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Abstract

Asymptotic behavior of the Biot slow wave is investigated. Formulae for
short- and long-wave approximations of phase velocity of the P2 wave are
presented. These asymptotic expansions are compared with exact solution,
constructed numerically. It is shown that both expansions �t very well the
real velocity of the P2 mode. Procedure for matching of short- and long-wave
asymptotic expansions is suggested.

Introduction
This paper develops the ideas of the work presented in [1]. Let us remind that paper
[1] is devoted to the asymptotic analysis of the velocity of the Biot slow (P2) wave in
a porous medium. Asymptotic expansion, describing the speed of P2 wave in a low
frequency range, was constructed with respect to small wave numbers. Bifurcation
behavior of P2 wave depending on its wave number was revealed: it was proven
analytically that longitudinal wave of the second kind is not propagatory (fully
attenuated mode) if its wave number is lower than some critical value. This critical
wave number is a bifurcation point, above which longitudinal wave of the second
kind begins to propagate. It was shown that slow wave behavior is dominated by
permeability of a medium.
The focus of this paper is on the research of domains of validity of short- and long-
wave approximations for the phase velocity of the Biot slow wave. On the base of
comparison of the asymptotic results with those obtained numerically, the matched
asymptotic expansion, which gives a uniformly valid approximation for the speed of
P2 wave, is constructed.

1. Mathematical Model
Consider propagation of the bulk waves through an in�nite space Ω occupied by a
saturated porous medium. In dimensionless variables the set of balance equations
describing a �uid-�lled porous medium has the following general form (x ∈ Ω, t ∈
[0, T ]) [2,3]:
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Mass conservation equations

∂ρF

∂t
+ div

(
ρFvF

)
= 0,

∂ρS

∂t
+ div(ρSvS) = 0. (1.1)

Here, ρ is the partial mass density, v is the velocity vector and indices F and S
indicate �uid and solid phases, respectively.

Momentum conservation equations

ρF

[
∂

∂t
+ (vF

j ,
∂

∂xj

)

]
vF

i −
∂

∂xj

T F
ij + Π(vF

i − vS
i ) = 0,

ρS

[
∂

∂t
+ (vS

j ,
∂

∂xj

)

]
vS

i −
∂

∂xj

T S
ij − Π(vF

i − vS
i ) = 0. (1.2)

Here TF and TS are the partial stress tensors and Π is a positive constant.

Balance equation for the porosity

∂n

∂t
+

(
vS

i ,
∂

∂xi

)
n + n0div(vF − vS) = −(n− n0), (1.3)

where n is the porosity and n0 is its initial value, assumed to be constant. Stress
tensors have the form:

TF = −pF1− β(n− n0)1, pF = pF
0 + κ(ρF − ρF

0 ), (1.4)

TS = TS
0 + λSdivuS1+2µSsymgraduS + β(n− n0)1. (1.5)

Here pF is the pore pressure; pF
0 and ρF

0 are the initial values of pore pressure
and �uid mass density, respectively; κ is the constant compressibility coe�cient of
the �uid; β denotes the coupling coe�cient of the �uid and solid components; TS

0

denotes a constant reference value of the partial stress tensor in the skeleton, λS

and µS are the Lamé constants of the skeleton; uS is the displacement vector for
the solid phase with

vS =
∂uS

∂t
. (1.6)

2. Short- and Long-Wave Approximations for the
Phase Velocity of the Biot Slow Wave
Let us study the bulk longitudinal waves in an unbounded �uid-�lled porous medium
(1D case). We focus on the Biot slow wave.
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Consider the propagation of the harmonic waves whose frequency is ω and wave
number is k. Following standard procedure one obtains the dispersion equation
[1,4]:

r(ω2 − c2
fk

2)(ω2 − k2) + iωΠ
(
(1 + r)ω2 − k2(1 + rc2

f )
)

= 0. (2.1)

Here r = ρF
0 /ρS

0 and cf = UF /US
|| , where UF =

√
κ is a sound velocity in a �uid

and US
|| =

√
(λS + 2µS)/ρS

0 is a velocity of a longitudinal wave in an unbounded
elastic medium.
In should be reminded that similar to our previous research [1,3,4], we consider
the propagation of elastic bulk waves through an in�nite space in the absence of
external forces, so that solutions for the system (1.1)-(1.3) are de�ned uniquely by
the Cauchy data (initial value problem). In this case one must set the wave number
k ∈ R1 to be real and de�ne frequency ω = ω(k), which can be complex, as a
solution of dispersion equation (2.1). Thus, Reω/k de�nes the phase velocity of a
wave and Imω gives its attenuation.
If k À 1 (high frequency range), the asymptotic expansion for the root of (2.1),
corresponding to P2 wave, has the form (note that below ω̃ = ω/k and k̃ = k/Π)
[1,4]:

