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Abstract

A new type of stochastic simulation models is developed for solving transport prob-

lems in saturated porous media which is based on a generalized Langevin stochastic

di�erential equation. A detailed derivation of the model is presented in the case when

the hydraulic conductivity is assumed to be a random �eld with a lognormal distribution,

being statistically isotropic in space. To construct a model consistent with this statistical

information, we use the well-mixed condition which relates the structure of the Langevin

equation and the probability density function of the Eulerian velocity �eld. Numerical

simulations of various statistical characteristics like the mean displacement, the displace-

ment covariance tensor and the Lagrangian correlation function are presented. These

results are compared against the conventional random displacement method.

1 Introduction

It is well known that stochastic models are well developed for solving transport problems

in turbulent �ows like the transport in the atmospheric boundary layer (e.g.,see [1] - [5]).

Stochastic models were constructed for a wide class of �ows, in particular, to �ows through

porous media. (see [6, 7]). To our knowledge, in the porous media transport, only one type

of stochastic models was used, namely, the Random Displacement Method (RDM) for the

hydrodynamic dispersion equation. It should be stressed that RDM can be applied only if the

displacement covariance tensor is known (e.g., from measurements, or numerical simulation),

and cannot be applied if the functionals of interest are evaluated at times comparable with

the characteristic correlation scale of the �ow. In contrast, the Lagrangian stochastic models

based on the tracking particles in a random velocity �eld extracted from numerical solution

of the �ow equation (for brevity, we will call this model DSM, the Direct Simulation Method)

are free of these limitations, but the computational resources required are vast. Therefore, it

is quite suggestive to construct a Langevin type stochastic model which is an approximation

to DSM, and is written in the form of a stochastic di�erential equation for the position and

velocity. It is worth to mention that this approach is widely used in the atmospheric transport

problems. The basis for the Langevin type approach comes from the Kolmogorov similarity

theory of fully developed turbulence [8] saying that the velocity structure tensor is a linear

function in time which is universal in the inertial subrange. The linearity is the necessary

condition to derive a Langevin type equation to mimic the behaviour of the real Lagrangian

trajectories. Therefore, the crucial point of the present study is to �nd out if in the porous

media, this kind of linear law can be observed. This problem is studied by the DSM in section

2. Detailed derivation of the Langevin type model is given in section 3. The last section deals

with the numerical simulations and comparisons with the Direct Simulation Method.
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2 Direct simulation method

In this section we derive Eulerian and Lagrangian statistical characteristics of the random

velocity �eld in a porous medium. We �rst describe the model used to obtain the samples of

the random velocity �eld and then analyze the properties of these random �elds in the light

of a Langevin type model.

2.1 Random �ow model

2.1.1 Space scale

To de�ne a random �ow model in a porous medium, we need to choose �rst of all the space

scale at which the velocity is studied. In hydrogeological literature, a distinction is made

between several space scales [9, 6]. We conventionally consider (1) The microscopic scale or

molecular scale where kinetics of molecules inside the pore volume is playing a role. The solid

walls of the pore space may be re�ecting boundaries for the molecular velocities. (2) The pore

scale is the scale where the velocities are averaged over the pore volume. (3) The macroscopic

(or laboratory) scale is several order of magnitude higher than the pore scale. It contains a

su�cient number of pores to de�ne the so-called �Representative Elementary Volume� (REV)

where macroscopic quantity like porosity, hydraulic conductivity, etc., can be de�ned. In a

natural formation (�eld), the value of a parameter over the REV is assumed pointwise. (4)

The local (or formation or �eld) scale is the scale of a speci�c aquifer or �eld, containing one

or several geological layers. (5) The regional scale may contain a system of aquifers or basins

and may extend horizontally over several tens or hundreds of kilometers.

We assume in this paper that the hydrogeological properties are de�ned over the REV at the

macroscopic scale and we derive a Langevin type model where these properties are assumed

pointwise to predict transport over the �eld scale.

2.1.2 Darcy's law

In many general �ow conditions, the phenomenological Darcy's law forms the basis of the

theory of �ow through porous media [6]. It is a consequence of the linearity of the equations

of slow viscous �ow which are obtained from the Navier-Stokes equations by neglecting the

inertial terms. For time-independent �ow conditions and saturated porous media, it is written

as

q(r) = �(r)u(r) = �K(r)r�(r) (1)

where q, �, u, K, and � are all macroscopic variables depending on space vector r. � is

the e�ective (or kinematic) porosity. This porosity takes into account the volumes of voids

e�ectively concerned with groundwater �ow (that is for instance, without the dead-end pores

and the adherence volume of the �uid to the grains). It is upper bounded by total porosity

which is the volume occupied by the pores divided by the volume of the bulk medium. q is

