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Abstract

We focus on the question, for which catalysts does the catalytic super-Brownian
motion in R! have a jointly continuous space-time Lebesgue density? As it turns out,
nearly all non-atomic catalysts provide such a regular density which can be charac-
terized as the unique solution to a stochastic partial differential equation driven by a
degenerated space-time white noise.

1 Introduction

The goal of this paper is a condition on the catalyst of a catalytic super-Brownian motion
in R! implying the existence of a jointly continuous space-time Lebesgue density for the
latter process. Before posing the problem in detail, we briefly recall the notion of super-
Brownian motion (SBM) and catalytic SBM.

1.1 Ordinary super-Brownian motion

The so-called (ordinary) SBM in R?¢ is the high-density/short-lifetime measure-valued
diffusion limit of a branching Brownian particle system in R? where the critical branchings
occur independently of space and time. The first rigorous treatment of this object is
essentially due to Watanabe ([Wat68]) and Dawson ([Daw75]), whereby SBM is often
called Dawson-Watanabe process. They characterized SBM as a Markov process whose
states are measures on R¢ and which is uniquely determined by the duality to a certain
non-linear partial differential equation, the so-called cumulant equation. In Section 2.3
this duality will be posed in a more general setting. For a wide overview we refer to
[Daw93].

Alternatively, one can approach SBM using stochastic calculus. Meanwhile it is a
well-known fact that the SBM in R! can be linked with the following stochastic partial
differential equation (spde)

8tXt(:1:) = %AXt(.’L') + \/Xt(al')Ww,t (11)

where A is the Laplacian and W a space-time white noise, i.e., more precisely, an or-
thogonal martingale measure - in sense of [Wal86] - with quadratic variation measure
(W)(dzdt) = dzdt. Indeed, it was proved by Konno and Shiga ([KS88]) and independently
by Reimers ([Rei89]) that the SBM in R! has a jointly continuous space-time density which
solves equation (1.1). Note that the Laplacian component in (1.1) corresponds to the dif-
fusion of the infinitesimal particles, the noise term, whose shape is motivated by the form
of Feller’s branching diffusion, represents the splittings of the infinitesimal particles.

In higher dimensions d > 2 the states of SBM are singular measures ([DH79]). Con-
sequently, a relation between SBM and spde (1.1) as in dimension one fails. But let us
mention that for d > 2 SBM is a solution to the generalized version of (1.1) for measure-
valued processes

_ 1 - .
BtXt — EAXt + M.’E,t

where M is an orthogonal martingale measure with quadratic variation measure

(M)(dzdt) = X,(dz)dt, see [MRCSS].



1.2 Catalytic super-Brownian motion

In contrast to the ordinary SBM, where the branching of an infinitesimal particle occurred
independently of space and time, in the so-called catalytic case branching depends strongly
on a (possibly singular) medium that may vary in space and time. Such a medium can
be modelized as a (deterministic) measure-valued process ¢ = (g;(dz) : t > 0) meaning
that the branching intensity of an infinitesimal particle being at position xg at time ¢ is
formally given by ” gt(dw) (z0)”. Since the medium catalyzes the branching, it is often called
catalyst, the reacting 1nﬁn1tesimal particle system catalytic SBM or just reactant.

An approximating particle system for catalytic SBM is provided by the one for the
ordinary SBM modified in the following way. The particles still get random lifetimes
according to a common rescaled exponential clock, but they do not age homogeneously
any more. The explicit "age-function” A(t) of a (Brownian) particle, say By, is chosen as
the collision local time Lp ,(t) of this particle and the catalyst o. Here Lip 5 is defined
via

L —hm// Pe(Br,y)or(dy)dr, (1.2)

el0

where p is the d-dimensional heat kernel. Hence, a particle only gets older if it is in
contact to the catalyst. Particularly, a particle moving outside the catalyst’s support does
not age, so it cannot reach the end of its "life” and, consequently, it will not branch. Note
that in this picture each particle lives in its own time scale and, maybe, one should better
speak of individual branching age. Obviously, it is essential that the limit in (1.2) exists
non-trivially, i.e. that Lip ; # 0. In one dimension (d = 1) one should not go into trouble
for any catalyst, since even in the degenerated case g;(dz) = d.(dz), ¢ € R arbitrarily
fixed, one can make sense of L|p ;, which becomes just the Brownian local time at level c.
But already in dimension d = 2 the latter does not exist non-trivially any more. Hence,
for d > 2 one has to be careful in choosing o.

Dawson and Fleischmann paid attention to the catalytic SBM first. They provided a
construction (avoiding a particle approximation) for d = 1 and studied some special cases
in detail ([DF91], [DF94], etc.). In all dimensions d > 1, catalytic SBM is included in
Dynkin’s very general class of superprocesses, see [Dyn91],[Dyn93] or [Dyn94], also for a
particle approximation (Theorem 1.3.1 of [Dyn93]). Among other things, here the ”age-
function” A can be chosen, instead of Lip ), from a large class of additive functionals of
the underlying spatial motion B - the class of so-called admissible branching functionals
(cf. [Dyn94] p.49). Klenke recently extended this class and gave a particle approximation
as well, see [Kle01l]. Note that a relation between catalytic SBM and the mentioned
approximating particle system is rigorous - so far - only if Lg , exists as an admissible
branching functional. But for a broad class of continuous catalysts g in dimension d =1,
Lip 4 was constructed in the desired form, see Theorem 4.1 of [EP94] or Proposition 6
of [DF97]. In order to be an admissible branching functional, A has to satisfy essentially
some moment assumptions. In case A(t) = Lp 4 (t), ot(dz) = o(dr) and d > 1, Delmas
([Del96]) transformed these assumptions into a more transparent condition involving a-
potentials of the measure o(dz). For an overview on catalytic SBM we refer to [DF00] or
[Kle00b)].



As in the ordinary case we now want to link the catalytic SBM with an spde. We had
mentioned that the noise term in (1.1) corresponds to the branching component. But this
time branchings only occur on g’s support, proportional to p’s ”density”. Therefore we
should replace the white noise W by a degenerated white noise W¢ with intensity measure
ot(dz)dt, i.e., more precisely, by an orthogonal martingale measure W¢ with quadratic
variation measure (W?)(dzdt) = o¢(dz)dt. We heuristically end up with a formal evolution
equation for catalytic SBM of the shape

8X,(z) = %AXt(x) + VX ()WL, (1.3)

1.3 The problem and sketch of main results

From now on we restrict to dimension d = 1. As seen in Section 1.1, for g;(dz) = dz
(ordinary case) the SBM has a jointly continuous space-time Lebesgue density. This is
not the case for the single point catalyst o;(dz) = d.(dz), c € R, studied first in [DF94].
In fact, according to [DFLM95] or [FLG95], here the occupation density measure A\°(dt)
of the corresponding catalytic SBM on site ¢ is singular w.r.t. dt (A\°(dt) is defined via
A¢((s,t]) = Yi(c) — Ys(c) where Y is the existing jointly continuous Lebesgue density
of (Yi(dz))i>0 given by (V3,9) = fg(X'T,d))dr, ¥ € Cp(RY,Ry)). In terms of evolution
equation (1.3) this means that a concentration of the noise on a single space point destroys
the regularity of the solution (density) in this point.

Now the question arises, can one return to the joint continuity by ”smearing out” the
atomic mass of d.(dz) around c? The hope is that a slight smoothing of atomic mass leads
only to sharp peaks rather than to blow ups.

