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Abstract

We consider the problem of a spreading ground water mound of liquid in a porous
medium, situated on an impermeable horizontal solid layer. The mathematical formu-
lation for this problem is given by the modified porous medium equation. We derive a
global condition in form of an energy integral, describing the loss of liquid in the porous
medium. This yields the necessary condition that determines the similarity exponents for
the similarity solution of second kind, describing the long time behavior of the mound.
We further apply our method to the problem when instead of an energy integral another
conservation law, such as the first moment integral, obeyed by a family of antisymmetric
solutions, is violated. Here, we consider as an application the problem of the impact of
a flood infiltrating a porous medium. In all cases we will also solve and compare our
analytical results with our numerical solution, and, if available, with examples existing in
the literature.

1 Introduction

Suppose that outside the liquid, the porous medium is occupied by a gas. Under the action
of gravity the liquid spreads and displaces the gas at some points, while at other points, pores
that were previously filled with liquid are being occupied by the gas. In the mound at some
(initial) time ¢, the liquid saturation is supposed to be equal to o,. Due to capillary forces
some liquid remains in the pores that were originally filled with it. Let this residual saturation
of the liquid be equal to o_.

As suggested in figure 1, let us assume, that the volume originally occupied by the liquid is
radially symmetric, with its bounding interface denoted by h(r,¢). Furthermore, for radially
symmetric flow Oh/0r < 0, except when r = 0, where due to the symmetry dh/dr = 0. Since
the flow can be assumed slow and laminar, with negligible vertical velocity component, the
Navier-Stokes equations reduce to the hydrostatic law for the vertical pressure p = pg (h — z),
where p is the liquid density and g the gravitational constant. Then, according to Darcy’s law
the flux of liquid through a cylindrical surface of area 27r h is
Op  kpgm Oh?

“onrh
v=——2rrh—=— r—0-.
7 or 7 or

(1.1)

Hence, since the rate of change in the volume of the liquid mound, due to the decreasing
saturation from o, to o_, is equal to the change in the flux of the liquid, the governing equation
is

Oh _m_ 0 8_h2 for oh <0 (1.2)
o ror\or) ° T '
where
Kpg
_ = . 1.3
" 2mu(oy —o-) (3)
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Figure 1: The spreading groundwater mound in porous medium.
We observe from figure 1, that this equation is only valid for a certain part of the radial domain,

and that there is for each point in time a unique 7., beyond which the liquid saturation is
increasing from zero to o,. This part is governed by the equation

Oh _m, 9 8_h2 f oh >0 (1.4)
a ror\or ) " & '
with
Kpg
_ , 1.5
my 2muo, (1.5)

After nondimensionalization via

* r * m+Qk Q

rt=—, "= —--1t, h=—

R Rkd+2 Rd

for d = 2 and k£ = 1, where R is the characteristic length scale in radial direction, and @ is
the volume initially contained in the liquid mound, equations (1.2) and (1.4) take on the form,

after dropping the ' x ' :

Oh 10 ( on* tor P
ot _ror\or )’ BN

h*

>0 (1.6)

Ooh 1+4+¢0 Oh? Oh
E = , 5 <TE> s for E <0 (17)
with the boundary conditions
?:0 at r=0, h=0 at r = ro(t) (1.8)
-



and interface conditions of continuity of

oh oh
o and h across i 0. (1.9)
Here we have set
T —1+4e with e=—2" | (1.10)
m.y o, —0_

Each of the equations (1.6) and (1.7) is an example of the porous medium equation and via a
classic Lie group analysis, which we will illustrate in the following chapter, well-known similarity
solutions to this equation of form

1
Vi

are obtained. However, due to the differing diffusion coefficients the respective solutions cannot
be matched at the interface unless e = 0. On the other hand we will solve this problem
numerically and observe that the solution enters, for large times, a self-similar regime, which
differs from (1.11), see also [15].

h(r,t) = f(me), with n= rti (1.11)

The reason for this lies in the global condition, here conservation of the fluid mass, which is
obeyed if ¢ = 0. But if € # 0 the jump discontinuity of the coefficient in (1.6) and (1.7) across
the free interface r.(t) renders the integral

9 [
5/0 rh(r,t)dr # 0

Indeed, as we will see in more detail later, the very fact that this conservation law is violated
prevents the a priori determination of the similarity index. On the other hand, by solving the
whole problem numerically, we know there exists such a similarity index. Moreover, for the
radially symmetric problem in d-dimensional space and power &,

Ou _ pem(Z24)| L2 a1 O 0<r<
o c ot )| ritor \" Tor )2 rsTo

w(r,0) = F(r), /rd_lF(r)drzl. (1.12)

Hulshof et al. [20] were able to show that for & > 0, d > 1 the Cauchy problem has a
unique solution in a class of compactly supported, non-negative, maximal viscosity solutions.
Furthermore, they could show that as t — oo every maximal viscosity solution with compactly
supported initial data converges to a similarity solution of the second kind.

We will show how the violation of a conservation law can be used to obtain a condition relating
the unknown similarity index to a certain value of the corresponding second kind similarity
profile.



