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Abstract 

We consider a model of small diffusion type where the function which governs 
the drift term varies in a nonparametric set. We investigate discrete versions of 
this continuous model with respect to statistical equivalence, in the sense of the 
asymptotic theory of experiments. It is shown that an Euler difference scheme as 
a discrete version of the stochastic differential equation is asymptotically equiv-
alent in the sense of Le Cam's deficiency distance, when the discretization step 
decreases with the noise intensity E. We thus obtain a nonparametric version of 
diffusion limit results for autoregression. It follows that in the continuous diffu-
sion model, discrete sampling on a uniform grid is asymptotically sufficient. The 
key technical step utilizes the notion of Hellinger process from semimartingale 
theory. 

1 Introduction and Main Result 
Consider the problem of estimating the function f from an observed diffusion process 
y(t), t E [O, 1], which satisfies an Ito stochastic differential equation 

(1) dy(t) = f(y(t))dt + t dW(t), t E (0, l], Yo= 0 
where dW(t) is Gaussian white noise and E is a small parameter. Suppose that the 
function J belongs to some a priori set :E, nonparametric in general. Kutoyants (1985) 
constructed estimates of the function f the squared Lrrisk of which converges with 
rate E4m/(2m+i) if the function f has m bounded derivatives. These are the standard 
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nonparametric rates of convergence which also hold in the problem of 'signal recovery 
in Gaussian white noise' 

(2) dx(t) = f(t)dt + E dW(t), t E (0, 1] 
Brown and Low (1992) found that the continuous model (2) is asymptotically equivalent 
to its discrete counterpart which is the nonparametric regression 

(3) . - f(t·) + -1/2t. . - 1 Xi - i En 1:.i, z - , ... , n 

with a uniform grid ti = ( i - 1) / n and standard normal variables ~i, provided that f 
varies in a nonparametric subset of L 2 (0, 1) defined by a weak smoothness type condi-
tion and n tends to infinity not too slowly. The framework was asymptotic equivalence 
in the sense of Le Cam's deficiency distance Ll. In this paper we address the analogous 
question with respect to discretizing the stochastic differential equation model ( 1). 
The discretization to consider is suggested by the theory of numerical solution of 
stochastic differential equations, see e. g. Kloeden, Platen (1993). In that part of 
probability theory one assumes the function f known and one tries to approximate the 
solution y from a discrete difference scheme where the continuous Gaussian white noise 
dW(t) is substituted by a sequence of i. i. d. normal random variables. The simplest 
such difference scheme is the one of Euler type. To derive it, observe that the process 
y satisfies 

(4) y(t;+i) -y(t;) = f+' J(y(u))du + l(W(t;+i) - W(t;)). 

Now for the approximation, the integral is substituted by n-1 f(xi) and W(ti+I)-W(ti) 
is written n-1 /2 ~i where ~i, i = 1, ... , n is a sequence of i. i. d. standard normal 
variables. Introducing an approximate solution process Yi defined on the grid only ( Yi 
corresponding to grid point ti), one gets a sequence of successive approximations 

(5) Yi+I =Yi+ n-1 f(Yi) + E n-1 !2~i, i = 1, ... , n, Yo= 0. 

This directly extends the classical Euler scheme for approximating solutions of deter-
ministic differential equations, with random noise added in each step to mimick the 
random continuous solution y of ( 1). It is then shown that the process Yi on the discrete 
grid approximates the solution y of (1) in some probabilistic sense if one considers the 
~i as actually coming from W via ~i = n 112 (W(ti+I) - W(ti)). 
The statistical task may be seen as the converse: given y satisfying ( 1), reconstruct f. 
A natural question which then arises is whether inference may be based on the grid 
values of the solution process y(ti) only. But these values satisfying ( 4) still depend on 
the whole trajectory of y via the integral over [ti, ti+1]. Going a step further, one might 
then ask whether estimating f in ( 1) is equivalent to estimating f from the 'truly' 
discretized process Yi in (5). 
Our basic strategy for comparing two models, i. e. to find, for a sequence of experiments 
{ £J1)}, an accompanying one { £!2)} in the sense that the full deficiency distance tends 
to zero: L'.l(£J1),£J2)) -t 0 as E -t 0, was developed by Le Cam (1985) for a parametric 
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model of independent observations and an accompanying sequence of Gaussian shift 
experiments. In that case the two experiments are said to be asymptotically equivalent 
as E ~ 0. Later in Le Cam and Yang (1990) a general method was proposed for 
estimating the deficieny distance ~: consider the two likelihood processes A~i)(J), 
f E :E, i = 1, 2 as random variables under the respective dominating measure and put 
them on the same probability space; then show 