And indeed, there is a large class of catalysts providing regular reactants. More pre-
cisely, as we will establish in the sequel (Theorem 3.1), each catalyst o satisfying

Ja € (0,1]VT >03c>0: sup ot(B(z,r)) <cr?, r € (0,1] (1.4)
(t,2)€[0,T]xR1

induces a jointly continuous space-time density for the corresponding catalytic SBM. Here
B(z,r) := (x — r,z + r). That means that catalytic mass may not be too concentrated
around a point and, particularly, that o cannot have atoms. By the way, in the time-
homogeneous case g;(dz) = o(dz), the following potential-type condition

sup / |z —y| %e(dy) < oo
zeR! J B(z,1)
ensures that (1.4) holds, cf. Lemma A.1 in the Appendix.

Catalysts that induce a jointly continuous space-time density for the reactant will be
called moderate catalysts. This reflects the moderation of its catalyzing impact, i.e. the
non-occurrence of reactant blow ups. For moderate catalysts, more precisely for catalysts
satisfying (1.4), the formal link between catalytic SBM and spde (1.3) will be made rigorous
by showing that the existing regular density is the unique solution to (1.3), cf. Corollary
3.3 below.



We conclude this section with examples for moderate catalysts. The second example
reveals the power of Theorem 3.1 by establishing that even catalysts without Lebesgue
densities can fulfill (1.4). Moreover, for each 0 < @ < 1 one can find a moderate cat-
alyst with support having Hausdorff-dimension «. Note that for a positive constant c,
SUPze supp(o) o(B(z,r)) < cr?, respectively infyesyppo) 0(B(z,7)) 2 cr%, 0 <7 < 1, im-
plies that the Hausdorff-dimension of the support supp(o) of ¢ is at least, respectively at
most, a; cf. Theorem 5.7 of [Mat95].

Example 1 (moderate catalysts having Lebesgue densities) Let g be a catalyst
with finite measure states and having a jointly continuous density field. The latter can
clearly be bounded from above by a constant, at least on compact time sets. Hence, (1.4) is
trivially satisfied with & = 1. In the ordinary case g;(dz) = dz, Theorem 3.1 just recovers
results from [KS88] and [Rei89]. If (o:(dz)): is an one-dimensional ordinary SBM (for the
notion of random catalysts see Remark 2.3 below) which has a jointly continuous density,
then Theorem 3.1 provides space-time regularity of catalytic SBM in a super-Brownian
medium. This special case is also treated in [FKX02] using different methods.

Example 2 (moderate catalyst without Lebesgue density) Let us consider
ot(dz) = Cx(dz) where C)(dz) is the ”Cantor measure” on, say, [0,1] C R! with index
A € (0,1). This measure is supported by an uncountable unification of single points (A-
Cantor set C(A), cf. [Mat95] 4.13) and possesses no atoms. In fact, Cy(.) = H*(C(A\) N .)
where H* is the a-dimensional Hausdorff measure and a = |log2|/|log A| the Hausdorff-
dimension of C(\) = supp(Cy). Cx(dz) has clearly no Lebesgue density. Furthermore, see
e.g. Theorem 4.14 of [Mat95], there exist 0 < ¢ < C such that for all = € supp(C,),

cr® < Cy\(B(z,r)) < Cr%, r€(0,1]. (1.5)

It follows immediately from (1.5) that g; = C) satisfies (1.4).

2 Notations and the model

2.1 Notations

Let E and E' be Polish spaces, I an interval in [0, 00) and R, = [0, c0).
e B(E) is the Borel o-field on E.

e B(E, E'), C(E,E') denote the spaces of measurable, respectively, continuous func-
tions from E into E .

e D(I,E') is the space of cadlag functions from I into E .

The lower index b, respectively ¢, always refers to the subclass of bounded functions,
respectively functions having compact support. ||.||e is the usual supremum norm.

o CX(R!, R, ) represents the elements of C.(R!, Ry ) having derivatives of any order.

o Cbl’2 (I xR, R, ) is the class of C(I x R', R, )-functions having continuous, bounded
first time- and second space-derivatives.



e BI([0,00) x R",R;) consists of the B,([0,00) x R, Ry )-elements with support in
[0,7] x RL.

Moreover,
e M(R!) is the space of (positive) measures on B(R!).
e M (R') is the space of finite measures on B(R') equipped with the weak topology.

B(z,r)=(z—r,z+71), z€R,r>0.

p denotes the heat kernel in R!, defined via

1 _@-p?
pt(w,y)=\/ﬁe 2, (t,z) € (0,00) x R,

(St)t>0 stands for the corresponding (heat) semigroup, induced by

Se@) = [ plo)b)dy, > 0.0 €L € By(R R ).

For n € M(Rl) and proper functions ¢ and 1 on R!, we define

d Sﬂ? fRI pt z y) (dy)7 t> 0,.’E € Rla

= Jg1 ¥(z)n(dz), = Jr1 &( z)dz,

e supp(n) as the support of 7, i.e. as the smallest closed set F € B(R') satisfying
n(A) = 0 for every A € B(R!) with ANF = 0.

Let ¢ always refer to a finite positive constant which may vary from place to place. Possible
subscripts of ¢ stress the dependence of ¢ on these subscripts.

For a stochastic process Y = (Y; : t > 0) on a measurable space (22, F), (F} )i>o is the
augmented filtration in F induced by Y.

Stochastic integration in infinite dimension will be done in Walsh’s framework, see
[Wal86], where integrators are worthy martingale measures. We denote the quadratic
variation measure - cf. page 291 and Corollary 2.8 of [Wal86] - of an orthogonal martingale
measure M by (M)(dzdt) and the stochastic integral, with integration domain B x (0, ],
of a proper f against M by f; Jg f(r,y)dMy, or f e M(B x (0,t]).

2.2 The catalyst

Consider a deterministic continuous kernel ¢ from [0, 00) into M(R!), i.e. g(dz) is an
element of M(R!) for every ¢ € [0,00) and ¢ — (g, 7)) a continuous function on [0, co) for
every 9 € C,(R',R,). Assume that for each compact time set I there is a constant ¢ > 0
such that

sup 0(B(z,1)) <c, (2.6)
(t,z)el xR

then o is said to be an admissible catalyst.



As already mentioned, if an admissible catalyst induces a jointly continuous space-time
density for the reactant, then we go to call it a moderate catalyst.

Moderation condition (M). An admissible catalyst o is said to satisfy condition (M),
if there is an o € (0, 1] such that for each compact set I C [0,00) there is a constant ¢ > 0
fulfilling

sup  oi(B(z,r)) <cr® re(01]
(t,x)el xR

For further considerations we also introduce the following, a bit weaker condition.

Condition (M'). An admissible catalyst g is said to satisfy condition (M'), if there is a
continuous, non-decreasing function h : [0,00) — [0,00) satisfying h(0) = 0 and

/lh(r)dr < 00, (2.7)
0

r

such that for each compact set I C [0,00) there is a constant ¢ > 0 fulfilling

sup  o(B(z,7)) <ch(r), re(0,1]. (2.8)
(t,z)eIxR!

Note that h(r) = cr® trivially fulfills (2.7) whenever a € (0,1] and cannot occur
in (2.8) whenever @ > 1. The latter statement is justified since ”the Lebesgue measure
carries locally the smallest mass”, see the next lemma.

