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Abstract

We consider singularly perturbed di�erential systems whose degenerate

equations have an isolated but not simple solution. In that case, the standard

theory to establish a slow integral manifold near this solution does not work.

Applying scaling transformations and using the technique of gauge functions

we reduce the original singularly perturbed problem to a regularized one such

that the existence of slow integral manifolds can be established by means of

the standard theory of singular perturbations. We illustrate our method by

several examples.

1 Introduction

Singularly perturbed di�erential systems of the type

dx

dt
= f(x; y; t; ");

"
dy

dt
= g(x; y; t; ")

(1.1)

play an important role as mathematical models of numerous nonlinear phenomena

in biology, chemistry, control theory, and in other �elds (see, e.g., [4, 5, 7, 10, 15,

16, 17]). A usual approach in the qualitative study of (1.1) is to consider �rst the

degenerate system

dx

dt
= f(x; y; t; 0);

0 = g(x; y; t; 0)
(1.2)

and then to draw conclusions for the qualitative behavior of the full system (1.1)

for su�ciently small ". A special case of this approach is the quasi�steady state

assumption. A mathematical justi�cation of that method can be given by means

of the theory of integral manifolds for singularly perturbed systems (1.1) (see, e.g.,

[3, 13, 15]).

In order to recall a basic result of the geometric theory of singularly perturbed

systems we introduce the following notation and assumptions.
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Let Ii be the interval Ii := f" 2 R : 0 < " < "ig; where 0 <"i � 1; i = 0; 1; : : : :

(A1). f : Rm � Rn � R � I0 ! Rm; g : Rm � Rn � R � I0 ! Rn are su�ciently

smooth and uniformly bounded together with their derivatives.

(A2). There are some region G 2 Rm and a map h : G � R ! Rn of the same

smoothness as g such that

g(x; h(x; t); t; 0) � 0 8(x; t) 2 G�R:

(A3). The spectrum of the Jacobian matrix gy(x; h(x; t); t; 0) is uniformly separated

from the imaginary axis for all (x; t) 2 G�R:

Then the following result is valid (see, e.g., [3, 15]):

Proposition 1.1. Under the assumptions (A1)� (A3) there is a su�ciently small

positive "1, "1 � "0, such that for " 2 I1 system (1.1) has a smooth integral manifold

M" with the representation

M" := f(x; y; t) 2 Rm+n+1 : y =  (x; t; "); (x; t) 2 G� Rg
and with the asymptotic expansion

 (x; t; ") = h(x; t) + " 1(x; t) + : : : :

Remark 1.1. The global boundedness assumption in (A1) with respect to (x; y) can

be relaxed by modifying f and g outside some bounded region of Rm � Rn.

Remark 1.2. In applications it is usually assumed that the spectrum of the Jaco-

bian matrix gy(x; h(x; t); t; 0) is located in the left half plane. Under this additional

hypothesis the manifold M" is exponentially attracting for " 2 I1.
The case that assumption (A3) is violated is called critical. We distinguish three

sub-cases:

1. The Jacobian matrix gy(x; y; t; 0) is singular on some subspace of Rm�Rn�R.
In that case, system (1.1) is referred to as a singular singularly perturbed

system. This sub-case has been treated in [6, 7, 13].

2. The Jacobian matrix gy(x; y; t; 0) has eigenvalues on the imaginary axis with

non-vanishing imaginary parts. A similar case has been investigated in [12, 15].

3. The Jacobian matrix gy(x; y; t; 0) is singular on the set M0 := f(x; y; t) 2
Rm � Rn � R : y = h(x; t); (x; t) 2 G � Rg. In that case, y = h(x; t) is

generically an isolated root of g = 0 but not a simple one. This case will be

studied in the following.

The paper is organized as follows. In section 2 we formulate the problem and

recall the method of gauge functions by considering a degenerate two-dimensional
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autonomous singularly perturbed di�erential system. Section 3 is devoted to the case

of a quasi-homogeneous degenerate system, the case of an autonomous homogeneous

singularly perturbed system is treated in section 4. Section 5 contains the case of

a quasi-homogeneous degenerate system. Several examples are given, one example

describes a partial cheap optimal control problem.

