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Abstract. A new method of obtaining lower bounds for the attractor's dimen-

sion is suggested which involves analysis of homoclinic bifurcations. The method

is applied for obtaining sharp estimates of the attractor's dimension for a class

of abstract damped wave equations which are beyond the reach of the classical

methods.

Introduction

It is well known that the long-time behavior of solutions of partial di�erential equa-

tions arising in mathematical physics can, in many cases, be described in terms

of global attractors of the associated semigroups, see [1, 2, 3, 4] and references

therein. Moreover, it is also known that for a large class of equations of mathemati-

cal physics, including reaction-di�usion equations, Ginzburg-Landau equations, 2D

Navier-Stokes system, damped wave equations, etc., the corresponding attractor has

�nite Hausdor� and fractal dimensions. Thus, although the phase space for such

problems is in�nite-dimensional, the dynamics on the attractor occurs to be �nite-

dimensional, hence it can possibly be understood by methods of the qualitative

theory of ordinary di�erential equations. One of crucial questions here is, of course,

obtaining more or less realistic estimates for the dimension of the attractor.

The best known upper estimates here are usually obtained based on the concept of

Lyapunov dimension dimL(A) of the attractor A, see [5, 3], and on the following

estimate:

(0.1) dimH(A) � dimF (A) � dimL(A);

where dimH and dimF denotes the Hausdor� and the fractal dimension respectively,

see [6, 5, 3, 7, 8, 9]. The main point here is that the Lyapunov dimension, by its

de�nition, can be explicitly estimated using su�ciently simple volume-contraction

arguments, see [3] for details.

Lower bounds for the attractor's dimension are usually based on the observation

that the unstable manifold of any equilibrium of the system is always contained in

the global attractor A. Consequently, the following estimate is valid:

(0.2) dimF (A) � dimH(A) � max
u02R

N
+(u0);

where R is the set of the equilibria of the system, and N
+(u0) is the instability

index of the equilibrium u0, see e.g.[1] and [2].

We note that this method of obtaining the lower bounds for the attractor's dimen-

sion is perfect for the class of gradient systems (or, which is slightly more general,

for systems possessing a global Lyapunov function). Indeed, the dynamics in the

gradient case is, in a sense, trivial and the dimension of the attractor is determined

by the instability indices of the equilibria only, no matter what is the Lyapunov di-

mension of the attractor and what are the volume-contraction properties. Namely,

in this case we have the equality in the second part of (0.2):

(0.3) dimH(A) = max
u02R

N
+(u0);

see e.g. [1] and [10].



2 There exists, however, a number of important equations of mathematical

physics (such as 2D Navier-Stokes system, Ginzburg-Landau equations, non-gradient

systems of damped wave equations, etc.), for which the given methods of estimating

the attractor's dimension from above and below yield di�erent asymptotics for the

dimension in terms of physical parameters of the system, see [3, 4] and references

therein. Which asymptotics is then correct is a long-standing open problem in the

theory of attractors. It is also worth to note that all systems mentioned above are far

from being gradient and they usually demonstrate a very complicated (e.g. chaotic)

dynamical behavior.

In this paper, we present a new method of obtaining lower bounds for the attractor's

dimension which exploits explicitly the recurrent (as opposed to a gradient-like)

nature of the system, and which is based on some general ideas from the theory of

homoclinic bifurcations. Namely, we suggest to estimate from below the attractor's

dimension in terms of the maximum M(�; u0) of the dimension of the unstable

manifold over the periodic orbits which can be born at a bifurcation of a homoclinic

orbit � to an equilibrium u0:

(0.4) dimF (A) � dimH(A) �M(�; u0):

To be more precise, one should consider a family of systems which depend on some

set of parameters �; then the global attractor is a function of � as well, and (0.4)

should be interpreted as

lim sup
�!�0

dimF (A�) � lim sup
�!�0

dimH(A�) �M(�; u0)

where the bifurcational moment � = �0 corresponds to the existence of the homo-

clinic loop �. Of course, one may use various homo/heteroclinic cycles with the

same purposes � we take a homoclinic loop as a simplest possible construction.

As it is argued in [11], for many cases of homoclinic bifurcations the dimension

M(�; u0) essentially coincides with the Lyapunov dimension of the corresponding

equilibrium u0:

(0.5) M(�; u0) � dimL(u0);

no matter how small the dimension N+(u0) of the unstable manifold of u0 is. Thus,

under this approach, both upper and lower bounds for the attractor's dimension

are given in terms of Lyapunov dimension. That is why we expect this method

to be e�ective in order to obtain sharp bounds for the dimension. Of course, the

existence of a homoclinic orbit and the possibility to perturb it in the desired way

within the class of systems under consideration is crucial for this method. However,

the homoclinic phenomena are so typical for dynamical systems with a non-trivial

behavior, that it would be natural to expect that in a wide class of equations of

mathematical physics which demonstrate chaotic behavior appropriate homoclinic

bifurcations can indeed be detected.

We illustrate our method by a model example of an abstract damped wave equation

(0.6) @
2
t u+ @tu+A u = F (u; @tu)



3in a Hilbert space H. We assume that A : D(A) ! H is a positive self-adjoint

operator in H with compact inverse, whose eigenvalues satisfy the estimate

(0.7) C1i
2� � �i � C2i

2�
; i 2 N ;

for some positive C1, C2 and �. Natural examples for A are provided by elliptic

di�erential operators in a bounded domain, with H = L
2. The quantity  > 0 in

(0.6) is a dissipation (or damping) parameter which is assumed to be small. It is

also assumed that the nonlinear operator F = F (u; @tu) belongs to some class S of

very regular (�smoothing�) operators which will be speci�ed in Section 2.

We prove that under the above assumptions, equation (0.6) possesses a global at-

tractor A in the corresponding energetic space E, and the Lyapunov dimension of

the attractor satis�es

(0.8) C
0
1

�1 � dimL(A) � C
0
2

�1
;

for some positive constants C 0
1;2 which are independent of . Consequently, due to

(0.1), we have

(0.9) dimF (A) � C
0
2

�1
:

On the other hand, when the nonlinearity belongs to the class S of very regular

operators, we show that for every " > 0 there exists a positive constant C" such that

the instability index of any equilibrium state is less than C"
�". Thus, using the

classical methods of estimating the dimension of the attractor A (which are based

on (0.1) and (0.2)), we will necessarily have a huge gap between the asymptotics for

upper and lower bounds of the attractor's dimension.

Nevertheless, using our �homoclinic� method, we construct nonlinearities F belong-

ing to the same class S, for which we have

(0.10) dimF (A) � dimH(A) � C3
�1
;

for some positive constant C3. Thus, at least in the case of damped hyperbolic equa-

tions with smoothing nonlinearities, the correct asymptotics for the dimension of the

attractor is given by the corresponding asymptotics of the Lyapunov dimension, and

the estimate (0.2) is not very much relevant.

Note also that A is the so-called maximal attractor, so it could be possible, in

principle, that the dimension of A can be decreased drastically by removing from A
non-recurrent orbits (like in gradient-like systems where such operation reduces A
to a zero-dimensional set, typically). We show, however, that nonlinearities F 2 S

exist for which equation (0.6) has a minimal set whose dimension satis�es (0.10);

therefore, the Lyapunov dimension (up to a constant factor) measures the complexity

of the dynamics of damped hyperbolic equations correctly.

The examples which we are talking about are obtained as small perturbations of a

decoupled system of second order ODE's (see (4.6)) which is an in�nite collection

of damped linear oscillators plus a single one degree of freedom Hamiltonian system

describing a particle in a double-well potential on a straight line. Note that none

of the modes here shows a chaotic behavior and, moreover, all of them but one are

damped. We show, however, that for any �xed value of the damping parameter

 > 0, an interaction of an arbitrarily small strength can be arranged between



4 these modes such that an extremely complicated behavior is ignited, involving

a huge (� 1=) number of modes (see Remark 4.3). Note that we nowhere use the

linear character of the oscillatory modes and our construction works for a chain of

nonlinear damped oscillators as well. Therefore, our results should be applicable

to perturbations of other integrable equations, such as the nonlinear Shrödinger

equation, etc..

The paper is organized as follows. The existence of the global attractor for problem

(0.6) is veri�ed in Section 1. The upper bounds for fractal and Lyapunov dimension

of this attractor are obtained in Section 2. The quantity M(�; u0) is computed

for a special class of homoclinic loops in Section 3. Finally, in Section 4, we show

that such homoclinic orbits really appear in equations (0.6) with the nonlinearities

belonging to the class S, then based on (0.4) we derive sharp lower bounds for the

attractor's dimension.
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1. Abstract nonlinear hyperbolic equation and its attractor

In this Section, we study the following abstract nonlinear hyperbolic equation in a

Hilbert space H:

(1.1)

(
@
2
t u+ @tu+A u = F (u; @tu);

u

��
t=0

= u0; @tu

��
t=0

= u
0
0;

where u = u(t) is an unknown H-valued function, A : D(A)! H is a given positive

selfadjoint operator in H with compact inverse,  > 0 is a given positive number

which is assumed to be small and F is a given nonlinear operator.

As usual (see e.g. [12, 3]), we de�ne a scale Hs of Hilbert spaces associated with H
via

(1.2) Hs := D((A)s=2); kuk2Hs := k(A)s=2uk2H = ((A)su; u)

(here and below (�; �) denotes the inner product in H) and consider equation (1.1)

as an evolution equation with respect to �(t) = [u(t); @tu(t)] in the corresponding

energetic phase spaces

(1.3) Es := Hs+1�Hs
; �(t) := [u(t); @tu(t)] 2 Es

(in fact, we will consider only the case where the initial data [u0; u
0
0] belong either

to the space E := E0, or to E1).

It is also assumed that the nonlinear term F belongs to the space

(1.4) F 2 C1
b (E;H)



5and its partial derivatives F 0
u and F 0

@tu
satisfy the following conditions:

(1.5)

(
1: (F 0

v(u; v)�; �) �


8
k�k2H + Ck�k

2

H�1
;

2: j(F 0
u(u; v)w; �)j �
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�
kwk2

H1 + k�k2H
�
+ Ck�k

2

H�1
;

where [u; v]; [w; �] 2 E are arbitrary,  > 0 is the same as in equation (1.1), and the

constant C is independent of [u; v] and [w; �].

The following theorem shows that under the above assumptions equation (1.1) gen-

erates a dissipative semigroup in the energetic space E.

Theorem 1.1 Let the assumptions (1.4) and (1.5) hold. Then, for every �(0) :=
[u(0); @tu(0)] 2 E, equation (1.1) has a unique global solution �(t) 2 C([0;1);E)
and the following estimate is valid:

(1.6) k�(t)k2E � Ck�(0)k2Ee
�t + C1;

where the constants C and C1 depend only on F , A and . Consequently, equation
(1.1) generates a semigroup

(1.7) St : E! E; by St�(0) := �(t):

Moreover, this semigroup is globally Lipschitz continuous with respect to the initial
data [u(0); @tu(0)] 2 E, i.e.

(1.8) k�1(t)� �2(t)k
2
E � Ce

Ktk�1(0)� �2(0)k
2
E;

where K and C depend only on A,  and F (and they are independent of the solutions
u1(t) and u2(t) of problem (1.1)).

If �(0) 2 E1, then the corresponding solution �(t) belongs to E1 for every t � 0 and
satis�es the following estimate:

(1.9) k�(t)k2
E1
� C2k�(0)k

2

E1
e
�t=8 + C3;

for some positive constants C2 and C3 which depend only on A, F and .

The proof of this theorem is quite standard, so we move it to Appendix A.

Let us now verify that the semigroup St : E! E possesses a global compact attractor

in the phase space E. Recall that the set A � E is called a global attractor for the

semigroup St : E! E if the following conditions are satis�ed:

1. A is compact in E;

2. A is strictly invariant with respect to St, i.e. St E = E;

3. A attracts bounded subsets of E as t ! 1, i.e. for every bounded B � E and

every neighborhood O(A) in E, there exists a number T = T (kBkE;O) such that

(1.10) StB � A; for t � T

(see e.g. [1, 3] for details).

Theorem 1.2 Let the assumptions of Theorem 1.1 hold. Then semigroup (1.7)

associated with the nonlinear hyperbolic problem (1.1) possesses a global attractor
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A, which is bounded in E1. This attractor is generated by all complete bounded
solutions of (1.1):
(1.11)

A = f�(0); �(t) := [u(t); @tu(t)], t 2 R solves (1.1) and k�(t)kE � Cu, t 2 Rg:

Proof. According to the abstract attractor's existence theorem (see e.g. [1]) the

theorem will be proven if we verify the following conditions on the semigroup St:

1. St : E! E is continuous with respect to �(0) for every �xed t � 0;

2. The semigroup St possesses a compact attracting (in the sense of (1.10)) set

K �� E.

