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Abstract. In this paper we prove a global existence result for pair diffusion models in two di-
mensions. Such models describe the transport of charged particles in semiconductor heterostructures.
The underlying model equations are continuity equations for mobile and immobile species coupled
with a nonlinear Poisson equation. The continuity equations for the mobile species are nonlinear
parabolic PDEs involving drift, diffusion and reaction terms, the corresponding equations for the
immobile species are ODEs containing reaction terms only. Forced by applications to semiconduc-
tor technology these equations have to be considered with non-smooth data and kinetic coefficients
additionally depending on the state variables.

Our proof is based on regularizations, on a priori estimates which are obtained by energy estimates
and Moser iteration as well as on existence results for the regularized problems. These are obtained
by applying the Banach Fixed Point Theorem for the equations of the immobile species, and the
Schauder Fixed Point Theorem for the equations of the mobile species.

1. The model. Pair diffusion models describe the transport of charged particles
(dopant atoms, point defects, dopant-defect pairs) in semiconductors [4, 7|. In [12]
we specified a typical mathematical model of this kind which we shall study in this
paper, too. We consider m species X;. The first [ < m species are mobile, the other
ones are immobile. We denote by w;, po;, bi = wu;/po; the density, some reference
density, the chemical activity of the i-th species, and by 1 some additional potential.
The initial boundary value problem which we are interested in reads as follows:

Oui

. Q N
BN +V i+ Z (i = Bi) Ryg = 0 on (0,00) x €,
(a,B)ERS
Vg — Z (aifﬁi)Rgﬁ = 0 on(0,00)xI',i=1,...,0;
9 (a,)ERT
Usg Q - .
8t+ Z (i =Bi) Ry = 0 on(0,00)xQ, i=1+1,...,m;
(a,B)ERS
~V o (eVY) +e( ) = ) Qi(w)ui = [ on(0,00) x Q,
i=1
v-(eVy) = 0 on(0,00)xT;
u;(0) = U; onQ,i=1,...,m.

Here I' denotes the boundary of the domain  C R?, and v is the outer unit normal.
The transport of the mobile species is governed by the drift-diffusion flux densities

Ji = =Di(-,0,9) poi (Vb; + Qi() biVY) , i =1,...,1,

where (); denotes the charge number of the i-th species which depends on %, and D;
is the diffusivity which depends on the state variables b = (by,...,b,,) and ¥. All
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m continuity equations contain volume source terms generated by mass action type
reactions of the form

OélX1+...+Oéme:‘ﬁ1X1+...+ﬁme, (Oé,ﬁ)GRQ,

where a, 3 € Z" are the vectors of stoichiometric coefficients, and RS describes the
set of all reactions under consideration. The corresponding reaction rates Rgﬁ are
given by

m

m P
Ry = kSs(2,b1, .. by, ) [Hag” - Hafi] L a; = biel W) Pi(y) = / Qi(s)ds.
=1 2 0

i1

The continuity equations for the mobile species include additional boundary source
terms generated by boundary reactions with reaction rates R 5 given by

l

l
Rgﬁ :kgﬁ(x’bla"-abla¢) [Hagl HazﬁZ] ’ (Oé,ﬂ) GRF'
=1 2

i1

Finally, the nonlinear Poisson equation contains various source terms, namely the
fixed charge density f, the charge density e depending on v, and the charge density
it Qqu; of all particles, e is the dielectric permittivity.

In heterostructures which we want to include in our considerations the reference
densities pg; (and other quantities such as D;, kgﬁ, kgﬁ, g, and e) depend on z, and
they may jump when crossing interfaces between different materials. The densities u;
may jump, too, but the chemical activities b; and the potential 1) remain sufficiently
smooth (more precisely, by (t,-),...,b(t,-), ¥(t,-) belong to H'(Q)). In homogeneous
structures pg; = const > 0 holds. Then for the mobile species u;(t,-) € H'(£) follows,
and the flux densities can be rewritten as

ji=—D; (Vu; + Q;(¥)u;Vp) , i=1,...,1.

If we know that the chemical activities remain strongly positive, b; > const > 0,
then we can reformulate the model equations by using the electrochemical potentials
¢; = Ina; = Inb; + P;(¢)). For the mobile species (;(t,-) € H'(2) holds, and the
kinetic relations are obtained as

jz:_DlquCla Z‘Zl,...,l,

Rgﬁ _ kgﬁ [eZ?;l oiCi 622’;1 Bii ’ Rgﬁ — kgﬁ [62221 il eZi:l BiCi] )

If each species has a constant charge number,

Ql(w) ZQi:CODSt7 Pl(w)ZQZwa Z‘Zlv"'m7

then we arrive at a model which we have studied in [8, 9, 10, 11]. There we assumed
that all species are mobile, | = m, that all diffusivities do not depend on b, and
that the initial values U; are strongly positive. The equations were formulated using
the electrochemical potentials as explained above. We proved the global existence
and uniqueness of a solution and studied its asymptotic behaviour. The methods
developed in the present paper allow us to handle this class of models also in the case
that [ < m, that D1,..., D; may depend on b, and that only U; > 0 is assumed.
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For the pair diffusion models in [4, 7, 12] the charge numbers and their anti-
derivatives are given by

ki
Zk:l K
SO Kope— it

ki o
e i Kipe Y
= % .

(1.1) Qi(¥) Pi(¢) =In

where K, = const > 0, ¢;5 = const. The most important property of the functions
Q; is that Q}(v) < 0. This property as well as the special structure of the kinetic
relations and natural assumptions on the kinetic coefficients ensure that the evolution
problem (see (P) later on) as well as needed regularizations of this problem (see (Py),
(Par) later on) have a convex Lyapunov function [12, 15].

It is the aim of the present paper to show that the initial boundary value problem
considered here has a global solution in a sense which is precisely defined in Section 2.
There also all needed assumptions are given. Section 3 contains the proof of the
existence result and related assertions.

Global existence results for simplified versions of the model (for homogeneous two-
dimensional structures with smooth boundary, with a special choice of the reactions,
and with kinetic coefficients depending only on ) were obtained in [20] (all species
are mobile, [ = m) and in [19] (some species can be immobile, [ < m). In [1] one
may find a local existence result for the same simplified model, but in arbitrary space
dimension. A pair diffusion model for uncharged species (then the Poisson equation
is dropped) and for homogeneous structures is investigated in [14]. There the case
[ < m is treated by passing to the limit D; — 0, ¢ =1+ 1,...,m. Several different
asymptotic limits for variants of such a model are discussed in [16].