sup E IA~1)(f) - A~2)(f)I ~ 0, E ~ 0. 
JEE 

(6) 

That implies that the deficiency distance between the two experiments tends to zero. 
This was also the method adopted by Brown and Low (1992), with the Wiener space as 
natural common probability space for Wand fr For a treatment of the nonparametric 
i. i. d. density model see Nussbaum (1992). 
Accordingly, in our diffusion model, consider the density for (1) when the dominating 
measure is the distribution of E W: for z = E W 

(7) AP)(!) =exp { 
1
2 f

1 
J(z(t))dz(t) - ~ f

1 
J2(z(t))dt}. 

E lo 2E lo 
For the discrete scheme ( 5) the analog is for Zi = E ( W ( ti+l) - W (ti)) 

(8) {
1 n 1 n } 

A~2l(J) =exp E2 ~ f(z;)(z;+I - z;) - 2E2n ~ J2(z;) . 

To state our main theorem, let us determine the parameter space :E for our experiments. 
We assume only the standard condition for existence and uniqueness of a solution y of 
the SDE (1) ( cp. 0ksendal (1992), theorem 5.5) in a uniform version: let 

:EM= {f defined on R, lf(x) - f(u)I ~ M Ix - ul, x, u ER, lf(O)I ~ M}. 
Observe that f E :EM implies the condition of linear growth which is commonly en-
countered in this connection: lf(x)I ~ M(l + lxl). 
Theorem 1 Suppose that for some M > 0 the parameter space :E fulfills :E C :EM, 
and that n = ne: is chosen such that E ne: ~ oo. Then the experiments given by {1) and 
(5) are asymptotically equivalent as E ~ 0. 

REMARK 1. The model (5) is of the autoregressive type, and corresponding diffusion 
limits have been studied extensively in parametric models. To see the connection, 
consider the case where the parameter space is 

:E = {f, f(x) = {) x, l{)I ~ M} c :EM. 

Thus we have the parametric model 

(9) dy(t) = {)y(t) dt + E dW(t), t E (0, 1) 

which has been investigated predominantly with an increasing interval of observation 
(see Kutoyants (1984), § 3.5). In our case of fixed interval and varying E all experiments 
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(9) for different E are equivalent (exactly). Indeed, multiplying the observations y by 
c 1 yields an equivalent experiment, and the process y = C 1y satisfies (9) for E = 1. 
Thus our accompanying sequence of experiments is indeed constant, and theorem 1 for 
n = c 2 establishes a strong(~-) convergence of the autoregression experiments 

(10) Yi+1 =Yi+ n-1'19yi + n-1 ~i, i = 0, ... , n, Yo= 0 

to a diffusion limit (9). Define Yi = nyi and f3 = 1 + n-1'19; then (10) may be written 

(11) Yi+l = /3 Yi + ~i, i = 0, ... , n, Yo = 0 

which is the familiar AR(l) model in the nearly nonstationary case where the parameter 
f3 is close to 1. Parametric inference in these models based on the diffusion limit has 
been studied by Chan and Wei (1987), Cox (1991 ); see, also comments in Jeganathan 
(1988). The corresponding limit experiment argument is given in the forthcoming 
monograph of Shiryaev and Spokoiny (1993), based on the notion of A-convergence of 
experiments. Thus theorem 1 appears as a nonparametric extension of the parametric 
diffusion limit results for nearly nonstationary AR(l) autoregression. 