Let us verify these conditions. Indeed, the continuity of St is given by Theorem 1.1.

So, we are left to verify the second condition. To this end, we split the solution

u(t) of (1.1) as follows: u(t) := v(t) + w(t), where v(t) is a solution of the following

problem:

(1.12)

(
@
2
t v + ( + bA�1)@tv +A v +Mv � F (v; @tv) =Mu(t) + bA�1

@tu(t);

[v; @tv]
��
t=0

= 0:

Here M � 1 and b � 1 are su�ciently large positive constants which will be

speci�ed below.

Consequently, the remainder function w(t) satis�es the equation

(1.13)

(
@
2
tw + ( + bA�1)@tw +Aw +Mw = l

1(t)w + l
2(t)@tw;

[w; @tw]
��
t=0

= �(0);

where

(1.14)

l
1(t) :=

Z 1

0

F
0
u(su(t) + (1� s)v(t); s@tu(t) + (1� s)@tv(t)) ds;

l
2(t) :=

Z 1

0

F
0
@tu

(su(t) + (1� s)v(t); s@tu(t) + (1� s)@tv(t)) ds:

We will prove that kw(t)kE tends uniformly (with respect to small variations in

initial conditions) to zero, and v(t) enters some �xed ball in E1 as time grows. This

ball is compact in E, so it can be taken as a desired attracting set K.

Let us, �rst, estimate w(t).

Lemma 1.1 Let the assumptions of Theorem 1.1 hold. Then, there exist large
positive constants M =M(; F;A) and b = b(; F;A) such that the solution w(t) of
equation (1.13) satis�es the following estimate:

(1.15) k[w(t); @tw(t)]kE � C
0
e
��tk�(0)kE;

for appropriate positive constants C 0 and � which are independent of u.

Proof. Taking the inner product in H of equation (1.13) with @tw + +bA�1

2
w(t),

we derive the following relation:
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(1.16)

@t

�
k@twk

2
H + kwk2

H1 +
�
( + bA�1)w; @tw

�
+Mkwk2H

	
+

+


2

�
k@twk

2
H + kwk2

H1 +Mkwk2H +
�
( + bA�1)w; @tw

� 	
=

= �bk@twk
2

H�1
� bkwk2H �Mbkwk2

H�1
�


2

�
k@twk

2
H + kwk2

H1 +Mkwk2H
�
+

+ 2
�
l
1(t)w; @tw

�
+ 2

�
l
2(t)@tw; @tw

�
+
�
l
1(t)w; ( + bA�1)w

�
+
�
l
2(t)@tw; ( + bA�1)w

�
�

�
1

2

�
( + bA�1)@tw; ( + 2bA�1)w

�
� hw(t):

We recall that, by conditions (1.4) and formulas (1.14),

(1.17) kl2(t)kL(H;H) + kl
1(t)kL(H1;H) � C;

where C is independent of u and t, and, by conditions (1.5),

(1.18)
�
l
2(t)@tw(t); @tw(t)

�
�


8
k@twk

2
H + Ck@tw(t)k

2

H�1
:

Estimating the right-hand side hw(t) of (1.16) by Hölder inequality and taking into

account estimates (1.17) and (1.18), we obtain

(1.19) hw(t) �

�
C �

1

2
b

�
k@tw(t)k

2

H�1
+
�
C
0
(1 + b

3)�M

�
kwk2H;

where C and C
0
 are two positive constants which depend only on , F and A, but

are independent of b, M and u. Fixing now the constants M and b in such a way

that

b = 2C; M � C
0
(1 + b

3);

we obtain the inequality hw(t) � 0. Moreover, without loss of generality we assume

that M is chosen in such a way that, in addition,

j
�
( + bA�1)w; @tw

�
j �

1

2

�
k@twk

2
H +Mkwk2H

�
:

Applying now the Gronwall's inequality to (1.16), we obtain (1.15). Lemma 1.1 is

proven.

Now we are ready to estimate the solution v(t) of equation (1.12). We rewrite this

equation in the following equivalent form:

(1.20)

(
@
2
t v + @tv +A v � F (v; @tv) =Mw(t) + bA�1

@tw(t) := hM;b(t);

[v; @tv]
��
t=0

:= 0;

We note that equation (1.20) is a nonautonomous analogue of equation (1.1). More-

over, due to Theorem 1.1 and Lemma 1.1, the function hM;b(t) can be estimated as

follows:

(1.21) khM;b(t)k
2

H1 + k@thM;b(t)k
2
H � CM;b

�
1 + k�(0)k2Ee

��t
�
;

for an appropriate constant CM;b which is independent of u. Consequently, using

estimate (1.21) and the fact that v(0) = 0, @tv(0) = 0, arguing exactly as in the



8 proof of Theorem 1.1 (see Appendix A), we obtain that the solution [v; @tv] of
(1.12) belongs to the space C(R+ ;E

1) and satis�es the estimate

(1.22) k[v(t); @tv(t)]kE1 � C�

�
k�(0)kEe

��t + 1
�
;

for some positive constants � and C� which depend onM and , but are independent

of u.

Estimates (1.15) and (1.22) imply that the set

K := f� 2 E1
; k�kE1 � 2C�g

is a compact (in E) attracting set for the semigroup St. Thus, all conditions of the

abstract attractor's existence theorem are veri�ed and Theorem 1.2 is proven.

Remark 1.1We recall that our conditions (1.4) and (1.5) imply that the operator F

(along with its �rst derivatives F 0
u and F

0
@tu

) is globally bounded as k�kE !1. This

is enough for our purposes since in our examples of sharp upper and lower bounds for

the attractor's dimension (see Section 4) the nonlinearity F has a bounded support.

So, for simplicity, we restrict ourselves to the class of globally bounded nonlineari-

ties, although more general nonlinearities (see e.g. [12, 13, 3]) can be treated in the

same way.

Remark 1.2 We note that conditions (1.4) and (1.5) are, obviously, satis�ed if

(1.23) F 2 C1
b (E

�Æ
;H);

for some positive exponent Æ. In the sequel, we will often use this more strong

condition (1.23) instead of conditions (1.4) and (1.5).

2. Upper bounds for the attractor's dimension

In this Section we show, using the standard volume contraction technique, that the

attractor A of (1.1) constructed in the previous Section has �nite Hausdor� and

fractal dimensions, and we obtain some estimates for this dimension in terms of the

dissipative parameter . To this end, we need the following assumption: there is an

exponent � > 0 and two positive constants C1 and C2 such that

(2.1) C1i
2� � �i � C2i

2�
; i 2 N ;

where 0 < �1 � �2 � � � � are the eigenvalues of the operator A.

Remark 2.1 We note that assumption (2.1) is always satis�ed if A is an elliptic

di�erential operator in a bounded domain 
 � R
n with a su�ciently smooth bound-

ary and H := L
2(
) (see e.g. [14]). Moreover, in this case � := k

2n
, where k is the

order of A.

In order to formulate the abstract theorem for estimating the dimension of invariant

sets, we need the following de�nition.



9De�nition 2.1 A map S : A! A, where A is a subset of a certain Banach

space E is called uniformly quasidi�erentiable on A if for any � 2 E there is a linear

operator S 0(�) : E! E (the quasidi�erential) such that

(2.2) kS(�1)� S(�2)� S
0(�1)(�1 � �2)kE = o(k�1 � �2kE)

holds uniformly with respect to �1; �2 2 A. It is also assumed that

(2.3) sup
�2A

kS 0(�)kL(E;E) <1 and S
0 2 C(A;L(E;E)):

Theorem 2.1 Let St be a semigroup in a certain Hilbert space E and let A � E be
a compact strictly invariant set of this semigroup (StA = A). Let us suppose also
that the semigroup St is uniformly quasidi�erentiable on A for some �xed t = T and
the following inequality holds for some positive integer d:

(2.4) !d(A) := sup
�2A

!d(S
0
T (�)) < 1;

where !d(L) := k�d
Lk�d E is the norm of the d-th exterior power of the operator L

in the Hilbert space �d E (see e.g. [3]). Then the fractal dimension of A is �nite in
E. Moreover,

(2.5) dimH(A;E) � dimF (A;E) � d:

For the proof of this theorem see [3] for the case of Hausdor� dimension and [7, 8, 9]

for the fractal dimension.

Lemma 2.1 Let the assumptions of Theorem 1.1 hold. Then, semigroup (1.7), asso-
ciated with hyperbolic equation (1.1) is uniformly quasidi�erentiable on the attractor
A and its quasidi�erential S 0t(�(0)) at �(0) 2 A is de�ned via the following standard
expression:

(2.6) S
0
t(�(0))� := [v(t); @tv(t)];

where � 2 E and v(t) is the solution of the equation of variations

(2.7)

(
@
2
t v + @tv +A v = F

0
u(u(t); @tu(t))v(t) + F

0
@tu

(u(t); @tu(t))@tv(t);

[v; @tv]
��
t=0

= �; [u(t); @tu(t)] := St�(0):

The assertion of the lemma is completely standard, so we move its proof into Ap-

pendix A.

Thus, according to Theorem 2.1, for estimating the dimension of A it is su�cient

to estimate the norms of d-external powers for solving operator of equation of vari-

ations associated with the hyperbolic problem (1.1). To this end, following [12],

we introduce a new variable �(t) := @tu + 

2
u(t) and rewrite system (1.1) in the

equivalent form in variables [u; �] 2 E. We obtain

(2.8) @t

�
u

�

�
=

�
�

2
u+ �

F (u; � � 

2
u) + 2

4
u� A u� 

2
�

�
:



10 Thus, instead of applying Theorem 2.1 to the initial system in [u; @tu] variables
we will use it for the transformed system (2.8) (since these systems are linearly

equivalent, they have equivalent attractors whose dimensions coincide).

The equation of variations for the transformed system, obviously, has the form

(2.9) @t�(t) = L(u(t); @tu(t))�(t); [u(t); @tu(t)] := St�(0);

where

(2.10) L :=

�
�

2
; 1

�A+2

4
+ F

0
u(�)�



2
F
0
@tu

(�) ; �

2
+ F

0
@tu

(�)

�
:

In order to estimate the exterior powers of solving operator S 0T (�(0)) : � ! �(T ) of
linear problem (2.9), we use the following standard lemma (see [12] or [3]).

Lemma 2.2 Let the assumptions of Lemma 2.1 hold. Then

(2.11) !d(S
0
T (�(0))) � e

R
T

0
TrdfL(�(t))g dt

; �(t) := St�(0);

where Trd(L) means the d-dimensional trace of the operator L : E! E in E, i.e.

(2.12) Trd(L) := sup
� dX

i=1

(L�i; �i)E : k�ikE = 1; (�i; �j)E = 0 for i 6= j

	
:

Now we are in a position to estimate the fractal dimension of the attractor A of

hyperbolic equation (1.1). For simplicity, we assume that the nonlinearity F satis�es

condition (1.23) and estimate the corresponding dimension in terms of parameters

, � (introduced in (2.1)) and Æ (introduced in (1.23)). (In the general case of

conditions (1.4) and (1.5), this dimension can be analogously estimated in terms of

, � and the constant C de�ned in (1.5).)

Theorem 2.2 Let the assumptions of Theorem 1.1 hold and let, in addition, the
nonlinearity F satis�es (1.23). Then, the fractal dimension of the attractor A is
�nite in E and can be estimated, as  ! 0, as follows

(2.13) dimF (A;E) � CN() := C

8<
:


� 2

�Æ ; �Æ < 1;

�2 ln 1


; �Æ = 1;


�2

; �Æ > 1;

where C is independent of  ! 0, Æ > 0 and � > 0.

Proof. According to Theorem 2.1 and Lemma 2.2, it is su�cient to prove that

(2.14) sup�2ATrdfL(�)g < 0; for some d � CN():



11In order to show this, we �rst estimate the quadratic form, associated with

the operator L, using the assumptions (1.23) and Schwartz inequality

(2.15)

(L�; �)
E
= �



2
k�uk

2

H1 + (��;A �u)� (��;A �u) +

2

4
(�u; ��)+

+
�
(F 0

u �


2
F
0
@tu

)�u; ��

�
�


2
k��k

2
H +

�
F
0
@tu
��; ��

�
�

� �


4

�
k�uk

2
H1 + k��k

2
H

�
+ ~
C

�1
�
k�uk

2

H1�Æ + k��k
2

H�Æ

�
:= (B�; �) ;

where � := [�u; ��] 2 E, the operator B is de�ned as

B :=


4

�
� Id+4 ~C�2A�Æ=2 ; 0

0 ; � Id+4 ~C�2A�Æ=2

�

and the constant ~
C is independent of , Æ and � 2 E.