2. Notation, assumptions and main result.

2.1. Notation. The notation of function spaces corresponds to that in [17]. By
zr, Ry, LR, Hi we denote the cones of non-negative elements. If v € R™ then u > 0
(u > 0) means u; > 0Vi (u; > 0Vi). For the scalar product in R™ we use a centered
dot. If u, v € R™ then uv = {w;v;}i=1,. » and u/v is to be understood analogously.
Finally, if u € R” and « € Z'} then u® means the product [} ; uf*. In our estimates
positive constants, which depend at most on the data of our problem, are denoted
by c. Some auxiliary results which are relevant for the paper are collected in the
appendix.

2.2. Assumptions. Let us summarize all needed assumptions which we suppose
to be fulfilled up to the end of the paper:

Q) ¢ R? is a bounded Lipschitzian domain, T' = 99,

2.1
(21) m,l €N, 1<1<m, UeLPQR™), feL*N);
fori=1,...,m :
Qi € C'(R), |Qi(p)| < ¢, Qi(¥) <0 P-(w)z/wQ-(S)ds
(22) 2 ) ) = Ly 1 = 9 (3 0 7 )

pi(z,9) = poi(x) e FW  zeQ, Yy eR
where pg; € L>®(Q), essinf,cq poi(z) > € > 0;




(2.3)

(2.4)
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e € L>®(Q), essinfeqe(x) >0,
e: Q2 x R — R satisfies the Carathéodory conditions,
e(x,-) is locally Lipschitz continuous uniformly w.r.t. x,

le(z,9)] < ce! faa. zeQ, Vi € R with some ¢ > 0,
e(z,v) —e(x,9) > eo(x) (¥ — ¥) faa. x € Q, Vb, € R with ¢ > o

where eg € L7(Q), |leg|lzr > 0;

RECZT X ZT, mg=m,

R ¢ {(04,5) €LY XL a; =3 =0, i:l—i—l,...,m} ,mr =1,
for 5 =Q, T, (o, ) € R* :

RZs(x,b,0) = kig(x,0,9) (e —a’) , 2 €%, beR}®, Yy €R
where a; = biepi(”’)7 i=1,...,myx,

k:gﬁz Y x R} x R — R, satisfies the Carathéodory conditions,
k:gﬁ(x, -,+) is locally Lipschitz continuous uniformly w.r.t. x,

for all R > 0 there exists cg > 0 such that
kig(z,b,) < cpfaa. z€X, Vb eRY®, Vo € [-R, R];

m m

Y - Y Bi=0 VY(a,p) R,

there exists ¢ > 0 such that for a € R :

, max {(a* —a”)(Bx —ay)} <c Zai +c¢ Yo, p) € RY,
T k=1

!
max {(a® = a”)(Br—an)} <c D ar+c V(o p) eR";
k=1

fori=1,...,1:

D;: Q) x R x R — R satisfies the Carathéodory conditions,
Di(x,b,9) > co6 >0faa z€Q, VbR, VY € R,

for all R > 0 there exists cg > 0 such that

Di(x,b,9) < cr faa. v €Q, Vbe R}, VY € [-R,R|;
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fori=10+1,...,m
there is a reaction of the form

I
(2.7) § RS, 5 (@.0,0) = kG g, (2:5,0) [H - a?]

k=1
where for all R > 0 there exists cg > 0 such that

kQ 5 (2,b,0) > cp faa zeQ, Vb eRT, Vi € [-R, R].

LIOLIO)

2.3. Formulation of the problem. We use the function spaces
Y =L*(QR™), X={beY:b, e H(Q), i=1,...,1}
and define operators B:Y — Y and
AR X NLE(QR™)] x [H(Q)NL®(Q)] — X*, EB:H'(Q) xY — H'(Q)*
by the relations

(Bb,g)y :/ Zp()ibigidm, EEY,
Q=
l
(A(b, ), B)x = /Q S Di(e, by )poi (Vs + b:Qu(¥)VY) - Vbidz, e X,
=1

(R(b, ), b) x :/Q > RI(b1 b, ) Y (B — i) bida
=1

(a,)ERS
l
+/ > RLCobu b)Y (B —ai)bidD, be X,
T (a,p)err i=1
(E(,u), %) :/Q {evw VY + el Zuzczz )P - fw} dv, ¥ € H'(Q).

The precise formulation of the initial boundary value problem considered in Section 1
reads as follows:

u'(t) + A(b(t), ¥(t)) = R(b(t),¥(1)) ,
E@t),u(t)) =0, u(t) = Bb(t) faa. t >0, u(0) = U,
(Ry, X*) N L2

1
€ H, loc

loc

(R—H ) be L (R-HX)HLOO

loc

(Ry, L(Q).

(R-H Lf(Qa Rm)) )

loc

rl?[} € L]OC(R+’ HI(Q)) N Ly,

loc

Remark 2.1. Let (u,b,1) be a solution of (P). Lemma 4.1 ii), iii) ensure that u,
b e C(R,4,Y). Furthermore one easily obtains that u, b € C(Ry, (L*(Q,R™), w*)),
and ¢ € C(R,, H'(Q)), see Lemma 3.1, too. These properties imply that the relations

E((t),u(t)) = 0 in H ()",
u(t) = po b(t) in L>(2,R™), wu(t), b(t) > 0 a.e. on
are fulfilled for all ¢ € R.

(2.8)
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2.4. Main result. Now we formulate the main result of the paper.

THEOREM 2.2. There ezists a solution of (P).

Remark 2.3. In [12] we found some further results concerning properties of so-
lutions of (P). Uniqueness was obtained using some restrictive assumptions on the
diffusivities (see [12, Lemma 7.2]). Global estimates as well as asymptotic properties
of solutions were derived, too (see [12, Theorems 4.1, 6.1]). Here additional assump-
tions on the underlying reaction system were needed.

3. Proofs.

3.1. The nonlinear Poisson equation. We start with some results concerning
the Poisson equation which we need in the sequel.

LEMMA 3.1. For any u € Y there exists a unique solution p € H* () of the
equation E(¢,ut) = 0. Moreover, there are an exponent q > 2, a positive constant ¢
and a monotonously increasing function d: Ry — R such that

(3.1) | —9Y||m <cllu—1aly YuuweY, E@,u")=E,at)=0,

(3.2) [[¢llz~ <¢ {1 + 3 g nwd | +d(|!1/1HH1)} VueY, E@,ut)=0,

=1

(3.3) llvllwre <c {1 + 3 Muill 2o/ oen + d<||w||H1>} VueY, E(y,u") =0,

=1
(3:4) [¥lm <c(l+lully) YueY, E(,u’)=0.

Finally, let S = [0,T], T > 0. Then for every u € L?(S,Y) there exists a unique
W € L*(S, HY(2)) such that

E@(t),u”(t)) =0 faa. teS.