2 Formulation of the problem. Preliminaries

We consider system (1.1) under the assumptions (A1) and (A2). Instead of hypoth-

esis (A3) we suppose

det gy(x; h(x; t); t; 0) � 0 8(x; t) 2 G� R; (2.1)

that is, y = h(x; t) is not a simple root of the degenerate equation

g(x; y; t; 0) = 0: (2.2)

Under this assumption we cannot apply Proposition 1.1 to system (1.1) in order to

establish the existence of a slow integral manifold near M0 for small ". Our goal

is to derive conditions which imply that for su�ciently small ", system (1.1) has at

least one integral manifoldM" with the representation

y =  i(x; t; ") = h(x; t) + "qih1;i(x; t) + "2qih2;i(x; t) + : : : :

where qi; 0 < qi < 1; is a rational number.

The key idea to solve this problem consists in looking for scalings and transforma-

tions of the type

" = �r; y = ~y(�; z; x; t); t = ~t(�; �)

such that system (1.1) can be reduced to a system

dx

d�
= f(x; z; �; �);

�
dz

d�
= g(x; z; �; �)

(2.3)

to which Proposition 1.1 can be applied. In this process the method of gauge function

plays an important role.

We illustrate our approach by considering a simple example, at the same time we

recall the method of undetermined gauges.
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Example 2.1. Let us consider the system

dx

dt
= y;

"
dy

dt
= �y2 � y3 + "�2(x; t);

(2.4)

where � is a smooth positive function. The degenerate equation to (2.4) reads

0 = �y2 � y3 (2.5)

and has the isolated but multiple root y = 0. To �nd a transformation reducing

system (2.4) to a system to which Proposition 1.1 can be applied we look for an

approximation of the roots of the equation

0 = �y2 � y3 + "�2(x; t) (2.6)

by means of the method of undetermined gauges (see, e.g., [9]). To this purpose we

represent a solution of (2.6) in the form

y �= Æ1(")y1(x; t) + Æ2(")y2(x; t) + : : : : (2.7)

The functions Æi("), called gauges, must be determined along with the functions

yi(x; t). Concerning the gauge functions Æi(") we suppose that they are monotone

in the interval I0 and satisfy Æi(")! 0 and Æi+1(")=Æi(")! 0 as "! 0 for all i.

Substituting

y �= Æ1(")y1

into (2.6) leads to the equation

0 �= �y21Æ21(") + y31Æ
3
1(") + "�2(x; t): (2.8)

As Æ31(")� Æ21(") for su�ciently small " we simplify (2.8) to

0 �= �y21Æ21(") + "�2(x; t): (2.9)

Now we have to compare the order functions Æ1(") and ". Supposing that y
2Æ21(") is

the leading term in (2.9), we get y1 = 0; if we assume that "�2(x; t) is the leading

term, then we are not able to determine y1. If we suppose that Æ
2
1(") and " have the

same order, then we can set

Æ1(") :=
p
": (2.10)

We note that this is not the only possible choice for Æ1(") (see [9]). Putting (2.10)

into (2.9) we obtain

y1(x; t) = ��(x; t): (2.11)
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Similarly we can determine higher order gauges and coe�cients.

Now we use the relations (2.7) and (2.10) to scale the parameter " and the variable

y by " = �2, y = �z. Substituting these relations into (2.4) we get

dx

dt
= �z

�
dz

dt
= �z2 + �2(x; t)� �z3:

(2.12)

Taking into account that the degenerate equation to (2.12) has the two isolated

simple solutions z = ��(x; t) we can apply Proposition 1.1 to system (2.12) with

respect to these roots and get that system (2.4) has two integral manifolds with the

representation

y = ��(x; t)p"+O("):

In the following sections we study the existence and approximation of slow integral

manifolds of system (1.1) in some degenerate cases.

3 Quasi-homogeneous degenerate equations

We study system (1.1) under the assumption (A1). We replace the assumptions (A2)

and (A3) by the following hypotheses.

(H1). The function g(x; y; t; 0) can be represented in the form

g(x; y; t; 0) � g1(x; y; t) + g2(x; y; t); (3.1)

where the functions g1 and g2 have the following properties

(i) g1 is homogeneous in y of degree r � 2, i.e., 8� 2 R we have

g1(x; �y; t) = �rg1(x; y; t) 8(x; y; t) 2 Rm �Rn � R: (3.2)

(ii) g2 satis�es

g2(x; y; t) = O(jyjr+1) as y ! 0 (3.3)

uniformly in (x; t) 2 Rm � R.