ω̃P2 = ±cf − i

2r

1

k̃
− 1− c2

f (1 + 4r)

8r2(1− c2
f )(±cf )

1

k̃2
+ O

( 1

k̃3

)
. (2.2)

It de�nes the velocity and attenuation of forward and backward directed P2 wave.
Obviously, phase velocity of forward directed P2 wave in high frequency range is
given by the following approximate formula:

ch
P2 ≈ cf −

1− c2
f (1 + 4r)

8r2(1− c2
f )cf

1

k̃2
(2.3)

If k ¿ 1 (low frequency range), one obtains for forward and backward directed P2
wave, respectively:

ω̃f
P2 = −i

rc2
f

1 + rc2
f

k̃ − i
r3c4

f (1 + rc4
f )

(1 + rc2
f )

4
k̃3 + O(k̃4), (2.4)

ω̃b
P2 = −i

1 + r

r

1

k̃
+ i

r(r + cf )

(1 + r)2
k̃ + O(k̃2). (2.5)

Expansions (2.4), (2.5) consist of the imaginary terms only, i.e. the phase velocity
of P2 wave is equal to zero and the wave is fully attenuated. However, as it was
proven in [1,4], asymptotics (2.3), (2.4) are valid only if wave number k is less then
some critical value kcr, i.e. kcr is a bifurcation point in small neighborhood of which
solution of equation (2.1) splits into several branches. Critical wave number kcr and
corresponding critical frequency are de�ned asymptotically:
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kcr ≈ cf

(
1 +

1

2rc2
f

)
Π, (2.6)

ωcr = −iΠΩcr, Ωcr ≈ 1

2r
+ 2c2

f (1 + 3rc2
f − 2c2

f ). (2.7)

If k > kcr, then P2 mode becomes to be propagatory. For any small parameter ε
and wave number

k = kcr

(
1 + ε2k2

)
+ ΠO(ε3) (2.8)

asymptotic expansion for its frequency has the form:

ωP2 = ωcr + εω1 + ΠO(ε2), ω1 = 2kcr

√
k2/A (2.9)

where

A =
1 + c2

f

c2
f

+
1− c2

f

c2
fg(Ωcr)

√
g(Ωcr)

(
− r3(1− c2

f )
3Ω3

cr + 3r2(1− c2
f )

2(1− rc2
f )Ω

2
cr

−3r(1− c2
f )(1 + r2c4

f )Ωcr + (1− rc2
f )(1 + rc2

f )
2
)

> 0,

g(Ω) = Ω2r2(1− c2
f )

2 − 2rΩ(1− c2
f )(1− rc2

f ) + (1 + rc2
f )

2

and k2 = O(1) with respect to small parameter ε.

Therefore, phase velocity of forward directed P2 wave in low frequency range is given
by the following approximate formula:

cl
P2 ≈ εω1/k, (2.10)

where ω1 and k are de�ned in (2.9) and (2.8), respectively.
Let us note that it is desirable to have an asymptotics, which is valid uniformly
everywhere. Thus, construction of matched asymptotic expansion is required.

3. Matching of Long- and Short-Wave Asymptotics
In order to determine an asymptotic expansion for the velocity of the Biot slow wave
that is uniformly valid throughout the k-domain of interest, one should investigate
domains of validity for the short- and long-wave approximations (2.3) and (2.10)
and construct matched asymptotic expansion. If two valid approximations to some
function have overlapping domains of validity, they are said to match. While the
principles of matching are clear, it is di�cult to determine a priory the domain of
validity of an approximation [5,6]. These ideas are best illustrated by examples,
which will be given below.
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Let us compare expansions (2.3), (2.10) with the corresponding exact solution of
dispersion equation (2.1). It is easy to see that exact solution for the frequency of
P2 wave is given by the following implicit formula:

k2 =
1

2rc2
f

(
rω2(1 + c2

f ) + iΠω(1 + rc2
f )

+
√

r2ω4(1− c2
f )

2 − Π2ω2(1 + rc2
f )

2 + 2irΠω3(1− c2
f )(1− rc2

f )
)

(3.1)