Ifue C(S,Y) theny € C(S, H(Q)) follows and the last equation holds for allt € S.

Proof. For the first existence result and the estimates (3.1), (3.2) we refer to
[15, Lemma 1]. The estimate (3.3) is a consequence of Groger’s regularity result
for elliptic equations [13, Theorem 1] and of Trudinger’s imbedding theorem [23].
Moreover, let ¢y be the (unique) solution of E(t,0) = 0. According to (3.1) we
have ||¢) — Yol < cljully if w € Y and E(¢,u™) = 0. Thus (3.4) follows. The last
assertions result from the pointwise existence result and (3.1). O

3.2. First regularized problem (Py). In order to prove Theorem 2.2 we shall
consider two regularized problems which are defined on an arbitrary given interval
S = 10,T). First we introduce a problem (Py) as follows. Let N € R, N > 0, be
given and let py: R™*! — [0, 1] be a Lipschitz continuous function with

0 if |yleo >N,

pN(y) = s |y|oo :max{|y1|a"'7|ym+1|}-
LA [yl < N/2

We define the functions r*: ¥ x R xR —=R,i=1,...,myg, X =Q, T, by

rd(w,b,0) = pn(b,0) Y Rig(w,b,9) (8 — ),

(o, B)ERS
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i (@, by, b ) = o by, b0, 0,0) Y REs(a, b, b ) (B — i)

(a, B)ERT

These functions satisfy the Carathéodory conditions, and the functions 7 (z, -, -) are

uniformly Lipschitz continuous since Rig(az, -,+) are uniformly locally Lipschitz con-
tinuous and py is a Lipschitz continuous function with compact support. Further
important properties of these functions are

(3.5) |rP(z,b,9)| <e(N) faa. zeX, V(by) eRT® xR, i=1,...,ms,

(3.6) ir?(m‘, b,v) (Inb; + Pi(¢)) <0 faa xzeX, V(by) c R xR, b>0.

i=1

We define the operator Ry: X, x H*(2) — X* by

(R (b, EX—/Z (-,b1s- . by ) by da
+/ng('7bl7"'7bl7w)gidr7 BEX
o1

Now our first regularized problem is formulated as follows:

u'(t) + A(b(t),9(t)) = Ry (b(t), (1)) ,
E((t),u(t)) =0, u(t) = Bb(t) faa. teS, u(0)=U,
uwe HY (S, X*)NL*(S,Y), be L*(S,X) N L>(S, LY (Q,R™)),
Y e L2(S,H'(Q)) N L®(S, L=(Q)).

3.3. Energy estimates for solutions of (Py). We summarize some results
which can be obtained as in [12, 15]. Let F, F5 : Y — R be given by

(3.7) E(u):/g{ V2 + g(-, +Zu, (1) — i(¢)¢)} dz, ey,

where g(-,7) = fo z)dz and ¢ € H'(Q) N L% () is the unique solution
of the Poisson equatlon E(v, ) O

(3.8) Fo(u) :/Qz:{u [m“—f - 1} +p0i} do, ueYy,

Poi

Fi(u) = 400, Fy(u) =400, ue Y \Y,.
Finally, we define the functionals
(3.9) Fr=(Filx) : X*—>R, k=12, F=F +F,: X* > R.

The value F'(u) represents the free energy of the state u € X*.
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LEMMA 3.2. The functional F = Fy + Fy : X* — R is proper, convex and lower
semi-continuous. Forw € Yy it can be evaluated according to (3.7), (3.8).
For the proof see [12, Lemma 3.2]. Next, we introduce the functional

D:{ue LT(QR™): a; € HY(Q), a; = ui/pi(¥), i=1,...,1, E(p,u) =0} - R
by the formula

l
(3.10) D)= cao | S )|VVail da

with ¢g¢ from assumption (2.6). This functional is a non-negative lower estimate for
the dissipation rate of problem (Py) (and of problem (P), too) where the contribu-
tions arising from the reactions have been omitted in view of (3.6). Again using the
properties (3.6) and following the ideas in [15, Section 5]) and [12] (see also the proof
of Lemma 3.15) we obtain

LEMMA 3.3. Along any solution (u,b,) of (Pn) the free energy F(u) remains
bounded from above and decreases monotonously, more precisely

to
F(u(ts)) + D(u(t))dt < F(u(t1)) < F{U), 0<t;<t;<T
ty

holds. Moreover, there exist constants c, c3.11 > 0 depending only on the data but not
on N and T such that

lus Inwil| oo (s, 1)) < ¢y ullpe(s,Lr@rmy) < c,
(3.11) ; ( (22)) ( ( )
1VllLe(s,m1 ) S ¢, NYllnes,peo@) s 1¥le(s,Lem) < et

for any solution of (Pn).
Remark 3.4. Note that the last two estimates of Lemma 3.3 together with the
properties (2.4) and (2.6) ensure the existence of constants ¢, €, ¢ > 0 such that

kig(hbi, o bg, ) <cae. in Sx X, (a,8) €ER”, S=0Q, T,
E<2k] 5. (b)) e ae in S xQ, i=14+1,...,m,
e < Di(-,b,¥)pp; < cae. in SxQ,i=1,...,1,

for any solution (u, b, ) of (Py).

3.4. Further a priori estimates for solutions of (Py). The constants in the
estimates of this subsection will depend on T'. Therefore it is not possible to use these
results to obtain global (w.r.t. time) bounds for solutions of (P). Such global bounds
are derived in [12] by a modified method.

LEMMA 3.5. There is a constant c3.12 > 0 not depending on N such that

(3.12) b (6|12 < c312 VEES, i=1,...,m,

for any solution (u,b,) of (Pn).
Proof. Let (u,b,1) be a solution of (Py).
1. Choosing ¢ as in Lemma 3.1 we obtain by Lemma 3.1 and Lemma 3.3 that

(3.13) [46(8) e < c <1 +y ||bi(t)\|L2q/<z+q>> faa tes.
=1
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2. We take into account the assumptions (2.5) and (2.7) concerning the order of the
source terms of the reactions and the presence of reactions with quadratic sink terms
for the immobile species, respectively. Since [|1)|| (s, () < €311, £ = Q,T, and
lon (b, )| < 1 we find that

