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Abstract. We consider general quenched disordered lattice spin models on compact
local spin spaces with possibly dependent disorder. We discuss their corresponding joint
measures on the product space of disorder variables and spin variables in the infinite vol-
ume. These measures often possess pathologies in a low temperature region reminiscent
of renormalization group pathologies in the sense that they are not Gibbs measures on
the product space. Often the joint measures are not even almost Gibbs, but it is known
that there is always a potential for their conditional expectations that may however only
be summable on a full measures set, and not everywhere. In this note we complement
the picture from the non-pathological side. We show regularity properties for the po-
tential in the region of interactions where the joint potential is absolutely summable
everywhere. We prove unicity and Lipschitz-continuity, much in analogy to the two fun-
damental regularity theorems proved by van Enter, Fernandez, Sokal for renormalization

group transformations.

1. Introduction

The study of joint measures of quenched random systems on the product space of spin-
variables and disorder-variables is interesting for two reasons. First, there is interest
in their behavior coming from theoretical physical, which was put forward in the so-
called grand ensemble approach to disordered systems going back to [Mo64], and pursued
e.g. in [Ku96],[KM94|. Second, as it was found much later starting from the example
in [EMSS00] and investigated in generality in [K99], [K01], [KLRO02], joint measures
provide a whole class of measures with very interesting ‘pathological’ behavior w.r.t
their Gibbsian properties. Therefore they are useful examples from a merely theoretical
point of view to sharpen our notions of generalisations of Gibbsian theory and show
“what can go wrong and what cannot go wrong”. See also the discussion in [EKMO00],

[KMO00] on the relevance for physics.

So, the study of joint measures parallels and complements the study of so-called renor-
malized measures that were the first source of natural measures outside the Gibbsian
class. For the latter, see e.g. [EFS93], [BKL98], [MRSV00] and references therein,
for interesting examples of non-Gibbsian measures arising in different contexts, see e.g.
[EFHRO02],[MRTV00]. In particular the joint measures of the random field Ising model
with i.i.d. random fields serve as a complete example that illustrates the distinctions be-
tween the classes of weakly Gibbsian and almost Gibbsian measures, and the failure of the

variational principle for a weakly Gibbsian measure [KLR02|. For recent results restoring
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the variational principle for generalized Gibbs measures under continuity conditions on
the conditional expectations, see [KLRO02].

In previous research about joint measures we mainly focused on the “pathological”
or negative side of the behavior of the joint measures. In contrast to that we focus in
this note on general results in the non-pathological regime that show “what cannot go
wrong” if the joint measures stay in the class of ordinary Gibbs measures. We are led
here by the two “fundamental theorems” stated as the central “positive” results in the
huge basic paper on renormalization group pathologies [EFS93]. In brief, these theorems
say: 1) When an absolutely convergent interaction potential exists for a measure that
is the image of a Gibbs measure under a renormalization group transform, it must be
unique (up to physical equivalence). This means that it is independent of the choice of
the initial measure within the Gibbs measures corresponding to a fixed potential. 2) The
map from potentials to such renormalized measures is Lipschitz-continuous in a suitable
norm, wherever it is defined.

It it natural that we ask the same questions, when we replace a “renormalization
group transform of a translation invariant measure” by the “joint measure transform
of a quenched random system”. The good news of this paper is that we get analogous
answers in the setting of joint measures as for renormalized measures, in an appropriate
setup. Without much additional effort we can allow in our setup the case of dependent
disordered variables distributed according to another Gibbs measure, instead of just i.i.d
ones. (Think of the case where the random fields of a random field Ising model are given
by an Ising model.)

Our regularity results are in brief as follows. Theorem 1: When an absolutely con-
vergent interaction potential exists for a joint measure coming from the same disordered
specification, it must be unique. Moreover, it does not depend on the choice of the phase
of the distribution of the disorder variables.

Theorem 2: The map from the pair (potential defining the quenched system)x (po-
tential for the disorder distribution) — (potential for the joint measure) is Lipschitz-
continuous in the appropriate norm, wherever it is defined.

To appreciate the uniqueness-result for the joint potential we stress the “pathological”
fact that the unicity statement of Theorem 1) is proved to go wrong when the resulting
translation-invariant interaction potential is only a.s. absolutely convergent (weakly
Gibbs), for the random field Ising model at low temperatures, small disorder, in more
than 3 dimensions [KLR02].