called Darcy's velocity and represents the groundwater �ow rate, that is the volume of water

crossing a unit area of porous medium per unit time; q is a measurable quantity whereas u is

the pore velocity, that is the �ow rate per unit area of �uid (which is equivalent to consider

that only �uid is present). � is the hydraulic potential (or pressure head). It is de�ned by � =
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p=�g+ z where p is �uid pressure, � volumetric mass of the �uid, g the gravitational constant

and z the height. In �, the kinematic term is always neglected due to small groundwater

velocities in common applications. Finally K, the proportionality coe�cient between Darcy's

velocity and the gradient of the hydraulic potential is called hydraulic conductivity. This

parameter (and also permeability) is recognized as a key parameter for groundwater �ow.

Several experimental techniques (of which mainly: pumping tests, sedimentary analysis, but

also seismic, geoelectrical or tracer methods) are used to intensively measure this parameter

in the laboratory or in the �eld scale. These measurements have put in evidence the (highly)

heterogeneous behaviour of K in space and have suggested the use of stochastic models.

2.1.3 Random space function

Law [10] was presumably the �rst who used the stochastic approach in porous media and

proposed, on the basis of core analysis data from a carbonate oil �eld reservoir a log-normal

probability density function (pdf) for K. Since this proposition, there is now a large body

of direct evidence to support the statement that the pdf for the hydraulic conductivity is

log-normal [11, 12, 6, 7]. Hydraulic log-conductivity Y = ln K is therefore commonly used

and assumed to be distributed according to a Gaussian distribution N(mY ; �Y ) where
mY =< Y >, and �Y is the standard deviation.

Another parameter appearing in Eq(1) and considered in some models as a random �eld is the

porosity �. However its variability is recognized as much smaller than hydraulic conductivity

in common applications. However a small amount of data is available for the stochastic

properties of this parameter. Some linear laws, obtained on a speculative basis, have been

proposed [11] to relate the porosity to log-hydraulic conductivity Y suggesting then that

porosity is normally distributed.

2.1.4 The �ow equation

For a time-independent problem with no water source/sink, the continuity equation may be

written as

rq(r) = 0 : (2)

Combining this equation with Darcy's law Eq(1), we obtain the �ow equation inside the �ow

domain D
r [K(r)r�(r)] = 0 ; r 2 D (3)

with the following boundary conditions over the outer surface S

�(r) = FD(r) ; r 2 SD ;
(4)

@�(r)

@n
= FN(r) ; r 2 SN :

Here SD and SN are parts of S where the Dirichlet and Neumann boundary conditions are

used, respectively. FD and FN are given functions over SD and SN . The solution �(r)
of the �ow equation (3) with the boundary conditions Eq(4) determines entirely the time-

independent �ow problem in a saturated porous medium because the knowledge of the hy-

draulic potential �(r) everywhere in D and over S yields the groundwater velocity by applying

Darcy's law Eq(1).
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The hydraulic conductivity K in Eq(3) is considered as a random �eld, the hydraulic potential

�(r) is therefore also a random �eld, and the velocity is a random vector �eld as well. In

practice, FD and FN are often chosen as simple deterministic functions and the boundaries are

taken su�ciently far from the region of interest to avoid local e�ects due to the boundaries

[13, 14]. Both the intensive practical measurements of the hydraulic conductivity in real

applications and the central role played by this function in the �ow equation Eq(3) are in

favour to construct a random �ow model in porous media from a random conductivity model.

Generation of the random conductivity �eld is followed by the solution of the �ow equation

(3) and by applying Darcy's law. This approach is commonly used in hydrogeology by many

authors [15].

In this paper, we will focus on the following model for Y = lnK :

1. Y is Gaussian with constant mean mY =< Y > and standard deviation �Y .

2. Y is statistically homogeneous and isotropic with an exponential auto-correlation func-

tion

CY Y (r) = hY 0(x+ r)Y 0(x)i = �2Y exp
�
�
r

IY

�
(5)

where IY is a �nite and given correlation length, and r = jrj.

2.2 Numerical simulation

The numerical calculation of several realizations of random velocity �elds and the simulation

of particle trajectories by the DSM follow four principal steps : (1) Generation of a hydraulic

conductivity �eld with a prescribed statistical structure; (2) Evaluation of the Eulerian �ow

�eld by solving Eq(3) with the boundary conditions (4); (3) Identi�cation of the particle's

instantaneous position along the path line and (4) Evaluation of the statistical moments at

�xed travel time or travel distance.