/ ir?(-,b,w) b; dx
Q=1

m l l
g/pN(b,¢) Z {c (b?+b?bk+bibi+bi+l)€b2} dxécZHbiHingc,
2 k=l+1 \ i=1 i=1

l l
/ D i (abry b)) bidD < e |Ibil|7e ) + c
D=1 i=1

3. Testing the evolution equation in (Py) with 2b, and using the estimates from step 2
as well as (4.1), (4.3) and Young’s inequality we obtain

m

> (eollbi®)l132 — e Uil32)

i=1

t 1
< [ 3 {2elllin + bl il + s + ey + 1)} ds
=1

t 1
< /O D {—ellballzr +2Ubsll o [ ¢llwraball e + 1Ibill 72 + 1)} ds - VEe€ S
=1

where r = 2¢/(q — 2). Using the estimate ||bx||p2q/c24a) < kuH(LTfQ)/TkuHi/J as well

as Lemma 3.3 and (3.13), (4.3) we calculate
_ 2/r 2/r 2(r—=1)/r
ellball o 19wl a2 < e]|ball 2 (1 + 3 bl ) (LY S
k=1

m
< ellbillF +ellbillz2 Y Ibelz +ec.
k=1

Therefore we can continue the first estimate in step 3 as

m t m 1
Sl < e [ S S Idlltds e vies.
k=1

k=11i=1

Let 7, 1 <i <, be fixed. By Lemma 3.3 and (3.10) we find that
IVVaillLzs,r2)y < e, |uillpe(s,zry < ¢, [[Yllpe(spe) < c

and ||/@;||2(s,m51) < ¢ ||\/@ill Lo (s,22) < ¢. Thus interpolation yields [|\/a; || ra(s,14) <
c and [|b;]|z2(s,r2) < c. A special form of Gronwall’s lemma (cf. [24, p. 14,15]) leads
to the desired result. d

Again, let ¢ be chosen as in Lemma 3.1. Since 2¢/(2 + ¢q) < 2 we obtain from
(3.12), (3.13) the estimate [|1)[| oo (5,w1.0) < ¢q. We define

(3.14) K= ch + 1 where r = 2¢/(q — 2), ¢ as in Lemma 3.1.



10 A. GLITZKY AND R. HUNLICH

LEMMA 3.6. There is a constant cs 15 > 1 not depending on N such that
(315) ”bi(t)HL4 <c315 VteS,i=1,....,m,

for any solution (u,b,v) of (Pn).
Proof. Let (u,b,1) be a solution of (Py). We use the test function 4(b3,...,b3,).
Arguing similar as in step 2 of the proof of Lemma 3.5 we find that

/Z b)) b2 dx
m l l
< [ ow0,0) 3 {30 (0 08+ 0+ 1082+ 07) - @ [ < 3 Il
Q

k=l+1 i=1 i=1

l l
/er(-,bl,...,bl,w 2AT < e |billfaqr + -
=1

i=1

Therefore we obtain for all t € S

> (collbs()lIzs = ellUilla)
=1

t 1
< / S {2622 + ¢ (196l V@) 0 10212 + 10:05s + lbill ey +1) } s
=1

We apply the trace inequality (4.1), Gagliardo—Nirenberg’s inequality (4.3), (3.14)
and Young’s inequality,

1/r 2—1/r
eOZub HL4</Z = 1021 + el 2 1B

3/2 1/2 3/2
02| 16211377 + 1021135216211 + )}ds+c

t 1
c/ ST (I8, + 2140 + 612, +1) ds+¢ Ve S,
0=

and the assertion follows from Lemma 3.5. O
THEOREM 3.7. There exists a constant cz.16 > 0 not depending on N such that

b; ()| L < cs. vteS, i1=1,....,m,
(3.16) 16:()l 2 3.16

163l Loe (8,000 (r)) < €316, i=1,...,1,

for any solution (u,b,v) of (Pn).

Proof. The proof will be done in two steps. Firstly, by Moser iteration we establish
global upper bounds for the mobile species. Then, using these bounds we derive
global upper bounds for the immobile species. Let (u, b, 1)) be a solution of (Py). Let
K = max {1,max;—1 . ||Ui/poill L~} and define z; = (b; — K)*,i=1,...,m.

1. Bounds for the mobile species. Let p > 8. We use p(z0~", ... ,zf_l, 0,...,0) as test

9

.....

function and define w; = 2} /2 ,i=1,...,1. At first let us remark that
m ! m
ZT?(.,b,¢) 271 < CZZ (b2 +1)zP7' < CZ <zf+1 + Z zflz,%> +c
i=1 i=1 k=1 i=1 k=l+1
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With Lemma 3.6 and Hoélder’s inequality we can estimate
- 2(p—1
[ e < el Nl < aslusl 0

Therefore we obtain for all t € S

l t 1
o 3wl < |30 {=2elwilfn + ep(IV0lal Tl (il + 1
=1 =1

2(p+1 2(p—1
el 38R + s Il 3520, + lwilaey +1) b ds.

We apply for k = 1 and p =7, p = 2(p+ 1)/p and p = 4(p — 1)/p, respectively,
Gagliardo—Nirenberg’s inequality (4.3) and continue

!
ey fwit)l
=1
!

t
T r +2
< / S { = el + e (s + 1 (lwills + 1) + ep( il 57 ] 11
=1

3p—4)/2 1/2 3/2 1/2
s lwill g fanll 2+ w37 will 2 + 1) s
/ Z Rllwil| 7 +1) +p sz”Ll/(p D4 pldl, 15szH2p/(p+4) +P4”wi”%1}ds
t 1
< (w4 o) / > (w27 + 1)
0 =1

l
2
< o (n s TZ(supuzx YD )

zls

Therefore the iteration formula

! 2p/(p—2)
Z z:(t)|I], +1 <Ep*" (K + 3 15) <Z sup [|z; (s ||Lp/2 + 1) vte S

i=1
results where ¢ > 1 depends only on the data, and &, 7, ¢3.15 are defined in (3.14) and

Lemma 3.6. Now we set p = 2, k € N, k > 3. The iteration formula yields

k i 27
T < (27 (5t S a5) Tem) ™, vk—zsupuz@ Wow +1, =] 57—
j=1

Passing to the limit k& — oo we obtain

ZH’Z’ ||Lw<\/"<24r(,6+c315 Tc(Zsuszl ||L4+1>> vte S.

llsE

With Lemma 3.6 and (4.2) the desired estimates for b;, i = 1,...,l, are verified.
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2. Bounds for the immobile species. Now, let p > 2. We use the test function
p(0,...,0, zf;f, ..., zP=1) Taking into account the assumptions (2.7), (2.5), the es-

timates for b;, i = 1,...,[, obtained in step 1 as well as the inequalities by > 2z > 0
we find that
m m
R S o eneng e 3 g
k=l+1 k=I+1

| /\

l

=1k

£ ¢lp—1)/2°
The last estimate follows from Young’s inequality. Therefore we obtain

s(p+1)/2
¢
€0 Z Iz )70 <PTIQNm = 1) 255 VEES.
k=l+1

And consequently,

=(p+1)/2p
le Ol < GTIRIm = /o) ” S < oo ES, k=1+1,....m

Passing to the limit p — 0o we get ||zx(t)||pe < coo forallt € S,k =14+1,...,m,
which leads to the desired estimates for by, k=1+1,...,m. d

3.5. Second regularized problem (P;;). We prove the solvability of (Py) for
fixed N > 0 by means of a second regularization (Pyy).

