhang (1999), Caroll, Ruppert and Welsh (1998), Cai,

Fan and Yao (2000).

The assumption of a local parametric structure leads to the local estimator of θ(x)

that is obtained from the observations which belong to this local model. An important

question under such an approach is how the local model is defined. Below we discuss

three possibilities to localize the considered model.

3.2.1 Localization by a bandwidth

Let ρ(x, x′) be the metric in x . Given a bandwidth h and a kernel function K(u) for

u ∈ IR+ , define a local model at x using the location penalty li,h = h−2ρ2(x,Xi) and

assigning a weight wi,h(x) = K (li,h) to every observation Xi . This local model leads

to the local M-estimator

θ̂h(x) = arginf
θ∈Θ

n∑
i=1

wi,h(x)M(Yi, θ). (3.1)

If the kernel K is supported on [0, 1] , that is, K(u) = 0 for u ≥ 1 , then only the points

Xi from the ball Uh(x) with the radius h and the center at x get positive weights and

enter into the considered local model.

The bandwidth h in (3.1) describes the degree of locality of the model see e.g.

Tibshirani and Hastie (1987), Cleveland, Grosse and Shyu (1991) or Fan and Gijbels

(1996). An optimal or “ideal” choice of the bandwidth h can be defined as the largest

h such that the underlying function θ(·) is well approximated by a constant within the

spherical neighborhood of radius h around x .

3.2.2 Localization by a window

The above discussed localization by bandwidth restricts the original global model to the

ball with the radius h around the point x . Such a local model is isotropic in the sense,

that all the directions in the space x are equally localized. Some statistical problems like

estimation of univariate functions with discontinuites (see Spokoiny, 1998) or multivariate

functions with anisotropic smoothness properties (see Kerkyacharian, Lepski and Picard,

2001), image denoising (see Polzehl and Spokoiny, 2003) require to consider anisotropic

local models. The underlying structural assumption can now be formulated as follows:

for every point x , the function θ(·) can be well approximated by some θ from Θ within

a region U(x) containing x .
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Given a window U containing the point of estimation x , define a local model simply

by restricting to observations with Xi ∈ U . This leads to a local M-estimate

θ̂U (x) = arginf
θ∈Θ

n∑
i=1

wi,UM(Yi, θ) (3.2)

where wi,U = 1(Xi ∈ U) . Statistical inference under such a structural assumption fo-

cuses on searching for every point x for the largest neighborhood U = U(x) where

the hypothesis of structural homogeneity is not rejected. The test of homogeneity from

Polzehl and Spokoiny (2003) is based on the comparison of the estimate θ̂U with similar

estimates θ̂V for smaller regions V : the hypothesis of homogeneity is rejected if there

is a subregion V ⊂ U such that the estimates θ̂U and θ̂V differ significantly. If Û

is the largest non-rejected region (window), then the adaptive estimate of f(x) is f̂
Û

.

As shown in Spokoiny (1998) and Polzehl and Spokoiny (2003), the estimate f̂
Û

pos-

sesses nice theoretical properties and demonstrates a reasonable numerical performance.

Nonetheless, the approach is computationally very intensive. Additionally, since the se-

lection of the window is carried out independently for every point Xi , this may lead to

a high variability of the adaptive estimator.

3.2.3 Localization by weights

The most general approach is to localize by weights. For the reference point x , the

corresponding local model is described by assigning to every observation Yi at Xi some

nonnegative weight wi = wi(x) ≤ 1 . Such a local model leads to the local M-estimator

of the form

θ̂(x) = arginf
θ∈Θ

n∑
i=1

wi(x)M(Yi, θ).

For the specific example of a local constant regression, such a method for constructing a

local model is discussed in PS2000. Polzehl and Spokoiny (2002) generalises this method

to local polynomial regression. The main advantage of local constant and local polyno-

mial regression modelling is that a closed form expression for the local estimator θ̂(x) is

available as well as its confidence regions. Here we consider a general parametric struc-

ture and we restrict ourselves to the local maximum likelihood estimator θ̂(x) defined

by

θ̂(x) = argsup
θ∈Θ

n∑
i=1

wi log
p(Yi, θ)
p(Yi, θ′)
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where θ′ is an arbitrary point in Θ . This allows to utilize the so called Wilks phe-

nomenon for assessing confidence regions for this estimator, see Fan, Zhang and Zhang

(2001). We also denote by W the diagonal matrix with the diagonal entries wi and use

the notation

L(W, θ, θ′) =
n∑

m=1

wm log
p(Ym, θ)
p(Ym, θ′)

.

Then θ̂(x) = θ̂ = argsupθ L(W, θ, θ′) for any θ′ . The Wilks phenomenon means that

under the parametric hypothesis for the considered local model (at least for the case

when the weights wij are either zero or one) the distribution of 2L(W, θ̂, θ) under the

parametric model with the true parameter θ is approximately χ2 and does not depend

on θ .

Now we consider the examples introduced in Section 2 and present the structure of

local estimators. For all examples, we adopt a local parametric model at the reference

point x described by the localization weights wi and study the local maximum likelihood

estimator.

Example 3.1. [Local constant Gaussian regression] The model is described by the equa-

tion Yi = θ + εi where the εi are i.i.d. N (0, σ2) . Here the MLE θ̂ = θ̂(x) coincides

with the weighted least squares estimator and is defined as

θ̂ = arginf
θ

(2σ2)−1
n∑

i=1

wi(Yi − θ)2 =
∑n

i=1 wiYi∑n
i=1 wi

leading by simple algebra to the log-likelihood

L(W, θ̂, θ) = (2σ2)−1
n∑

i=1

wi

[
(Yi − θ)2 − (Yi − θ̂)2

]
=

N

2σ2
(θ̂ − θ)2

with N =
∑n

i=1 wi .

Example 3.2. [Local Bernoulli model] The original model is locally approximated by

the Bernoulli model with the parameter θ ∈ [0, 1] : P (Yi = 1) = θ , P (Yi = 0) = 1− θ .

The density p(y, θ) can be written as p(y, θ) = θy(1− θ)1−y . The local MLE θ̂ is

θ̂ = argsup
θ∈[0,1]

n∑
i=1

wi (Yi log θ + (1− Yi) log(1− θ)) =
∑n

i=1 wiYi∑n
i=1 wi

leading to

L(W, θ̂, θ) =
n∑

i=1

wi

(
Yi log p(Yi, θ)− log p(Yi, θ̂)

)
= N

(
θ̂ log

θ̂

θ
+ (1− θ̂) log

1− θ̂

1− θ

)
= NQ(θ̂, θ)
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where N =
∑n

i=1 wi and Q(θ, θ′) = θ log(θ/θ′) + (1 − θ) log(1 − θ)/(1 − θ′) is the

Kullback-Leibler distance between two Bernoulli distributions with the parameters θ, θ′ .

Example 3.3. [Local exponential model] The original model is locally approximated by

the exponential model with the parameter θ ∈ IR+ = (0,∞) : P (Yi ≥ t) = e−t/θ having

the density p(y, θ) = θ−1e−y/θ . The local MLE θ̂ is

θ̂ = argsup
θ∈IR+

n∑
i=1

wi (− log θ − Yi/θ) =
∑n

i=1 wiYi∑n
i=1 wi

leading to

L(W, θ̂, θ) =
n∑

i=1

wi

[
−Yi

(
θ̂−1 − θ−1

)
− log

θ̂

θ

]
= −N

[
log

θ̂

θ
− θ̂

θ
+ 1

]
= NQ(θ̂, θ)

where, similarly to the previous example, N =
∑n

i=1 wi and Q(θ, θ′) = θ/θ′ − 1 −

log(θ/θ′) is the Kullback-Leibler distance between two exponential distributions with

the parameters θ, θ′ .