Numerical solution for the velocity of P2 wave cP2 = Re(ω)/k, where frequency
ω = ω(k) is calculated from (3.1), is presented in Fig.1.

kcr20 40 60 80 100
k

0.05

0.1

0.15

0.2

0.25

0.3

CP2

Figure 1: Phase velocity of the P2 wave: r = 0.1, cf = 0.32, Π = 1; kcr ≈ 15.9

De�nition. We say that asymptotics cl
P2 and ch

P2 are valid in the domains D1 and
D2 respectively (we refer D1 and D2 as domains of relative validity), if in these
domains ∣∣cl

P2 − cP2

cP2

∣∣ ≤ a0 and
∣∣ch

P2 − cP2

cP2

∣∣ ≤ a0, (3.2)

where a0 is some constant. There exists matched asymptotic expansion with relative
accuracy a0 · 100%, if D1 ∩D2 6= ∅.

For instance, we may set a0 = 0.1, i.e. relative error does not exceed 10%.
In Fig.2 exact solution cP2, constructed numerically, is compared with the long-
wave asymptotics (2.10) (on the left) and with the short-wave asymptotics (2.3)
(on the right). Evidently, before the intersection point the curve, labeled cl

P2 (long-
wave approximation), �ts rather well the curve cP2 (numerical solution of dispersion
equation (2.1), heavy solid line). Comparing solutions cP2 and cl

P2 point by point,
one can de�ne the domain of validity D1 of the long-wave approximation: D1 =
{kcr ≤ k ≤ 23}.
>From Fig.2 it is obvious also, that the short-wave asymptotics (2.3) (curve, labeled
ch
P2) approximates very well the numerical solution cP2 (heavy solid line). Also
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Figure 2: Phase velocity of the P2 wave: comparison of numerical solution cP2

(heavy solid line) with the long-wave approximation cl
P2 (left) and with the short-

wave approximation ch
P2 (right); as above r = 0.1, cf = 0.32, Π = 1, and ε = cf

comparing solutions cP2 and ch
P2 point by point, one determines the domain of

validity D2 of the short-wave approximation: D2 = {22 ≤ k}.
Closer inspection of the plots in Fig.2 shows that there exists the overlap domain
D = D1∩D2, where both long- and short-wave approximations are valid. This gives
us a clue to the matching of these asymptotics. Namely, the following function is
proposed as matched asymptotic solution:

cm
P2 = f0(k)cl

P2 +
(
1− f0(k)

)
ch
P2, (3.3)

where

f0(k) =
1

2

(
1− tanh

(k − k0

ξ

))
, k0 ∈ D, (3.4)

and ξ is a matching parameter. Matched asymptotics cm
P2 is uniformly valid through-

out the k-domain of interest. Comparison of this matched solution with the numer-
ical one (dashed line) is presented in Fig.3. Evidently, cm

P2 is in excellent agreement
with cP2.
Comment 1. Slight deviation of matched approximation from the numerical solu-
tion in the vicinity of k ≈ 24 (see Fig.3) is caused by the fact that only two terms of
asympotics were constructed for the long-wave approximation cl

P2. Thus, one has to
take into account the next term of asymptotic expansion for cl

P2. This will certainly
improve the accuracy of long-wave approximation cl

P2 and, consequently, will result
in better agreement between cl

P2 and exact solution cP2 as well as between matched
approximation cm

P2 and cP2. It should be noted that one can construct asymptotic
expansion cl

P2 with any accuracy.
Comment 2. Parameter a0 is selected so that D 6= ∅. Obviously, choice of a0

a�ects accuracy of an approximation.
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k
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0.15
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0.25
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Figure 3: Phase velocity of the P2 wave: comparison of matched approximation cm
P2

(thin curve) with the numerical solution cP2 (dashed curve); as above r = 0.1, cf =
0.32, Π = 1, ε = cf ; k0 = 22.5, ξ = 1

Comment 3. Usually, more complicated technique is applied for matching of outer
and inner expansions. Namely, the outer expansion is expressed in terms of the
inner variable and re-expanded. It should agree with the inner expansion evaluated
for large variable (in our case this variable is k). We use simpler procedure for
matching of outer and inner expansions because of the fact that only two �rst terms
in expansions cl

P2 and ch
P2 were derived, that is not enough for usual technique.

Moreover, in order to obtain uniform asymptotic solution for the system (1.1)-(1.3) in
the weak sense, it su�ces to construct matched asymptotics in norm C0. Examples
of such construction are given in this paper.