The accuracy of the solution depends on the numerical errors related to each step [15]. Step 1

is in�uenced by the choice of the generator procedure and by sampling frequency of the

random �eld; step 2 depends on the numerical method adopted in order to solve the �ow

equation (3) and also on the discretization; in step 3, the error is related to the particle

tracking procedure, while the convergence of step 4 depends on the dimension of the sample

used in the statistical computation.

In order to limit possible inaccuracy, we considered the following numerical procedure:

1. Generation of a homogeneous random hydraulic conductivity �eld K(r) in a 3D domain

with the characteristics

� Y = lnK is normal with mean < Y >= 3:4012 and standard deviation �Y = 1;

� correlation function for log-hydraulic conductivity CY Y (r) =< Y 0(x)Y 0(x+ r) >=
�2Y Exp(� r

IY
) where Y 0 = Y� < Y > and IY = 1 is an isotropic correlation length;

� the porosity �(x) = � = 0:5 is constant.

� the K-�eld is generated by the randomized spectral formula (e.g., see [4]) with

8192 modes.
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2. Solution of the groundwater �ow equation for saturated conditions and time-independent

problem

r [K(r)r�(r)] = 0 (6)

and boundary condition �y=0 � �(y) = J y, where J = �r < � > 1y is the mean

hydraulic gradient. The pore velocity u = �Kr�

�
is computed by the FORTRAN 90

code TRACE [16] which has been modi�ed in order to write down a �nite element

scheme for each component of the velocity vector so that we had no need to make

additional �nite di�erence approximations when evaluating derivatives. The hydraulic

potential �0 is arbitrarily chosen (�0 = 100 m) and the mean hydraulic gradient is �xed

at J = 0:01 1y implying a mean groundwater velocity along the y-axis and oriented

towards positive y-values. The following normalized quantities are considered

eu =
u

KGJ

�

; er = r

IY
; e� =

�0 � �(y)

IY J
: (7)

Equation (6) then becomes fr heY 0 fr e�i = 0 (8)

with boundary conditions e� = ey. We have chosen the remaining parameters of the

groundwater �ow problem as follows

KGJ

�
= 0:6 ! KG(= e<Y >) = 30; then < Y >= ln 30 = 3:4012 :

The numerical values of the geometric mean KG = 30 is a plausible value for hydraulic

conductivity (expressed in m=day for instance) of an aquifer of moderate permeability.

3. Simulation of particle trajectories from the Eulerian velocity �eld.

To construct a trajectory, we solve numerically the ordinary stochastic di�erential equa-

tion
dX(t)

dt
= u(X(t)) (9)

with the initial conditions: X(t0) = x0 and u(X(t0)) = u0. The velocity u is the

Eulerian velocity obtained from the �ow equation. For simplicity, we used the Euler

scheme

X(tn) = X(tn�1) + u(X(tn�1))�t (10)

where �t = tn � tn�1.

We de�ne three types of domains: (a) The groundwater �ow domain D de�ned in the

problem (6) with deterministic boundary conditions for y = 0 and y = L. Everywhere

else, a deterministic no �ow boundaryïs chosen, i.e. r� = 0. In our test problem,

the dimensions of this domain are [0; 50] � [0; 70] � [0; 50] corresponding to 50 times

the unit correlation length IY perpendicular to the mean velocity and 70 times this

correlation length parallel to it; (b) The �ow domain eD unperturbed by determinis-

tic boundary conditions. In hydrogeological literature [13, 14], it is well known that

beyond 3 to 4 correlation lengths (or even less for impervious boundary conditions in

3D) from the deterministic boundaries the e�ects of these deterministic boundary con-

ditions on the stochastic behaviour of pressure head (hydraulic potential) and therefore

velocity may be neglected. We have considered here 5 correlation lengths leading to a
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domain eD of dimensions : [5; 45] � [5; 65] � [5; 45]; (c) The �ow domain 
 where the

particle trajectories are initiated. We have chosen empirically a domain of dimensions

[15; 35]� [15; 55]� [15; 35]. That is a domain 
 with isotropically minimum 20 correla-

tion lengths over which a spatial mean will be su�ciently close to the ensemble mean

[17].

To reproduce the stochastic behaviour of the K-�eld, the grid size hx = hy = hz is

chosen in the �ow problem Eq(6) to be IY =4. In practice, minimum IY =3 or IY =4 is

recommended for hx, hy or hz in the hydrological literature. We have then 201� 281�
201 = 11; 352; 681 nodes in the �ow problem for each realization of the random K-�eld.

In 
, a starting point x0 is selected systematically at every node of the grid, that is, at

1; 056; 321 nodes. It is veri�ed that all the trajectories remain inside eD. A maximum

simulation time T is chosen. The time steps �t = tn � tn�1 are variable and de�ned as

�t = tn � tn�1 = Min

"
T � tn�1; 0:5

Min(hx; hy; hz)

ku(tn�1)k

#
: (11)

Simulation is stopped when tn > T .