Let M > M* = max{N + 1,max;—1_._m [|Ui/poi||L=}. We denote by ops the
projection from R onto [—M, M],

onm(y) = sign(y) min{|y[, M}, y € R.
Moreover, we introduce the functions
Din(2,0,9) = Di(x, b, o0 (), i=1,...,1, 1€Q, beR™, Y €R,

define the operator Ay X x HY(Q) — X*,

l
(Ani (b, 6),B)x = / S Dint (b, 0)pos (Vi + [oar (b)] ¥ Qu(w) V) - Vhidz, b e X,
Qi1
and consider the following problem:

u'(t) + A (b(2),(t)) = Ry (b7 (£), ¥(1)) ,
(Pum) E@(t),ut(t)) =0, wu(t)=Bb(t) faa. tcS, u0)=U,
u€ HY (S, X*)NL3S,Y), be L3(S,X), v € L*(S,H'(Q)).

Let us remark that we have u, b € C(S,Y), ¥ € C(S, H*(Q2)) for solutions of (Pxs).
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3.6. Existence result for (Pys). First we derive an equivalent formulation of
(Par). We write b in the form b = (v,w), v = (b1,...,b;), w = (bj41,...,bs) and
introduce the spaces

Yi=L2(Q,RY, Y™ =L2QR™ ), X' = HY(Q,RY,
and the operators B,: L?(S,Y!) — L%(S,Y!), B,: L?(S, Y™ ) — L2(S, Y™ !) by

!
((Byv)(t),0)y1= /szm v (t) 7; de TeY!,

m—I
(Butw) (), Ty 1= / S pogsn wit) Tz, WeY™ tes.
Q=1

Moreover, we define the operators

Ry: L*(S, XY x L2(S,Y™™!) x L3(S, H (Q)) — L?(S, X"™),

Ry: L2(S, X' x L3(S, Y™ ! x L*(S, H'(Q)) — L*(S, Y™ 4,

Ay L2(S, XY x L2(S, X1 x L2(S, Y™ Y x L*(S, H*(Q)) — L*(S, X",
A% L2(S, XYY x L2(S, Y™ 1) x L2(S, H'(Q)) — L3(S, X"™)

as follows:

<Rv(v7w7¢)7E>L2(S,Xl): /S<RN(U+JU+7¢)7 (57 0)>X dS, RS L2(57Xl)7

<Rw(v7w7¢)7m>L2(S,Ym*l): /S<RN(U+7w+7w)7 (O7m)>X dS, w e LQ(S7 mel) )

!
<AU(U;67U}3¢)76>L2(S,X1): /S/QZ(DI‘M(',i}\,U/,w)pOi Vo, - V1; +Uiﬁi) drds,
=1

l
(A (0,10,10),3) 125.x1y= /g /Q S (DarC st s o)) Q)T 9

—uT;)dads, T L3S, XY).
For any given v € L2(S,Y"), w € L?(S,Y™!) we have that (B,v, B,w) € L%(S,Y)
and by Lemma 3.1 we find a unique v € L2(S, H(Q)) N L>°(S, L>°(Q)) such that
E@(t), (B,v)T(t),(Byw)T(t))) =0 faa. teS.

We denote by 7y: L2(S,Y!) x L2(S, Y™ 1) — L%(S, H'(2)) the corresponding solution
operator, 1 = Ty (v, w). Problem (Pys) is obviously equivalent to the following system
of equations:

(517) (Byv)' + Ay (v;0,w, Ty, (v,w)) = Ry (v, w, Ty (v, w)) — Ag(v,w,%(v,w)) ,
' (Boo)(0) = Uy = (Uy,...,U)), wveW!

where W! = {v € L?(S, X"): (B,v)’ € L*(S,X")} c C(5,Y?),
(Byw)' = Ry (v, w, Ty (v,w)) ,

(3.18)
(Bpw)(0) = Uy = (Upp1,...,Up), Byw e HY(S, Y™ ),
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Let us shortly outline how these equations will be solved. We start with some
fixed ¥ € W'. First we solve the initial value problem

(3.19) (Byw)’ = Rup(3,w, Ty(B,w)), (Bow)(0) = Uy, Bow € H(S,Y™ ).

This problem has a unique solution w = 7,,v (see Lemma 3.8). Next we solve the
initial boundary value problem

(Byv)' + Ay(v;0, ToyD, Ty (0, Ty D)) = Ro (0, Ty U, Ty (3, T,y D))
(3.20) — A9, 7,0, Ty (v, T,0))
(By0)(0) =U,, veW'.

Also this problem has a unique solution v = QU (see Lemma 4.2). The operator Q is
completely continuous (see Lemma 3.10). Using Schauder’s Fixed Point Theorem we
obtain a fixed point v of Q (see Lemma 3.11). Then (v, 7,,v) is a solution of (3.17),
(3.18).

Now we give the detailed proofs. The constants ¢ in the estimates of this subsec-
tion can depend on M, N (and on T').

LEMMA 3.8. For any v € W' there exists a unique solution w of problem (3.19),
and w belongs to H*(S, Y™~ ) c O(S, Y™ 1),

Proof. Let © € W! be fixed. The initial value problem (3.19) is obviously equiva-
lent to the initial value problem

(3.21) w +Gw=0, w(0)=(By) Wy, weHYSY™?
where G: L2(S,Y™7!) — L2(S, Y™ !) is defined by
Gw = —(Bu) M R0, T, (5,0)], w e LS, Y™,
For v € L?(S, YY), w € L3(S,Y™!) we have 7, (0, w) € L?(S, H*(Q)) and
174 (@, w") = Ty (0, w) [ 25,1y < cllw! = w?|lp2(s ym1y Vo', w® € L2(S,Y™).
Since the functions 7$}(z, -, -) are uniformly Lipschitz continuous the estimate
IGw' = Gw?||2(s,ym—1y < Llw! = w?||2sym—y Vo', w? € L2(8, Y™

follows, and [6, Chap. V, Theorem 1.3] ensures the existence of a unique solution of
(3.21). In principle, this result was obtained by means of the Banach Fixed Point
Theorem. a

We denote by 7,,: W! — H(S,Y™~!) the operator which assigns to ¥ the solution
w of (3.19).