Here, we will construct the second kind similarity solution to (1.12) by making use of the
violation of a conservation law to obtain a global condition relating the unknown similarity
index to a certain value of the corresponding second kind similarity profile. The asymptotic
method presented here represents a generalization of those developed in [4] for Barenblatt’s
filtration equation.

2 The perturbation method

In [4] it has been shown how the second kind similarity solution of Barenblatt’s filtration
equation are obtained if the problem is viewed as a perturbation of a corresponding problem
with known similarity solution. More precisely, one can view the Lie group of the problems
with second kind similarity as a perturbation of the Lie group of a corresponding problem with
known similarity solution. As a consequence of this one obtains the proper perturbation ansatz
for such problems, i.e. not only the functions but also the similarity exponents are functions of
the perturbation parameter. In our case we make use of the Lie-group of the porous medium
equation, see [3] (p. 297). The asymptotic group properties yield the similarity form:

u(z,t) = t© f(n; €) n = rt?e) . (2.1)

If we substitute this into (1.12) we obtain

kale)+1
pe) = -EEL (22)
and the similarity problem
- ka(e)+1 ,df d _,d fEH
A1 plpg) — )T 2 d @ ) L (S 0<n<m (23
@t fme) - O g L () o<nsn @
~ ka(e) +1 ,df d ., d fEH
d=1 p(o. ) _ aZd — 2 [ pdt e <n< 24
ale)n™ f(ne) T an (n i) ne<n<m, (24)

where 7y is the point where f vanishes and 7. where the interface condition

d .d fk+1
(1

- =0 t =1, 2.5
o dn) a n=mn (2.5)

holds.

The normalization takes on the form

/Ono n*! f(m;e)dn=1 (2.6)
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In order to determine the similarity index a(e) one can make use of a conservation law for the
case € = 0. If £ # 0 this conservation law is violated. However, as we observe next, we obtain
instead a generalized relation, we call "dissipation law". Since for our problem conservation of
mass is violated we obtain:

o ro i1 Tc o i1 6uk+1 /ro o it 8uk+1
— t)dr = 14¢)=— —— ) d — —
o ), 7wt /0 (1+e) 3, (T ar ) w7 Tar

k+1
_, 0u

erd a0 (re(t), 1) (2.7)

This condition in conjunction with the similarity form determines the similarity index a(e) for
e # 0. We observe that (2.7) becomes, in view of (2.1):

O (o) pEyay [ a1 d-1ya(e) k1) —pe) -2 S
o (tote)-Ate )/ n®t f(m;e) dn = en 14 i T (1) -
0 n

Hence, in view of (2.6) we obtain the relation

d 2 aadft
- ) . 2.8
Ot i ke g (28)

We assume now that € < 1 and we make the perturbation ansatz
a(e) = ap +eay + %oy + ..., (2.9)

kao+1 k& k
i T S L SR (2.10)

Ble) = —— £ 5

and

f(me) = fo(n) +efi(n) + e f2(n) + ... (2.11)

If we substitute (2.9)-(2.11) into equation (1.12) (or (2.3)-(2.4)), we obtain a sequence of ordi-
nary differential equations, together with the normalization

o

/nd‘l fo(n)dn =1 (2.12)
0

/n‘“ fimydn=0 =12, ... (2.13)



Furthermore, we obtain a sequence of equations from our relation for the similarity index,
namely,

d
= — 2.14
& kd+2 (214)
2 gadfyt
_ ) 2.15
2 . d

Hence. we finally need to determine the values f;(n.). To leading order we have the similarity
problem for the porous medium equation which has the well-known Barenblatt-Pattle solution.
Here we obtain

_ kag +1 ,df d _,d fH
d—1 0 a%Jo d-12Jo
— - = 0<n<
aomn f0(77) 92 n dn dn <7I dn ) >N=>"o,
which can be written as
kd+2 +g d—lf()_i d_ldf§+1+koz0+1df() (2.17)
5 Qo 9 n o\n) = dn dn 9 n Jo\n .
This we integrate and recall that ag = —d/(kd + 2) to obtain
o) = ———k (2.18)
= ekdr2)(k+1) 0T o '
where 7, is determined through the normalization condition
70 1 7o
/ndl f (77) dn _ k k /ndl (n2 _ n?)% d,r’ =1
’ 2(kd+2)(k+1) 0 ’
0 0

thus

g (2(kd+2)(k+1)>% 51 <ﬂl E) | (2.19)

Mo k



Since the interface condition (2.5) yields

kd
kd+ 2

Ne = Mo, (2.20)

we obtain for oy the formula

d 2k41
kd \*( 2 \'* . (dk+1
al__<kd+2> <kd+2> b (5’ k ) (221)

where B denotes the Beta-function.

Next, we find the exponents «;, i = 2,3,.... For this we now have only to solve the linear
equations of second order for f;_1(n) in their respective interval of validity and require continuity
across the interface at 7., in order to find the value f;_1(n.). We demonstrate this here for i = 2.