The paper is organized as follows. In Section 2 we introduce our formal setup. In



Section 3 we prove Theorem 1 which is rather simple. In Section 4 we prove Theorem
2, and also give an alternative norm-estimate on the difference of joint potentials, stated

as Theorem 3. In Section 5 we illustrate the results with the random field Ising model.

2. Joint measures of quenched random systems - Setup

We consider disordered models of the following general type. We assume that the
configuration space of the quenched model is Q = EZ" where E is a compact separable
metric space, and (2 is equipped with the product topology. The spin variables are
denoted by ¢ € Q. We assume that  is equipped with some fixed product Borel
probability measure v(do). Additionally we assume that there are also disorder variables
N = (Ne)geza entering the game, and we assume that they take values in an infinite
product space Q = (E)Zd, where again F is a compact metric space, equipped with some
product Borel probability measure 7(dn).

We denote the joint variables by £ = (£z)zeza = (0m) = (02Nz)geze. Here ozm, is a
pair, not a product (that would make no sense in general). The first essential ingredient
of the quenched model is given by the defining potential ® = (® 4) gz depending on the
joint variables £ = (on). ®4(£) is a continuous function and depends on £ only through
€a-

We need to specify the Banach spaces of potentials ® and the other potentials we
will be dealing with. We follow here [EFS93] in spirit and in notation, but addition-
ally we need to make explicit the underlying spin spaces. We write B°(Q x Q) for the
space of translation-invariant continuous interactions ® on the joint space Q x Q with
finite norm |[|®[|g0 = )’ 5, |—1}1|supm7 |®(on)|. We write BL(Q x Q) for the smaller
space of translation-invariant continuous interactions ® with finite norm ||®||z: () =
>~ A50SUP,, |®(0m)|. We also use the analogous notations like B°(€2), B°(Q),.. ., for po-
tentials on the marginal spaces Q and 2. We assume that ® € B (2 x Q). When we fix a
realization of the disorder 7 we have a potential for the spin-variables o that is typically
non-translation invariant. We then define the corresponding quenched Gibbs specification
by the definition

o 1 - OAC
uf’”[n](B) . ZT&[]/V(dO-A)lB(UAa'Zd\A)e ZA=Arm;é® ®a(oATza\2 M) (2.1)
A7

where ZE;&[n] is the n-dependent normalization factor called the quenched partition
function. The symbol 07674 s denotes the configuration in Q that is given by o, for
z € A and by &, for z € Z%\A.



The second ingredient of the quenched model is the distribution of the disorder vari-
ables P(dn). Most of the times in the theory of disordered systems one considers the
case of i.i.d. variables only, but we assume more generally that this distribution is a
translation-invariant Gibbs measure for a translation invariant potential ¢ € B({) for
an a priori product measure 7(dn). That is, a version of the conditional expectation
P(-|77a<) is given by the specification

Po= 1

& (B) = 75 /P(dﬂA)IB(nAﬁZd\A)C_Z“‘A”Aﬂ PalmTada) (2.2)
A

The objects of interest will then be the infinite volume joint measures K°(d§), by which
we understand any limiting measure of lim 4., P(dn) ,uf;&[n] (do) in the product topology
on the space of joint variables. Of course, there are examples for different joint measures
of the same quenched Gibbs specification for different spin boundary conditions &. Also
there can even be different ones for the same spin-boundary condition &, depending on
the sub-sequence.

The crucial question is: Given a joint measure K, is there a potential ¥ € B'(2 x )
such that K can be written as a Gibbs measure on the space of joint variables, such that
a version of the conditional expectation K (-[£5-) is given by the specification

1
73

Yx4(B) = /ﬁ(dEA)lé(ﬁAfzd\A)e_ 2 aannpo ¥aErEra) (2.3)
If this is true we write K € G(¥). Very often such a regular potential in B'(Q x )
does not exist in a low temperature situation, but a potential with only a.s. convergence
properties always exists (see [K01]). The theorems we are about to prove apply to the
nice situation where a regular potential in B!(Q x Q) does exist. We refer the reader
to [EFS93| for an excellent pedagogical discussion of the relevance and the differences of
the spaces B? and B!, and why the space B! can be considered as the natural setup for
ordinary Gibbsian theory.