LEMMA 3.9. There exists a constant ¢ > 0 such that the following estimates hold:

178! — T cs.ymr) < clldt = 2| a5yt V0L, 02 € W,

HTU)@\HC(S,Y’"*I) S (& Vﬁ € Wl .

Proof. Let w* = T,,0%, k = 1,2. Using the test function w = w! — w? for the
corresponding problems (3.19), the Lipschitz continuity of r?, Holder’s inequality and
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Lemma 3.1 we find that
[@E) 3t < ell(Buw (@)1

t

<e / (@ly et + 3" = Byt + [T (@ ) — Ty(32, 0P| 1) [l yoms ds
t

<e / (]2 s + 8 —52[124) ds.

Gronwall’s Lemma leads to the first assertion. Next, testing (3.19) with w = 7,,v and
using (3.5) the estimate

t t
()]s < ¢+ c / Jew(s)llymos ds < ¢+ / lw()|2s VEES
0 0

follows where ¢ does not depend on v. Again applying Gronwall’s Lemma the second
assertion is obtained. d

Next we conclude that for given & € W' the initial boundary value problem (3.20)
has a unique solution. This follows from Lemma 4.2 since B, and A, are diagonal and
the right hand side belongs to L?(S, X'*). We denote by Q: W! — W' the operator
which assigns to v the solution v of (3.20).

LEMMA 3.10. The mapping Q is completely continuous.

Proof. Let {,,} € W! be bounded. Because of Lemma 4.1 v) we may assume
that there exists an element ¥ € W' such that v, — 9 in L%(S,Y!) as well as in
L2(S, L*(T,RY)). Let

Up = Qi)\rm v = Qi)\v Wy, = Tw@\na w = Twi)\a Y = Tw(@\n7wn)a P = %(@w) .
From Lemma 3.9 and Lemma 3.1 it follows that
w, — w in L*(S,Y™ Y 4, — ¢ in L*(S, H').

Using the test function v, — v we obtain
€0 ¢
D =01+ [ ellon = vlFerds
t
S/ c9 (10 =l 22 ey + 10 — Yllr2er)) lvn — vl 22 gy
0

+ ([on = Vllyr + [wn = wllym— + [0 = ¢llL2) l[on = vllys

l
+ /Q Z { (|VU,| + |v¢|) |D1M(aﬁn>wnal/)n) - DzM(,i}\?waw” |v(vni - Uz)|

i=1

+ (1Qi(¥n) = Qi(W)| + lloar (Tns)] " — [oar ()] ]) VY]V (0ni — 3)]

+ [V(n, — )| |V (v — vz)]} dm} ds VteS.
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Applying Hélder’s inequality and Lemma 3.9 we arrive at
2
l|vn — U”LQ(S,X!)

< cllvn = vllz2s,x1) { 10 — Vll2¢s,yty + U0 — VllL2es, 20, re)) + [0 — YllL2(s,m1)
! r T 1/2
+Z{ / / |DiM('ai)\n>wna¢n) *DiM(',a,w,w)F |V’Ul|2d$d8:|
i=1 ~LJ0 JQ
rorT 1/2
+ / / |Dint (-, Oy We s ¥n) — Ding (-, 0, w, 1) | |Vap|? dxds]
LJo Ja

e 1/2
; — . 2 2
+ _/0 /Q‘Qz(l/m) Q:(V)|* VY dxds]

+ /OT/Q o2 ()] ™ = [oar (0)]F? Wwdxds] 1/2}}.

Properties of superposition operators ensure that the last four bracket terms tend to
zero if n — oo. Thus in summary we find that v, — v in L?(S, X!). Next we obtain

[(Byvn)' — (BvU)IHL2(S,Xl*) < [ Ry (Vs Wiy ) — Rv(awvw)HL?(S,Xl*)

+ 1Ay (V5 Oy Wiy ) — Av(wa,waw)HL?(S,X”)
+ (A (n, Wi, ¥n) — AV (O, w0, 9) [ 25, x1)

< C{an —Vlp2es,xt) + 1on = VllL2(s, vty + 100 — 0l 22(s,22(0 R
+ lwn, — wllp2(s,ym—1y + 10 — ¥l L2(s,m51)

l e 1/2
T Z{ /0 /QIDm(-,@n,wm%) — Ding (-, 0, w, ) 2 |Vvi|2dxds]
=1 L
[ 1/2
+ / / ‘D’I,M(7@\n7wn7wn) — DZ‘M('76, ij)|2 ‘vw’Q dxd3:|
LJO Q

e 1/2
; — . 2 2
- / /Ql@zww Qi(0)? |V dxds]

+ /OT/Q lloas (D)) = [oae (0)] ]2 \vadeds} 1/2}} — 0 for n — oo

and we arrive at v,, — v in W'. The continuity of the operator Q can be shown by
similar arguments. d

LEMMA 3.11. The mapping Q@ has a fixed point.

Proof. Let v € W', ¢ = T,,(9,7,0) and v = Qv. We use v as test function
for (3.20), take into account the properties of D;ys, Q;, apply Lemma 3.1, (4.1),
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Lemma 3.9, the boundedness of 7> and Young’s inequality. Thus we obtain
t
eollo@®)3 — el (U1, U5 + 26/0 vl ds
t
322)  <e | (Lol + 190 + [l ol + ol ) ds
¢
< [ el + et ol + ) as vees.
0

Therefore we find a constant ¢ > 0 such that for all kK > 0

t
et (uvof)n%z + [ el ds)

t s
<craet [ Lol 1018 + [ (ol + 1913 dr femtoe bas
0 0
— | = —kt 2 ~ 2 ° 2 ~12 —ks e —1
<zt L LI+ 106+ [ (ol + 013 arp e}
s 0

Choosing now k£ > 3¢ we obtain
t
sup ekt (uvmniz + [ el ds)
tes 0

31 R b
< 3o Lo { (uvwn%z + [ el d)} |
2 2 tes 0

Again using Lemma 3.1 and Lemma 3.9 we estimate

1(Buv)' Il L2 (s, x1+)
- sup <Rv(i)\7 Twaaw) - AU(U;i)\, Tw67w) - Ag(av wa\7¢)76>L2(S,Xl)

IIE”LZ(SVXI) Sl

<c (ollz2es,xty + 10l L2s,mry +1) < ¢ ([vllpzes,xty + 101 L2(s, vty + 1)

¢ 1/2
< E’(anws,xz) + s {et (190R. + [ Iaekas) feir| 1> |
€ 0

Now we define the set

t
B = {U c W' sup {ekt <Hv(t)”§/z +/ [v] 3 dS)} < 3c,
tesS 0

[(Bov)' [l 2(s,x0+) < 5<2\/ 3cekT + 1) } :

This set is a non-empty, bounded, closed and convex subset of W' with the property
that Q(B) C B. Since the mapping Q is completely continuous the assertion follows
from the Schauder Fixed Point Theorem. ad
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THEOREM 3.12. There ezists a solution (u,b,) of (Par).
Proof. Because of Lemma 3.11 there exists a solution v of the problem

(Byv) + Ay (050, Tyyv, Ty (0,Ty0)) = Ry (v, Toyv, Ty (v,T,0)) — Ad(v, Ty, Ty (0, Ty v)),
(B,v)(0) = (Uy,...,U;), veWt,

We set w = T,v € H'(S,Y™~!). Then the pair (v, w) fulfils the equations (3.17) and
(3.18) which represent an equivalent formulation of problem (Pj). O

3.7. Energy estimates for solutions of (P,;). First, we proof

LEMMA 3.13. For any solution (u,b,1) of (Pa) and for every t € S the inequal-
ities b(t) ,u(t) > 0 a.e. on Q are fulfilled.