To O(eg) we obtain from equation (2.3)-(2.4)

d [ d—1 d k d ] d—1 k 4dfo d d—ldf(;c—i—l

— k+1)— + = _rpd2J0)y 2 Yo

dn _77 ( )d77 (5 f1) L fl_ ar (" fo— 5 an an n dn
for 0<n<n (222

d [ d—1 d k 1 d ] d—1 k 4dfo

il E+1 — _r

dn _77 ( + )dn (fofl) + e d 271 fl_ ap | N fo 5 dn

We can now integrate (2.22) from 0 to n and (2.23) from 71 to 7, to obtain

_ d 1 no k dfo 7dfk+1
d-1(p 4 k d _ / a1, R 4 dn — nd-1%0
nt (k+ )dn (f0f1)+kd+2n fi o | fo—3m dy

for 0<n<n (2.24)

70 k d
nf = al/ nt fo — 57)‘1 d—fo dn
. n

for  n.<n<mn (2.25)

d 1
d—1 1L (pk
n (k+ )dn(f0f1)+kd+2

Note, that now, by evaluating (2.25) at 7. we can determine ay from

2
kd+2

Ay — —

1
kd+2nff1(nc)> (2.26)

<041 Ji(ne) +

where



hin) = (2(kd +k2n)g(k+ 1)) /nm . (néigvykl i (227)

In order to determine fi(n.) we multiply (2.24)-(2.25) by the factor n'~¢ (2 — n?) "/* and
integrate the resulting equation for the interval 0 < n < n, from 0 to n, and the equation for
the interval n, < n < ny from 7, to n. This yields

el

_ m O\ _2(kd+2) _
filn) = (773 _772) £1(0) + P [a1 Ix(n) — I3(n)]
for 0<n<n (2.28)
- 2 \T /[ @ \F o 2(kd+2) [ n(n)
filn) = (kd+2> <77§—772> Fi(ne) alk(ng—ﬁ)% ne -1 (ng_nz)%dn
for  n.<n<no (2.29)
where
_ [ 1i(A) _ kng )i " a1 ( Ui >kk1
I(n) = /0 N (o AZ);UM’ [i(n) = <2(kd+ 2)(k + 1) /,7 A m — A “
i Lim—__T k ' 2.30
an 3(1) = 2(kd + 2) (2(kd+2)(k+ 1)) ' (2.50)

In order to eliminate the constant f;(0) we first multiply (2.28)-(2.29) by n? ! and integrate
the first from 0 to 7, and the second from 7, to ny. After adding both together we can make
use of the normalization (2.13) and obtain

k-1

0 = KO+ () S 50+ 2D i) — (] - 1)
(2.31)
where
1 k % n )\d+1

L(n) =  2(kd +2) <2(kd+2)(k+1)> /0 (ng_p)% @A, (2.32)

_ [T L)
o = (m — 2) l/ 1) ] o .

B 1o )\d—l A Jl(O') :
o= /" (—A2) " [/n od-1 (n%—oz)%d ] " .
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and

=

kg K kg )
1) = (qrrmrs) D0 w0 = () A (239)

Thus, (2.31) together with (2.28) at n = 7, yields the formula

fn) = W <a1 [Iﬁ(nc)fz(nc) T (L) — Js(nc))]
2oy bk k :
o Tame) + 2(kd + 2)? (2(kd 1 2)(k + 1)) [6(”0)) (2:36)

In the following section we will apply our results to the problem of the spreading ground water
mound in a porous medium, we expounded in the introduction. This will be followed by a
comparison with our numerical solution to (2.3)-(2.4).

3 Spreading of a ground water mound

For the problem of the spreading ground water mound, where £ = 1 and d = 2 our results come
out particularly simple.

We have :
1 2
O{O:_ia 770:87 77c:1; (31)
f — %(8_772) US \/g
0 0 n>+/8
and
1
o] = —g (32)




and

Is(n) = —1—16 [8In8+7°(In8—1) — (8 —n*) In (8 — n?)] ,
1

Js(n) = 6 [8(In8 +1n4) — n°In(n”) — (8 —7°) In (8 — n*) — n’In4] .

Hence, we obtain

o = 0.05539339761 . (3.3)

For this problem there is also another result by Goldenfeld et al. available, who employ a
renormalization group method, [5|. However, while the value for «; agrees with ours, their
value for a, does have neither quantitative nor qualitative relations to ours, as well as their
numerical solution. A method by Vazques et al.[21], employing the inverse function theorem,
computed a value for ap, which is twice as large as ours, but this difference seems only to result
from a different notation for the exponents.