Example 3.4. [Local Poisson model] The original model is locally approximated by the

Poisson model with the parameter θ , that is, the distribution of the observation Yi is

Poisson with the density p(y, θ) = θye−θ/y! . The local MLE θ̂ is

θ̂ = argsup
θ∈IR+

n∑
i=1

wi (Yi log θ − θ − log Yi!) =
∑n

i=1 wiYi∑n
i=1 wi

leading to

L(W, θ̂, θ) =
n∑

i=1

wi

[
Yi log(θ̂/θ)− (θ̂ − θ)

]
= N

[
θ̂ log(θ̂/θ)− θ̂ + θ

]
= NQ(θ̂, θ)

where, again, N =
∑n

i=1 wi and Q(θ, θ′) = θ log(θ/θ′)− (θ− θ′) is the Kullback-Leibler

distance between two Poisson distributions with parameters θ and θ′ .

Example 3.5. [Local constant volatility model] The original model is locally approxi-

mated by the model Yi = σεi with σ ∈ IR+ = (0,∞) and standard normal εi ’s. Here it

is convenient to parametrize by θ = σ2 , so that p(y, θ) = (2πθ)−1/2e−y2/(2θ) . The local

MLE θ̂ is

θ̂ = argsup
θ∈IR+

1
2

n∑
i=1

wi

(
− log θ − Y 2

i /θ
)

=
∑n

i=1 wiY
2
i∑n

i=1 wi
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leading to

L(W, θ̂, θ) =
1
2

n∑
i=1

wi

[
−Y 2

i

(
θ̂−1 − θ−1

)
− log(θ̂/θ)

]
= −N

2

[
log(θ̂/θ)− θ̂/θ + 1

]
= NQ(θ̂, θ)

where, again, N =
∑n

i=1 wi and Q(θ, θ′) = 1
2 (θ/θ′ − 1− log(θ/θ′)) is the Kullback-

Leibler distance between two normal distributions N (0, θ) and N (0, θ′) .

3.3 Local exponential family

All the above examples can be considered in a unified way as particular cases of local ex-

ponential family distributions. This means that all the measures Pθ from this family are

dominated by a σ -finite measure P on Y and the density functions p(y, θ) = dPθ/dP (y)

of the form p(y, θ) = eU(y)C(θ)−B(θ) where C(θ) and B(θ) are some nonnegative func-

tions, U(y) is a known function of the observation y and the parameter θ is defined

by the equations
∫

p(y, θ)P (dy) = 1 and EθU(Y ) =
∫

U(y)p(y, θ)P (dy) = θ . One can

easily check that the functions B(θ) and C(θ) are connected by the differential equation

B′(θ) = θC ′(θ) . The Kullback-Leibler distance Q(θ, θ′) for two measures Pθ and Pθ′

from this family satisfies

Q(θ, θ′) =
∫

log
p(y, θ)
p(y, θ′)

p(y, θ)P (dy)

=
(
C(θ)− C(θ′)

) ∫
U(y)p(y, θ)P (dy)−

(
B(θ)−B(θ′)

)
= θ

(
C(θ)− C(θ′)

)
−
(
B(θ)−B(θ′)

)
.

Next, for a given localizing matrix W = diag{w1, . . . , wn} the local log-likelihood for

the corresponding local model is of the form

L(W, θ, θ′) =
n∑

i=1

wij log
p(Yi, θ)
p(Yi, θ′)

=
(
C(θ)− C(θ′)

) n∑
i=1

wiU(Yi)−
(
B(θ)−B(θ′)

) n∑
i=1

wi

= S
(
C(θ)− C(θ′)

)
−N

(
B(θ)−B(θ′)

)
where

N =
n∑

i=1

wi , S =
n∑

i=1

wiU(Yi) .
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Maximization of this expression w.r.t. θ leads to the estimating equation

NB′(θ)− SC ′(θ) = 0.

This and the identity B′(θ) = θC ′(θ) yield the local MLE

θ̂ = S/N.

This implies

L(W, θ̂, θ′) = N
[
θ̂
(
C(θ̂)− C(θ′)

)
−
(
B(θ̂)−B(θ′)

)]
= NQ(θ̂, θ′).

The procedure presented in the next section is effectively based on assigning some

measure of inhomogeneity for two different local models. We now discuss how this mea-

sure can be naturally defined via likelihood ratio tests of homogeneity for two populations.

3.4 Measuring the difference between two local models

Consider two local models corresponding to points Xi and Xj and defined by diagonal

weight matrices Wi and Wj . We suppose that the structural assumption is fulfilled

for each of these two, that is, the underlying parameter function θ(·) is nearly constant

within every local model. We aim to answer the question whether these two local models

can be put into one common parametric model. This can be done testing the hypothesis

that the values θi = θ(Xi) and θj = θ(Xj) describing two local models coincide.

We use the notation from the previous section. The local maximum likelihood esti-

mator θ̂i for the local model corresponding to a diagonal matrix W = diag{w1, . . . , wn} ,

is defined for any θ′ by the local optimization problem

θ̂i = argsup
θ∈Θ

L(Wi, θ, θ
′) = argsup

θ∈Θ

n∑
j=1

wij log
p(Yj , θ)
p(Yj , θ′)

The value Ni =
∑

j wij can be interpreted as the sample size for the local model

centered at Xi and described by the weights Wi .

To compare two local models centered at Xi and Xj we utilize the likelihood-ratio

test statistic corresponding to the hypothesis that the parameters θi and θj for two local

models coincide. First we consider the situation when both matrices Wi and Wj have

zero-one diagonal entries with positive elements at disjoint positions, that is, the values

wik and wjk and wik + wjk are either zero or one for all k . This situation corresponds

to the two sample problem in which one sample is obtained by the observations Yk
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with wik = 1 and the other one by the observations Yk with wjk = 1 . The classical

likelihood-ratio test statistic for the hypothesis θi = θj for this situation is of the form

T o
ij = max

θ
L(Wi, θ, θ

′) + max
θ

L(Wj , θ, θ
′)−max

θ
L(Wi + Wj , θ, θ

′) (3.3)

where θ̂ij = argsupθ L(Wi + Wj , θ, θ
′) is the maximum likelihood estimator correspond-

ing to the combined model which is obtained by summing the weights from both models.

The value T o
ij characterizes the difference between two considered models in the statis-

tical sense: if T o
ij is larger than some prescribed value λ , then these two models are

significantly different in the value of the underlying parameter θ .

Such defined value T o
ij is “symmetric” w.r.t. the local models located at the points

Xi and Xj in the sense that T o
ij = T o

ji . However, in the “unbalanced situation” when

the “sample sizes” Ni = trWi and Nj = trWj are essentially different, the contribution

of every local model into the value Tij is also essentially different.

For instance, in the local normal case,

T o
ij =

NiNj

Ni + Nj

(
θ̂i − θ̂j

)2
.

In the situation when e.g. Nj/Ni is close to zero, T o
ij ≈ Nj

(
θ̂i − θ̂j

)2
≈ Nj

(
θ − θ̂j

)2
.

(Since the “sample size” Ni is large, it is not restrictive to suppose here that θ̂i is a

“good” estimator of θ = θ(Xi) i.e. θ̂i − θ ≈ 0 .) This means that the model with a

smaller sample size contributes much more to the value T o
ij than the model with a larger

sample size.