For all of this the reader might think of the concrete example of the Random Field
Ising model. Here the spin variables o, take values in {—1,1}. The defining potential of
the quenched specification ®g (0, n) is given by ®g h.1z,41(0,n) = —Bo,0, for nearest
neighbors @,y € Z4, @4 4.1,3(0,n) = —h1y0,, and @4 = 0 else. Let us choose the
disorder variables 1, € {—1,1} distributed according to a Gibbs measure P for the
standard nearest neighbor Ising potential ¢z ¢, .1 (n) = —Bnzmny, and ®5 4 = 0 else. For

B = 0 the usual random field Ising model with symmetric i.i.d. fields is recovered. Denote
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by K§ ; ,,(dodn) = limateo Pg(dn) ufﬁ’h;a[n] (do) any translation-invariant joint measure

obtained with the parameters ; 3, h. By monotonicity arguments one has in particular
that the limit with plus boundary conditions ,ui)ﬁ ] (do) =: p®eit[n](do) exists for
any fixed 7, and K;: ﬂ,h(dadn) = u®s.rit[n](do) is translation-invariant. We come back
to this model to exemplify our results in Section 5.

3. First fundamental theorem - Single-valuedness of joint potential
In this setup we have the following unicity result.

Theorem 1. Denote by
K1 (dndo) = Jim, Py (dn)uye* [n](do),

o (3.1)
K> (dndo) = Jim Py (dn) i [l (do)

two (possibly different) translation-invariant joint measures for the same defining po-
tential ® € BY(Q x Q), obtained with any two spin boundary conditions &1 (and 7o
respectively), along any subsequences Ay (and Ay respectively), for translation invari-
ant (possibly different) disorder distributions P1(dn),Pa(dn) that are Gibbs measures for
the same potential ¢ € B (Q). Then either of the following is true:

(i) There exists a translation-invariant joint interaction potential ¥ € B'(Q x Q) for

which both K1 and Ko are Gibbs measures.
(ii) Both K1 and Ky are not Gibbs measures for any potential ¥ € B*(Q x Q)

Proof. The proof of the theorem is simple. We will prove below that the relative entropy
density vanishes, i.e.

C 1 dK
A ) = lim, o / K1 (doadny) 1og(—1 (aAnA)) =0 (3.2)

dK,

A

for an increasing sequence of cubes A 1 Z? (or more generally any van Hove sequence).
This is a slight generalization of the statement in [KLRO02] to the present setup of Gibbsian
disorder variables and more general spin spaces. But from here the proof follows from
the same argument as the proof of Theorem 3.4 of [EFS93]: Assume that K has a
translation-invariant potential ¥ € B!(Q x ). Then the classical variational principle
for Gibbs measures ([Geo88] Theorem 15.37) implies that also K is a Gibbs measure for
the same interaction. Since the roles of K; and K, are symmetric, the statement of the

theorem follows.



For convenience of the reader let us give the argument that leads to the vanishing of
the relative entropy density in this context which is slightly more general than that of
[KLRO2]. Let us define an auxiliary finite volume joint measure K3 (doadns) by putting

free boundary conditions on both disorder variables and spin variables. That is, we put

KS(dondna) i= [ B (dnn) [ 5 lma)(don) (3.3)
where >
d]PQD;O e_ ACA PA (TIA)
—d_A (na) == —— (3.4)
vA A%
and
d#f;o[n] (02) i= e~ Y aca Baloam) (3.5)
dun N )

Note that for any joint local event A, depending only on opna we have
e TWKR(A0) < Jim [ Bi(dn) [T d0)(40) < CORR(4)) (39

with lima 7(A)/|A| = 0 when A runs along a sequence of increasing cubes (or more
generally a van Hove sequence.) The requirement on the summability properties on
both potentials, i.e. ® € B1(Q x Q) and ¢ € B'(Q), is needed at this point to control
the contribution from the boundary and ensure that Y 4xg anac0 SUPo., [Ra(on)| =
o(|A]) and the similar statement for ¢. (See [EFS93] Proposition 2.45 (d). To make this
statement hold one needs B! instead of just B°, and this is the reason for dealing with
the smaller space B'.) From (3.6) follows that

dKy| dK1|A(dK2|A)_1 < o2r(A)

dK ‘A_ dKQ \ dK¢ (37)

and this implies (3.2). <

4. Second fundamental theorem - Norm estimates on the joint potential

To formulate the continuity results, we need to introduce the appropriate norms on
the various spaces of potentials we are considering taking account physical equivalence.