4. Evaluation of statistical moments at �xed travel time.

We considered the following Lagrangian quantities: First of all, the Lagrangian corre-

lation function for velocity. Two quantities are evaluated, the Lagrangian correlation

function for the velocity component parallel to the mean �ow uk and the Lagrangian

correlation function for the velocity component perpendicular to the mean �ow u?.

They are de�ned by

Cukuk(t) =
D
(uk(t)� < uk >) (uk(0)� < uk >)

E
; (12)

Cu?u?(t) = h(u?(t)� < u? >) (u?(0)� < u? >)i : (13)

Then, the Lagrangian velocity structure functions: they are de�ned as follows:

< �Vi(t)�Vj(t)jX(t0) = x0;V (t0) = u0 > ; i; j = 1; 2; 3 ; (14)

where �Vi(t) = Vi(X(t; t0; x0))� Vi(t0). The quantities

�Vi(tn)�Vj(tn) i; j = 1; 2; 3 and fortn 2 [0; T ] (15)

are memorized in a table according to classes for the values of u0k and u0?. Taking

into account the property of homogeneity of the random K-�eld and thus the random

Eulerian velocity �eld, the arithmetic mean of the quantities (15) over the number of

starting points multiplied by the number of realizations of the random K-�eld is an

approximation of the conditional means

< �Vi(tn)�Vj(tn)jV (t0) = u0 >

regrouped in classes for the values of u0k and u0?.

The quantities introduced above will be analysed in section 2.4 in more details. We only

mention here that in order to evaluate these quantities, the time step is reduced in an

appropriate way each time the simulation time is overshooting the �xed times chosen

in the beginning of the simulations.
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2.3 Evaluation of Eulerian characteristics

Due to the symmetry of the �ow problem, the Eulerian velocity (u; v; w) is conveniently

decomposed into a longitudinal velocity component uk � v parallel to the mean �ow and a

perpendicular component u? =
p
u2 + w2 perpendicular to the mean �ow.

We are interested in the statistical properties of the Eulerian velocity �eld, that is mainly,

the probability density function pE(u; v; w). We decompose this pdf as follows:

pE(u; v; w) =
1

2 � u?
p
k

E(uk) p
C
E(u?juk) (16)

where p
k

E(uk) is the marginal pdf of the Eulerian longitudinal velocity component uk � v and

pCE(u?juk) is the conditional pdf of the Eulerian transverse velocity component u? under the

condition that the longitudinal component is given.

By de�nition we haveZ
+1

�1

du
Z

+1

�1

dw pE(u; v; w) = 2 �
Z 1

0

u? pE du? = p
k

E(uk) : (17)

From the numerical procedure described in section 2.2 above, we show in Fig 1 the histogram

of the marginal pdf p
k

E(uk) obtained with about 1 million samples of velocities. In Fig 2, we

show the histogram of the conditional pdf pCE(u?juk) for di�erent values of uk. Both �gures are
obtained for �Y = 1. Statistical calculations give < uk >= 0:73, �2uk = 0:33; < u? >= 0:246

and �2u? = 0:059. We notice that the pdf's are asymmetric with quite heavy tails. For

p
k

E(uk), negative uk values are possible (with very small probability) meaning counter-current

velocities. For pCE(u?juk), the shape of the pdf's highly depends on the conditional value of

uk: the higher the value of uk (in absolute value), the larger the interval of possible values for

u?.

It is well-known in the hydrogeological literature that no exact analytical expressions can

be found for the pdf of the Eulerian velocity. Numerous theoretical studies [18]�[24] suggest

approximations for the �rst and second velocity moments from Darcy's law and the �ow

equation by applying perturbation methods of di�erent order in �2Y . However these studies

cannot describe the type of velocity pdf in general cases. These limitations can be avoided

by numerical studies like in [15] where the authors thoroughly analyzed the 1st, 2nd and 3rd

moments of the velocity pdf's without giving hints about a possible pdf family that could �t

their numerical results.

We propose in this paper to �t the numerical pdf's with generalized Weibull distributions.