It follows now from (2.15) that for any d 2 N ,

(2.16) TrdfLg � TrdfBg:

We now observe that the operator B is selfadjoint, hence, by the classical min�max
principle (see e.g. [3]), its traces can be immediately expressed in terms of its

eigenvalues, namely,

(2.17) TrdfBg =


2

 
�d+ 4 ~C�2

dX
i=1

�

�Æ=2
i

!
;

where �i are the eigenvalues of A. The estimate (2.14) is an immediate corollary of

(2.16),(2.17) and of the assumption (2.1) on the asymptotics of �i. Theorem 2.2 is

proven.

The following theorem shows that the estimate (2.13) can be essentially improved

if the additional regularity of the nonlinear term F is known.

Theorem 2.3 Let the assumptions of Theorem 1.1 hold and let, in addition,

(2.18) F 2 C1
b (E

�s�1=2
;Hs+1=2);

where s > �1=2 is some regularity exponent. Then, the dimension of the corre-
sponding attractor A can be estimated via

(2.19) dimF (A;E) � C1

8<
:


� 2
�(2s+1)

; �(s+ 1=2) < 1;

�1 ln 1


; �(s+ 1=2) = 1;


�1

; �(s+ 1=2) > 1;

where the constant C1 depends on s and F , but is independent of .

Proof. Indeed, due to condition (2.18), we have the following estimates:

(2.20)

j (F 0
u(u; @tu)�u; ��) j � kF 0

u(u; @tu)�ukHs+1=2k��kH�s�1=2 �

� C

�
k�uk

2

H�s+1=2 + k��k
2

H�s�1=2

�
;



12 and, analogously,

(2.21)
�
F
0
@tu

(u; @tu)��; ��
�
� kF 0

@tu
(u; @tu)��kHs+1=2k��kH�s�1=2 � Ck��k

2

H�s�1=2
;

where the constant C depends only on F . Estimates (2.20) and (2.21) allow to

improve (2.15) in the following way:

(L�; �)
E
� (Bs�; �)E ;

where

Bs :=


4

�
� Id+ ~

C
�1A�(s+1=2)=2 ; 0

0 ; � Id+ ~
C

�1A�(s+1=2)=2

�
;

for some constant ~
C > 0 which is independent of  (the term 

�
F
0
@tu
�u; ��

�
in (2.15)

is of order  and does not require additional estimates).

Computing now the d-dimensional trace of the operator Bs in terms of the eigenval-

ues �i, using asymptotics (2.1) for them and arguing as in the end of Theorem 2.1

we derive the improved estimate (2.19). End of the proof.

Corollary 2.1 Let the assumptions of Theorem 1.1 hold and let, in addition, (2.18)
be satis�ed with the exponent s > 1

�
� 1

2
. Then, the dimension of the attractor A

possesses the following upper bound:

(2.22) dimF (A;E) � C
�1 as  ! 0;

where the constant C is independent of .

Let us now introduce the class S of smoothing nonlinearities F .

De�nition 2.2 A nonlinear operator F : E ! H belongs to the class S = S(Ck;m)

if, for every m 2 R+ , this operator belongs to C
1(E�m;Hm) and the following

estimates valid, for every k 2 N [ f0g:

(2.23) kFkCk

b
(E�m;Hm) � Ck;m;

for appropriate constants Ck;m.

Corollary 2.2 Let the eigenvalues of the operator A satisfy condition (2.1) and let
the nonlinearity F belong to the class S. Then, the fractal dimension of the cor-
responding global attractor A associated with equation (1.1) possesses the following
upper estimate:

(2.24) dimF (A;E) � C

1



;

where the constant C depend on constants C1;m (de�ned in (2.23)) and on constants
C1, C2 and � (de�ned in (2.1)), but are independent of .

Remark 2.2 In Section 4, we will show that even in the case of extremely regular

nonlinearities F 2 S, the dimension of the attractor A may indeed have the rate

growth � 
�1 as  ! 0. So, estimate (2.24) is indeed sharp in the limit  ! 0.



133. Bifurcations of a homoclinic loop and Lyapunov dimension

In this Section, we consider bifurcations of a certain type of homoclinic loops; the

results will be essentially used in the next Section in order to obtain sharp lower

bounds for the fractal dimension of the attractor A in the class S.

In contrast to the previous Sections, we consider here �nite-dimensional systems of

ODE's, namely, systems of the following form:

(3.1) _y = A y + F(y); y 2 R
n
;

where the nonlinearity F(y) belongs to C1(Rn
;R

n) and satis�es

(3.2) F(0) = F
0(0) = 0:

We assume that the matrix A 2 L(Rn
;R

n) has only one eigenvalue to the right

of the imaginary axis. By scaling the time variable in (3.1) we can always make

this eigenvalue equal to 1. The rest of the spectrum consists of m pairs of complex

eigenvalues (��1 � !1; : : : ;��m � !m) and (n � 2m � 1) eigenvalues whose real

parts are less than some ��m+1 < ��m. Here m is some positive integer such that

2m + 1 � n, and � = (�1; � � � ; �m) 2 R
m and ! = (!1; � � � ; !m) 2 R

m are given

vectors satisfying the condition

(3.3) 0 < �1 � �2 � � � � � �m < 1; !k > 0; k = 1; � � � ; m:

We assume that the matrix A can be brought to the following form by a linear

transformation of coordinates:

(3.4) A :=

0
BBBB@
1 0 0 � � � 0
0 R1 0 � � � 0
...

...
. . .

...
...

0 � � � 0 Rm 0
0 � � � 0 0 A

1
CCCCA ; Rk :=

�
��k !k

�!k ��k

�
;

where the matrix A 2 L(Rn�2m�1
;R

n�2m�1) satis�es the spectral assumption:

(3.5) Re�(A) � ��m+1 with �m+1 > �m:

Such transformation can always be done when all !'s are di�erent. We, however,

prefer not to make this assumption. Instead, we simply assume that the matrix A

is in the form (3.4).

Accordingly, denoting y = (z; (u1; v1); � � � ; (um; vm); w), system (3.1) is written in

the following form :

(3.6)

8>>><
>>>:

_z = z + : : : ;

_uk = ��kuk + !kvk + : : : ;

_vk = �!kuk � �kvk + : : : ; k = 1; : : : ; m;

_w = Aw + : : : ;

where the dots in (3.6) stand for the nonlinearities, i.e. for the terms vanishing at

the origin along with their �rst derivatives.

By construction, system (3.1) has a hyperbolic equilibrium at the origin O : y = 0.
Moreover, the unstable manifold W u(O) is one-dimensional here, and it is tangent



14 to the z-axis at the origin. W
unO consists of two orbits (the separatrices)

which leave the origin at t = �1 in the opposite directions. We assume that one

of the separatrices which leaves O towards positive z (we denote this separatrix as

�) returns to the origin as t! +1, thus it forms a homoclinic loop.

The system under consideration has an (n� 2m� 1)-dimensional smooth invariant

strong-stable manifoldW ss which is tangent at O to the w-space and which consists

of all orbits which tend to O faster than e��mt (see e.g. [15]). We assume that the
homoclinic loop � belongs to W

ss, i.e. it enters O being tangent to the w-space.

Note that this is a bifurcation of codimension (2m+1), so we study here a problem

which is, at large m, very degenerate from the point of view of the conventional

bifurcation theory. However, the homoclinic loops of these type are quite typical for

integrable equations with damping (see e.g. system (4.6) in the next Section).

Finally, we assume that

(3.7) 2�1 + 2�2 + � � �+ 2�m < 1; 2�1 + 2�2 + � � �+ 2�m + �m+1 > 1:

Remark 3.1 We note that inequalities (3.5) and (3.7) imply that the �ow de�ned

by (3.6) contracts (2m+2)-dimensional volumes near O while (2m+1)-dimensional

volumes are not contracted. Thus, the Lyapunov dimension dimL(A ) of system (3.1)

at the origin possesses the estimates (see e.g. [3]):

2m+ 1 < dimL(A 0) < 2m+ 2:

The main result of this Section is the following theorem.

Theorem 3.1 Let the above assumptions hold. Let R := f�1; � � � ; �2mg be an
arbitrary set of 2m non-zero complex numbers such that if � belongs to the set R,
then its complex-conjugate �� belongs to R as well. Then, by an arbitrarily small C1-
perturbation of system (3.1), a periodic orbit with 2m multipliers equal to �1; : : : ; �2m
and with the rest of the multipliers inside the unit circle can be born from the homo-
clinic loop, i.e. for an arbitrarily small neighborhood V of the homoclinic loop �, for
every " > 0 and every r 2 N , there exists a C1-function G " satisfying the inequality

kG " � (A 0 + F)kCk (Rn;Rn) � ";

such that the perturbed system _y = G "(y) possesses a periodic orbit of the type de-
scribed above, which lies in V.

Proof. Let us �rst locally straighten invariant manifolds W u, W s and W ss � W
s,

i.e. we make a coordinate transformation in a small neighborhood of the origin such

that the system takes, locally, the form

(3.8)

8>>><
>>>:

_z = z(1 + p(y));

_uk = ��kuk + !kvk + fk(y) � (u; v; w);

_vk = �!kuk � �kvk + gk(y) � (u; v; w); k = 1; : : : ; m;

_w = (A + q(y))w;

where the functions fk(y), gk(y), p(y), q(y) vanish at the origin. In these coor-

dinates we have W u
loc = f(uk; vk) = 0 (k = 1; : : : ; m); w = 0g, W s

loc = fz = 0g,
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W

ss
loc = fz = 0; (uk; vk) = 0 (k = 1; : : : ; m)g, so the invariant manifolds are

straightened indeed. When the system is brought to this form, we can freely change

the characteristic exponents (i.e. ��k � i!k and the eigenvalues of A) by localized

small perturbations, without destroying the homoclinic loop. Indeed, we may arbi-

trarily add small localized perturbations to the coe�cients �k; !k and A in (3.8), and

this will not move the local invariant manifolds W u
loc, W

s
loc, W

ss
loc. Thus, by applying

perturbations of this kind, we will still have a homoclinic loop which enters O lying

in W ss
loc. So, we may always assume that

(3.9) �1 < �2 < � � � < �m < �m+1:

Moreover, we may always achieve by an arbitrarily small such perturbation that

the set of characteristic exponents is non-resonant. After that is done, Sternberg's

theorem (see e.g. [16]) is applied which means that we can make a smooth coordinate

transformation which makes the system linear in a small neighborhood of O, i.e. the

system takes, locally, the form

(3.10)

8>>><
>>>:

_z = z;

_uk = ��kuk + !kvk;

_vk = �!kuk � �kvk; k = 1; : : : ; m;

_w = Aw:

In other words, after the above transformations, our equation reads as

(3.11) _y = A (!)y + F(y); y := (z; u1; v1; � � � ; un; vn; w) 2 R
n
;

with the matrix A given by (3.4) (from now on, we �x �'s satisfying (3.7) and (3.9),

but we will vary the values of !1; : : : ; !m, therefore we indicate the dependence of A

on ! explicitly). The smooth nonlinear function F vanishes in some neighbourhood

O of the origin

(3.12) F(y) � 0 for y 2 O:

Thus, by construction, the intersection of the homoclinic loop � with O consists of

two pieces. The �rst piece, corresponding to the large negative times, coincides with

the positive local z-axis, and the second piece, corresponding to the large positive

t, lies in the w-space.

Solution of (3.10) which starts in O at a point (z0; u01; v
0
1; : : : ; u

0
m; v

0
m; w

0) is written
as

(3.13)

z(t) = z
0
e
t
;

uk(t) = e
��kt(u0k cos!kt + v

0
k sin!kt);

vk(t) = e
��kt(�u0k sin!kt+ v

0
k cos!kt);

w(t) = e
At
w
0
:

We take some small d > 0 and consider two cross-sections to the homoclinic loop:

�out = fz = dg and �in = fkwkA = dg where the metric kwkA in the w-space

R
n�2m�1 is de�ned as follows:

kwk2A :=

Z 1

0

keAtwk2 dt



16 and k � k is a standard norm in R
n�2m�1 . Then, obviously,

d

dt

(kwk2A) = �2kwk2 < 0;

and, consequently, every nonzero solution w = w(t) of equation _w = Aw intersects

transversely the ellipsoid kwkA = d at a unique point. Therefore, the Poincare

section �in is, indeed, well de�ned. Let also w0 correspond to the intersection point

of the homoclinic loop with �in, and let � 2 R
n�2m�2 be local coordinates on the

ellipsoid kwkA = d near w0, i.e. there is a smooth functionW : Rn�2m�2 ! R
n�2m�1

such that kW(�)kA � d, W(0) = w0 and W 0(0) = Id. We introduce the local

coordinates for M 2 �in and �
M 2 �out as follows

M(Z; u1; v1; � � � ; um; vm; �) := (d � Z; u1; v1; � � � ; um; vm;W(�));

�
M(�u1; �v1; � � � ; �um; �vm; �w) := (d; �u1; �v1; � � � ; �um; �vm; �w)

According to (3.13), the orbit of a point M 2 �in with Z > 0 reaches �out at the

moment of time t = � lnZ, and the intersection of the orbit with �out is the point

(3.14) �
M := T

loc
! (M) :=

0
BBBBBB@

Z
�1(u1 cos!1 lnZ � v1 sin!1 lnZ)

Z
�1(u1 sin!1 lnZ + v1 cos!1 lnZ)

: : :

Z
�k(uk cos!k lnZ � vk sin!k lnZ)

Z
�k(uk sin!k lnZ + vk cos!k lnZ)

Z
�AW(�)

1
CCCCCCA

which de�nes the local Poincare map T loc
! : �in \ fZ > 0g ! �out.