We follow closely the notations of [EFS93] and adopt them to the present situation of
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the product space € x Q. The bounded measurable functions on this space are denoted
by B(Q x Q), equipped with the corresponding (essential) sup-norm || - ||paxq). We
also use the obvious notations || - [|p(q) (and || - ||g(q)) for functions on 2 (and 2).

Let us fix one of the spaces 2, 2, or 2 x 2. Denote by J the space of continuous
functions on this space having zero expectation for any translation-invariant measure.
Given a potential ® on this space define the energy density function fs := }_ .5, %.
Using the same symbol define also the sub-spaces of potentials J := {® : fs € J}
and J 4 Const := {® : fs € J + Const}. To stress the importance of this space we
recall the basic fact about physical equivalence of translation-invariant potentials which
states (see [EFS93] Theorem 2.42.): Two potentials in B! on (say) {2 give rise to the
same specifications if and only if their difference is in J + Const (if every open set
in Q gets positive 7-a priori measure.) Correspondingly, denote ||®||zo J(T+Const) =
inferc7+const || — @'||go. The necessity of this quotient norm for Gibbs potentials is
clear because physical equivalence must be divided out. On the level of functions one
needs the norm ||| s/ const = infees [1f — ellp@xa)-

Next we will have to make explicit again the underlying spaces €2 and 2. For our set-up
of quenched random systems we will then also use the obvious notation
12150 (x) /(B (@)+ T +Const) = Infurepo(@y 12 — ¢'llBo(ax)/(7+Const)- The occurrence
of this norm for the defining potentials ® of the quenched specification is natural be-
cause it factors out purely 7-dependent parts ¢’ that give rise to the same quenched

specification (2.1). Now we are able to formulate the continuity result.

Theorem 2 (Lipschitz continuity). The map (¢, ®) — ¥ is Lipschitz-continuous in
the BY/(J + Const)-norm wherever it is defined.
More precisely, assume that
K1 (dndo) = i Py (dn)uyy’ [n)(do),
L, (4.1)
. $y;0
Ks(dndo) = A Py (dn)pp?” [n](do)
are two translation-invariant joint measures, for possibly different defining potentials
b1,y € BHQxQ), and possibly different disorder-distributions Py € G(¢1),Ps € G(p2),
for potentials 1,03 € BY(Q), for the same a priori product measure v.
Assume that there are joint potentials U1, ¥y € B! (Qx Q) such that K, € G(¥,), Ky €

G(Vs), for the same a priori product measure . Then

%1 — W2l go(ax )/ (T+Const) (4.2)

< Ile1 — w2llgo(@)/(T+Const) T 2[1P1 — P2llBo(ax0) /(B (Q)+T +Const)
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Proof. The proof follows from the general fact that one can reconstruct a translation-
invariant Hamiltonian (modulo physical equivalence) from the densities in finite volume,

up to corrections of the order of the boundary. More precisely, one has

dK;

dK, ‘ HB(QXQ)/C’onst (43)

11 — ¥a||go/(7+Const) = T Hlog
for any sequence of increasing cubes A (or more generally van Hove sequence). This
follows from Proposition 2.46 formula (2.65) from [EFS93] under the hypothesis that K,
and K, are both Gibbs measures for interactions ¥, ¥y € B'.

As in the proof of Theorem 1 we approximate both joint measures by finite volume

approximations with free boundary conditions of the form (3.3), introducing

KO (dopdny) = / P20 (dna) / uE0 ] (doa)

(4.4)
K°2(dondny) = / P22 (dny ) / #2301 1(dora)
We write o1
dKl‘ :dK1|AdKA’ (dK2|A)_ (4 5)
dKz 1 dKY' dKY? \dK R '
As in the proof of the first theorem we have that
_ dK1|a (dKa|p\ L
27‘(A) 1A 2{A < 2r(A)
T (dKR’2) <e (4.6)

with a function r(A) = o(|A|) that depends on ¢1, @2, @1, 3. This shows that we only
need to look at the middle term of the r.h.s. of (4.5) to control the r.h.s of (4.3).