4 Numerical methods and comparisons

In this section, we present a numerical solution of the ground water mound problem. For this
purpose, we rewrite the equations (2.3), (2.3), for £ = 1 and d = 2, in the following form:

o I 1+«
= — _Ja_ — | T 0 e 4.1
fUTI 2(1+5) ,r] f |:f71+4(1_|_6) or <T,<77 ( )
a f f 1+«
fon = 5—#—7"[107,4— 1 ] for n.<n<1, (4.2)
with the boundary condition at n =0,
fn(o) =0, (4.3)
and the interface and continuity conditions at n = 7.,
1+
af(nc) - Tncfn(nc) = 0) (44)
+
e = o, (4.5)
+
LE = . (4.6)

For the boundary condition at the interface to the porous medium, we normalize without loss
of generality ny = 1, such that

f(1) =0, (4.7)



Finally, we find it numerically more convenient to replace the integral condition, or the dissipa-
tion law, by an extra boundary condition at the liquid/porous-medium interface n = 1. There,
we require no flux across this boundary. Hence, from (2.4) this results in the condition

14+«

fa(1) = -2, (48)

The problem (4.1)—(4.8) is essentially a two-point boundary value problem for a second order
differential equation, but with three instead of two boundary conditions at n = 0 and n = 1.
The extraneous boundary condition fixes the value of a(e), the calculation of which is the main
goal in this section.

For this purpose, we convert the second order ODE into a system of first order ODEs using
the settings y1(n) := f(n) and ya(n) := f,(n), which is then solved using the explicit Adams-
scheme implemented in the LSODE-package [6]. This code incorporates a local error estimator
for y;(n) i = 1,2, and automatically adapts its step-size so that the estimated error is less than
tol x (y;(n) + 1), where tol is specified by the user.

The integration is first carried out for (4.2) up to 7., starting from the right end point. In a
second step, the integration is continued to the left with the f(n.) and f,(n.) obtained from the
previous run, now using (4.1). Note that 7. has to be determined as part of the first step; since
preliminary runs indicated that f was monotone at 7., this can be done very easily through
bisection.

Near the left end point, f will in general not fulfill (4.3); rather, this requirement must be
fulfilled in order to determine the similarity exponent a(e). It turns out that, near n =0, f,
depends monotonically on a, so a bisection method can again be used. This can be seen, for
example, from numerical trials.

In both bisection schemes, we started with a rather generous choice for the bracketing interval,
making sure that the value of interest was included, then calculated the value of f(n.), for
example, and replaced one of the points of the interval, according to the sign of f(n.). This
procedure was repeated until both the length of the interval and f(7.) had dropped beneath
prescribed tolerances An. and Af. Similarly for a(e) and f, near 0, with tolerances Aa and
Af, for the length of the bracketing interval and for f, near zero.

Special attention is required when integrating the ODE near 0 and 1, where  and f vanish,
respectively, since these quantities appear in the denominator of certain terms of (4.1) and
(4.2). We avoid these regions by starting the integration at an 7, slightly smaller than 1, and
using a linear approximation to obtain a good choice for f(n,),

f) ~ 1) = -y =

Likewise, we do not integrate up to zero, but use a small but positive value for the left end
point 7; instead.

(1—-mn.)>0

The numerical trials were carried out using the following standard for the tolerances and trun-
cation parameters,

tol = 10710, m=10"*% Ne=1-—107°
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IE [1-np=10°|1-np,=10"*|1—p,=107] p =107 m = 1072
0 -0.500000005 | -0.500000014 | -0.500001003 | -0.500000499 | -0.500049962
0.001 | -0.500124949 | -0.500124959 | -0.500125948 | -0.500125444 | -0.500174898
0.005 || -0.500623623 | -0.500623633 | -0.500624626 | -0.500624118 | -0.500673534
0.01 | -0.501244496 | -0.501244506 | -0.501245504 | -0.501244990 | -0.501294359
0.025 | -0.503090869 | -0.503090879 | -0.503091893 | -0.503091362 | -0.503140590
0.05 | -0.506115352 | -0.506115362 | -0.506116402 | -0.506115842 | -0.506164840
0.075 | -0.509076148 | -0.509076158 | -0.509077225 | -0.509076636 | -0.509125409
0.1 -0.511975789 | -0.511975800 | -0.511976893 | -0.511976275 | -0.512024827

Table 1: a(e) for various 1 — n,, .

Ao =107, Af,=10"%q An.=10"", Af=10"T.
The results for a(e) of the computations for this choice are shown in table 1, plus the convergence
checks for the truncation parameters n; and n,. Underlining indicates the digits which coincide

e | o | o |
0.001 || -0.12495 | 0.05100
0.005 || -0.1247 | 0.05508
0.01 -0.1244 | 0.05504
0.025 || -0.1236 | 0.05461
0.05 -0.1223 | 0.05386
0.075 || -0.1210 | 0.05313
0.1 -0.1198 | 0.05242

Table 2: a4(e) and ay(e) computed from the numerical data, for various e.

with the values obtained for our standard choice. Regarding 7. and Aa we remark that the
above choices are conservative, so that the errors here were negligible.

Both the convergence check and comparison with the analytical value a(0) = —0.5 for the first
kind similarity case indicate that the values obtained are within 10~% of the real quantities.

We now compare our results with the asymptotic theory. To this end, we calculate, for each &,
the values

0.5
o = &) 05
£
a(e) + 0.5+ 0.125¢
O = 2 .