We assume that for a given �Y ,

pCE(u?juk) =
p2

pp13 �(p1=p2)
(u? + p4)

p1�1 exp

(
�
"
u? + p4

p3

#p2)
; (18)

p
k

E(uk) =
q2

qq13 �(q1=q2)
(uk + q4)

q1�1 exp

(
�
"
uk + q4

q3

#q2)
; (19)

where p3 and q3 > 0 ; p1, p2, q1 and q2 � 1 and p4 and q4 � 0. pCE and p
k

E are generalized

Weibull pdf's with shape parameters p1 and q1, exponents p2 and q2, scale parameters p3 and

q3 and shift parameters p4 and q4.
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It should be noted that the choice of Weibull pdf's for pCE and p
k

E is not purely arbitrary, it is

indeed a quite general pdf family including the Gaussian and the Gamma pdf's. In [15], it is

shown that for �2Y � 1 both longitudinal and transversal velocities are distributed according

to a Gaussian pdf. Moreover, if the transversal components u and w are independent normally

distributed with equal variances, we can show that u? =
p
u2 + w2 is distributed according

to the classical Weibull distribution with exponent p2 = 2 and shape parameter p1 = p2.

In pCE, the parameters p1 to p4 depend on the value of the longitudinal velocity uk. The

perpendicular velocity u? being non negative by de�nition, p4 = 0 in Eq(18).

From Fig 2, we can intuitively suggest that uk is playing the role of a scale parameter for

the pdf pCE. A sensitivity analysis applied to the values of p1, p2 and p3 after �tting of the

numerical pdf's showed that p3 is indeed the most sensitive parameter with respect to uk.

In Fig 3, we show a law representing the dependency of p3 with respect to uk obtained after

�tting of the pdf's pCE for uk = �0:2 to 2. The relation is clearly linear in uk for uk > 0.
Negative values of uk are very improbable, and we can assume the following law for the scale

parameter p3 as a function of uk
p3(uk) = � uk + � (20)

where �, � > 0 and � > � q4. In Fig 3, we �nd, for instance, � = 0:217 and � = 0:01.
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Figure 1: Histogram of the marginal pdf pE(u0k).
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2.4 Evaluation of Lagrangian characteristics

By the direct simulation method described in section 2.2, we have computed the Lagrangian

correlation function Cukuk(t) for the component parallel to the mean �ow uk and the La-

grangian correlation function Cu?u?(t) for the velocity component perpendicular to the mean

�ow u? de�ned in Eq(12) and Eq(13).

In Fig 4, the normalized correlation functions are shown versus non-dimensional time; that

is Cukuk=�
2
uk

and Cu?u?=�
2
u?

versus ut=IY for �Y = 1. The results shown on this �gure are

similar to those obtained by Saladin and Fiorotto [15] who studied thoroughly the numerical

accuracy of the DSM. From �gure 4, we can obtain an estimation of the Lagrangian correla-

tion time for the longitudinal velocity TL � 8:2 in units IY =u. It is not very sensitive to the

value of �Y as also found in [15]. This important characteristic time determines the validity

range of the approximations introduced in the random displacement model as seen in section 4.

Second quantity essential for the Langevin model developed in this paper is the velocity

structure function introduced in Eq(14).

A series of calculations were realized by accumulating the results of �Vi(tn)�Vj(tn) for T = 2,
20 time intervals, 30 classes for u0k and 35 classes for u0?. Trajectories were initiated from each

node of the grid in the domain 
, that is, at 1; 056; 321 points and a number of 40 realizations
of the K and velocity �elds were considered (generated from TRACE using parallel-processing

over 64 CPUs).

In Fig 5, the velocity structure function < �Vx(t)�Vx(t)jV(t0) = u0 > is shown versus time

for 0:144 < u0 < 0:350 where u0 is the norm of u0. The error bars appearing in this and the fol-

lowing �gures represent the 90% con�dence interval of the results obtained after averaging over
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Figure 3: Dependence of the conditional pdf pE(u0?ju0k) on u0k.

the trajectories. It is reminded here that the x-axis is perpendicular to the mean �ow. Similar

results are obtained for the function < �Vz(t)�Vz(t)jV(t0) = u0 > where z is the other axis

perpendicular to the mean �ow. The calculations show that a linear behaviour of this function

versus time can be identi�ed. This linear behaviour is appearing after a quadratic behaviour

versus time. In Fig 6, the velocity structure function < �Vy(t)�Vy(t)jV(t0) = u0 > is also

shown versus time, for the same u0 range. The y-axis is here parallel to the mean �ow. Also in

this �gure a linear behaviour of the structure function can be seen after a quadratic behaviour

and for the same time period. The numerical results show that the values of the velocity struc-

ture functions < �Vx(t)�Vy(t)jV(t0) = u0 > and < �Vx(t)�Vz(t)jV(t0) = u0 > are much

smaller and no clear linear behaviour may be identi�ed. By symmetry, similar results as

< �Vx(t)�Vy(t)jV(t0) = u0 > are obtained for < �Vy(t)�Vz(t)jV(t0) = u0 >. In Fig. 7 and

8, the velocity structure functions < �Vx(t)�Vx(t)jV(t0) = u0 >, < �Vy(t)�Vy(t)jV(t0) =
u0 > and < �Vx(t)�Vy(t)jV(t0) = u0 > are also shown versus time for a higher intensity of

u0; in this example 1:427 < u0 < 1:629.