We may then rewrite the term of interest in the form

dKy? =
d(v x D)p (a71a) (d(V ><A17)A (UAnA))

ZSDZ,O Z‘I>2, [ ]
Zsal, <1>1, [ ]

dK " dK !
—— O ]
dKR’Z ( A77A)

= exp(— Z [p1-2,4(n2) + P1-2,4(04, UA)]>
ACA

where we have used the short notations ¢;,_5 := @1 — @9 and ®;_5 := &; — Ps.
It is obvious that this expression does not depend on the choice of the representatives

of the defining potential of the quenched specification, ®? € ®,+B(Q), ®J € &,+B(Q).
This factors out the purely disorder-dependent terms. We also use that the first (but not
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the second!) quotient of partition functions in the first line is just a constant and so we
have that

dK !

o8 x|
H 8 dKR’Z B(QxQ)/Const
®9;0
Z 21 — .
= | S loraalmn =)+ 99_g a(onmn = )]~ log 24 0 =)
ACA Zy [na =] B(2xQ)/Const
0.
0 Zylnn =1
< |2 o124 PR EY * oG,
17
ACA B(Q)/Const ACA B(QxQ)/Const ZA [TIA = ] B(Q2)/Const

(4.8)
where of course ®9_, := &9 — &J.
The control of the first two terms is well-known. From [EFS93] Proposition 2.44 we
have for the first term that

Z P1-2,A

ACA

= inf sup
B9(Q)/Const e

Z €01—2,A(7]A) —C

ACA

(4.9)
= |A]- le1-2llBo(@)/(7+Const) + 0(|A])
whenever ;_ € B(Q). Similarly the second is bounded by |A|-[|®1_2|go(axa)/(7+Const )T

o(|A]). Now, to control the quotient of the two quenched partition functions we use the

following lemma. It will be used again in the proof of Theorem 3.

Lemma 1 (quenched partition functions). Suppose that ®,® € BY(Q x Q). Then

we have that
Z3%na =]
Zy %y = ]

Assuming the lemma, the proof of Theorem 2 follows.

log

< |A[ |12 — @[ goaxa)/T+Const T O(|A]) (4.10)
B(Q)/Const

Proof of Lemma 1. Indeed, we have that

Z<I>;0
log A [TIA] —c

Zy ]

_ irclfsgp log / p20mAl(d5) exp(— D [®a(Ea;ma) — @4 (Farma) — c])‘ (4.11)

inf sup
€ n

< inf sup Y " [®aloa,na) — u(on,ma) —
oM |AcA

= [A]-[|® — ®'[lpo(2x5)/7+Const T 0(|A])
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Here the last line follows from [EFS93| Proposition 2.44.{<

In the case where the defining potentials of the quenched specification do not depend
on the disorder variable, i.e. when ®; € B'(Q) and ®; € B*(Q2), K; and K, are trivially
Gibbs with the joint potentials ¢1+®; and ¢3+®P5. In this case the Lh.s. of (4.2) becomes
equal to the sum of norms |[¢1—¢2||go @y /(7+Const ) T |21~ P2l Bo (@ x0) /(B (@) + 7 +Comst )
whereas the r.h.s. carries a factor 2. Responsible for this fact was the estimation of the
quotient of quenched partition functions. So, let us finally give an alternative estimate
that is better for ‘small randomness’ and becomes sharp in the situation where the

quenched specification does not depend on the disorder variable.

Theorem 3. Assume in the situation of Theorem 2 that ®% € &, + BY(Q) is a fized
representative of the defining potential, and similarly ®5 € ®, + B(Q). Then we have
the alternative estimate

11 — Ua||go(ax)/(7+Const)

< |ler — @2llpo(y/(7+const) + 193 — Pallso@xa) /(B2 @)+ T +Const) (4.12)

+ ||‘I’(1)||BO(Q><Q)/(81(Q)+J+const) + ||(D(2)||B°(QxQ)/(Bl(Q)+J+Const)

Remark. In the last two terms we have factored out the disorder-independent contribu-
tions of the defining potential of the quenched specification. Trivially, these terms vanish
when the quenched specification is disorder-independent, and so the bound becomes

sharp in that case.