Analogously, the orbits starting on �out close to the origin follow the homoclinic

loop, so they come to the cross-section �in in �nite time. These orbits de�ne a

global Poincaré map T
glo
0 : �out ! �in which is a di�eomorphism (since it is de�ned

by orbits of a smooth �ow in a �nite time and since the trajectories intersect �in

transversely). Thus, the linear operator

(3.15) T0 :=
d

d
�
M

T

glo
0 (0)

is invertible and, due to our choice of coordinates in �in and �out,

(3.16) T

glo
0 (0) = 0:

Moreover, without loss of generality we assume that T0 2 L(R
n�2m�2

;R
n�2m�2) can

be represented as follows:

(3.17) T0 = L0 � U0;

where U0 and L0 are upper- and lower-triangular matrices respectively:

(3.18) L0 =

0
BBBBBBBB@

L
0
11 0 : : :

L
0
21 L

0
22 0 : : :

L
0
31 L

0
32 L

0
33 0 : : :

. . .

: : : : : : : : :

1
CCCCCCCCA
; U0 =

0
BBBBBBBB@

U
0
11 U

0
12 U

0
13 : : :

0 U
0
22 U

0
23 : : :

: : : 0 U
0
33 : : :

0
. . .

: : : : : : : : :

1
CCCCCCCCA
:



17Indeed, decomposition (3.17) is well known for generic invertible matrices T0
(and can be obtained e.g. via classical Gauss diagonalization procedure). If T0
is not generic, we can always put it in a general position by an arbitrarily small

perturbation of (3.11) which is localized outside the d-neighbourhood of the origin

and preserves the homoclinic loop (using the standard �ow-box technique). Note

that

(3.19) U
0
ii 6= 0; L

0
ii 6= 0; for i = 1; � � � ; n� 2m� 2;

since T0 is invertible.

We now consider an (m+n� 1)-parameter family of small smooth perturbations of

the system (3.11), namely for every ! 2 R
m which is su�ciently close to the original

vector ! := !
0 and for every su�ciently small � 2 R

n�1 , we consider the following

family of equations:

(3.20) _y = A (!)y + F�;! (y):

We assume that the function F�;! is smooth with respect to all variables and satis�es

the assumptions

(3.21) F�;! (y) � 0 for y 2 O, and F0;0(y) � F(y);

where F(y) is de�ned in (3.11). Then, for su�ciently small � and (! � !
0), the

global Poincare map T
glo
�;! : �out ! �in is well de�ned and smooth. We assume that

the perturbation (3.20) is such that this global Poincare map is written, in a small

neighborhood of the origin in �out, as follows:

(3.22) T

glo
�;!(

�
M) = � + T

glo
0 ( �M);

i.e. the only e�ect of the perturbation in the nonlinearity F is an additive term in

the global map (see (3.16)). Obviously, such a family of perturbations exists (one

can construct it by the �ow-box technique). Since the global map is insensitive to

changes in ! we will further use the notation T
glo
� .

It is obvious, that for every frequency vector ! which is su�ciently close to !0 and

for every M 2 �in\fZ > 0g which is su�ciently close to 0 (in our local coordinates

on �in) there exists a perturbation parameter � such that system (3.20) possesses

a periodic orbit which intersects with �in at the given point M . Indeed, note that,

due to our construction, �xed points M with Z > 0 of the �rst-return map

(3.23) T�;!(M) := T

glo
� (T loc

! (M)); T�;! : �in ! �in
;

correspond to periodic orbits of the system (3.20). Thus, we must �nd the value of

� for which the given point M is the �xed point of map (3.23). It remains to note

that the �xed point equation T�;!M = M recasts, by virtue of (3.22),(3.23), as the

following relation

(3.24) � =M � T

glo
0 (T loc

! (M))

which indeed de�nes � uniquely, given ! and M .

Our next step is to compute the multipliers of the periodic orbit in dependence on

! and M . By de�nition, these multipliers are the eigenvalues of the derivative with



18 respect to M of the �rst-return map (3.23):

(3.25) P (!;M) :=
d

dM

T�;!(M)
��
�=�(!;M)

= T!;M Æ Z(!;M)

where

(3.26) T!;M :=
d

d
�
M

T

glo
� ( �M)

��
�=�(!;M); �M=T loc

! (M)
; Z(!;M) :=

d

dM

T
loc
! (M):

As M tends to the point (Z; u1; v1; � � � ; um; vm; �) = 0 (this is the point of intersec-

tion of the homoclinic loop � with the cross-section �in at � = 0), we have � ! 0,
by virtue of (3.24),(3.14),(3.16). Thus, as ! ! !

0, M ! 0, the matrix T!;M tends

to the matrix T0 de�ned by (3.15).

On the other hand, di�erentiating (3.14) with respect to M , we obtain

(3.27) Z(!;M) =

0
BBBBBBBBBB@

Z
�1�1 cos(!1 lnZ + '1)�1

R1(Z) 0 : : : 0
Z
�1�1 sin(!1 lnZ + '1)�1

Z
�2�1 cos(!2 lnZ + '2)�2

0 R2(Z) : : : 0
Z
�2�1 sin(!2 lnZ + '2)�2

...
...

...
. . .

...

�AZA�I 0 0 : : : Z
�A

1
CCCCCCCCCCA
;

where we denote

(3.28) Rk(Z; !) = Z
�k

0
@cos!k lnZ � sin!k lnZ

sin!k lnZ cos!k lnZ

1
A

and use, notationally, polar coordinates (�k; 'k) instead of (uk; vk) in the following

way:

(3.29) uk =
�k

rk

cos('k �  k); vk =
�k

rk

sin('k �  k);

with

(3.30) rk := (�2k + !
2
k)

1=2
; cos k = �k=rk and sin k = !k=rk:

In the sequel, we will study the eigenvalues of the matrix P (!;M) de�ned by (3.25)

for (!;M) of some special form only. To be more precise, we �x some positive

numbers �k, k = 1; � � � ; m, such that

(3.31)
1� 2�1 � � � � � 2�m > �1 > �2 > � � � > �m >

> �1 �minf�2 � �1; �3 � �2; : : : ; �m � �m�1; �m+1 � �mg;

(such numbers exist due to assumption (3.7)). Then, we �x

(3.32) �k = Z
�k
:

Moreover, we consider the perturbations of the frequency vector !0 in the form

(3.33) !(�!) := !
0 + (lnZ)�1�!;



19where �! 2 [��; 3�]m. Then, for every small positive Z � 1, every
�! 2 [��; 3�]m and every � = (�1; � � � ; �m) 2 [��; 3�]m, the point M = M(Z; �!; �)
is de�ned as follows:

(3.34)

M(Z; �!; �) := y = (d � Z;
�1

r1

cos(�1 �  1);
�1

r1

sin(�1 �  1); � � �

� � � ;
�m

rm

cos(�m �  m);
�m

rm

sin(�m �  m);W(0));

where the parameters �k = �k(Z), ! = !(�!), rk = rk(�!) and  k =  k(�!) are de�ned
by (3.32), (3.33) and (3.30).

Thus, we consider �nally the (2m + 1)-parameter family of perturbations of equa-

tion (3.11) which corresponds to the choice of M of the form (3.34) and ! in the

form (3.33) with small positive Z � 1 and arbitrary �!; � 2 [��; 3�]m and study

the matrix (3.25) only for such (!;M). In order to simplify the notations, we

write in the sequel P (Z; �!; �) instead of P (!(�!);M(Z; �!; �)), Z(Z; �!; �) instead of

Z(!(�!);M(Z; �!; �)) and so on. It is obvious that our family of perturbations is,

indeed, arbitrarily small when Z ! +0.

The following lemma gives the principle part of the asymptotic expansions of the

coe�cients of the characteristic polynomial for the matrix P (Z; �!; �) as Z ! +0.

Lemma 3.2 Let

(3.35)
PZ;�!;�(�) := det(� Id�P (Z; �!; �)) :=

:= �
n �M1�

n�1 +M2�
n�2 + � � �+ (�1)nMn

be the characteristic polynomial of the matrix P (Z; �!; �) de�ned by (3.25). Then the
following formulas are valid for the coe�cients Mk of this polynomial:

(3.36)

M2k�1(Z; �!; �) =

 
2k�1Y
j=1

L
0
jj

!
�

 
2k�2Y
j=1

U
0
jj

!
Z
�1+2�1+���+2�k�1+�k+�k�

�

�
U
0
2k�1;2k�1 cos(!

0
k lnZ + 'k + �!k)+

+ U
0
2k�1;2k sin(!

0
k lnZ + 'k + �!k) + M 2k�1(Z; �!; �)

�
;

M2k(Z; �!; �) =

 
2k�1Y
j=1

L
0
jj

!
�

 
2kY
j=1

U
0
jj

!
Z
�1+2�1+���+2�k+�k�

�

�
� L

0
2k;2k sin'k + L

0
2k+1;2k cos'k + M 2k (Z; �!; �)

�
for k = 1; � � � ; m, and

(3.37) Mk = M k (Z; �!; �)

for k > 2m. Here L0
ij and U

0
ij are the entries of the lower- and, respectively, upper-

triangular matrices de�ned by (3.17). The functions M k are smooth with respect to
(�!; �) and Z > 0, and they tend to zero, along with their derivatives with respect to
(�!; �), as Z ! +0.



20 Proof. We recall that the matrix TZ;�!;� := T(!(�!);M(Z;�!;�)) in (3.25) is close to

the matrix T0, hence it can be decomposed, analogously to (3.17):

(3.38) TZ;�!;� = LZ;�!;� � UZ;�!;�;

where U and L are upper- and lower-triangular matrices respectively:

(3.39) L =

0
BBBBBBBB@

L11 0 : : :

L21 L22 0 : : :

L31 L32 L33 0 : : :

. . .

: : : : : : : : :

1
CCCCCCCCA
; U =

0
BBBBBBBB@

U11 U12 U13 : : :

0 U22 U23 : : :

: : : 0 U33 : : :

0
. . .

: : : : : : : : :

1
CCCCCCCCA
:

Moreover, the entries Uij = Uij(Z; �!; �) and Lij = Lij(Z; �!; �) are smooth with

respect to all arguments and are close to the corresponding entries U0
ij and L

0
ij as

Z � 1.

We now note that the matrix

(3.40) C = C(Z; �!; �) := U � Z(Z; �!; �) � L

is similar to P (Z; �!; �) = L � U � Z(Z; �!; �) and, consequently, these two matrices

have the same characteristic polynomials. So, we compute below the characteristic

polynomial of the matrix C de�ned by (3.40). In order to do so, we recall that

assumptions (3.9), (3.31) and (3.32) imply the following inequalities:

(3.41)

Z � �1 � �2 � � � � � �m � 1;

Z
�1
�1 � Z

�2
�2 � : : : Z

�m
�m � Z

�m+1
;

Z
�1 � Z

�2 � : : : Z
�m � Z

�m+1
;

if Z � 1. Since the matrices U and L are upper- and lower-triangular, the entries

of the matrix C are given by the following formula

(3.42) Cij =

nX
m=i

nX
k=j

ZmkUimLkj:

Computing by (3.27) and (3.42), and using (3.41), it is easy to verify that the matrix

C de�ned by (3.40) is estimated as follows:

(3.43)

0
BBBBBBBBBBBB@

O(Z�1�1
�1) O(Z�1) O(Z�1) O(Z�2) O(Z�2) O(Z�3) : : :

O(Z�1�1
�1) O(Z�1) O(Z�1) O(Z�2) O(Z�2) O(Z�3) : : :

O(Z�2�1
�2) O(Z�2) O(Z�2) O(Z�2) O(Z�2) O(Z�3) : : :

O(Z�2�1
�2) O(Z�2) O(Z�2) O(Z�2) O(Z�2) O(Z�3) : : :

...
...

...
...

...
. . .