From these results, we see that a linear behaviour of the velocity structure function may be

identi�ed. By considering that the groundwater velocity along the trajectory at early times

is close to the value at the starting point u0, we may deduce that between a distance along

the path of about 40 to 70% of the correlation length IY , the linear regime is e�ective. This

statement was veri�ed for many di�erent values of the starting velocity, values of �Y and IY .

For every class of velocity u0, the tensor b with components

bij = limt!"

1

t
< �Vi(t)�Vj(t)jX(t0) = x0;V(t0) = u0 > (21)

can be computed from the linear law observed in the Lagrangian velocity structure function.
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We computed the quantities bij from the di�erent Lagrangian velocity structure functions

versus time by applying the formula (21) for a time " in the range (0:4 IY
jju0jj

; 0:7 IY
jju0jj

). The

dependency of the components bij with respect to the normalized quantities de�ned in Eq(7)

can be written as

bij � bij(�Y ; eu0k; eu0?) : (22)

We show as an example in �gures 9 to 12 the behaviour of bij (here bxx and byy) with respect to

u0k and u0? for given values of u0? and u0k, respectively and for �Y = 1. The curves have been
obtained by a bicubic interpolation for the variables u0k and u0?. By comparing Eulerian pdf's

p
k

E(uk) and p
C
E(u?juk) obtained in section 2.3, we notice that in the zone of interest (where

the density is non-zero; that is typically for u0k 2 [0:3; 1:2] and for u0? 2 [0:05; 0:45] in this

example) the values of bxx and byy are smoothly varying. A �rst approximate model is to

assume a constant value for these quantities. This is the model we consider in this paper.

Finally, in Fig. 13, we show as an example bxx w.r.t. u0k for �Y = 0:5. We see clearly that

the dependency of bij w.r.t. �Y is much stronger than the dependency w.r.t. u0k.
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components.
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3 Construction of the Langevin type model

3.1 Introduction

The Langevin type models assume that the trajectory (X(t);V(t)) of a particle is governed

by a stochastic di�erential equation of Ito type

dXi(t) = Vi dt; (23)

dVi(t) = ai(X(t);V(t); t) dt+ �ij(X(t);V(t); t) dBj(t); i = 1; 2; 3:

The summation convention over the repeated indices is used. Here ai are the drift, and �ij
the di�usion terms, and Bj are standard independent Wiener processes.

This kind of models is widely used in atmospheric turbulence simulations (e.g., see [2], [3],

[5]). The motivation comes from the fact that the characteristic time of the acceleration

correlations is much less than that for the velocity correlations which is the case for the

turbulent �ow.

In porous medium when dealing with laminar �ows we cannot treat the velocity as turbulent.

However the acceleration direction is highly varying because of the pore structure inhomo-

geneity. Therefore, the acceleration and velocity �elds can be considered as random �ows,

and the Langevin type equations can be used to describe the Lagrangian dynamics as in

Eq(24). The main di�erence, compared to the turbulence, is that the �ow in porous media is

extremely anisotropic, which results in much more complicated form of the drift and di�usion

terms. In particular, here we do not have this nice and simple di�usion term in the form of

a constant C0 coming from the Kolmogorov theory (e.g., see [1]).
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Compared to RDM models, the Langevin type models involve more information about the

statistics of velocity, e.g., it naturally uses the information about the pdf of the Eulerian

velocity �eld. Indeed, in case the velocity is incompressible, it is known that the Eulerian

pdf pE is related to the coe�cients of the Langevin equation Eq(24) through the well-mixed

condition [2]:

@pE

@t
+ ui

@pE

@xi
+

@

@ui
(aipE) =

1

2

@2(bij pE)

@ui@uj
(24)

where bij = �ik�jk.

This complicates the model, but wins very important gains: the model is able to describe

the transport in details for scales inside or compared to the Lagrangian time scale where the

dispersion is not linear, so generally we deal here with the super-di�usion. For instance, it is

possible to evaluate the concentration �eld not far from the source. Thus, these models are

free of the Fickian hypothesis.

Derivation of the drift and di�usion terms is not simple. So far, even in the well studied at-

mospheric turbulence, there is no theoretical approach which derives uniquely the expressions

for these terms. Therefore, experimental and heuristical information is used to determine

the model. In our case we evaluated the di�usion term from numerical solution of the �ow

equations reported in the previous section. In the next section, we derive the drift term from

the well-mixed condition Eq(24).