In the procedure described in the next section, we apply such a measure to decide

about the weight wij with which the observation Yj at Xj enters in the local model

at Xi . To prevent from situations where “bad” points Xj corresponding to the local

models with a small “sample size” Nj are included into a “big” local model at Xi with

a large “sample size” Ni , we slightly extend our approach. Namely, when computing

the value Tij which determines the weight wij , we artificially increase the “sample size”

Nj by multiplying the weights for the second model at Xj with some factor α and then

optimize the resulting test statistic w.r.t. this parameter. The use of the factor α leads

to the test statistics

Tij(α) = max
θ

L(Wi, θ, θ
′) + max

θ
L(αWj , θ, θ

′)−max
θ

L(Wi + αWj , θ, θ
′)

= L(Wi, θ̂i, θ
′) + L(αWj , θ̂j , θ

′)− L(Wi + αWj , θ̂ij(α), θ′)
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where

θ̂ij(α) = argsup
θ

L(Wi + αWj , θ, θ
′) = argsup

θ

n∑
l=1

(wil + αwjl) log
p(Yl, θ)
p(Yl, θ′)

.

The application of θ′ = θ̂j yields

Tij(α) = L(Wi, θ̂i, θ̂j)− L(Wi + αWj , θ̂ij(α), θ̂j)

implying

Tij(α) ≤ Tij = L(Wi, θ̂i, θ̂j) = sup
θ

L
(
Wi, θ, θ̂j

)
. (3.4)

Moreover, it is easy to check that

Tij = lim
α→∞

Tij(α).

This expression will be used in the procedure to measure the statistical difference between

the local model at the point Xi and the other model at the point Xj . Note that this

expression is essentially asymmetric, that is, Tij 6= Tji . A “symmetrized” version is

given by T s
ij = (Tij + Tji)/2 .

We illustrate this definition by examples from Section 2. Using the general represen-

tation of L(W, θ̂, θ′) from Section 3.3 for all the considered examples, we end up with

the expressions

Ni =
n∑

l=1

wil, Si =
n∑

l=1

wilU(Yl), θ̂i = Si/Ni

where U(Yl) = Yl for the for local Bernoulli, Poisson and exponential modeling and

U(Yl) = Y 2
l for the local volatility modeling, and

Tij = NiQ(θ̂i, θ̂j).

In the special case of local constant Gaussian regression, we obtain

Tij =
Ni

2σ2
(θ̂i − θ̂j)2.

This representation is used for the procedure described in the next section.

4 Adaptive weights smoothing

This section presents the estimation procedure. We start with the heuristic discussion.
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4.1 Preliminaries

The basic assumption of the proposed approach is that for every point Xi , there exists a

vicinity of x in which the underlying model described by the function θ(x) can be well

approximated by a parametric model with the constant parameter θ . The idea of the

procedure is to describe simultaneously the local models for all points Xi by assigning

for every point Xi a weight wij to every observation Yj at another point Xj .

We first illustrate this idea for the nonparametric regression with a local constant

structural assumption as considered in PS2000. In that case the parameter θ coincides

with the function value f(Xi) and the estimate f̂(Xi) is defined as the mean of the

observations Yj with some weights wij :

f̂(Xi) =
n∑

`=1

wi`Y`

/ n∑
`=1

wi`. (4.1)

These weights wij are calculated iteratively, so that the estimate from the previous

iteration is used to determine the new weights wij which in turn leads to the new

estimates f̂(Xi) due to (4.1). For the initial step, the estimate f̂ (0)(Xi) is calculated

using the data from a small neighborhood U
(0)
i of the point Xi . At each iteration k a

larger neighborhood U (k)(Xi) is considered and every point Xj from U
(k)
i gets a weight

w
(k)
ij which is defined by comparing the estimates f̂ (k−1)(Xi) and f̂ (k−1)(Xj) obtained

at the previous iteration. Note that under the local constant assumption f(x) = θ , the

value θ uniquely determines the model and comparison of the values f̂ (k−1)(Xi) and

f̂ (k−1)(Xj) is equivalent to the comparison of two local constant models.

An extension of this approach to the more general local parametric assumption com-

pares two local models described by the weights W
(k−1)
i = diag

{
w

(k−1)
i1 , . . . , w

(k−1)
in

}
and W

(k−1)
j = diag

{
w

(k−1)
j1 , . . . , w

(k−1)
jn

}
when determining the weight w

(k)
ij . This can

be done using the proposal from Section 3.4.

In addition we extend the original AWS procedure by introducing a memory param-

eter η such that the new weight w
(k)
ij at the step k is defined as a convex combination

ηw
(k−1)
ij +(1− η)w̃(k)

ij of the weight w
(k−1)
ij from the previous iteration step and the just

computed value w̃
(k)
ij .

4.2 The procedure

Now we present a formal description. Important ingredients of the method are:

- kernels Kl and Ks ;
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- parameters λ and η ;

- the initial bandwidth h(1) , the factor a > 1 and the maximal bandwidth h∗ .

The choice of the parameters is discussed in Section 4.4. The procedure reads as

follows:

1. Initialization: Compute the global MLE θ̂(0) of θ :

θ̂(0) = argsup
θ∈Θ

n∑
i=1

log p(Yi, θ).

For every i , set θ̂
(0)
i = θ̂(0) and define W

(0)
i as the unit matrix. Set k = 1 .

2. Iteration: for every i = 1, . . . , n

• Calculate the adaptive weights: For every point Xj , compute the penalties

l
(k)
ij =

∣∣∣ρ(Xi, Xj)/h(k)
∣∣∣2 ,

s
(k)
ij = λ−1T

(k)
ij = λ−1L

(
W

(k−1)
i , θ̂

(k−1)
i , θ̂

(k−1)
j

)
. (4.2)

Alternatively, the “symmetrized” statistical penalty is computed as,

s
(k)
ij = λ−1

(
L
(
W

(k−1)
i , θ̂

(k−1)
i , θ̂

(k−1)
j

)
+ L

(
W

(k−1)
j , θ̂

(k−1)
j , θ̂

(k−1)
i

))
/2.

Compute

w̃
(k)
ij = Kl

(
l
(k)
ij

)
Ks

(
s

(k)
ij

)
and define the weight w

(k)
ij as

w
(k)
ij = ηw

(k−1)
ij + (1− η)w̃(k)

ij .

Denote by W
(k)
i the diagonal matrix whose diagonal elements are w

(k)
ij , that is,

W
(k)
i = diag{w(k)

i1 , . . . , w
(k)
in } , and similarly W̃

(k)
i = diag{w̃(k)

i1 , . . . , w̃
(k)
in } .

• Estimation: Compute the new local MLE estimate θ̂
(k)
i of θi

θ̂
(k)
i = argsup

θ∈Θ
L(W (k)

i , θ, θ′) = argsup
θ∈Θ

[
ηL(W (k−1)

i , θ, θ′) + (1− η)L(W̃ (k)
i , θ, θ′)

]
.

3. Stopping: Stop if ah(k) > h∗ otherwise increase k by 1, set h(k) = ah(k−1) and

continue with step 2.

4.3 The case of a local exponential family

Here we specify the procedure for the case when {Pθ} is an exponential family, see

Section 3.3. This holds for all the examples considered in this paper.
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Statistical penalty

The statistical penalty s
(k)
ij from (4.2) can, in this case, be represented in the form

s
(k)
ij = λ−1L

(
W

(k−1)
i , θ̂

(k−1)
i , θ̂

(k−1)
j

)
= λ−1N

(k−1)
i Q

(
θ̂
(k−1)
i , θ̂

(k−1)
j

)
.

Therefore, computing this penalty requires only a finite number of operations. Only the

estimators θ̂
(k−1)
i and the values N

(k−1)
i and S

(k−1)
i have to be stored as the results of

the preceding step of the algorithm.

Step 2 of the procedure

The local MLE θ̂i can be represented in the form θ̂ = argsupθ L(Wi, θ, θ
′) = Si/Ni where

Ni =
∑n

j=1 wij and Si =
∑n

j=1 wijUj . In our examples, Uj = Yj for local Gaussian,

Bernoulli, Poisson and exponential models and Uj = Y 2
j for the local volatility model.