Proof. Let (u,b,1) be a solution of (Pyr). We test the evolution equation with
the function —b~. Taking into account that

(Vi + o (0)] T Qi) V) - Vb <0, i=1,....1,

—rZ (b, b )b <0, i=1,...,my, 2=Q,T,

we find that |[b=(¢)||? <0 for all t € S. O
Next, we introduce a regularized free energy functional F'y; which is adapted to
the regularizations in problem (Pjs). We define the function

Iny if 0<y<M,

halw) = WM —1+-2L if y>M
M M

and the functional ﬁMQ Y =R by

/Z/ Mm(z/poi)dzde if weYy,

if wueY\Yy.

(3.23) Fua(u

Moreover, we set
Fare = (ET/[z’X)*:X* —R, Fy=F+Fy;: X*—R

where F; was introduced in Subsection 3.3. Since the function [j; has the same
essential properties as the function In which occurs in the definition of the functional
F5 similar arguments as in [12] give the following results.

LEMMA 3.14. The functional Fyy = Fy + Fye : X* — R is proper, conver and
lower semi-continuous. For uw € Yy it can be evaluated according to (3.7), (3.23).
The restriction Fyly, is continuous. If w € Yy then P(vy) € OF(u) where v is the
solution of E(¢,u) =0. Ifue Y, u>0 >0 andu/py € X then lp(u/po) € OFn2(uw)
where Ly (b) denotes the vector {lpr(bi)}i=1,...m

By the definition of [j; the inequality

y
/ lMi(z/pOi)dZZylnpi—y—i—pOi a.e. on Q, Vy e R,
Poi 0z
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holds. Therefore it follows that

(3.24) Fu(u) > ¢y {||¢||§,1 +) u; 1nu,-||L1} — ey, uEY,.

i=1

LEMMA 3.15. Along any solution (u,b,v) of (Par) the regularized free energy
Fpr(u) remains bounded by its initial value and decreases monotonously,

Far(u(ts)) < Far(u(t)) < Fa(U) = F(U), 0<t; <ts <T.

Moreover, there exist positive constants ¢, c3.05, c3.06 not depending on M, such that

m
S lluinui|peoszi) < ¢;  Nullzes,pi@rm) < ¢,
=1

(3.25) Z [16: In by || Loo (5,21 (02)) < €3.25 5

=1
(3.26) IVl oo (s, 1)) S €5 llLo(s,no)) s 1¥lloe(s,po0r)) < €3.26

for any solution of (Ppr).

Proof. Let (u,b,1) be a solution of (Pyy).
1. We know that v € H(S,X*), v € L?(S,H*(Q)), P(v) € L*(S,X), VP(¢) =
Q(v)Vey. By Lemma 3.14 we find that P(¢(t)) € 0F1(u(t)) f.a.a. t € S. Thus, the
function ¢ — Fy(u(t)) is absolutely continuous on S and according to the chain rule
(see [3, Lemma 3.3]) we obtain

d

EFH(U(I?)) = (u'(t),P(¢(t)))x faa. teS.

2. We choose some d € (0,1) and define u® = u + dpg, b° = u®/py = b+ 5. Then we
find that u® € H(S, X*), lapr(b%) € L?(S, X), Vip (b0) = Vb Jop (B, i =1,...,1.
Lemma 3.14 ensures that 15;(b°(t)) € OFy2(u®(t)) fa.a. t € S. Thus, the function
t +— Faro(ul(t)) is absolutely continuous on S and

%FMQ(M@)) = (W (), (P () faa. LS.

3. We set (3, = Iy (b°) + P(v)) and obtain

ta

[Fu(u(t) + Faa( ()] |1* = /t t (0, (8 x dt
B /tj2<RN“’<t>’¢<f>> ORI ONSHOETS
The volume integral in the definition of (Ry (b, ), C?\/[>X’ namely
= /Q”N(b”/’) > k(b v —a) i(ﬁi — )i dz, a; = b ()

(o, B)ERS i=1

is estimated as follows. Since for |(b, )| > N the integrand vanishes we may assume
that |(b,9)|ec < N and thus b; < N, b0 < N+1< M, (3, = Inal with al = blel(¥),
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i=1,...,m, |¢| < N. Then we have

[(a") = (@] 3" (Bi = i) nal <0,
‘[a“ —a” — (a®)® + (a°)”] Zzl(ﬁi — ;) Inal| < end(1+|1nd))

and I < cyd(1+|Ind|). The boundary integral is handled analogously and in summary
we obtain

(Rn(b(t),%(t)),Co () x < hd =cnd(1 4 |Ind|) faa. teS.

Next we consider the term —(Ans(b,%),(3,)x, i.e. the integral

1
- /Q ZDiM('a b, )poi (Vb; + aar (0:) Qi () V) - V(5 d .
i=1

Here we write

Vb; + oar (bi)Qi()Vp = oar (b)) + [oas(bs) — o (b2)] Qi(v) Ve

and in view of D;ps(+,b,%) < ¢p; we obtain

—(Apr(b(£),(1)), (3, (1)) x < BS(t) faa. t €S,

1

mwbi(m d.

l
) = e [ Y- oIutol | 1vu) +
i=1
The last estimates ensure that

1

[y (u(t) + Fae(u’(t))] \f < /t ’ (hS + h3(t)) dt

and letting § — 0 the inequality Fas(u(t2)) — Far(u(t1)) < 0 follows. The choice of
M guarantees that Fj/(U) = F(U). The remaining assertions of the lemma are a
consequence of (3.24), Lemma 3.1 and (4.2). O

3.8. Further estimates for solutions of (P,;). We prove
THEOREM 3.16. There is a constant cs.o7 > 0 not depending on M such that

(3:27)  |Ibllzoe(s,Loo(,rmy) < €327, |billLee(s, ey < c3or, i=1,...,1,

for any solution (u,b,v) of (Par).