As e approaches 0, these values should converge to the theoretical predictions. The results are
shown in table 2. Convergence can indeed be observed for oy, and, to a lesser extent, for as.
For the latter, the numerical error prevents as to get closer to the theoretical value for £ < 0.05.

The numerical estimates can be improved by extrapolation of the tabulated values for a(g). To
avoid a large influence of numerical errors from the inclusion of a(g) for very small €, we only

12
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Figure 2: Numerical result (4) First order (—) and second order (---) asymptotic results.

used the values of table 1 for ¢ > 0.01 to compute the extrapolation polynomial, and read off
the following values for the lower order coefficients,

ap = —0.5000000064,
o; = —0.1249995996,
o = 0.05537538810.

When we compare the numerical solution for the decay rate a(e) with our asymptotic results
we observe a significant improvement from our O(g?) result, see figure 2.

Here, we compare our results with those from Goldenfeld et al. [5]. To that end we show, as
they did in their article, the quantity 10(—a(e) — 1/2) as a function of e. We observe in figure
3 that their result is also qualitatively different from our results.

Finally we like to address the question of convergence of solutions of (1.12) (with £ = 1, d = 2)
of compactly supported positive initial data F'(r) to a similarity solution. For the numerical
integration of (1.12) we make use of the IMSL routine DMOLCH [8]. This routine uses the
method of lines, where the spatial discretization is achieved by collocation using cubic Hermite
polynomials. The routine assumes that the initial data satisfy the boundary conditions and
have smooth derivatives. In all our calculations we let the number of Hermite knots N = 500
and specify the error tolerance tol = 1077. If we now multiply the solution u(r,t) by ¢t~ and
r by t P then, in these scales, we observe, that the solution tends to a stationary limit as
t — oo. As an example we set ¢ = 0.3 and use our asymptotic results (3.1)—(3.3) in (2.9)—(2.10).
For the initial condition we use the function

F(ry=(1-7%)? for —1<r<l, (4.9)

13
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Figure 3: Numerical results (+), the first order asymptotic result (—), Goldenfeld et al. second
order asymptotic result (---), our second order asymptotic result (---).

and zero otherwise. We observe in figure 4, that already for ¢ = 10 the solution is, within
graphical resolution, stationary, i.e. in self-similar form.

For times ¢ = 20 we show in figure 5 the shapes for the ground-water mound fore = 0, 0.3, 1, 4, 10.
We observe, that already for small € = 0.3 a significant difference in extent and shape, which
decreases and flattens out, respectively, for increasing €. In fact, our numerical calculations
show that « —+ —1 and 8 — 0 as € — 00, i.e. as the residual saturation o approaches o, .

5 The dipole problem

We like to demonstrate in this section that our method also extends to problems with different
underlying conservation laws. Here, we consider instead of conservation of mass for the under-
lying porous medium equation ((1.12) for ¢ = 0), the conservation of the flux and for simplicity
restrict ourselves to the case where d = 1. We therefore assume now, that the resulting prob-
lem is antisymmetric and impose Dirichlet boundary conditions at x = 0. We notice first that
this problem does not admit an energy integral, however if we consider the first moment, we
immediately see, after integrating parts, that

a o0

o ), zu(z,t)de = uF(0,1).

Thus, the flux is conserved if Dirichlet boundary conditions are obeyed at x = 0. This problem
has similarity solutions of the first kind, the so-called dipole-solutions, describing the large time
behavior of solutions with antisymmetric initial data, [1]. Existence of a unique continuous weak

14
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Figure 4: ¢t “u(z,t) in similarity variables at times ¢ = 0.01 (—), 0.1(---), 1 (---), 10 (— o —),
100 (— % —)for e =0.3.
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Figure 5: u(z,t) at time t =20 fore =0 (— - —), 03 (— —), 1 (---), 4 (- - +), 10 (—).
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solution with compact support, as well as convergence to the dipole solution in the large time
limit could be shown in [13], [7].

One typical application of this problem for £ = 1, concerns the impact of a flood on the motion
of ground water. If for example at a certain time the level of a liquid begins to rise quickly at
the symmetry-axis £ = 0 of a porous layer and after a short duration is again withdrawn, the
large time behavior of the liquid distribution in the porous medium shows a front moving with
finite velocity further into the porous medium, while at the boundary z = 0 fluid is lost at a
constant rate. Such application problems where for example investigated in [19]. There, also
the problem of forced drainage, to prevent the spreading of the liquid was considered.

Here, we are concerned with the effect of some additional loss of liquid in the pores of the layer,
which, of course to a certain extend, is the case for all materials.

When considering an analogous situation as for the problem of the ground water mound (k = 1),
where the fluid spreads in a porous medium, we will observe that also conservation of the flux
is violated and replaced by a corresponding ’dissipation law’.