Lemma 2.1 Let g(dz) € M(R') be non-trivial and assume sup,cg: o(B(z,7)) < ¢ h(r),
r € (0,1], for some continuous , non-decreasing function h : [0,00) — [0, 00) with h(0) = 0.
Then there ezists a constant ¢ > 0 such that r < c h(r), r € (0,1].

Proof By the non-triviality there are z € R' and ¢ > 0 with o(B(x,1)) > e. The ball

B(z,1) can be covered by an unification of n balls (n — 1 < % < n) with radius r for

r € (0,1]. Thus, e < o(B(z,1)) < cZc h(r) and so r < &h(r) for all r € (0,1]. O
We conclude this section with an essential remark.

Remark 2.2 According to Lemma A.1 from the Appendiz, (2.8) is equivalent to

)2
o L et <cnvn). re.l (2.9)
,£)EIXR!

In terms of (2.8), (M) and (M') are comprehensible conditions that can be checked rela-
tively easily for special catalysts. But in terms of (2.9), (M) and (M') provide convenient

tools to work with. Indeed, in all proofs of results based on (M) or (M') we shall use the
latters in terms of (2.9).



2.3 The reactant

Let p be an admissible catalyst. Then, according to Theorem 4.1 of [EP94] or Proposition
6 of [DF97], the collision local time L(g , - introduced in (1.2) - exists as an admissible
branching functional (cf. p.49 of [Dyn94]). Hence, by Theorem 3.4.1 of [Dyn94] and
the moment formula in Proposition 6(b) of [DF97], there is an M (R')-valued (time-
inhomogeneous) Markov process X = [X,Q, F, P2, :s>0,n € M f(]R1 )] whose transition
probabilities are uniquely determined by the Laplace functional

E, [e—o’ct,w)] = MU e CL(RE,R, ), (2.10)

where (Ust(2]h) : 0 < s < t,z € R!) is the unique non-negative solution to the integral
equation

w(s,t,2) = Se_sth(z) — » / / Pr—s 1, 2)u2 (r, 1, 9) v (dy) dr, (2.11)

i.e. heuristically to the formal backward cumulant equation

{ —Osu(s,t,z) = %Au(s,t,Z)—%”%Zy)(Z)” ?(s,t,2) } (2.12)
u(t,t,.) = ()

X is called catalytic SBM with catalyst p. Set P2 := Pg,n and note that P$, represents
the law of the catalytic SBM starting at time s with initial state n € M F(RY). According
to Section 3.4 of [DF97], X; has a continuous modification w.r.t. the weak topology.

Remark 2.3 (random catalysts) It is a natural desire to deal with random catalysts.
An elegant way to do so is the so-called quenched approach: first one samples the whole
catalyst process, then the reactant is run over. A rigorous treatment can be found in
[DF91], Section 2.5.

In the remainder of this section we pose some properties of X. We start with a formula
for the moments.

Proposition 2.4 (moments) For allt >0, n € M;(R'), ¢ € By(R',R}) and m > 1,
m m—l—k

E? [(X4,4)™"] = Z Z H {(n, xn; (0

k=1 Ny, ong>1
n1+ +nk—m

where the xn(.,.) = Xn(-,.[t,9¥), n > 1, are defined recursively as follows
x1(8,2) = 1y9,4(8)Si—s1(2)
Xn(8,2) = =3 J; Jor Pr—s(y, 2 )(E?;f Xj(r,y)xn—j(r,y))gr(dy)dr,

n > 2, for all (s,z) € [0,00) x RL.



Particularly we have
E% [(Xta,(/))] <77aSt’(/)>

B (X, 0)2] = (1, Si)? / / pe (9, ) (Str$)? W)y (dy)dr). (213

Proof of Proposition 2.4 Consider t > 0, 1 € By(R', R, ) and the Taylor expansion of
a— Upys(zlap) at a =0

2

Uos(2100) = 0+ -2 U()t(z\mp)‘ o+ L9

]' 2

It is only technical work to prove (inductively) that the r.h.s. of (2.14) is nothing but
E’Zo:]_ Xn(oa Z)en With

Xl(S,Z) = 1[0,t](3)5t75¢(z)
Xn(8,2) = _% fsoo le Pr—s(y, 2) ( Z?:_ll X4 (T Y)Xn—j (T y)) or(dy)dr,

n > 2, (s,z) € [0,00) x R'. Using the (non-trivial) estimates b, < c¢?"4" for the terms of
the sequence (by)p>1 (b1 == by := ¢ > 0, by, := E]—l cbjb,—_j, n > 3) it can be shown,
again by induction, that > -7 ; x»(0,2)0" is absolutely dommated by >0 | ¢} 6™ for some
positive constant ¢; depending on ¢. Hence, the serie ) >° ; X (0, 2)0™ converges absolutely
for sufficiently small # > 0. As the last step, once more by induction, one verifies

o -y >
Sm En |© o o] \9:0 =Ef, [(Xi, )]
and
om om o n
g f<n,Uo,t<-|aw)>‘ - (1,52 Xn (0,0 >‘
apm =0 ( aame 9= 0)
m+k
= m! Z > H 7, Xn: (0
..... ngp>1
Ryt
for m > 1, whereby the claim follows immediately from (2.10). O

Next we are going to characterize X as the unique solution to a martingale problem.
To do so, we first have to introduce the collision local time of the catalyst and the reactant.
Here the notion of collision local times is taken from [BEP91].

Proposition 2.5 (collision local time of catalyst and reactant) For n € M(R')
there ezists a random measure Lix ,(dzdt) on R! x [0,00) satisfying for all m > 1 and

f € Urso BE([OaOO) X RlaRF)

(i) t — fo Jrr f( x,g(dydr) is (FX)i>0-adapted



(it) fooo Jrr £ (2, w)L[X,g} (dzdt) = limeo fooo Jrt Jrr £t 2)pe(z, y)X:¢(dy)or(dz)dt, Pj-a.s.
(iii) Eg[fo le XQ dydr ] le fo le pr(z,y) f(r,y)or(dy)drn(dz).

Part (7i7) gives particularly

Eg[/ot /R1 fr, y)L[Xg](dydr)] < 00 vVt > 0. (2.15)

Proposition 2.5 was established in [DF01] (Theorem 3) for a special catalyst (90=ordinary
SBM). The proof for our case goes along the same lines with the obvious changes. See
also Proposition 5.1 of [Del96]. Let us now turn to the mentioned martingale problem.
Roelly ([RC86], Theorem 1.3) provided such a characterization for a class of super-Feller
diffusions first, in fact for the case of space-time homogeneous branching.

Proposition 2.6 (martingale problem) X is the unique solution to the martingale
problem (MP), which means that for each n € M;(R") the law P§ is the only one under
that

4
Mi() = (Kivth) = 0) = [ (X0 300000 + B )dr, ¢20

1§ a square-integrable, continuous (Ff?)tzo—martingale having

t
(M(w.))tZ/O ” $*(r,y) Lix g (dydr), >0

as its quadratic variation process for all 1 € C;’Z([O,oo) x RLR,).

An easy extension of Proposition 9.1 of [Del96] guarantees the solution property in
Proposition 2.6. The uniqueness can be established using Mytnik’s method of approx-
imate dual processes ([Myt98]). Actually, one can just mimic the proof of Proposition
3 of [FKX02]. As a consequence of Proposition 2.6 we can derive the following useful
representation for X.