Hypothesis (H1) implies that y = h(x; t) � 0 is a solution of the degenerate equation

(2.2) satisfying (2.1).

(H2).

g"(x; 0; t; 0) 6� 0 in Rm �R:

By means of the scaling

" = �r; y = �z (3.4)
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we get from (3.1) - (3.3)

g(x; �z; t; �r) = �r
�
g1(x; z; t) + g"(x; 0; t; 0) + ��g(x; z; t; �)

�
; (3.5)

where �g(x; z; t; �) is smooth. Substituting (3.4) into (1.1) and taking into account

(3.5) we obtain

_x = f(x; �z; t; �r);

� _z = g1(x; z; t) + g"(x; 0; t; 0) + ��g(x; z; t; �):
(3.6)

The degenerate equation of (3.6) reads

g1(x; z; t) + g"(x; 0; t; 0) = 0: (3.7)

Concerning this equation we assume:

(H3). There is a smooth function �h : Rm � R! R such that

(i) z = �h(x; t) is a root of (3.7).

(ii) The spectrum of the Jacobian matrix @g1
@z

(x; �h(x; t); t) is uniformly separated

from the imaginary axis for (x; t) 2 G� R.

Applying Proposition 1.1 to system (3.6) we get

Theorem 2.1. Under the hypotheses (A1); (H1); (H2), and (H3) there is a su�-

ciently small positive "2; "2 � "1, such that for " 2 I2 system (1.1) has the integral

manifold

M" := f(x; y; t) 2 Rm+n+1 : y = � (x; t; "); (x; t; ") 2 G� R� I2g
with the asymptotic representation

y = � (x; t; ") = "1=r�h(x; t) + "2=r�h1(x; t) + ::::

Remark 2.1. From Theorem 2.1 it follows that the integral manifoldM" converges

to the root y = 0 of the degenerate equation (2.2) as " tends to 0. If equation (3.6)

has more than one simple solutions then several integral manifolds branch from the

non-simple solution y = 0.

To illustrate Theorem 2.1 we may consider Example 2.1 from section 2. In that

case we have g1(x; y; t) � �y2, g2(x; y; t) � �y3, g"(x; y; t) � �2(x; t) such that the

degenerate system (3.6) reads

y2 � �2(x; t) = 0:

Here, we have two slow integral manifolds of system (2.4) branching from the mul-

tiple solution y = 0.
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4 Homogeneous systems

Consider the autonomous system

dx

dt
= f(x; y; ");

"
dy

dt
= g(x; y; ")

(4.1)

under the assumption

(H). f and g are homogeneous polynomials in x and y of degree r; r � 2; with

coe�cients smoothly depending on ".

It follows from hypothesis (H) that 8� 2 R and 8 (x; y; ") 2 Rm �Rn � I0

f(�x; �y; ") = �rf(x; y; ");

g(�x; �y; ") = �rg(x; y; "):
(4.2)

Thus, y = 0 is a non-simple root of the degenerate equation 0 = g(x; y; 0). Further-

more, if we replace in (4.1) x by �x, y by �y and t by �1�rt, then system (4.1) is

invariant under this transformation. Thus, if (x(t); y(t)) is a solution of (4.1) then

(�x(�r�1t); �y(�r�1t)) is also a solution of (4.1). This property implies that any slow

invariant manifold y =  (x; ") of (4.1) has the form

y = L(")x; (4.3)

where L(") is a (n � m)�matrix. Thus, under our conditions, any slow invariant

manifold of system (4.1) is a linear manifold.

Exploiting the invariance of y = L(")x with respect to system (4.1) we get the

relation

" L(") f(x; L(")x; ") � g(x; L(")x; ") 8 x 2 Rm: (4.4)

We consider (4.4) as an equation to determine the entries of the matrix L("). Since

that equation can have more than one solution we call (4.4) as bifurcation equation.

Thus, we have the following result:

Theorem 4.1. Under the assumption (H), any slow invariant manifold of (4.1)

is a linear manifold (4.3) where the matrix L(") is determined by the bifurcation

equation (4.4).