Therefore, in the estimation step, the new estimator θ̂
(k)
i can be written as

θ̂
(k)
i = argsup

θ∈Θ
L(W (k)

i , θ, θ′) = S
(k)
i /N

(k)
i

with

N
(k)
i =

n∑
j=1

w
(k)
ij = ηN

(k−1)
i + (1− η)

n∑
j=1

w̃
(k)
ij ,

S
(k)
i =

n∑
j=1

w
(k)
ij Uj = ηS

(k−1)
i + (1− η)

n∑
j=1

w̃
(k)
ij Uj .

Initialization

The initial estimators θ̂
(0)
i coincide with the global parametric MLE for all i and they

are defined as θ̂
(0)
i = S

(0)
i /N

(0)
i with

S
(0)
i =

n∑
i=1

Uj , N
(0)
i = n.

Numerical complexity

One can easily estimate the numerical complexity of procedure. If the localization kernel

Kl is supported on [0, 1] and if M (k) denotes the maximal number of points Xj in the

neighborhood U
(k)
i = {x : ρ(x,Xi) ≤ h(k)} at the k th step of the procedure, then the

complexity of this step is of order nM (k) . The number of iterations k∗ is the largest

integer smaller than loga(h∗/h(1)) and the complexity of the whole procedure is of order

n
(
M (1) + . . . + M (k∗)

)
. Since the value M (k) grows exponentially in our set-up, the

whole complexity is of order nM (k∗) .
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4.4 Choice of parameters

The parameters of the generalized AWS method are selected essentially in the same way

as it is suggested in PS2000 for the local constant regression modeling. We briefly discuss

each of the parameters.

Kernels Ks and Kl

The kernels Ks and Kl must fulfill Ks(0) = Kl(0) = 1 and decrease in the argument u

on the positive semiaxis. We recommend to take Ks(u) = e−u . The kernel Kl can be

taken exponential, however, it is recommended to utilize a compactly supported kernel

to reduce the computational effort of the method. PS2000 applied a uniform kernel, here

we apply the triangle kernel K(u) = (1− u)+ .

“Memory” parameter η

The value η ∈ (0, 1) can be viewed as the memory parameter of the algorithm. An

increase of η results in a higher stability of the method w.r.t. to iteration, however,

it decreases the sensitivity to changes of the local structure. The use of the memory

parameter also guarantees that Q(θ̂i, θ̂j) < ∞ . Our default choice is η = 1/2 .

Starting bandwidth h(1) , parameter a and maximal bandwidth h∗

The starting bandwidth h(1) should be taken possibly small. In the most of example we

select h(1) such that every starting local neighborhood U
(0)
i contains only the design

point Xi .

The parameter a controls the growth rate of the local neighborhoods for every point

Xi . It should be selected to provide that the mean number of points inside every ball

U
(k)
i with radius h(k) grows exponentially with k with the factor agrow . If Xi are from

the unit cube in the space IRd , then the parameter a can be taken as a = a
1/d
grow . Our

default choice is agrow = 1.25 .

The maximal bandwidth h∗ can be taken very large. However, one can use this

parameter to bound the numerical complexity of the procedure, see Section 4.3. In

some application examples, the use of a very large final bandwidth h∗ leads to some

oversmoothing of the underlying object. For such situations, a data-driven method of

optimal stopping, based, for instance, on the cross-validation technique can be applied.
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Symmetric and asymmetric versions

In the most of our examples, the results for the symmetric and asymmetric versions of

the procedure are very close to each other. The symmetric version is preferable if fine

structures in the model should be kept, while the asymmetric version tends to oversmooth

such fine structures but performs more stable within large homogeneous regions. Our

default choice is the symmetric procedure.

Parameter λ

The most important parameter of the procedure is λ which scales the statistical penalty

sij . Small values of λ lead to overpenalization which may results in unstable perfor-

mance of the method in the homogeneous situation. Large values of λ may result in

loss of adaptivity of the method (less sensitivity to the structural changes). A reason-

able way to define the parameter λ for specific applications is based on the condition

of free extension, which we also call the “propagation condition”. This condition means

that in the homogeneous situation, when the underlying parameters for every two local

models coincide, the impact of the statistical penalty in the computed weights wij is

negligible. This would result in a free extension of every local model. If the value h∗ is

sufficiently large, at the end of iteration process all the weights wij will then be close

to one and every local model will essentially coincide with the global one. Therefore,

one can adjust the parameter λ simply selecting the minimal value of λ still providing

the prescribed probability of getting the global model at the end of iteration process

for the homogeneous (parametric) model θ(x) = θ using Monte-Carlo simulations. The

theoretical justification is given by Theorem 5.1 in the next section, that claims that the

choice λ = C log n with a sufficiently large C ≤ 4 yields the “propagation” condition

whatever the parameter θ is.

Our default value is λ = tα(χ2
1) , that is the α -quantile of the χ2 distribution with

1 degree of freedom, where α depends on the specified exponential family and the use

of an asymmetric or symmetric stochastic penalty. Defaults for α are given in Table 1.

5 “Propagation” condition

The aim of this section is to show that the choice of a sufficiently large value of the

parameter λ indeed implies free extension of every local model in a homogeneous situa-
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Table 1: Default values for α for different families and for the procedure with symmetric
or asymmetric statistical penalty

Gaussian Bernoulli Poisson Exponential
asymmetric .966 .953 .958 .914
symmetric .985 .972 .980 .972

tion. We consider only the case of a univariate exponential family {Pθ , θ ∈ Θ ⊂ IR} that

corresponds to all our examples. A homogeneous situation corresponds to a global para-

metric model with observations Y1, . . . , Yn following a distribution Pθ from the given

exponential family.

The main difficulty in the proof of the “propagation condition” is that the weights

w
(k)
ij which we use for describing the local models at the k th iteration are random and

computed from the same data Y1, . . . , Yn that we use for estimating the local parameters

at k th iteration. This makes the precise analysis of the “propagation condition” very

complicated.

To simplify the discussion, we focus on one step of the algorithm assuming that the

weights wij = w
(k)
ij are deterministic or independent of the data Y1, . . . , Yn . The latter

situation arises if one splits the original sample into a few subsamples and utilizes different

subsamples for different iterations. Below in this section, we give some hints how the

“propagation condition” can be proved in full generality by induction arguments. We

also present the results for the penalty term based on the classical likelihood ratio test

statistic T o
ij , see (3.3). The penalty term Tij used in the procedure can be studied

similarly but the analysis becomes more involved.

The underlying idea is to apply a nonasymptotic version of the Wilks theorem that

claims the asymptotic χ2 -distribution of the test statistic 2L(W, θ̂, θ) under Pθ in the

homogeneous situation. The reason for using precise nonasymptotic results is that at the

beginning of the iteration process every local “sample size” Ni =
∑

j wij is relatively

small, even if the global sample size n is large. Theorem 11.1 from the Appendix states

that in the homogeneous situation, for every local model centered at Xi and described

by the weights Wi holds

P
(
L(Wi, θ̂i, θ) > λ

)
≤ 2e−λ.
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This immediately yields for the statistical penalty T o
ij

P
(
T o

ij > 2λ
)
≤ P

(
L(Wi, θ̂i, θ) > λ

)
+ P

(
L(Wj , θ̂j , θ) > λ

)
≤ 4e−λ.

This leads to the following results.

Theorem 5.1. Suppose that θ(Xi) ≡ θ and that the weights wij are deterministic.

Then for some absolute constant C ≤ 4 holds

P

(
max

i,j=1,...,n
T o

ij > C log n

)
≤ 4/n.

Indeed, Theorem 11.1 yields

P

(
max

i,j=1,...,n
T o

ij > 4 log n

)
≤

n∑
i=1

P
(
L(Wi, θ̂i, θ) > 2 log n

)
≤ 4ne−2 log n = 4/n.

An important feature of this results is that it is nonasymptotic and uniform on the

parameter θ .