Proposition 2.7 (Green’s function representation) For each n € M(R') there is
an orthogonal martingale measure M satisfying

(X0, ) = (1, Se) / / St p(y)dM,, PE-as. (2.16)

for allt >0, ¢ € By(R', R, ) and

(£o0)(R x(0,1]) <= /0 le2<r,y)<M><dydr)>

t
/0 /R 1 f2(r,y) g o (dydr)  P2-a.s. (2.17)

for allt >0, f € By([0,00) x RL, Ry).



Proof The class {(Mi(¥))i>0 : ¥ € CZ(R',R;)} of martingales from Proposition 2.6
extends to an orthogonal martingale measure, say M. Then,

t
M(f) :/0 /le(r, y)dM,, Pl-as. (2.18)

for all t > 0 and f € By([0,00) x R', R, ) satisfying

E? [/Ot /R1 f2(r, y)(M)(dydr)] <oo Vt>0. (2.19)

Consequently, by the form of the quadratic variation process of (M;(f))s>o0,

<foM>(lR{1 x (O,t]) - /0 t 8 f2(r,y)Lix , (dydr) PE-as.

for all t > 0 and mentioned f’s. Note that in (2.19) (M) can be replaced by L5 ,. But
then, according to (2.15), (2.19) is always satisfied.

In order to show (2.16), we proceed as in the proof of Theorem I-7 of [MRC88]. Let
¢ be from By(R',R;), t > 0 and set f(r,y) = St—r(y)1p,5(r). Then f belongs to
02’2([0,15] x R R, ). Hence we obtain from (MP) and (2.18)

t t
(X0 Se-a) = (1,508) + [ (X, 5880w+ 0.5 idr+ [ [ S vt)ant,,

P?-almost surely. But A is the generator of (S;), so the middle term of the r.h.s. vanishes
(note the reversed time r of S;_,), which gives the claim. O

3 Statement and discussion of main results

3.1 Main results

Here we are going to present our main results. The first theorem justifies the name of our
moderation condition (M) from Section 2.2.

Theorem 3.1 (space-time regular reactant) Let ¢ be an admissible catalyst satisfy-
ing (M) and n € My(R!). Then there ezists a random field X on (0,00) x R! having
a jointly continuous modification and being the density of X for almost all times, i.e.
Xi(dz) is absolutely continuous w.r.t. dr and has (X(z) : z € RY) as its dz-density for
dt-a.a. t > 0, P-almost surely. Particularly there exists a modification of X having the
continuous modification of X PP-a.s. as its space-time density. If the initial state n(dz)
has a continuous dz-density, then the statements extend to [0,00) x R!.

That means an admissible catalyst satisfying (M) is moderate. As a by-product of the
proof, see Section 4.1 below, we get estimates for the moduli of continuity of X.

10



Corollary 3.2 (moduli of continuity of X) Consider the continuous X from Theo-
rem 3.1, a from (M) and o € (0,/4) arbitrary. Then, for each compact sets I C [0, 00)
and A C R there exists a constant ¢ > 0 such that for all t,t € I and z,z € A,

’ ’ 1\ @o
Xt(av)—Xt:(x)‘ §c(|t—t|+|x—w|)

As a consequence of Theorem 3.1 and the martingale problem (MP) from Proposition
2.6 we get, as anticipated in section 1.2, a characterization of X as the unique solution to
equation (1.3). Uniqueness here means uniqueness in law.

Corollary 3.3 (spde for the reactant) The continuous random field X from Theorem
3.1 is the unique solution to spde (1.3), i.e. there is an orthogonal martingale measure W?
with quadratic variation measure (W2) (dzdt) = g¢(dz)dt - possibly on an enlargement of
(Q,F) - such that for arbitrary ty > 0,

t t
(1) = X ) + [ Krgaiyars [ [ v@yE@anz,  620)

for all t > to and ¢ € CP(R',Ry), Pl-almost surely. If the initial state n(dz) has a
continuous dx-density, then one can choose ty = 0.

The next theorem is the basis for a second characterization - cf. Corollary 3.5 below -
of the random field X from Theorem 3.1.

Theorem 3.4 Let o be an admissible catalyst satisfying (M'). Then we have

(i) (fundamental solutions to cumulant equation) For each v € M(R') there
is an unique non-negative solution (Usi(z|v) : 0 < s < t,z € R) to the integral
equation

t
u(s,t,z) = Si—sv(z) — %/ /Rl pr—s(y, 2)u?(r, t,y) or (dy)dr, (3.21)

i.e. heuristically to the formal cumulant equation (2.12) where the regular final state
u(t,t) = 9 is replaced by v(dx).

(ii) (continuity of fundamental solutions ) For each s > 0, (Usy(z|v) : s < t,z €
R, v € Mf(R")) is continuous in each of the variables t, z and v.

Corollary 3.5 (Laplace functional representation of X) The random field X from

Theorem 3.1 is the random element in C((0,00), C(R!,R,)), whose one-dimensional dis-
tributions are uniquely determined by the Laplace-functional

E¢ [e— i 0¢Xt<=w>] = ¢ (U0t (I Shoy b0, (dm))) (3.22)

fort>0,0,>0,z;,eR,1<i<kandk>1.
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3.2 Discussion

Conditions (M) and (M') as well as the restriction to dimension one are motivated by
heuristic arguments. Replacing the smooth test function ¢(.) in the second moment for-
mula (2.13) - note that (2.13) remains true for d > 2 - by the dirac-function é,(.), we are
dealing formally with the second moment of X; ‘s density at position z. Heuristically we
obtain

t xﬁyz
B @)~ [ [ e et (3.23)

Assuming d = 1 and (M) in terms of (2.9), the r.h.s. of (3.23) is finite for every ¢ € [0, 00)
and z € R!, which heuristically indicates a regular density. On the other hand, in higher
dimensions d > 2 the formal second density moment (3.23) blows up everywhere on the
catalyst’s support for every catalyst, whereby a search for moderate catalysts seems to be
not that promising.

In dimension one, finiteness of the formal second density moment (3.23) still holds
under condition (M’). So, maybe, a catalyst satisfying (M') could be already moderate.
This guess is somehow backed by Theorem 3.4 which establishes, under (M’), fundamental
solutions to cumulant equation (2.11) w.r.t. every zo € R!, i.e. a solution to equation
(3.21) with v(dz) = 64, (dz) for every zo € R'. Having fundamental solutions w.r.t. only
dz-a.a. o € R' is already sufficient to get absolutely continuous reactant states; cf.
[DFR91], [Kle00a]. In fact, the absolute continuity is only ensured a.s. for fixed times.
However, the strong regularity of the fundamental solutions, see part (i7) of Theorem 3.4,
feeds the hope for an a.s.-existence of a regular space-time Lebesgue density.

4 Proofs of main results

4.1 Proof of Theorem 3.1

Let o be an admissible catalyst satisfying (M) and X the corresponding catalytic SBM
starting with initial state n € M ;(R'). We first pose the strategy of the proof. The same
approach as used by Konno and Shiga to prove Theorem 1.4 of [KS88] is chosen.

For each € > 0 and T' > 0 let X¢ be a smoothed version of X, given by Xf(z,w) =
(Xy(w),pe(,.)), and X7 its support restricted version, defined via X©(z,w) =
10,71 () X{(7,w) for all z € R, ¢t > 0 and w € Q. By the weak continuity of X;
in ¢, X¢ is clearly continuous in (¢,z) and hence predictable. Furthermore, for some
B > 0, set L% = L*(Q x R' x [0,00),P2(dw) e Pl*ldz tdt) and denote the norm
(Jo° Jri ERLS2(E, )] e~Al2ldz tPdt)'/2 by ||f]l2,5- Then the proof goes along the follow-
ing lines which will be made rigorous below.