1
CCCCCCCCCCCCA
;



21i.e. its entries are estimated as follows:

(3.44) Ci1 = O(Z�k(i)�1
�k(i)); Cij = O(Z�s(i;j)) (j � 2);

where we denote

(3.45) k(i) =

8>>>><
>>>>:

1 at i = 1; 2;
2 at i = 3; 4;
...

m at i = 2m� 1; 2m;
m + 1 at i > 2m;

and

(3.46) s(i; j) =

8>>>>>>>><
>>>>>>>>:

m + 1 at i > 2m
or (at i � 2m)

k(i) at j = 2; : : : ; 2k(i) + 1;
k(i) + 1 at j = 2k(i) + 2; 2k(i) + 3;

...

m at j = 2m; 2m+ 1;
m + 1 at j > 2m+ 1:

We also denote here �m+1 = 1.

We recall now that the p-th coe�cientMp =Mp(Z; �!; �), p = 1; � � � ; n of the char-

acteristic polynomial (3.35) can be represented as a sum of all main (i.e. diagonal)

minors of order p of the matrix C de�ned by (3.40), i.e.

(3.47) Mp =
X

1�i1<i2<���<���<ip�n

Mi1;:::;ip(C);

where the minor Mi1;:::;ip(C) is the determinant of the matrix obtained as the in-

tersection of the raws with the numbers i1; : : : ; ip and the columns with the same

numbers.

Our task now is to show that the major contribution to Mp at Z � 1 is given by

the minor M1;2;��� ;p. Indeed, it follows from (3.44) that all the entries Cij with i > 1
vanish at Z = 0 and, consequently, all the diagonal minors Mi1;:::;ip(C) with i1 > 1
tend to zero as Z ! 0. For the minorsMi1=1;i2;:::;ip(C) we use the following formula:

(3.48) Mi1=1;i2;:::;ip = Z
�k1+�k2+���+�kp�1�kp � det C1;i2;:::;ip

where we denote kq � k(iq) (see (3.45)), and

(3.49) C1;i2;:::;ip =

0
BBBBBBBBB@

Z
1��1

�
�1
kp
C11 Z

��1
C1i2 : : : Z

��1
C1ip

Z
1��k2�

�1
kp
Ci21 Z

��k2Ci2i2 : : : Z
��k2Ci2ip

...
...

. . .
...

Z
1��kp

�
�1
kp
Cip1 Z

��kp
Cipi2 : : : Z

��kp
Cipip

1
CCCCCCCCCA
:



22 By (3.41) and (3.43), all the entries of the matrix C are bounded from above,

so we have

(3.50) M1;i2;:::;ip(C) = O(Z�k1+�k2+���+�kp�1�kp):

If p � 2m+ 1, this estimate gives us

(3.51) M1;i2;:::;ip(C) = O(Z2�1+2�2+���+2�m+�m+1�1);

so, by virtue of our assumption (3.7), all the diagonal minors of order 2m + 1 and

larger tend to zero as Z ! +0, which proves (3.37).

Let us now consider the case p � 2m. We note that when i decreases at least on

2, the corresponding value of �k(i) will also decrease. Thus, it follows from (3.41)

and (3.50) that the main contribution to the coe�cient Mp (p � 2m) is given by

the minor M1;2;:::;p(C) in case p is even, and by the two minors M1;2;:::;p�1;p(C) and
M1;2;:::;p�1;p+1(C) in case p is odd (and p > 1). Moreover, we claim that

(3.52) M1;2;��� ;2(l�1);2l = Z
�1+2�1+���+2�l�2+2�l�1+�l+�l

O(Z");

for some " > 0. Indeed, according to (3.31),(3.32), (3.45),

�k(i)�
�1
l = O(Z�k(i)��l)� 1 and Z

��k(i)
Ci;2l = O(Z�l��k(i))� 1;

for i � 2(l � 1). Consequently, the matrix C1;��� ;2(l�1);2l(C) de�ned via (3.49) can be

rewritten as follows:

C1;��� ;2(l�1);2l =

0
BBBB@

0 O(1) � � � O(1) 0
0 O(1) � � � O(1) 0
...

... � � �
...

...

0 O(1) � � � O(1) 0
O(1) O(1) � � � O(1) O(1)

1
CCCCA+O(Z");

which implies (3.52), since the determinant of the matrix in the right-hand side of

the last formula is, obviously, zero. Thus, we have proved that

(3.53)
M2k�1 =M1;��� ;2k�1(C) + Z

�1+2�1+���+2�k�1+�k+�k
O(Z");

M2k =M1;2;��� ;2k(C) + Z
�1+2�1+���+2�k+�k

O(Z") (k = 1; � � � ; m)

for some small positive constant " > 0. It remains to compute the determinants

M1;��� ;p for p = 1; � � � ; 2m.

To this end, according to (3.41) and (3.44), we rewrite the formula (3.49) for C1;��� ;2l�1
and C1;��� ;2l (l = 1; � � � ; m) as follows:
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(3.54)

C1;��� ;2l�1 =

=

0
BBBBBB@

0 Z
��1

C12 Z
��1

C13 0 0 0 � � �
0 Z

��1
C22 Z

��1
C23 0 0 0 � � �

0 O(1) O(1) Z
��2

C34 Z
��2

C35 0 � � �
0 O(1) O(1) Z

��2
C44 Z

��2
C45 0 � � �

...
...

...
...

...
. . .

...

Z
1��l

�
�1
l C2l�1;1 O(1) � � � � � � � � � � � � O(1)

1
CCCCCCA

+O(Z");

and

(3.55)

C1;��� ;2l =

=

0
BBBBBBBB@

0 Z
��1

C12 Z
��1

C13 0 0 0 � � �
0 Z

��1
C22 Z

��1
C23 0 0 0 � � �

0 O(1) O(1) Z
��2

C34 Z
��2

C35 0 � � �
0 O(1) O(1) Z

��2
C44 Z

��2
C45 0 � � �

...
...

...
...

...
. . .

...

Z
1��l

�
�1
l C2l�1;1 O(1) � � � � � � � � � O(1) Z��lC2l�1;2l

Z
1��l

�
�1
l C2l;1 O(1) � � � � � � � � � O(1) Z

��l
C2l;2l

1
CCCCCCCCA

+O(Z"):

Since all the entries of C1;:::;p are bounded, we obtain from (3.48),(3.54) and (3.55)

(3.56) M1;��� ;2k�1 = C2k�1;1�

k�1Y
l=1

����C2l�1;2l C2l�1;2l+1

C2l;2l C2l;2l+1

����+Z�1+2�1+���+2�k�1+�k+�kO(Z");

and

(3.57)

M1;��� ;2k =

����C2k�1;1 C2k�1;2k

C2k;1 C2k;2k

�����
k�1Y
l=1

����C2l�1;2l C2l�1;2l+1

C2l;2l C2l;2l+1

����+ Z
�1+2�1+���+2�k+�k

O(Z");

for k = 1; � � � ; m, where " > 0 is a small positive number.

Now, it remains to express the right-hand sides of (3.56) and (3.57) in terms of the

entries of the matrices Z(Z; �!; �), U(Z; �!; �) and L(Z; �!; �). One can easily see



24 that, according to (3.27), (3.28), (3.41), (3.42), (3.44),

(3.58)

C2k�1;1 = L11U2k�1;2k�1Z2k�1;1 + L11U2k�1;2kZ2k;1 + Z
�1+�k

�kO(Z
") =

= Z
�1+�k+�k

L
0
11

�
U
0
2k�1;2k�1 cos(!

0
k lnZ + �k + �!k)+

+ U
0
2k�1;2k sin(!

0
k lnZ + �k + �!k) + o(1)

�
:

Analogously,

(3.59)

����C2l�1;2l C2l�1;2l+1

C2l;2l C2l;2l+1

���� =
= Z

2�l

����U2l�1;2l�1 U2l�1;2l

0 U2l;2l

�����
����cos!l lnZ � sin!l lnZ
sin!l lnZ cos!l lnZ

�����
���� L2l;2l 0
L2l+1;2l L2l+1;2l+1

����+
+Z2�l

O(Z") = Z
2�l

�
U
0
2l�1;2l�1U

0
2l;2lL

0
2l;2lL

0
2l+1;2l+1 + o(1)

�
:

And, �nally,

(3.60)

����C2k�1;1 C2k�1;2k

C2k;1 C2k;2k

���� = L11

����U2k�1;2k�1 U2k�1;2k

0 U2k;2k

�����
�

�
L2k;2k

����Z2k�1;1 Z2k�1;2k

Z2k;1 Z2k;2k

���� + L2k+1;2k

����Z2k�1;1 Z2k�1;2k+1

Z2k;1 Z2k;2k+1

����
�
+

+Z�1+2�k+�kO(Z") =

�
L
0
11U

0
2k�1;2k�1U

0
2k;2k

�
Z
�1+2�k+�k�

�

�
� L

0
2k;2k sin�k + L

0
2k+1;2k cos�k

�
+ Z

�1+2�k+�k
o(1):

Inserting these formulas into (3.56),(3.57) and (3.53), we obtain expansions (3.36).

Lemma 3.2 is proven.

We are now ready to �nish the proof of Theorem 3.1. Indeed, let us consider only

such sequence of values of Z ! +0 for which�
!
0
k

lnZ

2�

�
! 0

for all k = 1; � � � ; m (here f�g denotes the fractional part). It is easy to see then,

that given any �xed values of the coe�cients M1; � � � ;M2m of the characteristic

polynomial of the derivative matrix P (Z; �!; �) of the Poincaré map of the periodic

orbit under consideration, the system of equations (3.36) for these coe�cients can

be resolved with respect to � and �!. Moreover, � and �! depend on M1; � � � ;M2m

smoothly and have �nite limits as Z ! +0, along with the derivatives with respect

to (M1; � � � ;M2m).

Indeed, system (3.36), recast as
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(3.61)

8>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>:

U
0
2k�1;2k�1 cos(2�

�
!
0
k
lnZ
2�

	
+ �k + �!k)+

+ U
0
2k�1;2k sin(2�

�
!
0
k
lnZ
2�

	
+ �k + �!k) =

=M2k�1

�Q2k�1

j=1 L
0
jj

��1
�
�Q2k�2

j=1 U
0
jj

��1
Z
1�2�1�����2�k�1��k��k�

� M 2k�1(Z; �!; �);

�L0
2k;2k sin�k + L

0
2k+1;2k cos�k =

=M2k

�Q2k�1
j=1 L

0
jj

��1
�
�Q2k

j=1 U
0
jj

��1
Z
1�2�1�����2�k��k � M 2k (Z; �!; �);

(k = 1; � � � ; m);

has a regular limit as Z ! +0:

(3.62)

(
U
0
2k�1;2k�1 cos(�k + �!k) + U

0
2k�1;2k sin(�k + �!k) = 0;

�L0
2k;2k sin�k + L

0
2k+1;2k cos�k = 0:

Here we have used the fact that due to our assumptions (3.7) and (3.31),

1� 2�1 � � � � � 2�k � �k > 0

for every k = 1; � � � ; m. By (3.19), U0
2k�1;2k�1 6= 0 and L0

2k;2k 6= 0, so we may resolve

the limit system (3.62) as follows:

(3.63) �k = arctan
L
0
2k+1;2k

L
0
2k;2k

; �!k =
�

2
� arctan

U
0
2k�1;2k

U
0
2k�1;2k�1

� �k:

Now, according to the implicit function theorem, we have indeed the functions

�(Z;M1; : : : ;M2m), �!(Z;M1; : : : ;M2m), close to those given by (3.63), which sat-

isfy (3.61) (hence, they satisfy (3.36)) at small Z and which depend smoothly on

M1; : : : ;M2m.

We now �x � = �(Z;M1; : : : ;M2m), �! = �!(Z;M1; : : : ;M2m), so we choose now

M1; : : : ;M2m to parametrize our family of small perturbations. As we just have

shown, M1; : : : ;M2m can be taken from an arbitrarily large domain in R
2m . Let

M1; : : : ;M2m be uniformly bounded and let M2m stay bounded away from zero.

As Z ! +0, the coe�cients M2m+1; : : : ;Mn of the characteristic polynomial tend

uniformly to zero, according to (3.37). Thus, the characteristic equation

(3.64) �
n �M1�

n�1 + � � �+M2m�
n�2m �M2m+1�

n�2m�1 + � � �+ (�1)nMn = 0

has (n� 2m) roots which tend to zero as Z ! +0, and 2m roots (we denote them

as �1; : : : ; �2m) which are bounded away from zero and tend to the roots of the

polynomial

(3.65) �
2m �M1�

2m�1 + � � �+M2m:



26 De�ne the real numbers ~M1; : : : ;
~M2m such that �1; : : : ; �2m were the roots of

the polynomial

(3.66) �
2m � ~M1�

2m�1 + � � �+ ~M2m;

i.e.