3.2 Langevin model for isotropic porous medium

We derive our Langevin model for a porous medium in which the �ow conditions and properties

of the random hydraulic conductivity �eld are similar to those described in section 2, that is,

the mean horizontal �ow is uniform over the domain D, and it is assumed that the hydraulic

conductivity �eld is log-normally distributed, with isotropic exponential correlation function.

To derive a unique Langevin model with these types of �ow conditions we make the following

general assumptions :

Let us construct the drift coe�cients a1 = au, a2 = av, and a3 = aw in the following general

form

au =
1

2pE

@

@u
(b2upE) +

u�

pE
; av =

1

2pE

@

@v
(b2vpE) +

 

pE
; aw =

1

2pE

@

@w
(b2wpE) +

w�

pE
;

where the functions � = �(u?; v) and  =  (u?; v) should satisfy the equation (actually, the

well-mixed condition):

@(u�)

@u
+
@ 

@v
+
@(w�)

@w
= 0 :

The crucial point of the model is now the following: we introduce the characteristic time

scale of the transverse velocity �p as follows: �p = �IY
�U

where �U is the mean longitudinal

velocity ( �U =< uk >), IY is the correlation length of the log hydraulic conductivity (in our

case IY = 1, �U = 0:73), and � is a dimensionless constant.
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This is the simplest choice motivated by dimensional arguments. Note that the dimension of

�=pE is [time�1], so we simply suggest that

�

pE
= �

1

�p
: (25)

Hence we have � = �GpE where we de�ne the constant

G = �U=(�IY ): (26)

We can then rewrite the well-mixed condition in the form:

@�

@u?

u2 + w2

u?
+ 2�+

@ 

@v
= 0;

i.e.,

@ 

@v
= GpE[2 + u?

@ ln pE
@u?

]:

From this, we �nd  (u?; v) by choosing  (u?;1) = 0:

 (u?; v) = �
1Z
v

GpE(u?; v
0)[2 + u?

@ ln pE
@u?

] dv0: (27)

Thus the coe�cients au; av; aw are de�ned, and our model includes one free parameter �.

Let us now describe the numerical implementation. We have to solve the system:

dX = u dt; dY = v dt; dZ = w dt; (28)

du = au dt+ bu dBu(t);

dv = av dt + bv dBv(t); (29)

dw = aw dt+ bw dBw(t):

Note that we can write

au = u g(u?; v);

av = h(u?; v); (30)

aw = w g(u?; v)

where
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g(u?; v) = �G+
1

2u?

@b2u
@u?

+
b2u
2u?

@ ln pE
@u?

; (31)

h(u?; v) =
1

2

@b2v
@v

+
1

2
b2v
@ ln pE
@v

�
1

pE

Z 1

v
GpE(u?; v

0)

"
2 + u?

@ ln pE(u?; v
0)

@u?

#
dv0 (32)

and where the di�usion coe�cients b2u, b
2
v and b

2
w are known from section 2.4.

3.3 Expressions of the drift terms

We have seen in section 2.3 that the pdf's of the Eulerian velocity may be �tted by the

following Weibull densities :

pCE(u?juk) =
p2

p3(uk)p1 �(p1=p2)
up1�1? exp

(
�
"

u?

p3(uk)

#p2)
; (33)

p
k

E(uk) =
q2

qq13 �(q1=q2)
(uk + q4)

q1�1 exp

(
�
"
uk + q4

q3

#q2)
: (34)

We have also seen that the dependence of pCE on uk may be restricted to the scale parameter

p3 only, which depends linearly on uk (see the relation (20)). Finally, from the Lagrangian

characteristics studied in section 2.4, we may model, as a �rst approximation, the di�usion

coe�cients by the following simple laws:

b2u = b1 + c1 u? ; b2v = b2 + c2 u? ; b2w = b2u (35)

where b1, b2, c1 and c2 are constants.

From Eq(30) and (32) and using the expressions (33) and (34) for pE and (35) for b2v, we

obtain for the longitudinal drift term ak

ak =
1

2
b2k

(
1

uk + q4

"
q1 � 1� q2

 
uk + q4

q3

!q2#

+
1

uk +
�

�

"
p2

 
u?

� uk + �

!p2
� p1

#)

�
G

pE(u?; uk)

1Z
uk

pE(u?; u
0
k) [ p1 � p2

0@ u?

�u0
k
+ �

1Ap2

] du0k : (36)

Similarly, using again the expressions (33) and (34) for pE and (35) for b2u and b2w, we obtain

for the transverse drift components from (30) and (31)
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au = u g(u?; uk); aw = w g(u?; uk)

where the friction function g is given by

g(u?; uk) = �G +
1

2

(
c1

u?
+
b2?
u2?

"
p1 � 2� p2

 
u?