(a) X7 € L for all € > 0 and T' > 0.

(b) (XT)0 is a Cauchy sequence in the Banach space L% for all T > 0.

(c) There exists a predictable X : [0,00) x R x @ — R, satisfying for all T > 0,
XT ¢ L% and || XT — XT||g,5 — 0 as € | 0, where X[ (z,w) := 110,71 (t) X¢(z, w).

12



(d) Xi(dz) = Xi(z)dz for dt-a.a. t > 0, Pl-a.s.
(e) X has a jointly continuous modification on (0, 00) x R!.
Proof of (a) Consider ¢ € [0,T], z € R' and € > 0. Then, using (2.13), we have
Ef [X{(2)’]
= (1 Sl /R s /R pe(20) (St-eel, ) W)er(dy)dr n(d2)

_ = y)
< S d (dy)dr
< \/H—e/Rle ( dz / /R1 / ( Z))pt re(2,y)er (dy)

which, according to (M) and Remark 2.2, can be estimated by

]. t 1/2 1 _(m_y)z
—cr + CT/ r 2t —r 4 e)” / e~ i=rte o (dy)dr

<icr+er fgr_l/Q(t —r+e) 7t —r +€)*2dr < Sor.

Thus, || X¢||2, < oo implying X€ € L%. O

Proof of (b) Again t € [0,T] and z € R'. Let ¢,¢ > 0 be small. Proceeding as in the
proof of (a) and using inequality (A.43) we get

Bf [(X;(2) - X (2))?]
S(/ (Ptre(w,2) —pypo (T z))n(dz))2 (4.24)
///p’ S”(pﬁ( )= Pe'(wa-)))Z(y)gr(dy)drn(dz)
R! R1
1

2
<qde=di e[ [ T beridan) = pi o) ol

Splitting the time-integral, the second summand on the r.h.s. of (4.24) has the bound

1 |6—6’| 1 t
- _d —r+elT, — ’ , 2 r d d
tc (/0 NG T+/€—6I Rl(pt +e(z,9) y LT (z,9))"0r(dy) 7")

which, according to Lemma A.2, can be estimated by c(v/le — €|+ e — \a/ 2). Hence,
|X€— X |log — 0, €€ l0
and thus, (X€) is Cauchy in L%. O

Proof of (c) Let (7,),>1 be an increasing sequence with T,, — oo as n — oco. Then,
by (a), (b) and the completeness of (Lﬁ, |.|l2,5), there exists (XTn),>1 C Lﬁ satisfying

13



| X6Tn — XTr|lg5 — 0 as e | 0 and [ X Tn — XTn| — 0 PP (dw)dztPdt-a.e. as e, | 0 for
some (e,) C (€), Vn > 1. W.Lo.g. (€,) C (én—1), Vn > 1. Note that X" agrees with
XTe PP (dw)drtPdt-a.e. on Q x [Ty, Ty] x [0,Ty] for all k = 1,...,n — 1, ¥n > 1. One
can construct a P§(dw)drt’dt-null set N and a sequence (£) such that X”» = X7k on
(2 x [Tk, Tg] X [0,T]) " N€ for all k = 1,...,n — 1 and (€) C (e,), Yn > 1. Then it is
not hard to show that X;(z,w) :=

X[ (,w) (= Tlimeo X (2,0)) o (8,3,0) € [[0,0] X [~ T, Ta] x 9] NN
0 , (t,z,w)EN
(t,z,w) € [0,00) x R} x €, provides the wanted X. O
Proof of (d) Let X be the function from (c). For each € > 0 and 9 € C.(R!,R,),

E2 [[(X¢,9) — (X, %) "] (4.25)
< B (X, 00) — (X5, ) °] + cBE [(Xf, %) — (X, 9)[]

< B [[(X ) — Scp)?] + B [/R V2 () d /R (X§(2) — X (2))2dz| .

The first summand on the r.h.s. of (4.25) converges to 0 as € | 0 by dominated convergence.
The second summand can be bounded by

e /R B [(X(2) — Xi(@))?] do

and so, by (c), tends to 0 as € | 0 for dt-a.a. ¢ > 0. Hence, the Lh.s. of (4.25) equals 0
yielding ~
P% [(Xt71p> = <Xt71p>] =1
for dt-a.a. t > 0. But from here, using standard arguments, one easily derives
P [Xy(dz) = Xy(z)dx for dt-a.a. t > 0] =1,

which was the claim. O

Proof of (e) First of all we state a lemma whose proof is postponed to the end of this
section. Recall that o satisfies (M).

Lemma 4.1 Considerm > 1 and0 <ty <T. Then, for (t,z) € [to, T]XR! and e € (0,1],
E? [(Xt, pe(, )™] < Cmyto,1-

For each ¢y > 0, the Green’s function representation from Proposition 2.7 and (d)
yield

to
(KiosSt-108) = 0 SSeaot) + [ [ S oS sgbliMy,  (426)
0
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and

R A (4.27)

PJ-almost surely for every ¢ > to and 9 € Cc(]R , Ry ). Inserting (4.26) in (4.27) leads to
t

(X19) = X Seaet) + [ [ St vty (4.28)
to

PZ-almost surely for every t > ty and 9 € C.(R!,R;). Using the stochastic Fubini
theorem, see e.g. [Wal86] p.296, we conclude from (4.28)

Xi(z) = Sp-to X1, (2 / / ptr(7,y)d My, (4.29)
to

P2-almost surely for every ¢t >ty and z € R.

Let us denote the second summand on the r.h.s of (4.29) by Z;(z). Clearly, the first
summand on the r.h.s of (4.29) is continuous in (¢,z) on (¢p,oc) x R!, P2-almost surely.
Assume Z = (Z;(x))t, has a continuous modification in (¢,z) on (tg,00) x R!, then the
same is true for X. Thus, in order to complete the proof, we only have to check the
existence of a jointly continuous modification of Z. It is of course enough to obtain a
continuous modification on [tg,T] x R for every T > t;. For this we establish some
moment estimates for space-time increments and conclude the desired modification by
exploiting Kolmogorov’s theorem.

Let w,w’ € R' and t,t’ € [to,T] be close together, w.lo.g. ¢ < t and set py = 0 for
u < 0. Then, using the Burkholder-Davis-Gundy inequality applied to the martingale

U|_>// pt’rwy p—'r( ))dMy’l'" tsustla

recalling (2.17) in Proposition 2.7 and using (i7) of Proposition 2.5, we estimate

!

E¢ “Zt(w) — Z,(5)

2m] (4.30)

/t:’ /Rl (pt—r(x,y) —py_ (z ,y)) M, .