(3.67)

2mY
j=1

(�� �j) = �
2m � ~M1�

2m�1 + � � �+ ~M2m:

By construction, ( ~M1; : : : ;
~M2m) tend to (M1; : : : ;M2m) as Z ! +0. Let us show

that ~M1; : : : ;
~M2m depend on M1; : : : ;M2m smoothly, and that

(3.68)
d( ~M1; : : : ;

~M2m)

d(M1; : : : ;M2m)
jZ=0 = Id:

Indeed, consider the linear operator Q : Rn ! R
n de�ned by the matrix

(3.69)

0
BBBB@

0 �1 0 � � � � � �
0 0 �1 0 � � �
...

...
. . .

. . . � � �
0 � � � � � � 0 �1

M2n M2n�1 � � � M2 M1

1
CCCCA :

Its characteristic equation is also given by (3.64), so it has, as well, (n� 2m) eigen-
values close to zero and 2m eigenvalues which are bounded away from zero and

are the roots of the polynomial (3.66). Hence, the operator Q has two invariant

eigenspaces, one corresponds to the close to zero eigenvalues and the other cor-

responds to the eigenvalues which are bounded away from zero. The coe�cients

of the characteristic polynomial of Q restricted onto the second subspace are ex-

actly the coe�cients ~M1; : : : ;
~M2m. Since all the entries of the matrix (3.69) are

bounded and since it depends smoothly on M1; : : : ;Mn, the invariant subspaces

depend on M1; : : : ;Mn smoothly as well. This gives us the smooth dependence of
~M1; : : : ;

~M2m on M1; : : : ;M2m;M2m+1; : : : ;Mn. Recall now that the coe�cients

M2m+1; : : : ;Mn depend on (M1; : : : ;M2m) smoothly, and they are continuous in

Z along with the derivatives with respect to (M1; : : : ;M2m). Thus, the required

smooth dependence of ~M1; : : : ;
~M2m on (M1; : : : ;M2m) at all small Z, includ-

ing Z = 0, follows immediately. Identity (3.68) follows now from the fact that

( ~M1; : : : ;
~M2m) = (M1; : : : ;M2m) at Z = 0.

Now, by implicit function theorem, we have that given any values ~M1; : : : ;
~M2m with

~M2m 6= 0, the corresponding values ofM1; : : : ;M2m are de�ned uniquely. In turn,

the coe�cients ~M1; : : : ;
~M2m are de�ned uniquely by (3.67), given any (symmetric

with respect to the complex conjugation) set R of the non-zero roots �1; : : : ; �2m.

Hence, given any such set R, we �nd the corresponding values of M1; : : : ;M2m,

and then the values of the perturbation parameters � and �!, for arbitrarily small

values of Z. Theorem 3.1 is proven.

By taking in Theorem 3.1 the values of the multipliers �1; : : : ; �2m outside the unit

circle, we arrive at the following
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an arbitrarily small C1-perturbation of system (3.1), a periodic orbit P the insta-
bility index N+(P ) of which satis�es

(3.70) N
+(P ) = 2m

can be born in an arbitrarily small neighborhood of the homoclinic loop under con-
sideration.

Remark 3.2 We note that the unstable manifold W u(P ) of the periodic orbit P

constructed in Corollary 3.1 has dimension 2m + 1. Thus, if every solution of the

perturbed system (3.20) can be extended globally for positive t 2 R+ , then this

unstable manifold is, obviously, a (2m + 1)-dimensional invariant submanifold for

the system under consideration. Moreover, due to Remark 3.1, we have

(3.71) dimW
u(P ) = [dimL(A )];

where [v] denotes the integral part of v. Since such invariant manifolds always be-

long to the attractor (if the system possesses a global attractor) then Corollary 3.1

and formula (3.71) present a possibility of obtaining lower bounds for the attractors

dimension in terms of their Lyapunov dimension. This possibility will indeed be

used in the next Section in order to obtain sharp lower bounds for the attractor's

dimension for the abstract hyperbolic equation (1.1).

It is also interesting to consider the case where the multipliers �1; :::; �2m in Theorem

3.1 are all equal to 1 in the absolute value. In this case, a small perturbation of the

periodic orbit P with the multipliers �1; :::; �2m can produce an (m+1)-dimensional

invariant torus (see a proof in Appendix B). This gives us the following

Corollary 3.2 Let the assumptions of Theorem 3.1 hold. Then, by an arbitrarily
small C1-perturbation of system (3.1), an (m + 1)-dimensional smooth invariant
torus, densely �lled by a quasiperiodic trajectory, can be born in an arbitrarily small
neighborhood of the homoclinic loop under consideration.

4. Lower bounds for the dimension of the attractor

In this concluding Section, we obtain sharp lower bounds for the attractor's dimen-

sion for the damped hyperbolic equation (1.1) with the nonlinearity in the class S

(see De�nition 2.2). The main result here is the following theorem.

Theorem 4.1 Let A : D(A)! H be any linear selfadjoint operator whose eigenval-
ues satisfy (2.1), and let feig

1
i=1 be the corresponding orthonormal system of eigen-

vectors. Then there exist two smooth nonlinear operators F1 and F2 in the form

(4.1) Fi(u) := F
1
i ((u; e1) ; (u; e2))e1 + F

2
i ((u; e1) ; (u; e2))e2; u 2 H; i = 1; 2;

(where F j
i 2 C

1
0 (R2

;R), i; j = 1; 2) and a smoothing operator � = �";;k;m de�ned
for every " > 0, every small  > 0 and every k;m 2 N, belonging to the class S and
satisfying the estimate

(4.2) k�kCk

b
(E�m;Hm) � ";



28 such that the fractal dimension of the attractor A = A;";k;m of the equation

(4.3) @
2
t u+ @tu+Au = F1(u) + F2(u) + �(u; @tu)

possesses the following estimates:

(4.4) C1

1



� dimF (A;E) � C2

1



;

where the positive constants C1 and C2 are independent of , ", k and m.

Proof. First, take a second order ODE in the form:

(4.5) @
2
t U = U � F0(U); U 2 R;

where F0 2 C
1(R) vanishes at the origin together with its �rst derivative. We

assume that equation (4.5) possesses a homoclinic orbit U0(t) to the equilibrium

U = 0 (as an example, take F0(U) = U
3). Let us �x a su�ciently small  > 0,

n := [1=(2)] � 1 and a frequency vector ! := (!1; � � � ; !n) 2 R
n and consider the

following decoupled system of second order ODE's:

(4.6)

8>>><
>>>:
@
2
t U(t) = U(t)� F0(U(t));

@
2
t �u1(t) + @t�u1(t) + !

2
1�u1(t) = 0;

� � �

@
2
t �un(t) + @t�un(t) + !

2
n�un(t) = 0:

By construction, this system has a homoclinic loop of the type studied in Section 3,

so one can expect an analogue of Theorem 3.1 for system (4.6), as it is indeed given

by the following lemma.

Lemma 4.1 Let the above assumptions hold and let, in addition,

(4.7) !i > =2; for every i = 1; � � � ; n:

Then, for every " > 0 and every k 2 N, there exist C1
0 -functions �i : R

2n+2 ! R,
i = 0; 1; � � � ; n, satisfying

(4.8) k�ikCk

b
(R2n+2;R) � ";

such that the system

(4.9)

8>>><
>>>:
@
2
t U(t) = U(t)� F0(U(t)) + �0(U(t); @tU(t); �u(t); @t�u(t));

@
2
t �u1(t) + @t�u1(t) + !

2
1�u1(t) = �1(U(t); @tU(t); �u(t); @t�u(t));

� � �

@
2
t �un(t) + @t�un(t) + !

2
n�un(t) = �n(U(t); @tU(t); �u(t); @t�u(t))

possesses a periodic orbit P with the instability index N+(p) = 2n.

Proof. We rewrite problem (4.6) in new variables

(4.10)

z(t) := (U(t) + @tU(t))=2; w(t) := (U(t)� @tU(t))=2;

�ui(t) := �ui(t); �vi(t) := (!0
i )
�1
�
@t�ui(t) +



2
�ui(t)

�
;
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where !0

i := (!2
i �

2

4
)1=2 > 0, i = 1; � � � ; n. In these variables, system (4.6)

reads as

(4.11)

8>>>>>>>>>><
>>>>>>>>>>:

@tz = z � 1

2
F0(z + w);

@t�u1 = �

2
�u1 + !

0
1�v1;

@t�v1 = �

2
�v1 � !

0
1�u1;

� � �

@t�un = �

2
�un + !

0
n�vn;

@t�vn = �

2
�vn � !

0
n�un;

@tw = �w + 1

2
F0(z + w):

We now note that system (4.11) has the form of (3.1) and that all assumptions

of Theorem 3.1 are, obviously, satis�ed for (4.11). Consequently, according to this

theorem, for every given " > 0 and k 2 N , there are C1
0 -functions ~�i : R

2n+2 ! R,

i = 0; � � � ; 2n+ 1, satisfying

(4.12) k~�ikCk

b
(R2n+2;R) � ";

such that the following perturbation of system (4.11)

(4.13)

8>>><
>>>:
@tz = z � 1

2
F0(z + w) + ~�0(z; w; �u; �v);

@t�ui = �

2
�ui + !

0
i �vi +

~�2i�1(z; w; �u; �v);

@t�vi = �

2
�vi � !

0
i �ui +

~�2i(z; w; �u; �v); i = 1; � � � ; n;

@tw = �w + 1

2
F0(z + w) + ~�2n+1(z; w; �u; �v)

possesses a periodic orbit P with the instability index N+(P ) = 2n. This periodic
orbit lies in a small neighborhood of the homoclinic loop of the nonperturbed system,

so we may assume without loss of generality that all the functions ~�i have �nite

supports.

It remains to rewrite system (4.13) as a system of second order ODE's for the

variables U(t) := z(t)+w(t) and �ui(t). To this end, we take the sum of the �rst and

the last equation of (4.13) and di�erentiate it with respect to t and, analogously, we

di�erentiate the equations for �ui(t) in (4.13). This gives us

(4.14)

8><
>:
@
2
t U(t) = U(t)� F0(U(t)) + ��0(z(t); w(t); �u(t); �v(t));

@
2
t �ui(t) + @t�ui(t) + !

2
i �ui(t) =

��i(z(t); w(t); �u(t); �v(t));

i = 1; � � � ; n;

where the C1
0 functions ��i : R

2n+2 ! R satisfy

(4.15) k��ikCk�1
b

(R2n�2;R) � Ck";

and the constant Ck is independent of ". To �nish the proof of the lemma, it remains

to express the variables z, w, �vi in terms of U , @tU , �ui and @t�ui from the system

(4.16)

8>>><
>>>:
z + w = U;

z � w = @tU � ~�0(z; w; �u; �v)� ~�2n+1(z; w; �u; �v);

�vi = (!0
i )
�1
�
@t�ui +



2
�ui
�
� (!0

i )
�1 ~�2i(z; w; �u; �v);

i = 1; � � � ; n:
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reduces to a non-degenerate linear system. Hence, due to (4.12), system of equations

(4.16) is indeed can be solved in a unique way (by virtue of the implicit function

theorem) if " is small enough:

(4.17)

8><
>:
z = �0(U; @tU; �u; @t�u);

�vi = �i(U; @tU; �u; @t�u); i = 1; � � � ; n;

w = �n+1(U; @tU; �u; @t�u);

for some C1-functions �i, i = 0; � � � ; n. Inserting (4.17) into the right-hand side of

(4.14) �nishes the proof of Lemma 4.1.