Hence, when looking for the large time behavior of solutions to the problem

ou ou\ ] 82uktt
u(z,0) = F(z), /:L'F(:L') dez =1, (5.1)

0

we expect the similarity solutions to be of second kind. As in the previous section we construct
them by using the composite expansion ansatz (2.1) in (5.1) to obtain 8(e) = —[ka(e) + 1]/2
and the similarity problem

k d d [ dft!
a(e)n f(n;e) — %rfd—f; = (1+¢) an (771;7 — ¥ (m; 6)) :
for 0<n<mn (5.2)
k d d [ df+
a(e)n f(n;e) — %rfd—f; = <n J;n — f’““(nw)) :
for n.<mn<mp. (5.3)

In this problem f(n;e) vanishes at n = 0 and n = 1. 7, is the point where the interface
condition

d2fk+1

e 0 at n="ne (5.4)

holds and the normalization is here
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/Ono nf(ne)dn=1 (5.5)

The "dissipation law" for the 'mass’-flux takes on the form

o [ o o [ outtt 0 9 [ Gyttt
~ t)dr = 1 — — k) g / 2 _ okt
5 . ru(z,t)dz /0 (1+¢) . (m 5 U ) T+ rr <x ey

_ . ( P (aelt) ) —u (xc(w,t)) (5.56)

which in conjunction with the similarity form yields the formula for the similarity index a(e):

ae)k+1)+1=¢ <77ch;;1 (n.) — fFt (nc)> : (5.7)

We assume now that e < 1 and we make the perturbation ansatz (2.9)-(2.11) from which we
obtain

mo
/nfo(n) dn=1 (5.8)
0
nfi(n)dn =0 i=1,2,... (5.9)
0
and
k+1
o = iy (A7 -0 ) G-1)
0 = - <fé“f1 it (fé“f1)> .- (5.12)

In order to determine fy(7n.) we integrate the leading order problem and obtain, in view of
(5.10)
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dfk+1
ﬂdo—n — f5 () +

) o =0 (5.13)

(2k+1)/(k+1

The use of the integrating factor [n ) fo] ! then enables us to solve for f (see also [1])

and the normalization condition yields 7,

1
040 k42 (2(k+2)(k+1)\F _ , [(k+1 k+1
o= B 1 . 5.15
o k+ 1 < k Fr2 0k (5.15)
Since the interface condition (5.4) yields
(k(2k+3)) (5.16)

we obtain for oy the formula

2k+3 k+1

1 kQ2k+3)\*= ( k+2 \ * _ ., (k+1 k+1
k)= — — B | ——+1,— ). 5.17
o (k) k+1<2(k+1)2> <2(k+1)2> <k+2+’ k ) (5.17)

The index a3 is again determined by solving the O(e) problem

d T d 2f0] k ,d d [ dfttt

dn _(k—i- 1) (nd—n (f(;cfl) - f(;gf1> + Z(Z _{_11)_ = o (nfo - 5772%;) T dn <7I ]:[;7) - éﬁl)
for 0<n<mn. (5.18)

d [ d °fi ] k »d

dn _(k +1) <nd_77 (f511) — f§f1> + Z(Z fl)_ = (ﬂfo - iﬂzdiq;J)

for n.<n<m (5.19)

To solve this, we integrate (5.18) from 0 to n and (5.19) from 7 to g

18



d 2 d dk+1
(k+1)<nd—n(fé“f1)—fé“f1>+2"f1 = /0,\f0——,\2 f‘]d,\_ f 4

(k+1) d
for 0<n S n.  (5.20)
d 2 70
) (rat 720~ 288) 5B = e [T B
n

for n.<n<m  (521)

Thus, by (5.21) we can determine ay from

s =~ (o 50+ gy (5.22)
where
Ji(n) = /"0 Mo — —)\2 leon dx (5.23)

In order to determine f;(n.), we observe first that (5.20), (5.21) can be written in the form

d k-1 -1 . 2(k+2) (073] 2df0 77 d77 +fk+1
d_n(y’“ nk+1f1(n)) = = (yinz/ )\fo——)\ A

ykn
for 0<n<n (5.24)

d [ k-1 -1 df
d_(y k 77’“+1f1(77)> = - / Afo ——AQ 0
n y’“77
for n. <n<m (5.25)
where we denote
k42 k+2

y(n) = ne™" —nk+

We can now integrate (5.20) from 0 to n and (5.21) from 7. to n to obtain

nh(n) = <ﬂ>kn§_ﬁlo+2(k+2)y(n)%n”z_ﬁ (cxFi(n) — Fa(m))

y(n) k
for 0<n<n, (5.26)
k—1
y(me) | F k2 24 2(k +2 1ok kt2
nh(n) = ( ( )) pE T i) — 2EF Dy o, ),
y(n) k
for 0<np<mn (5.27)
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where we denote

h::hmM%hML Fim) = |

(/ fo—ﬁad—fod>dA

(DY A L o k ,d
B = [ 2o N g B = ; ofy— 5290 45} ax.
0 ()\)k)\z T y()\)k)\Q - 2 do

We finally use the integral condition (5.9) after we integrate (5.26) from 0 to 7. and (5.27) from
n. to o and adding the resulting parts, yielding