Remark 5.1. The result is stated for the case of deterministic coefficients wi . Therefore,

it formally applies only to the initial step estimators θ̂
(0)
i and it ensures for λ sufficiently

large that all the computed statistical penalties s
(1)
ij at the next iteration will be close

to zero. However, it implies that the next step estimator θ̂(k) , k ≥ 1 , will be very close

to the usual kernel estimators based on the location penalty only. This gives some hints

how the “free extension” principle can be proved by induction arguments.

Remark 5.2. It is also worth noting that our way of computing the statistical penalty

s
(k)
ij does not take into account that two “local” models centered at points Xi and Xj

have nonzero intersection. This means that there are some points Xl such that the

weights w
(k)
il and w

(k)
jl are simultaneously positive and hence, the estimators θ̂

(k)
i and

θ̂
(k)
j are dependent and positively correlated. In the homogeneous situation, for every

two fixed points, this dependence grows with iteration, so that the estimators θ̂
(k)
i and

θ̂
(k)
j becomes more and more close to each other. In the extreme case at the end of

iteration process both local models coincide with the global one and therefore the local

estimators coincide as well. This yields that the statistical penalty is in a homogeneous

situation in fact very small, much smaller than the threshold λ . In particular, artifacts

like random segmentation of small regions in the homogeneous situation may appear only

at the beginning of the iteration process. The use of the asymmetric procedure usually

leads to outsmoothing of such random segments, while the symmetric version may keep

them until the final iteration.
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Theorem 5.1 gives some upper bound for the value λ that provides the “propagation

condition”. However, this bound is rather conservative leading to a too large value of λ .

As mentioned in Section 4.4, for practical applications the λ -value can be selected by

Monte-Carlo simulations.

6 Application to nonparametric density estimation

Here we discuss how the AWS procedure can be applied to the problem of nonparametric

density estimation. Suppose that the observations Z1, . . . , ZL were sampled indepen-

dently from some unknown distribution P on IRd having a density f(x) w.r.t. the

Lebesgue measure. The problem of adaptive estimation of f can be successfully at-

tacked by the AWS method. Here we consider the case with a relatively small d , e.g.

d ≤ 3 . The case of a larger d can be considered as well but requires a separate treatment.

Without loss of generality we suppose that the observations are located in the cube

[0, 1]d . Note that we do not assume that f is compactly supported or that f is bounded

away from zero on [0, 1] . As a first step we apply a binning procedure, see e.g. Fan and

Marron (1994) or Fan and Gijbels (1996). Let the interval [0, 1] be split into M equal

disjoint intervals of length δ = 1/M . Then the cube [0, 1]d can be split into n = Md

small cubes with the side length δ , which we denote by J1, . . . , Jn . Let Xi be the center

point of the cube Ji and let Yi be the number of observations lying in the i th cube Ji .

The pairs (Xi, Yi) for i = 1, . . . , n can be viewed as new observations. The variables

Y1, . . . , Yn are not independent because of the obvious equation Y1 + . . . + Yn = L and

the joint distribution of Y1, . . . , Yn is described by the multinomial law. However, this

model can be very well approximated by the Poisson model with independent observations

Yi having Poisson distribution with intensity parameter θi = Lpi = LP (Ji) . This is

essentially the approach proposed by Lindsay (1974a, 1974b), see also e.g. Efron and

Tibshirany (1996).

If the value θi has been estimated by θ̂i then the target density f is estimated at

Xi as f̂(Xi) = θ̂i
L δ−d or as f̂(Xi) = θ̂i∑n

j=1 θ̂j
δ−d .

Note that the usual histogram requires that the bin value δ satisfies the condition

Lmini pi → ∞ . This condition means that the average number of observations within

every bin tends to infinity. Our approach admits small values of Lpi , that means, that

an essential part of bins do not contain any observations and the corresponding Yi are
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zeros. If Yj = 0 for all Xj near the point Xi , then f̂(Xi) is simply estimated by zero.

For estimating the values θi from the “observations” Yi we apply the AWS procedure

with the local Poisson family from Example 2.4. In addition to the standard parameter

set, we have to specify the choice of the bin length δ . A reasonable choice is given by

the rule δ = c/K where K is the smallest integer satisfying Kd ≥ L and c ≤ 1 . The

use of a small c helps to reduce the discretization error but increases the “sample size”

n and therefore, the computational effort by factor c−d .

We illustrate the performance of the method by means of two simulated examples

with piecewise smooth density function. We start with the univariate case.

Example 6.1. We generate n = 200 observations from the univariate distribution with

density

f(x) =


1.5 x ∈ [0, .25) ∧ x ∈ [.75, 1]
.5 x ∈ [.25, .75)
0 otherwise

The density estimate (solid line) provided in the left part of Figure 1 was obtained using

an equispaced grid of 440 intervals of length δ = 0.0025 and range (−.1, 1.1). The true

density is given for comparison (dotted line). A large value h∗ = 2000δ = 5 was used

to have a vanishing influence of the location penalty. The symmetrized version of the

stochastic penalty was applied. All other parameters equal to their defaults. A typical

example of the estimation results by the AWS is plotted in the left of Figure 1. One

can see almost perfect restoration of the unknown density having the piecewise constant

structure. Similar behavior was observed for the local constant regression models, see

PS2000.

The next example presents a piecewise smooth bivariate density having discontinuities

along the axis x2 = 0 and discontinuities of the first derivative along the line x1 = 0

and the boundary of the unit disk.

Example 6.2. We generate n = 2500 observations from the 2-dimensional density

f(x1, x2) = 7.5x1(1− x2
1 − x2

2)+ I{x1≥0,x2≥0}

The right part of Figure 1 displays 50 contour lines of the estimated density (solid

lines) together with the border of the support of the true density (dashed). Results were

obtained using a 2-dimensional grid with 120 × 120 cells on (−.1, 1.1) × (−.1, 1.1) , i.e.
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Figure 1: Density estimation: univariate example (left) and bivariate example (right).
Solid lines correspond to estimates and dashed lines to the true densities.

with a bin width δ = .01 . The symmetrized version of the stochastic penalty was used

with h∗ = 400δ = 4 and defaults for all other parameters.

The external contour can be interpreted as the estimated support of the density. The

quality of the estimation of the density support is very good along the line x2 = 0 and

it is slightly worse along the other axis x1 = 0 where the density goes flatly to zero and

along the boundary of the unit circle. This behavior is in agreement with the theoretical

results from Korostelev and Tsybakov (1993) and is similar to the case of the edge image

estimation, see PS2000 and Polzehl and Spokoiny (2003).

7 Application to volatility estimation

Let S1, . . . , ST be an observed stock price (exchange rate, option price etc.) process.

The log-returns are defined by Rt = log(St/St−1) . In many financial market models the

log-returns are described by the following conditional heteroskedasticity model:

Rt = σtεt (7.1)

where εt are innovations which are conditionally on Ft−1 = σ(S1, . . . , St−1) standard

normal distributed, and σt is the time dependent predictable volatility process, that is,

σt ∼ Ft−1 . Aim of the data analysis is to estimate (or forecast) the volatility process σt.

The volatility model considered in Example 2.5 is a special case of this model when the
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volatility process σt is deterministic. Note, however, that the local volatility modeling

from Example 2.5 applies to the time dependent volatility from (7.1) in the situation of

local time homogeneity, see Mercurio and Spokoiny (2000) for more details. Therefore, we

apply the AWS method directly to the time dependent data Rt . The required estimate

θ̂t = σ̂2
t of the parameter θt = σ2

t is obtained by running the corresponding AWS

procedure on the data R1, . . . , RT .

We use two numerical examples to illustrate the behaviour of our procedure.