Let us now �nish the proof of Theorem 4.1. Indeed, let A be a selfadjoint positive

operator in a Hilbert space H with a compact inverse such that its eigenvalues

0 < �1 � �2 � � � � satisfy condition (2.1) for a certain positive constant �. Let

feig
1
i=1 be the corresponding orthonormal system of eigenvectors. Then, every H-

valued function u(t), t 2 R+ , can be expanded as follows:

(4.18) u(t) :=

1X
i=1

ui(t)ei; ui(t) := (u(t); ei) :

Moreover, due to (1.2),

(4.19) ku(t)k2Hs :=

1X
i=1

�
s
i jui(t)j

2
; s 2 R:

We rewrite now equation (4.3) in the following equivalent form:

(4.20) @
2
t ui(t) + @tui(t) + �iui(t) = ��i(u(t); @tu(t)); i = 1; 2; � � � ;

where u(t) = (u1(t); u2(t); � � � ) 2 R
1 (see (4.18)) and f��i(u; @tu)g

1
i=1 are de�ned as

(4.21) ��i(u; @tu) := (F1(u) + F2(u) + �(u; @tu); ei) :

We will construct the desired equation (4.3) in the form (4.20). The main idea is

to construct the nonlinearities in such a way that the components ui(t) of the cor-
responding solution will satisfy system (4.9). Then, by Lemma 4.1, this equation

will possess a periodic orbit P such that N+(P ) = 2n, n + 1 := [1=(2)] and, con-
sequently, the fractal dimension of its attractor will be larger than (2)�1. Indeed,
let  > 0, " > 0 and let k 2 N be arbitrary. Let us also �x n := [1=(2)]� 1 as in

Lemma 4.1. We need to rewrite system (4.9) constructed in Lemma 4.1 in the form

(4.20). To this end, we �x the frequencies !2
i = �i+2, i = 1; � � � ; n, where �i are the

eigenvalues of A, and introduce the variables

(4.22) u1(t) := U(t); u2(t) := @tU(t); u3(t) := �u1(t); � � � ; un+2(t) := �un(t):
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(4.23)

8>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>:

@
2
t u1 + @tu1 + �1u1 = fu1 � F0(u1) + �1u1g+

+fu2g+ �1(u1; � � � ; un+2; @tu1; � � � ; @tun+2);

@
2
t u2 + @tu2 + �2u2 = fu2 � F

0
0(u1)u2 + �2u2g+

+fu1 � F0(u1)g+ �2(u1; � � � ; un+2; @tu1; � � � ; @tun+2);

@
2
t u3 + @tu3 + �3u3 =

= �3(u1; � � � ; un+2; @tu1; � � � ; @tun+2);

� � �

@
2
t un+2 + @tun+2 + �n+2un+2 =

= �n+2(u1; � � � ; un+2; @tu1; � � � ; @tun+2);

where the C1
0 -functions �i satisfy

(4.24) k�ikCk�2(Rn+2;R) � C
0
k":

Since every solution of (4.9) is, obviously, a solution of (4.23) as well, then (4.23)

has also a periodic orbit P with N+(P ) = 2n.

We complete system (4.23) as follows:

(4.25) @
2
t ui + @tui + �iui = 0; i = n+ 3; n+ 4; � � � :

Then, system (4.23), (4.25) has the form (4.20) indeed. Moreover, since only the

existence of a periodic orbit P with N+(P ) = 2n is important for our purposes, we

may cut-o� all the nonlinearities outside of this orbit and de�ne �nally

(4.26) F1(u) := �0 �

0
BBBB@

u1 � F0(u1) + �1u1

u2 � F
0
0(u1)u2 + �2u2

0
0
...

1
CCCCA ; F2(u) := �0 �

0
BBBB@

u2

u1 � F0(u1)
0
0
...

1
CCCCA

and

(4.27) �(u; @tu) :=

0
BBBBBB@

�1(u1; � � � ; un+2; @tu1; � � � ; @tun+2)
� � �

�n+2(u1; � � � ; un+2; @tu1; � � � ; @tun+2)
0
0
...

1
CCCCCCA
;

where �0 := �0(ju1j
2 + ju2j

2) is an appropriate cut-o� function.

Thus, the desired operators F1 , F2 and � are de�ned. Let us now verify that they

satisfy all conditions of Theorem 4.1. Indeed, (4.1) is obvious. Since the operator

� has a �nite rank (see (4.27)), then, obviously, � 2 S. Moreover, it follows from

(2.1), (4.19) and (4.24) that, for every m 2 N

(4.28) k�kCk�2(E�m;Hm) � Cn
4�m

":
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�xed m). Furthermore, due to our construction, system (4.23), (4.25) possesses a

smooth periodic orbit P with N+(P ) = 2n. Therefore,

(4.29) dimF (A;E) � 2n �
1

2
:

The upper bounds for the fractal dimension in (4.4) is an immediate corollary of

Proposition 2.1 and Corollary 2.2. Theorem 4.1 is proven.

Remark 4.1 We emphasize that the operators F1 and F2 from Theorem 4.1 have

very simple structure (see (4.26)) and can be computed explicitly. It is also worth

to emphasize that the unperturbed system (4.3)

(4.30) @
2
t u+ @tu+Au = F1(u) + F2(u)

possesses a 4-dimensional inertial manifold

M := f(u1; u2; @tu1; @tu2) 2 R
4
; (ui; @tui) = 0; � = 3; 4; � � � g

and, consequently, the fractal dimension of its attractor A0 satis�es

(4.31) dimF (A0;E) � 4; for every  > 0;

whereas its Lyapunov dimension, obviously, satis�es

(4.32) dimL(A0;E) � 
�1
:

Theorem 4.1 shows, however, that, by an arbitrarily small perturbation of equa-

tion (4.30), we may increase drastically the fractal dimension of the corresponding

attractor A and obtain the relation

(4.33) dimF (A;E) � dimL(A;E) � 
�1
:

This example con�rms that the Lyapunov dimension is a more robust qualitative

characteristic of the global attractor than its fractal dimension.

Remark 4.2 We have constructed in Theorem 4.1 the examples of attractors A
of equations of the form (1.1) which depend explicitly on the �rst derivative @tu of

the unknown function u. Di�erentiating, however, equation (4.3) by t and denoting

v = @tu and w(t) := (u(t); v(t)) 2 ~H := H�H, we obtain the equation of the form

(4.34) @
2
tw + @tw + ~Aw = ~F1(w) + 

~F2(w) + ~�(w);

where the nonlinearities are already independent of @tw. Therefore, the phenomena

described in Theorem 4.1 can appear in hyperbolic equations of the form (1.1) where

the nonlinearity F is independent of @tu (F (u; @tu) � F (u)). Unfortunately, this

reduction leads to linear operators ~A in a special form

(4.35) ~A :=

�
A 0
0 A

�
:

In order to avoid this restriction, we permit the explicit dependence of the nonlin-

earity F on @tu in our abstract model (1.1).
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fractal dimension is to estimate the instability index for some equilibrium of the

equation under consideration, see [1], [2] and references therein (see also [17], where

lower estimates for the instability index of a linear nonautonomous equation of

type (1.1) with periodic coe�cients were given based on the parametrical resonance

phenomena). In our next proposition, we show that it is principally impossible,

using this method, to obtain reasonable lower bounds for the attractor's dimension

of equation (1.1) with nonlinearities belonging to S.

Proposition 4.1 Let A be a linear selfadjoint operator with a compact inverse in a
Hilbert space H whose eigenvalues satisfy (2.1) and let the nonlinearity F in equation
(1.1) belong to the class S.Then, for every " > 0, there exists a positive constant C"

such that the instability index of any equilibrium u0 of equation (1.1) is estimated as
follows:

(4.36) N
+(u0) � C"

�"
:

Proof. Indeed, due to the trick described in Remark 4.2, it is su�cient to prove

estimate (4.36) only for the case where

(4.37) F (u; @tu) � F (u):

Let now u0 be an arbitrary equilibrium of equation (1.1). Then, the corresponding

equation of variations reads as

(4.38) @
2
tw + @tw +Au0 w = 0; Au0 := A�F 0(u0)

and, consequently, the spectrum of the linearization Du0St of the semigroup (1.7)

at the point (u0; 0) can be expressed as follows:

(4.39) � (Du0St) =

(
e
t�k
�

; �
k
� := �



2
�

�

2

4
� �k

�1=2
)
;

where f�kg
1
k=1 2 C are the eigenvalues of the operator Au0 .

We recall now that the operator F belongs to the class S. Therefore,

(4.40) kF 0(u0)kL(H�m;Hm) � Cm;

for every m 2 N , where the constant Cm is independent of u0 2 H. Thus, due to the
classical theory of compact perturbations of selfadjoint operators (see e.g. [18]), we

derive from (4.40) that for every N 2 N , there exists a constant CN such that

j�k � �kj � CNk
�N
; k 2 N ;

where �k is the corresponding eigenvalues of the unperturbed operator A. It follows
that all but �nitely many �k have positive real parts, and their imaginary parts tend

to zero faster than any power of k as k ! +1. Hence, according to formula (4.39),

the number of eigenvalues �k� with nonnegative real parts satis�es (4.36) indeed.

Proposition 4.1 is proven.
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Remark 4.3 We stress that our �homoclinic� method of obtaining lower estimates

for the attractor's dimension gives, in fact, more than an estimate from below of

the maximal attractor. Indeed, in absolutely the same way as Theorem 4.1 was

deduced from Corollary 3.1 to Theorem 3.1, we obtain from Corollary 3.2 that the

nonlinearities F1;2 and � can be constructed in such a way that equation (4.3) would

have an invariant torus (densely �lled by quasiperiodic trajectories) of dimension

� C=, where C is a certain constant. In other words, we show that equations

under consideration may have minimal sets whose dimension is of the same order as

the Lyapunov dimension of the maximal attractor.

Recall also that, according to [19], any quasiperiodic �ow on a smooth (m + 1)-
dimensional invariant torus can be perturbed in such a way that the torus would

contain an invariantm-dimensional manifold, homeomorphic to Dm�1�S1, the �ow

on which is smoothly conjugate to a suspension over any aforehand given di�eomor-

phism ofDm�1. Hence, by Corollary 3.2, every dynamics which is possible in a phase

space of dimension � C= can be encountered in equation (4.3), at an appropriate

choice of the nonlinearities.

Appendix A. Proof of Theorem 1.1 and Lemma 2.1.

In this Appendix, we prove the existence of a solution for problem (1.1) under the

assumptions of Theorem 1.1. We also prove the Lipschitz property of the corre-

sponding semigroup St, as well as the quasidi�erentiability of St on the attractor

A (Lemma 2.1). As usual (see [1], [3], [4]), the proof is done via the Galerkin

approximation method, based on the a priori estimates (1.6), (1.8), (1.9).

We start with the proof of the a priori estimate (1.6). Let � 2 C(R+ ;E) be a solution
of (1.1). Then, according to assumption (1.4), the nonlinear term F (u; @tu) belongs
to the space C(R+ ;H) and is globally bounded in it. Consequently, we may take a

scalar product of equation (1.1) with @tu(t) + �u(t), where � > 0 is a su�ciently

small number, and derive the following relation (see e.g. [3], Lemma II.4.1):

1

2
@t[k@tu(t)k

2
H + ku(t)k2

H1 + 2�(u(t); @tu(t))] + ( � �)k@tu(t)k
2
H + �ku(t)k2H =

= (F; u+ �@tu) � C" + "(k@tu(t)k
2
H + ku(t)k2

H1);

where " > 0 can be arbitrarily small. Fixing now " � 1 and � � 1 in the last

inequality and applying the Gronwall's inequality, we obtain (1.6) indeed.

Let us now verify estimate (1.8). Let �u1(t) and �u2(t) be two solutions of (1.1) and

let �(t) := [v(t); @tv(t)] := �1(t)� �2(t). Then v(t) satis�es the following equation

@
2
t v + @tv +A v = L1(t)v + L2(t)@tv; �

��
t=0

= �1(0)� �2(0);

where L1(t) :=
R 1
0
F
0
u(su1 + (1� s)u2; s@tu1)ds and

L2(t) :=
R 1
0
F
0
@tu

(su1 + (1 � s)u2; s@tu1)ds. We note that, according to (1.4), these

operators are globally bounded as operators from H1 ! H and H! H respectively.

Consequently, the right-hand side of the equation for v belongs to the space C(R+ ;H)
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the following estimate

1

2
[k@tv(t)k

2
H + kv(t)k2

H1 ] + k@tv(t)k
2
H =

= (L1(t)v(t); @tv(t)) + (L2(t)@tv(t); @tv(t)) � K

�
kv(t)k2

H1 + k@tv(t)k
2
H

�
;

where K is independent of u1 and u2 (since the derivatives Fu and F
0
@tu

are assumed

to be globally bounded). Applying the Gronwall's inequality to this relation, we

obtain (1.8).

In order to prove the a priori estimate (1.9), let us di�erentiate equation (1.1) with

respect to t and introduce the function z(t) := @tu(t). Then, this function satis�es

the following equation:

(A.1)

(
@
2
t z + @tz +A z = F

0
u(u; @tu)z + F

0
@tu

(u; @tu)@tz;

z

��
t=0

= u
0
0; @tz

��
t=0

= @
2
t u(0) = �A u0 � u

0
0 + F (u0; u

0
0):

Denote �(t) := [z(t); @tz(t)]. Since �(0) := [u(0); @tu(0)] 2 E1 and the nonlinearity

F satis�es (1.4), it follows that �(0) 2 E and

(A.2) k�(0)k2E � C

�
k�(0)k2

E1
+ 1
�
;

for an appropriate constant C depending on F and . Moreover, it follows from

estimate (1.6) and from equation (1.1) that

(A.3) k�(t)k2
E�1

� C
0k�(0)k2Ee

�t + C
0
1;

where C 0 and C 0
1 depend only on A, F and .