< cmEf (/tt /Rl (pt_r(w,y)—p,yT(w',y))gL[x,g}(dydT)) ]
= cnB (léfél [ L] o) =) petwo r(dz)mdy)dr) ]

% = 1), this can be bounded by
1

</to /Rl Pi—r(2,y) —py _, (2 ,y)) Qr(dy)d> x

lim inf/t: /IRl (pt_r(w,y) —ptfir(x’,y))gEfl [(Xr,pe(y,-))™] or(dy)dr

el0

Applying Fatou’s lemma and Holder’s inequality (mT +
m—
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and so, using Lemma 4.1 and Lemma A.2, by

Cto,T;m ( /t : /R . (pt—r(xay) —11%'_7«(3??',?4))2 Qr(dy)dr>m

’ ' m
< ciorn (1t =192 + |z = 2 |%)

Now, for m sufficiently large, an application of Kolmogorov’s theorem - see e.g. [Wal86],
Corollary 1.2 - provides the wanted continuous modification of Z, whose moduli of conti-
nuity can be estimated as in Corollary 3.2. Assertion (e) is proved. O

Note that the moduli of continuity of the first summand on the r.h.s. of (4.29) are
dominated as in Corollary 3.2 as well. Indeed, it is not hard to check that for each compact
sets I C (tg,00) and A C R! there exists a constant ¢ > 0 such that for all ¢,¢ € I and
T,7 € A,

7 i ! 1/2
St 10Xt (%) = Sy _y Xio (3 )\ <e¢ (|t |tz - |) .

The desired modification of X can be derived easily from the continuous modification of
X, the proof of the statement involving an n with a continuous dz-density goes along the
same lines with the obvious changes. We only have to verify the above lemma, yet.

Proof of Lemma 4.1 Consider (¢,) € [to,T] x R'. By Proposition 2.4,

m m—|—lc

B2 [(X4,pe(x,))™] = Z > H s Xni (0 (4.31)

k=1 Y seees "k>1
ny+-- +nk =m
where x1(s,2) = 1jo,q(8)Pt—s+e(,2) and xn(-,.), n > 2, is as in Proposition 2.4. We shall
show that |xy,(s,2)|, for (s,z) € [0,#] x R' and n > 1, has the bound

(z=2)2

ECU YD) (4.32)

Vi—s+e

for some K, > 0. Then the claim follows immediately from (4.31).
We proceed by induction. In case n = 1, the bound (4.32) holds trivially. For n > 2
we have

<z [ [ pr_s<y,z)(§ s, w4, er ().

According to the induction assumption the r.h.s. is dominated by

a2

t 2
1 _(=2) c Cn—jT
c e 2(r—s) T Kj(tfr-t—e) n—J, Ky _j(t—r+e) dv)dr
/S/Rl JVr—s Z\/t—r+6 Ji—rte or(dy)
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and so, for suitable K, K,,, K, > 0, by

_(z—2)" z)2 1 (I‘I!_Z)2 _ ’(’T»—y)Q
Cn TE T Kp(t—s+te) /1 e EKn(r-s)e Kp(t—rte) oy (dy)d:r
R

\/r—st—r—Fe

s+(t—s+e)/

Splitting the time-integral in [} 24 fs+ t—ste)/2 and using (M), the latter can be
bounded by (4.32) and we are done. O

4.2 Proof of Corollary 3.3

Let X be the continuous modification from Theorem 3.1, M the martingale measure from
Proposition 2.7 and (My(%))s>0 the martingales from (MP).

To show the solution property we proceed as in the proof of Lemma 2.4 of [KS88].
Pick an orthogonal martingale measure W¢ being independent of M and having quadratic
variation measure (W@)(dzdt) = g;(dx)dt, if necessary on an enlargement of X’s domain
(92, F). Set for all p € CX(RY, Ry ) and t > tg

. .
fto fRI er (y)#0 md yr T fto le w(y)er(y)=0dW35),r-
Then, using L5 ;(dzdt) = Xi(z)oi(dz)dt, which holds by the continuity of X, it is easy

to verify that W provides an orthogonal martingale measure with (W¢)(dzdt) = o(dx)dt

and satisfying
t
= [ [ vovEmar
0

P2-almost surely for every t > to and 9 € C®°(R!, Ry ). Now it follows immediately from
the martingale problem (MP) in Proposition 2.6 that (3.20) holds for a.a. ¢ and 1, P?-
almost surely. Since X is continuous, (3.20) even holds for all ¢ and 9, P3-almost surely.
The predictability of X and (implicitly) Lemma 4.1 guarantee that the involved stochas-
tic integrals are well-defined, i.e. the integrands belong to the usual class of admissible
integrands w.r.t. their integrators. The weak uniqueness carries over from the one for the
martingale problem. Indeed, let (X, W?) be a weak solution to equation (1.3). Then,

.I;f f]Rl v dWyﬂ' - Xt? ) Xtoaq:b _I;/ ~’r‘a2 d?"

provides a square-integrable martingale with quadratic variation process
(M) = [ [aa %2 () X (y) (W) (dydr)
= j;to le wz(y))?r (y)Qr(dy)dr = ‘];) le ¢2 (y)L[):(,g] (dyd'r)

where )?t(d:v) := Xy(z)dz. Thus, the law of X (=~ law of X) solves (MP) and is hence
unique.
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4.3 Proof of Theorem 3.4

Proof of (i) According to Proposition 1.2 of [KleOOa] and the moment formula in Propo-
sition 6(b) of [DF97], one only has to check for each ¢ > s that z — S;_,v(z) is bounded
for every r € [s,t) and that for dz-a.a. T € R},

t
[ [ peste S wlerdy)ir < . (4.33)

The first task is easy, for the second one note that - even for all z € R - the Lh.s. of
(4.33) can be estimated, with help of (M') and Holder’s inequality, by

e / () (d2) o)

_=p?
< 2(t—r)
B / \/mt — ’r‘ /Rl /Rl or dy) (dz)dT
< / h(\/t —r)dr < oo.
r—st

Proof of (ii) First of all note that, by Lemma 2.1, there is a constant ¢ > 0 such that
r < c h(r) for all 7 € (0,1]. Let us show continuity in z. Fix v € M;(R') and 0 < s < .
Then, by (3.21),

Usi(2lv) — Usy(# |1/)‘ (4.34)

‘StfsV z) — Sy sv(z pr s(y, 2 pr,s(y,z)> Uv?,t(yw)gr(dy)dr

The first term on the r.h.s. of (4.34) tends to 0 as |z — z'| — 0 since ¢t > s. The second
term on the r.h.s. of (4.34) - note U, (y|v) < S¢—rv(y) - is dominated by

_w=)? (2>
e 20r-s) — e 2(r—s)
R! VT — S

1
< cui— /
S Ct-s \ s Jp

e
' +(t— s/Qt—T Rl JR!

y| -2’
e s

1 < a)2
/ e "= u(da) gy (dy)dr
RI

t—r

w22 _@=:)?
e 2(r—s) —e 20r—s)

or(dy)dr

w-2% (y—z')2

_ _(@=a)®
e 20r—-s) —e 2(r—s)

= g (dy)v(da)dr

AN

s+(t—s)/2
Cyt— 5/5 ,—‘7‘—8 -

t 1 . _w-2? _@-a)?
- / o 2|17 — yle S o~ L () vda)ar.
st(t—s)/2 t— T Jr1 JR

where for the second inequality the mean value theorem for differentials was used and z
belongs to [z,z], when w.l.o.g. z < z". The first of the latter two summands converges
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to 0 as |z — 2’| — 0 by (M’) and (#ii) of Lemma A.1. Using the elementary inequality
z/ e®’ < ¢, z > 0, the second summand can be bounded by

.ot
Ct—slz — 7 | /
s+(t—s)/

which, by (M), converges to 0 as well whenever |z—2z'| — 0. Thus, Uy 4(2|v) is continuous
in z.