To illustrate Theorem 4.1 we consider the following examples.
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Example 4.1.

dx

dt
= 3x3; "

dy

dt
= y3 + "3x3: (4.5)

The corresponding degenerate equation is y3 = 0. According to Theorem 4.1, any

slow invariant manifold of (4.5) has the form y = L(")x, where L is a scalar function.

By (4.4) the corresponding bifurcation equation reads

L3 � 3"L+ "3 = 0:

This equation possesses three solutions. For small " we �nd by means of the method

of undetermined gauges the representations

L1(") =
1

3
"2 +

1

81
"5 + o("5);

L2(") = �"1=2
p
3� 1

6
"2 + o("2);

L3(") = "1=2
p
3� 1

6
"2 + o("2):

Thus, the di�erential system (4.5) under consideration has three slow invariant man-

ifolds y = Lk(")x; k = 1; 2; 3:

5 Quasi-polynomial degenerate equations

Consider the system

dx

dt
= f(x; y; t; ");

"
dy

dt
= g(x; y; t; ")

(5.1)

with x 2 Rm; y 2 R; t 2 R; " 2 I0. In what follows we assume

(V1). f and g satisfy assumption (A1), additionally we suppose that g is a polynomial

with respect to y and ".

By assumption (V1), g can be represented in the form

g(x; y; t; ") �
n0X

i=k0

a0i(x; t)y
i + "

n1X
i=k1

a1i(x; t)y
i + : : :+ "m

nmX
i=km

ami(x; t)y
i: (5.2)

Furthermore, we suppose

(V2).

k0 � 2; a0k0(x; t) 6= 0 8 (x; t) 2 Rm � R:
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It follows from hypothesis (V2) that y = 0 is a multiple root of the degenerate

equation of (5.1)

g(x; y; t; 0) �
n0X
i=k0

a0i(x; t)y
i = 0: (5.3)

As in the previous sections we scale the parameter " and the variable y by

" = �q; y = �pz (5.4)

and look for conditions on the coe�cients ajkj(x; t) such that the equation

"
dy

dt
= g(x; y; t; ") (5.5)

can be transformed into an equation of the type

�
dz

dt
= ~g(x; z; t; �) (5.6)

whose corresponding degenerate equation

0 = ~g(x; z; t; 0) (5.7)

has a simple root z = ~h(x; t) to which Proposition 1.1 can be applied.

Substituting (5.4) into the right hand side of (5.1), where we take into account (5.2),

and rewrite the last equation of (5.1) in the form

�p+q dz

dt
= a0k0(x; t)�

k0pzk0 +
mX
j=1

ajkj(x; t)�
jq+kjpzkj + h:o:t:; (5.8)

where h.o.t. means terms that are of higher order in � compared with the leading

order of the proceeding terms.

Let r be the leading order of the right hand side of (5.8). Then equation (5.8) can

be reduced to the form (5.6) if it holds

p+ q = r + 1: (5.9)

To eliminate z = 0 as a multiple root of (5.7) we look for a scaling (5.4) such that

the �rst term on the right hand side of (5.8) determines the leading order, that is

r = k0p; (5.10)

and that there exist at least two terms of the leading order on the right hand side

of (5.8). If we require that the j�th term on the right hand side of (5.8) has the

same order as the �rst term, then we get the relation

jq = (k0 � kj)p: (5.11)
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From (5.9) � (5.11) we obtain

p =
j

j(1� k0) + k0 � kj
; 1 � j � m: (5.12)

Since kj; j = 1; :::; m; are non-negative integers, where k0 � 2, and since p is a

positive integer, it is easy to check that (5.12) de�nes only for j = 1 and for k1 = 0

an positive integer, namely p = 1. Hence, we have q � k0. Thus, in order to be able

to reduce (5.8) to an equation of type (5.6) we have to require ja1;0(x; t)j � a1 > 0

8(x; t). This implies that g can be represented in the form

g(x; y; t; ") = a0;k0(x; t)y
k0 + "a1;0(x; t) + h.o.t. in y + h.o.t. in ": (5.13)

But this representation is the same as treated in Theorem 2.1. Therefore, we have

the following result

Theorem 5.1. Suppose the hypotheses (V1) and (V2) to be valid. Then, under the

additional condition ja1;0(x; t)j � a1 > 0 8(x; t), there exists in case of odd k0 a

slow integral manifold of system (1.1), in case of even k0 we have additionally to

assume a0;k0(x; t)a1;0(x; t) < 0 8(x; t).
Remark 5.1. If (5.1) is an autonomous system with some special structure such

that after some scaling of y; " and t it can be represented in the form

dx

dt
= f(x; z; �);

�k
dz

dt
= g(x; z; �);

(5.14)

with k � 2, then the existence of a slow integral manifold can be established under

relaxed conditions.