Taking the inner product in H of equation (A.1) with the function @tz(t) +


2
z(t),

we have

(A.4)

@t

�
k@tzk

2
H + kzk2

H1 +  (z(t); @tz(t))
	
+ k@tzk

2
H + kzk2

H1 =

= 2 (F 0
u(u; @tu)z; @tz) + 2

�
F
0
@tu

(u; @tu)@tz; @tz
�
+

+  (F 0
u(u; @tu)z; z) + 

�
F
0
@tu

(u; @tu)@tz; z
�
:

Using conditions (1.5), we derive that

(A.5)
2 (F 0

u(u; @tu)z; @tz) + 2
�
F
0
@tu

(u; @tu)@tz; @tz
�
�

�


2

�
k@tz(t)k

2
H + kz(t)k2

H1

�
+ 4Ck[z(t); @tz(t)]k

2

E�1
:

Analogously, using assumption (1.4) on the derivatives of F and the interpolation

inequality kuk2H � kukH1kukH�1 , we estimate

(A.6)
(F 0

u(u; @tu)z; z) +
�
F
0
@tu

(u; @tu)@tz; z
�
�

�
1

8

�
k@tz(t)k

2
H + kz(t)k2

H1

�
+ C

0
k[z(t); @tz(t)]k

2

E�1
:

Inserting estimates (A.5) and (A.6) into the right-hand side of (A.4), we obtain, for

a su�ciently small  > 0,
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(A.7)

@t

�
k@tzk

2
H + kzk2

H1 +  (z(t); @tz(t))
	
+


8

�
k@tzk

2
H + kzk2

H1 +  (z(t); @tz(t))
	
� C

00
k�(t)k

2

E�1
;

for an appropriate constant C 00
 which depends only on , A and F . Applying the

Gronwall's inequality to (A.7) and using (A.2) and (A.3), we arrive at the estimate

(A.8) k�(t)k2E � C4e
�t=8k�(0)k2

E1
+ C4:

It remains to note that due to equation (1.1) and condition (1.4) we have

k�(t)k2
E1 � C

�
k�(t)k2E + 1

�
;

so (1.9) follows from (A.8).

Now we can prove the existence of the solutions of (1.1). Let feig
1
i=1 be the orthonor-

mal basis in H generated by the eigenvectors of the selfadjoint operator A and let �N

be an orthoproector to the �rst N eigenvectors in H, HN := �N H and EN := �N E.
For every N 2 N , we consider the following problem in the �nite-dimensional space

EN , which approximates the initial in�nite-dimensional problem (1.1):

(A.9)

(
@
2
t uN + @tuN +AuN = �NF (uN ; @tuN);

�N(t) := [uN(t); @tuN(t)] 2 EN ; �N(0) = �
0
N :

We recall that (�NF; vN) = (F; vN) for every vN 2 EN and, consequently, repeating

word by word the derivation of estimates (1.6) and (1.9), we obtain the following

uniform (with respect to N) a priori estimates for the solutions of (A.9):

(A.10)

(
1: k�N(t)k

2
E � Ck�N(0)kEe

�t + C1;

2: k�N(t)k
2

E1 � C1k�N(0)kE1e
�=8

t+ C3;

where the constants C, C1, C2 and C3 are the same as in (1.6) and (1.9) (and,

in particular, they are independent of N). On the other hand, equation (A.9) is a

system of ODE's with smooth (C1) nonlinearity and, consequently, estimates (A.10)

give the global existence of a solution �N(t) 2 EN of problem (A.9). Our task now

is to pass to the limit N ! 1 in (A.9) and construct the solution u(t) of (1.1) as
a limit of Galerkin solutions uN(t). To this end, we �rst assume that the initial

conditions �(0) for problem (1.1) belongs to E1:

(A.11) �(0) 2 E1 and set �
0
N := �N�(0):

Then, according to (A.10)(2) and equation (A.9), we have the uniform with respect

to N estimate

(A.12) k@2t uNkL1([0;T ];H) + k�NkL1([0;T ];E1) � C(k�(0)kE1)

which is valid for every T > 0. Consequently, without loss of generality, we may

assume that, for every T > 0,
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(A.13)

�N ! � �-weakly in L1([0; T ];E1) and @
2
t uN ! @

2
t u �-weakly in L1([0; T ];H);

for some function � := [u; @tu] 2 L
1(R+ ;E

1). We claim that u solves the initial

problem (1.1). To this end, we need to pass to the limit N !1 in equations (A.9).

Indeed, passing to the limit N ! 1 in the linear terms of (A.9) is evident due

to (A.13). In order to pass to the limit in the nonlinear term, we recall that the

embedding

L
1([0; T ];E) \ f@2t u 2 L

1([0; T ];H)g � C([0; T ];E)

is compact, for every T > 0 (see e.g. [3]) and, consequently, (A.13) implies the strong
convergence �N ! � in C([0; T ];E). Since the operator F is continuous, it follows

that �NF (uN ; @tUN)! F (u; @tu), and u is indeed a solution of problem (1.1).

Thus, for every �(0) 2 E1, we have constructed a solution � 2 L1(R+ ; E
1)\C(R+ ;E)

of problem (1.1) (moreover, arguing in a standard way like e.g. in [3], one may verify

that � 2 C(R+ ;E
1), in fact). It is not di�cult now to extend this result to the initial

data from E. Indeed, let �(0) 2 E be an arbitrary initial condition. Let us consider

a sequence �n(0) 2 E1 such that

(A.14) �
n(0)! �(0) as n!1

Let also �n(t) 2 E1 be the corresponding solutions of problem (1.1), the existence

of which has just been proven. Then, according to estimate (1.8), there exists some

function � 2 C(R+ ;E) such that

(A.15) �
n ! � in C([0; T ];E) strongly,

for every T > 0. As above, the strong convergence law (A.15) allows to pass to the

limit n ! 1 in the equations for un and verify that the limit function u(t) also
satis�es equation (1.1). Thus, the existence of a solution of problem (1.1) is now

proven under the assumptions of Theorem 1.1.

It remains to prove the quasidi�erentiability of the corresponding semigroup St on

the attractor A. Let �1(t) and �2(t) be two solutions of problem (1.1) belonging

to A and let v(t) be a solution of equation of variations (2.7) (computed along

the trajectory �1(t)) with [v(0); @tv(0)] = �1(0) � �2(0). Then, arguing as in the

derivation of estimate (1.8), we obtain the following estimate:

(A.16) k[v(t); @tv(t)]k
2
E � Ck[v(0); @tv(0)]k

2
Ee

Kt
;

where the constants C and K are independent of u1 and u2. Moreover, the function

w(t) := u1(t)� u2(t)� v(t) obviously satis�es the following linear nonhomogeneous

equation

(A.17)

(
@
2
tw + @tw +Aw � F

0
u(u1; @tu1)w � F

0
@tu

(u1; @tu1)@tw = hu1;u2(t);

[w; @tw]
��
t=0

= 0;
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(A.18)

hu1;u2(t) :=
nR 1

0
(F 0

u(su1 + (1� s)u2; s@tu1)� F
0
u(u1; @tu1) ds

o
v(t)+

+
nR 1

0
(F 0

@tu
(su1 + (1� s)u2; s@tu1)� F

0
u(u1; @tu1) ds

o
@tv(t):

Consequently, analogously to (1.8) and (A.16), we have

(A.19) k[w(T ); @tw(T )]kE � Ce
KT

Z T

0

khu1;u2(t)k
2
H dt;

where the constants C and K are independent of u1 and u2. On the other hand,

since the attractor A is compact in E, the set

A1;2 := fs�1 + (1� s)�2; �1; �2 2 A; s 2 [0; 1]g

is also compact in E and, due to assumption (1.4), the derivatives F 0
u and F 0

@tu
are

uniformly continuous on this set. Consequently, we have an estimate

(A.20) khu1;u2(t)kH � �(k�1(t)� �2(t)kE)k[v(t); @tv(t)]kE;

where the function �(z) tends to zero as z ! 0+ and is independent of t, u1 and u2.

Estimates (1.8), (A.16), (A.19) and (A.20) imply that

(A.21) k[w(T ); @tw(T )]k
2
E � �T (k�1(0)� �2(0)kE)k�1(0)� �2(0)kE;

where the function �T (z) tends to zero as z ! 0+, it depends on T � 0 but it is

independent of �1; �2 2 A. Thus, estimate (2.2) is veri�ed. The continuity of S 0(�)
on the attractor is veri�ed analogously. End of the proof.

Appendix B. Proof of Corollary 3.2.

Let P be a periodic orbit, born by a small perturbation of a homoclinic loop of

system (3.1), which has 2m multipliers equal to 1 in the absolute value (such an

orbit can indeed be born according to Theorem 3.1). Let us prove that a smooth

(m+1)-dimensional invariant torus, �lled by quasiperiodic trajectories each of which

is dense in the torus, can be born at the bifurcations of P .

Proof. Consider a Poincar'e map (x 7! �x) for the periodic orbit P :

(B.1) �x = Bx+ o(x);

here x = 0 is the �xed point which corresponds to the orbit P . The eigenvalues of

the matrix B are the multipliers of P . By assumption, 2m of these eigenvalues lie

on the unit circle. Our goal is to prove that this map can be perturbed in such a

way that an m-dimensional invariant torus would appear in a small neighborhood

of the origin.

Fix any integer r � 1. It is obvious, that by perturbations, small in Cr-topology, one

can arrange arbitrary small changes in any entries of the matrix B in (B.1). Hence,

we can always achieve that B would have exactly m pairs of complex-conjugate

eigenvalues on the unit circle: e�i!1 ; : : : ; e�i!m , all !'s are rationally independent

and the factors !j=� are irrational; and the rest of the multipliers does not lie on

the unit circle.
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invariant manifold which is tangent at x = 0 to the eigenspace of B correspond-

ing to the multipliers on the unit circle. It is well-known that since the numbers

f�; !1; : : : ; !mg are rationally independent, there exist local coordinates (z1; : : : ; zm) 2
C
m in which the map on the center manifold takes the following (normal) form

(B.2) �zj = Qj(z1z
�
1 ; : : : ; zmz

�
m)z + o(zr) (j = 1; : : : ; m)

where � means complex conjugation, and Qj are complex polynomials of degree

� (r � 1)=2,

(B.3) Qj(0) = e
i!j
:

It is obvious that by an arbitrary small (in the Cr-topology) perturbation, one can

make map (B.2) coincide with the polynomial map

(B.4) �zj = Qj(z1z
�
1 ; : : : ; zmz

�
m)z (j = 1; : : : ; m)

in a su�ciently small neighborhood of zero. Thus, it is enough to prove that a small

perturbation of map (B.4) can produce an m-dimensional invariant torus arbitrarily

close to z = 0.

Let us, �rst, introduce polar coordinates �je
i'j := zj; j = 1; : : : ; m. Map (B.4)

recasts as

(B.5)

8><
>:
��j = Rj(�

2
1; : : : ; �

2
m)�j

(j = 1; : : : ; m)

�'j = 'j + 
j(�
2
1; : : : ; �

2
m)

where Qj � Rje
i
j (j = 1; : : : ; m), so Rj;
j are real analytic functions, and

(B.6) Rj(0) = 1; 
j(0) = !j (j = 1; : : : ; m):

Let a1; : : : ; am; �1; : : : ; �m be arbitrary small numbers. Then the map

(B.7)

8><
>:
��j = (aj +Rj(�

2
1; : : : ; �

2
m))�j

(j = 1; : : : ; m)

�'j = 'j + �j + 
j(�
2
1; : : : ; �

2
m)

is a small (real analytic) perturbation of (B.5). The amplitude map

(B.8) ��j = (aj +Rj(�
2
1; : : : ; �

2
m))�j (j = 1; : : : ; m)

is independent here on the phases '1; : : : ; 'm. Therefore, a �xed point of (B.8) with

all �1; : : : ; �m non-zero corresponds to an m-dimensional invariant torus of (B.7).

Take now some su�ciently small strictly positive numbers �01; : : : ; �
0
m. Put

(B.9)

8><
>:
aj = 1� Rj((�

0
1)

2
; : : : ; (�0m)

2);

(j = 1; : : : ; m)

�j = !j � 
j((�
0
1)

2
; : : : ; (�0m)

2):

By (B.6), the numbers a1; : : : ; am; �1; : : : ; �m are indeed small when �
0
1; : : : ; �

0
m are

small. With a1; : : : ; am given by (B.9), (�01; : : : ; �
0
m) is a �xed point of (B.8), i.e. the

torus (�1 = �
0
1; : : : ; �m = �

0
m) is a smooth m-dimensional invariant torus of (B.7).

By construction, map (B.7) is a Cr-small perturbation of the restriction of
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the perturbation under which an invariant torus is born from our periodic orbit. By

(B.6), (B.7), the restriction of the Poincaré map on this torus is given by

�'j = 'j + !j (j = 1; : : : ; m):

Since the numbers �; !1; : : : ; !m are rationally independent, it follows that every

orbit of this map is indeed quasiperiodic and �lls the torus densely. End of the

proof.
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