We now prove contlnulty in v on M f(Rl) and in t on [tg,T] for every s < tg < T, i.e.
on (s,00). Consider v,v € Mf(]Rl) and t,t € [ty, T], w.l.o.g. t <t . Furthermore, choose
1 € (8 to] arbitrarily and set h(r) = fJ ih )du. Note that h(r) — 0 as r | 0. We first
verify the following lemma.

(y—a)2

=7 or(dy)v(da)dr

c/2(r — s)e

R! JR?

Lemma 4.2 The following inequality holds true,

102
Usalv) = Uy (1) (4.35)

!

< ch,T,y,,,,{Hst_suc)—stf_su Ol +

ot
FRO =07+ [ T3 Ut ) = Upp o ()t}

Proof We intend an application of Gronwall’s lemma. By (3.21), for 7 € [t1,1], z € R!,

t
Su-s0() = Sy O du

, 2
ST—SV(Z) - STfs+|t7t'\V (2:)‘

( /t ;_T /R Pr—(ts—n) (¥, 2) (Uf,t' (ylv') - U,?,t(y|1/)) gr(dy)dr)2 (4.36)

tl 2
( [/ pr(mT)<y,z)U3,t,<y|u’)gr<dy)dr) }
t R!

According to U, 4(y|lv) < S;_,v(y), the last summand on the r.h.s. of (4.36) can be

estimated by )
(/ [ s, )()mdy)d) .

Using (M) and #; > s one easily bounds the latter term by ctl,T’V:iL( |t —t'])%. By
Upri(ylv) < Si—rv(y), (M) and t; > s, the second term on the r.h.s. of (4.36) is dominated
by

{ /t i /R Pr—(t+s-) (¥, 2) (st,_ru’ (y) + St_ru(y)) o (@)U, () - Ur,t(.|l/)||oodr}2

;12
[Oetsmrtel) = Uy el < {
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t+(s—71)/2 — _ ,
et [ I Dy () - Ol (03T
1,V, t+s—T ’]"—(t‘l"s_T) ’

Note that h(y/u)/+/u increases as u | 0 and assume w.l.o.g. h(0+¢€) > 0 for all € > 0.
Then Holder’s inequality and a substitution w = ¢t + s — r bound the r.h.s. of (4.37) by

+

+/t - (h(\/m) + h(\/t—T)>||Ur,t1(.|l/l) — Ur,t(-|V)||ood’l"} _

s—

5 —(t+s—7)* 121 [ I v
| [ [T MmO ) ) - 0, ()]
LV t+s—1 t | "

r—(t+s—7) bor

2
+ / M=) 4 )M / h(@)nw,mw—Ur,tf<.\u’>||2odr]”2}

-r t—r -
+55" +55"

IN

t
it [ BT ) = U, (1) et
t+s—7
it [ VT UrtamaaClo) = Uy (e (039

Altogether, using the bound for the Lh.s. of (4.36) that was just established,

2
7
[T rtc0) = Oy (1D

’ 2 ~ / E
S CtlaTﬂ/aV’{ ‘ ST_SV(') - S’T—S-Ht—t’|1/ () HOO + h( |t -t |)2

t1 ,
[ BVt C) =~ Uy ()t}
S

T
N2
e T / Wits g C0) = Upyy e (1) 20ds
1
Now Gronwall’s lemma, applied to
7= Ut (V) = Upyg o ()2, 7 € [t1, 2],

gives

L112
([ e A

< o

t1 ,
Fh(\IE=tD?+ [ (V= 8)[Usps—ut (V) = Upyy oy (v )||c2>odu}

S

o0

' 2 T , B
S = Sy e O+ /t 1Su-s() = Sy sy e Ol €T D
1

for all T € [t1,t] where ¢ = ¢, 1, /. Setting 7 := ¢ we reach (4.35). O
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In order to complete the proof of (i), we only have to show that the r.h.s. of (4.35)
converges to 0 as t — ¢ and v — v/. The first and the second summand on the r.h.s.
of (4.35) converges to 0 since t; > s, and the third summand anyway. Hence, it remains
to prove that the last summand on the r.h.s. of (4.35), which is henceforth denoted by
a(t,t v,V |t;), tends to 0 as t — ¢ and v — v'. As in the proof of Lemma 4.2 one can
bound a(t,t’,u, 1/’|t1) by

t1 ~
c / VT =Su-sv() — Sugye Oldu + erh(y[1t—¢1)?
b /tlh(\/m)

t
/ / Dot (42 9) (Str(y) + Sy _v (4))r(dy)
t+s—u JR!
f 2
x| Ure(v) = U,y (v )||OodrHoodu. (4.39)

The second summand in (4.39) obviously tends to 0 as ¢ — t, v — v and the first
summand, too. Indeed, the latter can be estimated by

t1
¢ [ h(Vu—s)|[Su—sv(.) = Susv ()||2du (4.40)

S
t1

+ o BVu=8)|1Su-sv () =Sy oy p ()odu.

S

The first summand in (4.40) is bounded by

2

c/:l 1 W= 3)|w1) — 1) du

u—=S

which, recalling (M’), tends to 0 whenever v and v approach each other w.r.t. the weak
topology. Using inequality (A.43), the second summand in (4.40) can be estimated by

¢ /tls h(\/ﬂ)idu
" Jo u(u+ [t —t'])

=1 It —1| C A=) 1 1
<ec, —h(yu)————Fdu+c |t —1t 7/ —=du.
- "/0 u (\/_)u+|t—t| v | [t—1] Ji—¢| ud?

But the two summands of the latter estimate converge to 0 as [t — t'| — 0; the first one
since it has the bound ¢, h(1/[t —t'|), the second one because it can be bounded by

cu',Th( \% |t - t,‘)

Let b(t,t ,v,v'|[t1) denote the sum of the first two summands in (4.39). Then, as just
established, ’ ’ / /
b(t,t ,v,v|t1) — 0 ast—t,v—v. (4.41)

Assume there was a t; € (s,tg] such that the last summand in (4.39) is dominated by
La(t,t ,v,V'|t1). Then we had

! 7 ! ! 1 7 7
0 <a(t,t,v,v|t1) <bt,t,v,v|t1) + §a(t,t v [t)
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and so, by (4.41), a(t,t ,v,v'[t;) = 0ast — ¢ and v — v/, yielding the claim.

We conclude the proof with establishing, for ¢; sufficiently close to s, the bound
La(t,t,v,V'|t1) for the last summand in (4.39). Similar to obtaining the bound (4.38)
for the Lh.s. of (4.37), the last summand on the r.h.s. of (4.39) can be estimated by

t1 t ,
cro | Ha—5)— / WVE= D) Unt(0) = Uy g (1) Budrdu.  (4.42)

s U—S8 Jits—u

Here the factor ﬁ occurs additionally since the lower bound of the domain of the inner

integral can reach ¢. (4.42) is trivially dominated by

h(vu — s)du

! : o
Crawr [ MERUn0) = U () tr [
S

+s—t1 $

and so, substituting v = ¢ + s — r and recalling (M’), by
t1 , ~
ru [ BV Urtsmaa ) = Uy Lo BVE=3)
S

= CT,I/,I/’ G/(t,t’,l/, Vlltl) B(\/ t1 — 8).

Choosing t; sufficiently close to s, the latter can be bounded by %a(t,t',u, V' |t1). We are
done.

4.4 Proof of Corollary 3.5
Of course, the only thing to check is relation (3.22). By the continuity of X,

E¢ 6*25:1 0:Xe(zi) | — lim K2 e*Zle 0i(Xt,pe(wi,.))
s,n El/o s"n .