REMARK 2. It is now clear what the relation to nonparametric auto regression should 
be: define Yi as above and a function g(x) = x + f(n- 1 x); then (5) may be written 

(12) Yi+i =g(yi)+~i, i= l, ... ,n, Yo=O. 

Nonparametric inference for fixed, unknown g was studied by Doukhan and Ghindes 
(1983) under stationarity assumptions. They found that the theory of kernel type 
estimators parallels the signal plus white noise case (2), as regards rates of convergence. 
So obviously the nonparametric model (12) with g fixed and stationarity corresponds 
to parametric autoregression in the stable case where f3 is bounded away from 1 ( and 
local asymptotic normality holds), while in the nearly critical case g(x) = x + f(n- 1 x), 
f E :E the diffusion approximation of theorem 1 holds. 

REMARK 3. Parametric asympotic results for autoregressive models are naturally 
available for nonnormal ~i, based on the limit experiment rationale. In particular 
the Gaussian diffusion limit in the nearly nonstationary case is known. This raises the 
question whether theorem 1 might be valid also for nongaussian ~i in the autoregression. 
The problem is open even for the regression (3), but the i. i. d. density case result 
(Nussbaum (1992)) does suggest a positive answer. 

Theorem 1 is proved with a reasoning related to the one of Brown and Low (1992) in 
the 'signal plus noise' case. The two models (1) and (5), even when they are construed 
as being on the same probability space, are still of different type: one is discrete, 
the other continuous. To facilitate the treatment, it is convenient to compare the 
likelihoods of two continuous models. That is achieved by interpolation of the discrete 
process Yi, i = 1, ... , n. Recall the classical Euler scheme for solving the (deterministic) 
diff eren ti al equation 
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(13) 
d 
dty0 (t) = f(y 0 (t)), t E [O, 1] 

which is (5) without' the random term, i. e. 

(14) n(y?+l - Y?) = f (y?), i = 1, ... , n, yg = 0. 
The rationale is of course closely linked to linear interpolation: if y0 is a piecewise 
linear function on [O, 1] such that y0(ti) =Yi then its derivative on [ti, ti+1] is J(Y0(ti)). 
Ordinarily the linear interpolation y0 of the values yp is indeed taken as the approximate 
solution of the differential equation. 
For the stochastic Euler scheme (5) one might also consider a linear interpolation of the 
values Yi· But in order to account for the oscillating behaviour of the solution y of (1) 
inherited from the driving Wiener process, one might then add a Brownian bridge over 
and above the linear interpolation on each interval [ti, ti+i]· These Brownian bridges 
should be independent of the ~i; call this randomly interpolated process y. 
A convenient representation of y can be obtained as follows. Define a function fn on 
[O, 1] which depends on a trajectory z( t), t E [O, 1] as 

n 

fn(t, z) = L f(z(ti)) X(ti,ti+i](t) 
i=l 

Thus fn is a piecewise constant function which interpolates f(z(·)) in ti. 

Lemma 1 The unique solution y of 

(15) iJ(t) = l' fn( u, iJ) du+€ W(t) 

may be represented as a randomly interpolated process as above, for an appropriate 
choice of the n Brownian bridges. 

The proof is in section 3. It is clear that y contains as much information about f as 
Yi, i = 1, ... , n. Indeed y(ti) = Yi, but on the other hand linear interpolation and 
adding Brownian bridges which do not depend on f do not increase the informational 
content. Thus the experiments given by (5) and (15) are equivalent, for any parameter 
space :E, and y(ti), i = 1, ... , n is a sufficient statistic in (15). This can also be seen 
by looking at the likelihood for model ( 15) as follows. 
Regard y formally as a diffusion type process defined by (15), see Liptser, Shiryaev, 
(1974), Chap. 4, §2, Definition 7. Indeed fn(u, y) is for each u a non-anticipating 
functional, since it depends on y only via y(ti), u E (ti, ti+i]· (But y is not a diffusion 
process in the strict sense, which would mean that fn(u, y) depends y only via y(u)). 
This process has a distribution which is absolutely continuous with respect to the 
distribution of E W if almost surely J~ R(u,y)du < oo (Liptser, Shiryaev, (1974), 
Chap. 7, §2, Theorem 7.6). But this is fulfilled since every value Yi from (5) is finite. 
Then the density is analogously to (7) for z = t:W 