0=1G1+n" fr(ne) Hl‘i‘i( A )(GZ_HZ)a (5.28)
where
k—1
ne o \ F okae e 1k kit
G, = / —< | nFidn, Gy = / y(n) = n=1 (eaFa(m) — Fa(n)) dn
0 y(n) 0
k—1
no e o 1—
H = (y(m)) ldn,  Hy= | ym) T niiaFy(y) dny
2 \y(n) ne

Equation (5.28) together with (5.26), evaluated at n = 7., enable us to eliminate [y and to solve
for f1(n.) :

1”1(710)272%]:r 2) o (alFl(n)_FZ(nc));ZG;lz . (5.29)
(y(ne)/y(mo)) * + &

6 The flood problem: Asymptotic and numerical results

Let us look again at the case, where k£ = 1 and recall the problem of the impact of a flood on
the ground water motion, briefly described at the beginning of this section.

From our asymptotic results, we find in this case

1
Qp = Ty
oy = —0.1427743036.

The integrals, needed to find fi(n.), turn out to be
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3/2 3/2

Fi(n) = _ng_o In(1-2%, F(n)= ——7772 ,  where
3/2 \
_m 2+1\ 1, [ (1-0)
Fm) = T [\/gt ( = ) L <m> )
' o\ V2
= 60 (6(2) — o(v)) , where v = <%> _

2 2
Gl — gng/Z, Hl — g <n3/2 _ ng/Z) ]

— +1In(1 — (3)}

_<77>1/2
z=1|— .
Mo

3

z

2¢?

v

a 2 1 3
H, = %17 (\/5(1 — v®) arctan ( vt > — ~(1+4*)In(1 +v +v?)

150 2

V3

+gv2 (1 o+ %v?’) +3 <ln(3) - g) = o(v)(1 - ”5)> :

4
Q17

@ - (U—ln(@ —0) + 21 v+e?) — LI (1 0?)

C 150 \ 2

2w+1\ 3 2( 2 3> ( 1 ))
—+/3arctan — v 14+ =v —|—\/§arctan —
( V3 ) 2 5 V3

;s
288

+

These yield the value
as = 0.06773941887 .

For a comparison of our results with a numerical solution of this problem we recast the equations

in the following form,

2
In = <3 [ ) 13&”% e
2
fon = —7"+%{a—1;an% e <n <1,
with the boundary and interface conditions at 0, n. and 1,
f(0) =0,
af(n.) — 1JFTO[ncfn(nc) = 0,
e =,
A =0,
1) =0,
L) =
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where we have normalized 7, to 1.

Again, we have to solve a two point boundary value problem with one boundary condition more
than the order of the differential equation, which is necessary to fix the unknown similarity
exponent a(g). The numerical algorithm follows a pattern very similar to the method use for
the ground water mound problem. We first solve (6.2) starting from a point 7; just left of 1.
The initial data we obtain from the linear approximations

f(m) = a:l(l_m),
1
fn(nl) ~ _ai_

We integrate up to 1, which we determine as before, then continue with (6.1), with initial
data provided by (6.5) and (6.6), until we arrive a an 1, where f is zero. Up to here, « is an
arbitrary parameter; it is fixed by the requirement that (6.3) be fulfilled, i.e., that 7 must be
at the origin. Preliminary trials showed that, here, 7, depends monotonously on «a, so that
the value for which this is achieved can be determined through bisection. At every step of the
iteration, the sign of n; is used to select one of the two parts of the interval. The iteration
terminates when || is smaller than a specified tolerance tol,.

A minor complication arises from the fact that the denominator of the first term on the RHS of
(6.2) vanishes at a zero of f, i.e., at 7. Indeed, numerical tests indicate that the tangent to the
graph of f tends to be vertical at this point. Therefore, the numerical ODE-integrator (LSODE)
cannot compute f up to, or past, n;. Attempts to do so lead to premature termination and an
error message of the routine. To get as close as possible to the true value of 7, we adopt the
following procedure: We start by requiring LSODE to integrate over a small but finite distance,
backwards on the n-axis. As an error is flagged as soon as we choose an endpoint to the left of
m;, we return to the end point of the last successful call to LSODE and resume integration, but
only over half the distance. We repeat this until the estimate |f(n)|/|f,(n)| for the distance of
the current point to 7;, meets a certain threshold toly.

For the calculation, we chose the following set of values for the truncation parameters and
tolerances,

tol = 107,

n = 1—107%

An. = 1071, Af = 1078,
Ao = 1071, tol,, = 1077,
toly, = 107°.

Convergence with respect to n; is checked by comparing the results from these calculations with
those where 1 — 7, is set to 10~* and 1073, for five different values of €. The results are shown
in table 3, where we have underlined the digits which agree with the result for the smallest
1 — m. Convergence appears to be guaranteed, and the case € = 0, where we know a to be
exactly —0.5, provides us with an estimate for the typical error less than 10°.

We now compare our results with the asymptotics. Table 4 shows the values of a for different
e, together with the approximations to the coefficients of the asymptotic expansion obtained
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from them through

a+0.5 a—+ 0.5+ 0.1427743036¢
a1 = c s Oy = 52 .