Example 7.1. First we produce an artificial series of returns Rt of length T = 500

following the model

Rt = σtεt with σt = 1 + I{t≥125} − 1.5I{t≥250} + .5I{t≥375}

Figure 2 displays the absolute values |Rt| together with the true volatility σt and esti-

mates of the volatility σt obtained by the symmetric and asymmetric version of AWS,

both with default parameters and maximal bandwidth h∗ = 2000 . Both procedures

demonstrate an almost perfect quality of estimation: the piecewise constant structure

of the volatility is reconstructed up to a small error in detecting the location of change-

points. The symmetric version sometimes randomly segments small regions, Figure 2

shows a typical example.

Figure 2: Volatility estimation: Artificial data set with true volatility function and esti-
mates obtained by the asymmetric and symmetric version of AWS.
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Figure 3: Volatility estimation: Returns for exchange rate between the US $ and the
German DM and estimates obtained by the asymmetric and symmetric version of AWS.

Example 7.2. In the second example we analyze the exchange rate between the US $

and the German DM for the period from August 1, 1987 to February 18, 2002. The

data are (C) 2001 by Prof. Werner Antweiler, University of British Columbia, Van-

couver BC, Canada, and have been obtained from the Pacific Exchange Rate Service

http://pacific.commerce.ubc.ca/xr/data.html. Figure 3 provides the returns |Rt| and

estimates of the volatility σt obtained by the symmetric and asymmetric version of

AWS for the time period from January 1993 to December 1997.

Note that both estimates indicate time-inhomogeneity of the volatility and that most

discontinuities occur at the same points in time for both estimates. Again a different

behaviour of the asymmetric and symmetric version can be observed, with the symmetric

version singleing out several small time intervals with unusually low or high volatility.

8 Application to tail index estimation problem

Let X1, ..., Xn be a sample from the distribution F . The target of the analysis is the

tail behaviour of this distribution. A popular approach is based on the assumption of a

polynomial decay of the value 1−F (x) in the form 1−F (x) = x−1/αL(x) where L(x)
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is a slowly varying function and α is the parameter of interest which is usually referred

to as the tail index. The popular Hill estimator, Hill (1975), of α is defined as

α̂n,k =
1
k

k∑
i=1

log
Xn,i

Xn,k+1
,

where Xn,1 ≥ ... ≥ Xn,n are the order statistics pertaining to X1, ..., Xn and k is the num-

ber of upper statistics used in the estimation. There is a vast literature on the asymptotic

properties of the Hill estimator. Weak consistency was established by Mason (1982), un-

der the conditions that k → ∞ and k/n → 0 as n → ∞. A strong consistency result

can be found in Deheuvels, Häusler and Mason (1988). However, practical applications

of this estimator meet serious problems, see e.g. Embrechts, Klüppelberg and Mikosch

(1997, p.351). The main practical difficulty is dealt with the choice of the parameter

k . Another problem is related with the treatment of the slowly varying function L(x)

which may seriously affect the performance of the estimator, see Embrechts, Klüppelberg

and Mikosch (1997). Grama and Spokoiny (2002) proposed a new method of adaptive

estimation of the parameter α by reducing the original problem to the inhomogeneous

exponential model and applying the pointwise adaptive estimation procedure. Here we

briefly discuss how the AWS procedure can be used for the same purpose.

Suppose that the distribution F (x) is supported on (a,∞) where a > 1 is a fixed real

number. Assume that the function F is strictly increasing and has a continuous density

f. Define the function α(x) by the equation

1
α(x)

=
xf(x)

1− F (x)
= −

d
dx log (1− F (x))

d
dx log x

, x ≥ a. (8.1)

Since F (a) = 0, the d.f. F can be represented as

F (x) = 1− exp
(
−
∫ x

a

dv

vα(v)

)
, x ≥ a. (8.2)

The basic condition imposed on the model is that the function α(x), x > a, can be

approximated by a constant for large values of x. For instance, this is the case when

there exists an β > 0 such that

lim
x→∞

α(x) = β. (8.3)

Many regularly varying at infinity d.f.’s F satisfy the assumptions (8.2) and (8.3), see

representation theorems in Seneta (1976) or Bingham, Goldie and Teugels (1987).
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Our problem can be formulated as follows. Let Xn,1 > ... > Xn,n be the order

statistics pertaining to X1, ..., Xn. The goal is to find a natural number k such that on

the set {Xn,1, ..., Xn,k} the function α(x), x ≥ a, can be well approximated by the value

α(Xn,1) and to estimate this value. The intuitive meaning of this is to find a Pareto

approximation for the tail of the d.f. F on the data set {Xn,1, ..., Xn,k}. Note that this

problem is different from that of estimating the index of regular variation β defined by

the limit (8.3). Indeed, the value β can be regarded as limx→∞ α(x) . However, in many

examples, the values α(Xi) are essentially different from α(∞) for all Xi observed for

reasonable sample sizes. A typical example is delivered by the so called “Hill horror plot”

corresponding to the distribution F (x) = 1− x−1 log(x) .

The function α(·) at the points Xi will be estimated from the approximating expo-

nential model. Our motivation is somewhat similar to that of Hill (1975). The construc-

tion of the approximating exponential model employs the following lemma, called Renyi

representation of order statistics.

Lemma 8.1. Let X1, ..., Xn be i.i.d. r.v.’s with common strictly increasing d.f. F and

Xn,1 > ... > Xn,n be the order statistics pertaining to X1, ..., Xn. Then the r.v.’s

ξi = i log
1− F (Xn,i+1)
1− F (Xn,i)

, i = 1, ..., n− 1.

are i.i.d. standard exponential.

Proof. See for instance Reiss (1989) or Example 4.1.5 in Embrechts, Klüppelberg and

Mikosch (1997).

Let Yi = i log Xn,i

Xn,i+1
, i = 1, ..., n− 1. Then Yi = αiξi, i = 1, ..., n− 1, where

αi = − log
Xn,i

Xn,i+1

/
log

1− F (Xn,i)
1− F (Xn,i+1)

.

By identity (8.1) the value αi can be regarded as an approximation of the value of the

function α (·) at the point Xn,i+1. More precisely, the mean value theorem implies

αi = α

(
Xn,i+1 + θn,i+1

Xn,i −Xn,i+1

Xn,i

)
,

with some θn,i+1 ∈ [0, 1], for i = 1, ..., n − 1. These simple considerations reduce the

original model to the following inhomogeneous exponential model

Yi = αiξi, i = 1, ..., n− 1, (8.4)
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Table 2: MAE of tail-index estimation by AWS for some distributions.

sample size
distribution statistic 100 200 400 800 1600

Pareto MAE 0.086 0.062 0.046 0.034 0.027
Bias 0.002 0.001 −0.001 0.002 0.005

Mean 1.000 1.000 1.000 1.000 1.000
Normal MAE 0.269 0.197 0.155 0.132 0.110

Bias 0.268 0.196 0.155 0.132 0.110
Mean 0.125 0.107 0.095 0.083 0.075

t2 MAE 0.229 0.177 0.140 0.103 0.082
Bias 0.221 0.168 0.134 0.097 0.073

Mean 0.508 0.504 0.502 0.501 0.500
Cauchy MAE 0.238 0.166 0.129 0.103 0.077

Bias 0.192 0.126 0.100 0.081 0.057
Mean 1.000 1.000 1.000 1.000 1.000

where α = (α1, ..., αn−1) is a vector of unknown parameters. This vector can be esti-

mated by the AWS procedure for the local exponential model, see Example 2.3. The

target tail index parameter corresponds to the most left piece of local homogeneity of the

varying parameter α, or equivalently, to the value α1. So we use α̂1 as the estimator of

the tail index parameter.

To illustrate the properties of this estimate we present some simulated results and

apply the procedure to the exchange rate data.