(16) A~3l(J) =exp { : 2 l fn(t, z) dz(t) - 2~2 l J;,(t, z) dt}. 
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Now observe 

[ fn(t, z) dz(t) = t f(z;)(z;+1 - z;), l f;_(t, z) dt = t f2(z;)n- 1 

0 i=l 0 i=l 

so that we obtain A~3)(!) =AF)(!). This means that the density (16) depends on z via 
Zi = z(ti+i) - z(ti) only, which again implies that the values y(ti), i = 1, ... , n are a 
sufficient statistic in (15) and the experiments given by (5) and (15) are equivalent, for 
any parameter space :E. It remains to establish that the densities of the two diffusion 
type processes ( 1) and ( 15) fulfill 

(17) sup E IAP)(f) - A~3)(!)1 ~ 0, E ~ 0. 
fE"£ 

For the signal plus noise case (2) Brown and Low (1992) were able to use the explicit 
formula for the squared Hellinger distance H2(·, ·)of two shifted Wiener measures: if 
QJ, Qr are two measures corresponding to (2) with trends f, f*, say, then 

(18) 

(in analogy to the finite dimensional Gaussian case), and where f* was also a step 
function approximant for f. In our more involved diffusion model, we use an inequality 
derived from the Hellinger process in semimartingale theory, cf. J acod and Shiryaev 
(1987). Denote by Ph Pj the probability measures on C[O, 1] given by the two processes 
(1) and (15), respectively; the notation Pj reflects the dependence of fn(·, ·)in (15) on 
f. Let h J be the Hellinger process of order 1 /2 between these two measures (see J acod 
and Shiryaev (1987), §4b, p. 239): for a realization z 

h1(u) = -1 ru(f(z(t))- ln(t,z)) 2dt. 
8t2 Jo 

The inequality for the the total variation distance 11 · llrv is 

(19) 

where E1 denotes expectation wrt Pf, see Jacod and Shiryaev (1987), §4b, theorem 
4.21, p. 279. A remarkable feature of inequality (19) is that it is nonsymmetric and 
holds both ways with expectation taken with respect to either P1 or Pj. The choice 
P1 somewhat facilitates evaluation of E f hf which is our next task. 

Lemma 2 Under the conditions of theorem 1 we have 

uniformly over f E :E) where E f denotes expectation with respect to the distribution P1 
of the process y in (1). 

This lemma establishes theorem 1; the proof is in section 3. 
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2 Sampling from a Diffusion 
Let us now consider the situation where one has discrete data from the diffusion process 
yin (1). Various questions of inference based on sampled values y(ti), i = 1, ... , n have 
been treated in the literature: Prakasa Rao (1983), Dacunha-Castelle and Florens-
Zmirou (1986), Florens-Zmirou (1989), Yoshida (1992). The question now arises 
whether these sampled values constitute an asymptotically equivalent experiment. Our 
answer will be based on the notion of an asymptotically sufficient statistic. 
Consider experiments £Ji) = {PJ:J, f E ~}, i = 1, 2, given on the same measurable 
space (f!f., :Ff.), and suppose that Tf. is a sequence of measurable mappings from (f!f., :Ff.) 
to some other measurable space (7;, Bf.). 

Definition 1 The sequence {Tf.} is called asymptotically sufficient for the sequence of 
experiments £P) if 
i) Tf. is sufficient in the experiment £!2), 
ii) £!2) approximates £P) in total variation: sup fEY.', llPXJ - PXJ llTv ---t 0 as E ---t 0. 