The results indeed seem to converge to the corresponding values from the perturbation analysis
as € goes to zero. We obtain better approximations to the coefficients of the asymptotic expan-
sion from the lower coefficients of the polynomial in & which interpolates a(e) for the choice of
several € in 0.001, ... ,0.1.

oy = —0.5000000001, ay = —0.1427742997, oy = 0.06773914094.

The following figure (6) shows again a very good agreement of numerical and asymptotic results
for values of € of up to 0.3.
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IE

[1-n,=10°|1-p,=10"*]1—p, =107

0 -0.500000000 | -0.500000019 | -0.500001874
0.001 || -0.500142707 | -0.500142725 | -0.500144582
0.1 -0.513637545 | -0.513637565 | -0.513639585
1 -0.599348416 | -0.599348451 | -0.599351895
2 -0.655767439 | -0.655767488 | -0.655772403
4 -0.722109746 | -0.722109822 | -0.722117434

Table 3: a(e) for various 1 — 7.

e | o [ o
0.001 || -0.142707 || 0.0676145
0.005 || -0.142437 || 0.0675370
0.01 | -0.142101 || 0.0673409
0.025 || -0.141105 || 0.0667556
0.05 | -0.139484 || 0.0658037
0.075 || -0.137908 || 0.0648818
0.1 -0.136375 || 0.0639886

Table 4: o;(¢) and as(e) computed from the numerical data, for various e.

-0.5 -
-0.51
-0.52
-0.53
-0.54
-0.55
-0.56
-0.57
-0.58
-0.59

-0.6

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

9

Figure 6: Numerical result (+), first order (—) and second order (---) asymptotic results.
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Figure 7: The Dipole similarity solution for various e.
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Figure 8: The exponent —f, determining the rate of extension of the solution for various ¢.
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In figure 7 we show some typical self-similar shapes for the dipole solution for various e. We
observe, that when the residual saturation o_ approaches o, i.e. 1/(1+¢) — 0, the similarity
shapes become symmetrical about their maximum. In this limit, the spreading rate 3(¢) =
—[ka(e) + 1]/2 vanishes. This can be seen in figure 8, which shows the complete range of
spreading rates.

7 Calculation of waiting-times

In this section, we like to make a few remarks on how solutions of (5.1) (with & = 1) for
compactly supported positive initial data F'(z) converge to the similarity solutions for various
e. For the numerical integration of (5.1) we use again the IMSL routine DMOLCH [8|. Again, we
let in all our calculations the number of Hermite knots N = 500 and specify the error tolerance
tol = 10~7. For the initial condition we use the function

F(z)=z(2-12)° for 0<z<2, (7.1)

and zero otherwise.

At first we consider the case € = 0. We observe in figure 9 , that the similarity solution emerges
rather quickly. Furthermore, we note, that until about t* ~ 0.11 the support of the initial
data does not move, i.e. we have a positive waiting-time ¢*. We illustrate these properties in
the following three figures 10-12, where we compare the numerical solution to (5.1) with the
solution to (6.1)-(6.8). Here, we scale the solution f(n) such that its maximum agrees with the
maximum of u(z,¢) and multiply ny = 1 by the right boundary of the support of u(z,t), at a
given time.

From the previous sections we know, that for £ > 0, the decay rate a(e) increases, while the
spreading rate ((e) decreases. Starting with the same initial data as above (7.1), we observe
this behavior in figure 13 for £ = 10.

Furthermore, we find that also the modified dipole problem has waiting-time behavior. In
particular, the waiting-time for the case ¢ > 0 is larger than for ¢ = 0. This has the effect
that in this case, the solution is already in self-similar form when the boundary of its support
begins to move, as can be observed in figures 14-16, and hence the location of the boundary is
completely described by the similarity solution.

Note however, that waiting-times result to a certain extent from local effects [14]. For initial
shapes other than (7.1), for example when the right boundary of the support is approached
linearly, we observe zero waiting times. A classification for initial conditions with positive
waiting-time for the modified dipole problem, as well as the modified porous medium equation
still needs to be derived.
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u(x,t)

0.5

X

Figure 10: Comparison of u(z,t) and the corresponding similarity solution (---x---) at ¢ = 0.06
for e = 0.
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u(x,t)
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X

Figure 11: Comparison of u(z,t) and the corresponding similarity solution (---x---) at ¢ = 0.12
for e = 0.

u(x,t)

0.5

X

Figure 12: Comparison of u(z,t) and the corresponding similarity solution (---x---) at ¢ = 0.16
for e = 0.
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u(x,t)

X

Figure 14: Comparison of u(z,t) and the corresponding similarity solution (---x---) at ¢ = 0.06
for ¢ = 10.
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u(x,t)

0.05

X

Figure 15: Comparison of u(z,t) and the corresponding similarity solution (---x---) at ¢ = 0.16
for e = 10.

0.1

u(x,t)

0.05

X

Figure 16: Comparison of u(z,t) and the corresponding similarity solution (---x---) at ¢ = 0.2
for € = 10.
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