Example 8.1. Tail indices are estimated for four distributions, using the Pareto-distribution

with tail index β = 1 , the absolute values of standard normal random variables (RV),

absolute values of t2 -distributed RV’s and absolute values of Cauchy distributed RV’s.

Sample sizes of n = 100, n = 200, n = 400, n = 800 and n = 1600 are used in each case.

Table 2 reports the mean absolute error (MAE) for estimating α(xmax) , the estimated

bias, i.e. the mean of α̂1−α(xmax) , and the mean value of α(xmax) , with α(x) defined

by (8.1) and xmax the maximal value from the sample. Results are obtained from 500

simulations. The asymmetric version of the stochastic penalty with default parameters

and h∗ = 4n is used.

The results are very stable and nicely improve with the growing sample size. It is

worth noting that the bias component in the risk is due to the error of local approximation

of the function α(x) near the extreme statistic Xn,1 by a constant within the local model

centered at the point Xn,1 .
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We now reconsider the data used in Example 7.2.

Example 8.2. The estimated tail index of the distribution of absolute logarithmic re-

turns |Rt| of the US $ / DM exchange rate is 0.274 . This estimate corresponds to the

local model centered at the extreme statistics |R(1)| = maxt |Rt| . The sums of weights

for this local model is approximately equal to 277, and the positive weights are effec-

tively supported on the upper 277 values |Rt| . This means that α1 is nothing but the

Hill estimate with the adaptive window size 277. The similar tail-index estimates for

the standardized absolute logarithmic returns |Rt|/σ̂t with σ̂t being the asymmetric or

symmetric AWS volatility estimate obtained in Example 7.2 equal to 0.1646 and 0.1558 ,

respectively.

Under the hypothesis of a time homogeneous volatility in model (7.1) the P-value,

obtained by Monte-Carlo, of the observed estimate is about 0.001 , clearly rejecting this

hypothesis for the data at hand. The corresponding P-values of the tail-index estimates

for the standardized absolute logarithmic returns are 0.596 and 0.693 not contradicting

the hypothesis of normality of standardized returns.

9 Application to classification

We consider the following discrimination problem for two populations. One observes a

training sample (Xi, Yi) , i = 1, . . . , n , with Xi valued in a metric space x with known

class assignment Yi ∈ {0, 1} . The goal is to construct a discrimination rule to decide for

every point x ∈ x whether it belongs to class “zero” or class “one’.

The standard approach in classification is based on the Bayes discrimination rule.

Suppose that for k = 0, 1 , all the Xi ’s with Yi = k (that is, all the points from the

k -th population) are randomly sampled from a distribution Fk with the density fk(x)

with respect to some measure µ on x . Let also πk be the prior probability of the

population k = 0, 1 . Then the Bayes discrimination rule is

ρ(x) = 1 (π1f1(x) ≥ π0f0(x)) .

This rule can be implemented only if the underlying density functions f0 and f1 are

known. Since such information is typically lacking in practical applications, one first

constructs estimates of the densities f0 and f1 or of the ratio f1(x)/f0(x) and then

applies the above rule with the densities replaced by their estimates.
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The classification problem can be naturally treated in the context of a binary response

model. It is assumed that each observation Yi at Xi is a Bernoulli r.v. with parameter

p(Xi) , that is, P (Yi = 0) = 1 − p(Xi) and P (Yi = 1) = p(Xi) . Here the parameter

p(Xi) equals to the density ratio f1(Xi)/(f0(Xi) + f1(Xi)) . The “ideal” discrimination

rule for this model is ρ(x) = 1 (p(x) ≥ π0/(π0 + π1)) . Since the function p(x) is usually

unknown, one applies this rule with p replaced by its estimate p̂ .

The problem of classification can be easily solved if both densities f0 and f1 or their

ratio p belong to some parametric family, for instance, if both densities are normal with

unknown parameters. The latter assumption leads to linear or quadratic discrimination

rules.

Nonparametric methods of estimating the function p are based on local averaging.

Two typical examples are given by the k -nearest neighbors estimator and the kernel

estimator. Given a natural k , define for every point x in x the subset Dk(x) of

the design X1, . . . , Xn , including the k closest to x points with respect to the metric

ρ(x, x′) in x . Then the k -nearest neighbors estimator of p(x) is defined by averaging

the observations Yi over Dk(x) :

p̃k(x) = k−1
∑

Xi∈Dk(x)

Yi .

The definition of the kernel estimator of p(x) involves a univariate kernel function K(t)

and the bandwidth h :

p̃h(x) =
n∑

i=1

K

(
ρ2(x,Xi)

h2

)
Yi

/ n∑
i=1

K

(
ρ2(x,Xi)

h2

)
.

Both methods require the choice of a smoothing parameter (the value k for the first

and the bandwidth h for the second method) and both of them meet the “curse of

dimensionality” problem: high dimensional data are very sparse which leads to a large

estimation bias.

The AWS method can be viewed as a sophisticated extension of both methods us-

ing the structural adaption idea. Namely, for estimating the function p at the points

X1, . . . , Xn we can directly apply the AWS procedure corresponding to the local Bernoulli

model from Example 2.2.

In practical applications, one has to estimate the function p in some other points

Xn+1, . . . , Xn+m . This extension can be naturally incorporated in the procedure by

applying the procedure to the “extended” sample (Xi, Yi) for i = 1, . . . , n + m , where
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Yi are arbitrary for i > n . At every step of the procedure, all the weights w
(k)
ij with

j > n are set to zero, because the corresponding “observations” Yj are not informative.

The kernel estimate is an extreme case of the AWS estimate, it is computed in case

of parameters λ = ∞ and h∗ = h . The k -nearest neighbors (k-NN) estimate can be

obtained by a slightly modified AWS procedure, that uses the nearest neighbor idea for

the location penalty.

Example 9.1. To illustrate the behaviour of AWS in this context we use the data from

a simulated two-dimensional discriminant analysis example from Hastie, Tibshirani and

Friedman (2001), page 13. The data and information how they are constructed are

available from http://www-stat.stanford.edu/ tibs/ElemStatLearn/. They consist of 200

training observations, 100 from each class. The probability densities for each class are

mixtures of Gaussians, see Hastie, Tibshirani and Friedman (2001), page 17, for details.

Figure 4 illustrates the classification rules for the ideal Bayes rule, the k -nearest

neighbor rule with optimal k = 7 , the classification rule obtained by the symmetric

version of AWS with λ = 3.28 , i.e. the 0.93 -quantile of χ2
1 , and h∗ = 10 , and the

classification rule obtained by the kernel estimate using an Epanechnicov kernel with

optimal bandwidth h = 0.9 . In each case the estimated, or true, function p(x) are

provided together with the 0.5 -contour line defining the classification rule.

Figure 5 shows graphs of error rates as functions of the main smoothing parameter for

the rules defined by k-nearest neighbor, AWS with symmetric and a-symmetric stochastic

penalty, and kernel estimation. The ideal Bayes risk is given for a comparison. Note that

the AWS procedure produces the lowest classification errors between the three methods

and that the low values are obtained over a wide range of λ -values. The choice of a

smoothing parameter for the other methods is rather critical and a suboptimal choice

leads to a significant increase of the error rate.

10 Some important properties of AWS

Here we list some important features of the methods which follow from the construction

and are justified by our numerical results. Precise formulations and proofs of these

properties are very difficult because of the complex iterative nature of the algorithm and

they have to be done elsewhere.
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Figure 4: Classification rules obtained by the optimal Bayes decision, the best k-nearest
neighbor rule, adaptive weights smoothing (AWS) and the best rule based on kernel
estimation.

Figure 5: Dependence of the classification error on the main smoothing parameter rules
defined by k-nearest neighbor, AWS with symmetric and a-symmetric stochastic penalty,
and kernel estimation.
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AWS applies in a unified way to a broad class of nonparametric models

The proposed method is very general and its adjustment to the particular situation is

trivial in many cases. For all the application examples considered in the paper, we applied

essentially the same procedure. Sometimes, a preliminary model (data) transformation

is required, as in density or tail-index estimation.