Proof. The proof follows from (4.8) and an alternative bound on the quotient of quenched
partition functions that is obtained by comparison with non-random partition functions

for potentials x1, x2 € B(2). Writing

20 =1 _ 23 m =125 23"
3950 T a0 a0 el (4.13)
Zp\ s =] A N Zy s =]
we get from Lemma 1 that
®9;0
1 ZA2 [77/\ = ]
%8 o .
ZA [T’A = ] B(Q)/Const
9;0 29;0
Z\ % =- Z\" =- 4.14
< [10g AzEZ[;\() ) + |[1og AzEZI;\O ] (4.14)
A B(Q)/Const A B(Q)/Const

< AL+ (1193 = xillio(ax @y -+ comst + 193 = Xallmo(axay/ 7+ comst ) + 0(1A])
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Optimizing over x1, x2 this proves Theorem 3.

5. Example: Random Field Ising model with dependent disorder fields

We use the notations that were introduced at the end of Section 2. According to
Theorem 1 we know that, if there is a joint potential ¥g.5, € B(Q x Q) for a particular
joint measure Kg; s, h(dadn), it is necessarily a joint potential for any, possibly different
translation-invariant measure for the same (3, 3, h. In particular K™ and K~ (obtained
with minus-boundary conditions) must have the same potential. We remark that there
is a pretty complete analysis of the Gibbsian properties for 3 = 0. Here we know that
exponential decay of sup,, |,uz;r wlnl(ozoy) — ,u; wnl(oz) ,uzg’ wInl(oy)| in the distance |z — y|
implies that there really is a joint potential for KT in Bl. (See the remark after (2.11)
in [K01].) Exponential decay uniform in the realization 1 can be shown e.g. by cluster
expansion methods for 3 sufficiently small, in any dimension, for any h. So, our Theorems
1-3 apply in this situation.

In contrast to that, there is a regime where the joint measure does not possess a
potential in B!, but a translation-invariant potential that converges only a.s. and this
happens in the phase transition regime of the quenched model, i.e for 8 large, h small and
d > 3. Indeed, the conditional expectations of KT and K~ were shown to be different
in this case, even though there is a joint potential for K™ and a different one for K~
that are translation-invariant and decay like a stretched exponential on a full measure
set. This is shown in [KLRO02], based on the general representation of the joint potential
given in [K01] and the renormalization group analysis of the quenched specification of
the random field Ising model of [BK88|.

Let us now illustrate the application of the Theorems 2 and 3 to the present situation.

Corollary from Theorem 2. Assume that there are joint potentials ¥z, .5 1.,V 3,.6, b,
BY(Q x Q) for the translation-invariant joint measures Kz .6, 1,1 K3,.8, 1,5 Oblained as

weak limits. Then
||\P51;ﬂ1,h1 - \PBQ;ﬁg,hg ||BO(QXQ)/(J—|—Const)

Pk ” (5.1)
< d|B1 — Ba| + 2d|B1 — B2| + 2|h1 — ho

Corollary from Theorem 3. In the same situation we have the alternative estimate

”W,Buﬁl,hl - Wﬁg;ﬁg,hg ||B° (2xQ)/ (T +Const)

Pk - (5.2)
< d|B1 — Ba| + d|Br — B2| + |h1 — ha| + |h1| + |ha|
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Remark. While the first bound shows the continuity w.r.t. the parameters of the defining
potential and potential of a priori distribution, the second bound is better for small
magnetic fields. In particular for hy = hy = 0 the disorder variables and the spin

variables decouple, the joint potential is just the sum ¢ 4+ ®, and we have that

19 5,:8: ,h1=0 — Y8238, ha=0llBo(@x Q) /(T +Comst) = d| By — B2| + d|B1 — S| (5.3)

(see below) and so the bound is sharp.

Proof of Corollaries. To compute the norm of the potentials occuring, define some cor-

responding energy density function and compute its sup-norm modulo constants.

For the defining potential of the quenched specification ®g, (o) we put e.g. f5 (o) :
—oo[B Z;?:l 0o, —hno] where the sum is over all unity vectors e; spanning Z? and pointing

in positive directions. Then we have that
19,1180 (2x Q) /(B (@) +T +Const) = ifgfsup‘fé,h(a"?) - C‘ = d|B| + |h| (5.4)
on

For the first equality, see [EFS93] Proposition A.11. Similarly we have ||¢5lg0(0)/(7+Const) =
d|3|. Finally we have

19,1l Bo(2x0) /(B (@)+ T +Const ) = SUP —haono‘ = |h| (5.5)
on

by subtraction of the purely o-dependent part.<$>

Acknowledgments: The author thanks A.van Enter, C.Maes, A.Le Ny and F.Redig

for valuable discussions about generalized Gibbs measures.
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