We illustrate Remark 5.1 by the following example.

Example 5.1. We consider the two-dimensional system

dx

dt
= y;

"
dy

dt
= �(x)y3 + "�(x)y + "2(x);

(5.15)

where all coe�cients are su�ciently smooth, and � and � satisfy for all x the relation

�(x)�(x) < 0.

Using the scaling

y = �pz; " = �q

we obtain from (5.15)
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dx

dt
= �pz;

qp+q dz

dt
= �(x)�3pz3 + �(x)�q+pz + (x)�2q:

(5.16)

As it can be veri�ed, only the choice q = 2p provides two terms on the right hand

side of (5.16) with leading order 3p. Thus, we get

dx

dt
= �pz;

�3p
dz

dt
= �3p(�(x)z3 + �(x)z + �(x)):

(5.17)

If we cancel the factor �3p in the last equation, we do not obtain a singularly per-

turbed equation. But after introducing the scaled time � = t�p and setting p = 1

we get

dx

d�
= z;

�
dz

d�
= �(x)z3 + �(x)z + �(x):

(5.18)

The degenerate equation of (5.18) is

�(x)z3 + �(x)z = 0

and has the three simple roots z = 0; z = �
r
��(x)

�(x)
.

Thus, the original system (5.15) has three slow invariant manifolds

y = O(");

y = �
vuut��(x)

�(x)

p
"+O("):

The case that the variable y in (5.1) is a n-vector can be treated similarly. As an

example we consider the following �partial cheap control� problem.

Example 5.2.

We investigate the optimal control problem

_x1 = u1;

_x2 = x1 + x2 + u2

11



with the cost functional

J =
1

2

Z T

0
[x21(t) + "x22(t) + u21(t) + "2u22(t)]dt! min :

This problem is called a partial cheap control problem because one of the control

terms in the cost functional is multiplied by a small parameter [11]. It is well known

that the optimal control is given by the formula

 
u1

u2

!
= �

 
1 0

0 "

!
�1

K

 
x1

x2

!
;

where the matrix K is a nonnegative solution of matrix Riccati equation

dK

dt
= �K

 
0 0

1 1

!
�
 
0 1

0 1

!
K +K

 
1 0

0 "2

!
�1

K �
 
1 0

0 "

!

satisfying the condition K(T ) = 0. Using the ansatz

K =

 
k1 "k2

"k2 "k3

!

we obtain the di�erential system

dk1

dt
= k21 + k22 � 2"k2 � 1;

"
dk2

dt
= "k1k2 + k2k3 � "(k2 + k3); (5.19)

"
k3

dt
= k23 + "2k22 � 2"k3 � ":

The corresponding degenerate system

k2k3 = 0; k23 = 0

has the solution k2 = k3 = 0, but this solution is not simple. In order to get simple

roots we apply the scaling

k3 = � �3; " = �2: (5.20)

Substituting (5.20) into (5.19) we obtain

dk1

dt
= k21 + k22 � 2�2k2 � 1;

�
dk2

dt
= �k1k2 + k2�3 � �(k2 + ��3); (5.21)

�
d�3

dt
= �23 � 1 + �2k22 � 2��3:
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The corresponding degenerate system

k2�3 = 0; �23 = 1

has the simple nonnegative solution k2 = 0; �3 = 1. Applying Proposition 1.1 we

get that the original system (5.19) has the invariant manifold

k2 = O(
p
"); k3 =

p
"+O("): (5.22)

Substituting (5.22) into (5.19) leads to the initial value problem

dk1

dt
= k21 � 1 +O("); k1(T ) = 0:

By this way, the elements of the matrix K can be determined approximately.
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