AWS is fully adaptive to the variable model structure.

This means that the procedure is able to recover the unknown and variable function

structure without requiring any specific prior information like degree of smoothness of

the underlying function θ(x) , or number and intensity of jumps etc.

Behaviour inside large homogeneous regions

The procedure is designed to provide a free extension of every local model within a

large homogeneous region. An extreme case is given by a fully parametric homogeneous

model. In that case, due to the “propagation condition”, the final estimate at every point

coincides with high probability with the fully parametric global estimate.

Estimation near edges and discontinuities

Being stable within homogeneous regions, the procedure is very sensitive to discontinu-

ities. For instance, in the univariate case with a piecewise smooth function θ(x) , the

procedure will assign near vanishing weights for every two points from different regions

provided that the contrast between these two regions is large enough. This feature of the

method can be used for further image segmentation or change-point (edge) analysis.

AWS is dimension free

The dimensionality of the regressors Xi plays absolutely no role for the procedure. This

feature of the method is extremely important making it feasible to apply the procedure

to e.g. image denoising or inference for high dimensional models.

AWS is computationally straightforward and the numerical complexity can
be easily controlled

Indeed, the AWS requires of order nMk∗ operations with k∗ being the number of itera-

tions and Mk being the corresponding size of the typical neighborhood U
(k)
i at the step
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k . Therefore, the complexity of the method can be controlled simply by restricting k∗ ,

or, equivalently the largest bandwidth h∗ , see Section 4.3.

AWS is design adaptive and has no boundary problem

The method proceeds with the given “design” X1, . . . , Xn , no assumptions or restriction

were imposed on it. The random design (like for density of tail-index problem) is treated

similarly to the case of a deterministic design (image denoising). Design regularity is not

assumed in the method. The local constant modeling applied in the algorithm does not

suffer from nonregular design. This feature is important in connection to change point

and edge estimation, the produced estimator does not indicate the usual Gibbs effect

(high variability) near discontinuities like most of the other nonparametric methods.

11 Appendix

This section presents a general deviation result for a local exponential family model. This

result is important for justifying the “propagation” condition from Section 5.

We consider an exponential family (Pθ , θ ∈ Θ) , described by the functions C(θ) and

B(θ) , such that p(y, θ) = dPθ/dP (y) = exp (C(θ)y −B(θ)) and EθY =
∫

yp(y, θ)dP (y) =

θ for all θ ∈ Θ . Here we suppose that the general definition (see Section 3.3) is applied

with U(y) = y to simplify our notation. We also restrict ourselves to the one parameter

family, that is, Θ is a subset of the real line. A multivariate exponential family can be

considered in a similar way, but the conditions become more involved.

The functions B(θ) and C(θ) satisfy the differential equation B′(θ) = θC ′(θ) . More-

over, C ′(θ) coincides with the Fisher information of the family (Pθ) at θ .

Let the observations Y1, . . . , Yn be drawn from the distribution Pθ , and let a local

model be described by the weights wi ∈ (0, 1) for i = 1, . . . , n . The corresponding local

MLE can be written as θ̂ =
∑n

i=1 wiYi . We use the representation θ̂ = S/N with

S =
∑

i

wiYi , N =
∑

i

wi

see again Section 3.3 for more details.

Theorem 11.1. Let {Pθ} be an exponential family such that the Fisher information

I(θ) = C ′(θ) is positive on Θ . Then for every λ > 0 and every θ0 ∈ Θ

P θ0

(
L(W, θ̂, θ0) > λ

)
≤ 2e−λ.
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Proof. Define υ = C(θ) and D(υ) = B(θ) = B(C−1(υ)) . Since C ′(θ) > 0 , the new

parameter υ is uniquely defined. By simple analysis D′(υ) = θ = C−1(υ) and D′′(υ) =

1/C ′(θ) = 1/I(θ) = 1/I(C−1(υ)) . We also set υ0 = C(θ0) and write P 0 in place of

Pθ0 . With this notation

L(W, θ, θ0) = L(W,υ, υ0) = S(υ − υ0)−N
(
D(υ)−D(υ0)

)
.

The MLE υ̂ of the parameter υ is defined by maximizing L(W,υ, υ0) , that is, υ̂ =

argsupυ L(W,υ, υ0) .

Lemma 11.1. For given λ and υ0 , there exist two values υ∗ > υ and υ∗∗ < υ such

that

{L(W, υ̂, υ0) > λ} ⊆ {L(W,υ∗, υ0) > λ} ∪ {L(W,υ∗∗, υ0) > λ}.

Proof. It holds

{L(W, υ̂, υ0) > λ} =
{

sup
υ

[
S(υ − υ0)−N

(
D(υ)−D(υ0)

)]
> λ

}

=

S > inf
υ>υ0

λ + N
(
D(υ)−D(υ0)

)
υ − υ0

 ∪

−S > inf
υ<υ0

λ + N
(
D(υ)−D(υ0)

)
υ0 − υ

 .

The function f(u) = (λ + N [D(υ0 + u)−D(υ0)]) /u attains its minimum at some point

u∗ satisfying the equation

λ + N
(
D(υ0 + u∗)−D(υ0)

)
−Nu∗D′(υ0 + u∗) = 0

and thereforeS > inf
υ>υ0

λ + N
(
D(υ)−D(υ0)

)
υ − υ0

 =

S >
λ + N

(
D(υ∗)−D(υ0)

)
υ − υ0


⊆ {L(W,υ∗, υ0) > λ}

with υ∗ = υ0 + u∗ . Similarly−S > inf
υ<υ0

λ + N
(
D(υ)−D(υ0)

)
υ0 − υ

 ⊆ {L(W,υ∗∗, υ0) > λ}

for some υ∗∗ < υ0 .
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Now we bound the probability P 0 (L(W,υ, υ0) > λ) for every υ . Note that the

equality θ0 = D′(υ0) implies for u = υ − υ0

L(W,υ, υ0) = u(S −Nθ0)−N
[
D(υ0 + u)−D(υ0)− uD′(υ0)

]
= (S −Nθ0)u−NQ(u)

with Q(u) = D(υ0 + u)−D(υ0)− uD′(υ0) . The function Q satisfies Q′(u) = D′(υ0 +

u)−D′(υ0) and Q′′(u) = D′′(υ0 + u) = 1/I(C−1(υ0 + u)) > 0 and thus, it is convex.

We now apply the Chebyshev exponential inequality: for every positive µ

r(u, λ) := log P 0 (L(W,υ, υ0) > λ)

≤ −µλ− µNQ(u) + log E0 exp (uµ(S −Nθ0)) .

The independence of the Yi ’s implies

log E0 exp (uµ(S −Nθ0)) = log E0 exp

(
n∑

i=1

uµwi(Yi − θ0)

)
=

n∑
i=1

log E0e
uµwi(Yi−θ0) .

Next, for every constant a > 0 , the equalities θ0 = D′(υ0) and log
∫

eυy−D(υ)P (dy) = 0

yield

log E0e
a(Y−θ0) = −aθ0 + log

∫
e(a+υ0)y−D(υ0)P (dy)

= −aD′(υ0) + D(υ0 + a)−D(υ0) = Q(a).

Therefore

r(u, λ) ≤ −µλ− µNQ(u) +
n∑

i=1

Q(uµwi).

Since Q is convex and satisfies Q(0) = 0 , it holds for every w ∈ [0, 1] and every a that

Q(wa) ≤ wQ(a) . This and the above inequality applied with µ = 1 imply

r(u, λ) ≤ −λ−NQ(u) +
n∑

i=1

wiQ(u) = −λ

and the result of the theorem follows.
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