It then immediately follows that in the experiment £P), data reduction by the statistic 
Tf. constitutes an asymptotically equivalent experiment. Indeed let PXJT be the distri-
bution of Tf. under P}:J and £Ji)T = {PXJT, f E ~} be the corresponding experiment. 
Then 

ll p(l)T - p(2)Tll = su lp(l)T(A) - p(2)T(A)I = su lp(1)(r-1(A)) - p(2)(r-1(A))I f,f. f,f. TV p f,f. f,f. p f,f. f. f,f. f. 
AEBe AEBe 

~ ~~~e IPX}(B) - Pj~)(B)I = llPXJ - Pj~JllTv ---t 0 as E ---t 0, uniformly over f E ~ 

so that £Ji)T, i = 1, 2 are asymptotically equivalent. But by sufficiency £J2)T is exactly 
equivalent to £!2). 

Theorem 2 Under the conditions of theorem 1, in the diffusion model (1) with E ---t 0 
the sampled values y(t1 ), .•. , y(tn) are an asymptotically sufficient statistic. 

Proof. Let £P) be the experiment given by observations y in (1) and £!2) be 
given by iJ in (15). Define for a trajectory z(t), t E [O, 1] the statistic Tf. by Tf.(z) = 
(z(t1 ), ... , z(tn)). Then Tf. is sufficient in £J2), and the result follows from theorem 1. 
0 

3 Proofs of lemmas 
Proof of lemma 1. Recall that ~i = n 112(W(ti+i) - W(ti)); define 
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and Bi(t) = 0 otherwise; thus Bi(t) is a Brownian bridge on [ti, ti+i] which is indepen-
dent of ei· Hence the Bi(t), i = 1, ... , n are mutually independent and independent 
of the ei, i = 1, ... , n. Now we have y(O) = 0 by definition of the interpolated process 
and also by (15). Fort E [t1, t2] = [O, t2] we have fn(t, y) = 0, hence (15) implies 

(20) y(t) = E W(t) = E B1(t) + E n(t - ti) W(ti) = E B1(t) + (t - ti) E n1126 
which is exactly the linear interpolation of 0 and y1 on [O, t 1] plus a Brownian bridge. 
Thus y(t2) = Y2, and for the induction step we may assume y(ti) =Yi· Then on [ti, ti+i] 
we get similarly to ( 20) 

jj(t) =Yi+ J..' fn( u, jj) du+€ (W(t) - W(t;)) =Yi+ (t - t;)(f (y;) + € n 1
/

26) + € B;(t). 

Hence y(ti+i) = Yi+ n-1 f(yi) + E n-1J2ei = Yi+i and the solution y(t) is again of the 
structure claimed. 

Proof of lemma 2. We have 

l (f (y(t)) - Jn(t, Y ))2dt = t [+' (f(y(t)) - J(y(t;)) 2 dt 

n 

::; L n-1 sup M l(y(t) - y(ti)l2 
i=l tE(ti,ti+1] 

(21) :'::'. 2n-1 t tE(~~f.+,1 If..' J(y(u)) d{ + 2n-1 t tE(~~f+d €2 IW(t) - W(t;)l2. 

For the first term in (21), apply Cauchy-Schwartz and IJ(x)I::; M(l + lxl) to obtain 

(22) 

To estimate the expectation of this term, we use the following relation: there is a 
constant CM depending on M but not on E such that for all f E :E 

Indeed this follows from 0ksendal (1992), exercise 5.6, which is connected with the 
existence and uniqueness theorem for SDE (note that in (1) we have an SDE with 
diffusion coefficient a(t, y) = E ). Taking an expectation in (22) we get 

(23) 
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We have estimated the expectation of the first term in (21) as 0( n-2 ) uniformly. For 
the second term, note that this is an average of identically distributed random variables, 
which have the distribution of · 

sup t:2 IW(t)l2 ~ t:2n-1 sup IW(t)l2 
tE[O,n-1) tE[0,1) 

where'~' means equality in law. But suptE[O,l) IW(t)l2 has finite expectation (Breiman 
(1968), ch. 13. 7), so that the expectation of the second term in (21) is also 0( n-2 ) 

uniformly. Since n-2 = o( c 2) by assumption, the proof is complete. 

ACKNOWLEDGEMENT. The authors wish to thank Vladimir Spokoiny and Philippe 
Vieu for helpful discussions. 
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