According to Theorem 3.1, (2.10) and Theorem 3.4 (4i), the equation continues

— lim e~ (MUst (| The 0ipe(20,))) — o= (mUs.t (| They 9502, (d)))
€l0

A Appendix
Here we are going to establish two useful lemmas.

Lemma A.1 Let o(dy) be from M(R') with sup,cg: 0(B(z,1)) < oo, z € R! and h :
[0,00) = [0,00) a continuous, non-decreasing function satisfying h(0)=0 and [, %h(r)dr <
0o. Consider,

(z—y)*

(i) Jgie 7 oldy) <ch(yr), re(0,1]
(i) o(B(z,7)) <c h(r), re(0,1]
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(i) fu o —yle ST o(dy) < e v (W), 7€ (0,1

(&=

(iv) fy 2=y o(dy) < v h(VF), 1 e (0,1]
(v) [p(zn) 2 —yl~*o(dy) < cc.
Then, (i) & (i1) = (4i1), (iv). In case h(r) =cr®, a € (0,1], (v) = (i1).

Note that by Lemma 2.1 there is a constant ¢ > 0 such that r < ¢ h(r) for all r € (0, 1].
Proof (i)=(ii) Assuming (7) we trivially get for r € (0, 1]
(2=y)?

¢ o(Bla ) = [y Weldn) < [ e o) < ¢ b,

R1

(ii)=(i) One easily calculates

@-p)? o0 _ =)’ ! Li1/2
/e 2 oldy) = / oy : e > updu = / o(B(z, (rlog -)"/2))du.
R 0 0 u

Substituting s = log% and applying (ii), we get for r € (0,1]

e etan) = [ e et vanyas

1 (o)
< / ch(\/;)ds—l—/ e ’cy/srds < ch(\r)+c/r < ¢ h(VT).
0 1

(ii)=(iv) The integral in (iv) equals

00 (2—y)? r/e a2 a2
/ oy lo—yPe Zu)du:/ oy U5 5 Mg
0 0

T T

According to the elementary inequality 22" < 2e %, z > 0, the latter term is bounded

by
r/e o=yl oy
/ Q(y 126 V7> —>du
0 T

rle r/e
< / Q(y:ﬁlog%zlw—yl)du =/ Q(B(w,ﬁlogﬁ))dw
0 u 0 u

Substituting s = /7 log %’" and recalling r < ¢ h(r), the inequality continues for r € (0, 1]

o8} 1 o
< / o(B(x,5))2vre”*VTds < 2v/r / ¢ h(s)e=*/V7ds + 2y/r / e se=3IV s
2T 2y 1

1 h(s) 00
—s/\/T 3/2 —a
cV/Th(2+/T) /2\/77 eNG) e ds+cr /1 e %ada

1 o0
c\/Th(\/r) / c%e’s/ﬁds +er’? < ¢ h(\/?")r/ ae da + c r3/?
oy 2VT 0

ch(\/r)r+cr®? < &r h(\r).

AN

AN

AN
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(ii)=(iii) Can be proved analogously to (ii) = (iv).
(v)=-(ii) One easily estimates for r € (0, 1]

¢> / & — y|~o(dy) > / o o(dy) = 1" o(B(z, 1))
B(z,1) B(z,r)

proving the claim. O

Before turning to the next lemma we recall an useful inequality, cf. e.g. (1) of [Del96].
For each € > 0,0 <t < ¢ and z,y € R!,

!

t
1
(o) ~p(el <o [ Lpsoulov)du (A.43)
t

Lemma A.2 Let h be as in Lemma A.1, o = (o(dy) : t > 0) a measurable kernel from
[0,00) into M(RY) fulfilling (2.6) and I a compact time set. Assume (gi(dy) : t € I)
satisfies (i) of Lemma A.1 uniformly for all z € R'. Then for all (t,z),(t,z) € I x R!
with [t—t| <1, |z —2'| <1 and w.lo.g t<t,

/Ot /R (perle) vy, (@ 0) orld)dr < cr (Al ) +hlle — o)) (A44)

where h(u) := IS %h(s)ds, u>0, and py =0, u <0.

Note that h(u) = cu® whenever h(u) = u®, a € (0,1], and that Jo th(y/s)ds = 2h( /).
Proof The Lh.s. of (A.44) is bounded by

/ / Py —py_,(z, y))QQT(dy)dT (A.45)
RL

// Py _p(T,Y) — Pt—r(7,Y) Qrdyerr/ /pt z,y)or (dy)dr.

The last term in (A.45) can be rewritten as

=1 q (@)
c/ —/ e” v o—r(dy)dr
0 T JRr!

which, by the assumptions, is dominated by crh(y/|t — t]).
The middle term in (A.45) equals

/0 o /R 1 (pt',r(w,y) —pt—r(w,y))29r(dy)dr (A.46)

/tt|tt, /Rl (pt’—r(l‘,y) _pt—r(ﬁc,y))QQT(dy)dr_
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The second summand in (A.46) can be estimated by

t 2
1 / _(z=y)
G
/t—t—t'| t—r1 Jr '

1 7(@'711)2 1 (z—y)?
+ ; /]R1 e t-r Qr(dy) + /IRI e 2@-r) Q,,,(dy))d'r

t —r t—r

and so, using the assumptions, by C]il( |t —t'|). Let € > 0, then inequality (A.43) bounds
the first summand in (A.46) by

t—|t—t | t—rq 2
/ / / 2P+ (w,y)dU) or(dy)dr.
R! t—r

Again exploiting the assumption, this can be estimated by

t|t—t| f-r 1 __G- v)?
c/ / (/ — e 20+ —r>du) or(dy)dr
0 R! MNJi—r u’/?
t—|t—t'| t—r 4 2 Gy
c/ (/ 3—du) / e o -n o (dy)dr
0 t—r u3/? R!

r

¢ /0 s (=) 2 = =) ) erh(VE —r)r
t—|t—t'| It — 1| :
C]/O (—,h(\/t —r)dr

t—r)(t —r)

CR(VE—7) [
S = o S =

< erh(y/JIt=t) < erh(y/]t—t)).

Therefore, (A.46) is dominated by c;h(/|t —t']).
The first term in (A.45) is smaller than

IN

AN

IN

/

¢ 1 @ —p)? _e=p)?
c/ ,—/ (e t—r e {-r )QT(dy)dr (A.A47)
t —|g—a' |2 t —7 Jr

t—fo—a'> L@ w2
+ c/ ; / (e t—r —e t-r ) or(dy)dr.
0 t —r R

Using the assumptions, the first summand in (A.47) can be bounded immediately by
crh(|z — z'|). According to the mean value theorem for differentials, the second summand
in (A.47) has the bound

, 2z —y| _@-»?\2
/| . /R (i ' Yl - ) o _, (dy)dr (A.48)
r—x
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for some Z between z and z'. Then, by Lemma A.1 (i) = (iv), (A.48) is dominated by

!

t 7 ¢
' 1 roh(v/ |z — 2'|?) 1
crle —x |2/ — 1 h(\r)dr < ¢z —z |" ——=+ —=dr
|z—z'|2 73 \/ |£II - |2 |e—z' |2 r3/2

<chlz—z|) < crh(lz—z)).
Altogether we have the desired bound for (A.45), i.e. for the Lh.s. of (A.44). O
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