Proof. Let (u,b,1)) be a solution of (Pys). Let ¢ > 2 be chosen as in Lemma 3.1,
r=2q/(qg—2),r" =2q/(2+q). Other constants in the following estimates can depend
on N (and on 7).

1. Testing (Pas) with (0,...,0,b141,...,by,) we obtain in view of (3.5) that

(3.28) bt <c VteS, i=1+1,....,m,

which ensures that ||u;(t)||,~ <cforallte€ S, i=1+1,...,m. Hence we get

1+Z||ui(t)\|m/] <c VtesS.
=1

(329) [[¥(®)llwra < ¢

l
LD sl
i=1
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2. Testing (Pas) with 2(bq,...,b;,0,...,0), estimating [op(b;)]" by b;, using (3.5),
(3.29), (4.1), (4.3), Youngs’s inequality and Lemma 3.15 we find that

l

> (eollbi®)l132 — e Uil32)

=1

t 1
< / > {=2elbillzys + bl s lwrallbill o + Noill3e + billery + 1)} ds
=1

t l
S/O Z{—eHbiH?p +ellbill o 1Bl l e > bkl +C} ds.
i=1 k=1

Using the inequality (4.4) for p = 2 and Lemma 3.15 we have

l

l l l
— €
e Ibille bl Y N0kl < {Ellbi\lin +elbillg2 D ku\liz}
i=1 k=1 i=1 k=1

l

l
\/— 2
< Z{ Ibi] 7 + [2 i bl o 1bsl s+ ellbilla | § <D ellbillzp + e
i=1

The previous estimates and the inequalities (3.28), (3.29) ensure the existence of
positive constants ¢, k not depending on M such that

(3.30) 16:(t) 2 < e, i=1,....m, |[W@®)|5.+1<F VteS.

3. Following the estimates in the proofs of Lemma 3.6 and Theorem 3.7, but estimat-
ing [oar(b;)]T by b; and using & from (3.30) instead of x we find that

[bi(t)]|pa <€, i=1,....,m,

an \|Loo<f<24w+c cT<Zsup||b <s>||%4+1>> ,

(b — K) ()|~ <c, i=1+1,...,m, Vte S

where the constants K, ¢y have the same meaning as in the proof of Theorem 3.7.
This provides the desired estimates. |

3.9. Existence result for (Py).

THEOREM 3.17. There ezists a solution of (Pn).

Proof. We choose M = max{M*, c3.6,c3.07} (cf. Lemma 3.15, Theorem 3.16).
By Theorem 3.12 there is a solution (u,b,v) of (P7). Since b > 0 (cf. Lemma 3.13)
and

9l oo (s, n20(2)) s 19l Loe (8,000 (ry) < M,
[bill oo (s,poey < M =1, my (bl poe s, ooy S M, 0= 1,001,

(cf. Lemma 3.15 and Theorem 3.16) this solution is a solution of (Py), too. O

3.10. Existence result for (P). Proof of Theorem 2.2. It suffices to prove the
existence of a solution of (P) on any finite time interval S = [0,7]. Such problems are
denoted by (Ps). We choose N = 2max{cs11,c3.16} (cf. Lemma 3.3, Theorem 3.7).
Then according to Theorem 3.17 there is a solution (u,b,1) of (P5). The choice of N
guarantees that the operators Ry and R coincide on this solution. Therefore (u, b, )
is a solution of (Pg), too. O
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4. Appendix. We assume that 2 C R? is a bounded Lipschitzian domain. We
apply Sobolev’s imbedding theorems (see [17]) and some other imbedding results,
especially the trace inequalities

-1
(4.1) 1wl Fary < callwllfa qllwlla @) YweH(Q), ¢>2,

(42) ol < ol oy Voo € HHQ) N L=(9).
and the following version of the Gagliardo-Nirenberg inequality (see [5, 21])

k/p

PPl vw e HY(Q), 1<k <p<oo.

(4.3) [wllze < cpp llw] H

As an extended form of the this inequality one obtains that for any § > 0 and any
p € (1,00) there exists a constant ¢s5, > 0 such that

(4.4) lwlls < 6w fwlllzs lwlfa’ + csp lwll Vw € HY(S).

This inequality is proven in [2] for bounded domains with smooth boundary and p = 3.
But (4.4) is valid also for bounded Lipschitzian domains and p € (1,00), since (4.3)

is true in this case, too.
Let pg € L>®°(Q), essinfcq po(z) > 0. We define B: L?(Q) — L?(Q) by

(Bw,w) 2 :/pgwwd:v we L*(Q).
Q

Let S = [0,7] be a compact interval. The extended operator B: L(S,L?(Q)) —
L?(S,L?(Q)) is defined by (Bw)(t) = B(w(t)) f.a.a. t € S. Because of properties of
po the operator B is linear, continuous, self-adjoint, positive definite, and it exists the
inverse operator B~1: L?(S, L?(Q)) — L?(S, L*(Q)) with the same properties. Let

Wp = {w e L2(S, HY): (Buw)' € LQ(S,Hl*)} .

The following assertions can be verified as in [6, 18, 22]
LEMMA 4.1.
i) Equipped with the scalar product

(W, )y, = (W, W) 25 1) + (Bw)', (BO)') 125,14

the linear space Wy is a Hilbert space.
ii) Wpg is continuously embedded in C(S, L*()).
iii) The operator B:Wpg — C(S, L3(2)) is continuous.
iv) Forw € Wg and t1, ty € S the formula

2 1 1

B0 9.0(6)) s = 5 (Bu)t) wlta)) e — 5 (Bw)en)w()e
holds.

v) The imbeddings of Wg in L?(S,L*(Q)) and in L*(S, L?(T")), respectively, are
compact.
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Finally, the following existence result can be obtained as in [6, Chapt. VI].
LEMMA 4.2. Let A: L*(S, HY(Q)) — L%(S, HY(Q)*) be the operator

T
(Aw, W) r2(s,m1) :/ /(an-V@+dwE)dxds, w, W€ L*(S,H(Q)),
o Jo

where a, d € L>=(S x Q) with a(t,x), d(t,z) > ¢ > 0 a.e. on S x Q. Then for every

fe

(1]

(2]
(3]
(4]
[5]
[6]

[7]

(8]

[9]
(10]
(11]
(12]
(13]
(14]

[15]

(16]

[17]
(18]

(19]

L?(S,HY(Q)*) and every U € L*(Q) there is a unique solution of the problem

(Bw) + Aw=f, (Bw)(0)=U, weWg.
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