� uk + �

!p2#)
: (37)

In the expressions (36) and (37) found above for the longitudinal drift term and the transverse

friction function, we may �nd the following physical interpretations :

1. When uk decreases to small values (close to �q4), ak becomes large and positive whereas

when uk � q4, ak becomes large in absolute value and negative. This behaviour of the

acceleration ak with respect to uk at the boundaries is expected to avoid divergence of the

longitudinal velocity values towards large negative or positive values in the simulation

of the Langevin model.

2. We see that g is large and positive for u? ! 0, whereas g is large in absolute value

and negative when u? ! 1 and uk ! �q4. This behaviour of g with respect to u? at

the boundaries is expected to avoid divergence of the transverse velocity values towards

zero or large positive values.

To make the simulations e�cient we make the tabulation of the functions g(u?; uk) and

h(u?; uk) in the domain K:

K = [ (u?; uk) : u
kmin � uk � ukmax; 0 � u? � Cu uk];

where Cu is a constant, and u
kmin and ukmax are the limits chosen so that the simulation

gives stable results.

4 Numerical results and comparison against the DSM

It is important to verify that the new Langevin model developed in this paper is able to

reproduce the behaviour of some major characteristics of the transport of contaminants in

porous media. We have therefore �tted the parameters of the Langevin model introduced in

section 3.2 to the dispersion curves versus time. Figures 14 and 15 present the trajectories

simulated by DSM and Langevin model, respectively. The Langevin model derived from

the equations (29), (30) to (32) mimic the real Lagrangian trajectories given by the Direct

Simulation Method. Even if we see clearly that the structure of trajectories is quite di�erent,

the fact that the well-mixed condition is satis�ed guarantees the correct consistency of the

simulation results with the Eulerian pdf which in turn assures that the mean concentrations

should be close. By �xing the free parameter � appearing in the de�nition of the constant G

in (26)), it is possible to �t the Langevin model to some fundamental transport characteristics

as transverse and longitudinal dispersion versus time. By using the results of section 2.4, we

identi�ed the coe�cients of the simple linear laws (35) modelling, as a �rst approximation,

the di�usion coe�cients b2
k
and b2?.
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In the cases mentioned above, we have found that the choice Cu = 5:, u
kmin = 0:05, and

ukmax = 5: leads to stable calculations.

The model with tabulated drift coe�cients (36) and (37) is quite fast, and with � = 4: it
gives stable results well agreed with the time behaviour of the longitudinal and transversal

dispersions. Figures 16 and 17 show indeed the result of the comparison for small elapsed time

for t up to 0:1TL, whereas �gures 18 and 19 show the results for a time t up to 1TL. Even if

the agreement is not perfect (as for instance in the case of the transverse dispersion at early

times), we see that for a �rst approximation made on the values of the di�usion coe�cients

b2k and b
2
?, the correct behaviour at early and late times is obtained.

5 Conclusions

A stochastic simulation model based on Langevin type stochastic di�erential equations, widely

used in applications such as contaminant transport of aerosols in the atmosphere, is general-

ized to the contaminant transport in porous media.

The crucial idea was in the assumption that even in the case of laminar �ow in porous media,

due to the extremely high heterogeneity, there exists an interval where the acceleration vector

behaves like a random di�usion process governed by a stochastic di�erential equation. The

main e�ort of this paper was in the construction of such a stochastic di�erential equation

consistent with the statistical structure of the Eulerian velocity �eld. However the extraction

of such a statistical information via DSMmethod applied to the Darcy equation which includes

a random hydraulic conductivity was also a hard task.

From the geostatistical models collected in the literature, and by applying a numerical ground-

water �ow model it has been possible to determine the parameters of the Langevin model in

the porous medium. It was important to identify the Eulerian and Lagrangian characteristics

of velocity and mainly to �nd out whether the Lagrangian structure function was presenting a

linear behaviour at early times in order to de�ne the drift and di�usion terms of the Langevin

model for velocity.

Important part of the work was to compare the new stochastic model to the direct simulation

method to see if the Langevin model is able to mimic the transport characteristics of the

contaminant transport. We have shown, from a very �rst approximation of the di�usion

coe�cients, that this was also possible.

Due to the computational e�ciency of the Langevin model in comparison to the direct simu-

lation method and due to its potential generalization to many transport regimes (Fickian or

not, for instance), it is believed that these �rst results are very promising.

Further work should include the generalization to several �ow conditions (in an anisotropic

log hydraulic conductivity structure, for instance) and should be compared to the common

random displacement methods (based on the Fickian hypothesis) used in the hydrogeological

literature.

It should be stressed that the advantage of the new stochastic model developed is not only in its

numerical e�ciency but also in the potential possibility to assimilate the detailed information

about the velocity statistics.
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