Above example was analyzed for the following dimensionless parameters, entering
dispersion equation (2.1): r = 0.1, cf = 0.32, Π = 1. They correspond to the fol-
lowing real parameters of the porous saturated medium (water-saturated sandstone)
[7]:
porosity: n = 0.2;
initial value of the partial mass density of the �uid phase: ρF

0 = 0.2 · 103 kg
m3 (note,

that ρF
0 ≈ nρFR

0 , where ρFR
0 is the initial value of the real mass density of the �uid

phase, ρFR
0 = 103 kg

m3 );
initial value of the partial mass density of the solid phase: ρS

0 = 2.0 · 103 kg
m3 (note,

that ρS
0 ≈ (1− n)ρSR

0 , where ρSR
0 is the initial value of the real mass density of the

solid phase, ρSR
0 = 2.65 · 103 kg

m3 );
sound velocity in the �uid: UF = 1450m

s
;

velocity of the longitudinal wave in the skeleton: US
|| = 4450m

s
;

Π = µf/K (as it follows from the dimensional analysis), where µf is a viscosity
of a liquid, and K is a permeability of a porous medium: K = 1000 mDarcy,
µF = 10−3 kg

m·s .
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In Fig.4 phase velocity of the P2 wave is evaluated in physical variables. The
following observation can be made: wave length λ of propagatory modes is very
small, namely λ < λcr = 0.4 cm. Thus, we can conclude that in fact P2 waves
do not exist since their wave length is smaller than the characteristic size of the
medium. This result may have the following explanation. From (2.6) it is clear that
kcr is directly proportional to parameter Π, entering momentum balances (1.2). In
the model under research (1.1)-(1.3) Π is assumed to be constant. Traditionally, as
in the classical Biot model [8], Π = µf/K, where permeability of a porous medium
K is calculated from the measurements of the �ow rate and pressure drop on the
base of the Darcy law (at low frequencies) or on the base of the Forchheimer law (at
high frequencies). In considered above example (water-saturated sandstone) one has
Π = 109 kg

m3·s , that results in big values for kcr. Consequently, we may presuppose
that Π in the form Π = µf/K with permeability K, obtained by standard methods,
cannot be used for the model (1.1)-(1.3).

kcr2500 5000 7500 10000
k,1� m

200

600

1000

1400

CP2,m� s

Figure 4: Phase velocity of the P2 wave, evaluated in physical variables: kcr ≈
1755.54 m−1 (water-saturated sandstone)

Next let us consider another example of practical importance, namely sandstone,
saturated by normal oil. In this case ρF

0 = 1.2 · 102 kg
m3 (ρFR

0 = 0.6 · 103 kg
m3 ),

UF = 1200m
s
; µF = 10−2 kg

m·s [7]. The other parameters remain as in the previous
example. Thus, corresponding dimensionless parameters take the following values:
r = 0.06, cf = 0.27, Π = 10. In Figs.5-7 numerical solution for the velocity of
the P2 wave and its comparison with long- and short-wave asymptotics as well as
with matched asymptotic expansion are presented. Fig.6 demonstrates, that both
long- and short-wave asymptotics approximate very well the numerical solution cP2.
Existence of the overlap domain, where both long- and short-wave approximations
are valid, allows us to construct matched asymptotic expansion (see Fig.7). As in
the �rst example, deviation of matched approximation from the numerical solution
is caused by the fact that only two terms of asympotics were constructed for the
long-wave approximation cl

P2. In order to improve an accuracy, one has to take into
account the next term of asymptotic expansion for cl

P2.
In Fig.8 one can see phase velocity of the P2 wave, evaluated in dimensional vari-
ables. As in the �rst example, we conclude that in fact P2 waves do not exist since
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kcr400 600 800 1000 1200
k
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0.25

CP2

Figure 5: Phase velocity of the P2 wave: r = 0.06, cf = 0.27, Π = 10; kcr ≈ 311.1

kcr 315 320 325 330 335 340 345
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k
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0.15

0.2

0.25
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CP2
h

Figure 6: Phase velocity of the P2 wave: comparison of numerical solution cP2

(heavy solid line) with the long-wave approximation cl
P2 (left) and with the short-

wave approximation ch
P2 (right); r = 0.06, cf = 0.27, Π = 10, and ε = c2

f

wave length is much smaller than the characteristic size of the medium.
Comment 4. General solution of the Cauchy problem for the system (1.1)-(1.3)
has the form:

U(x, t) =
4∑

j=1

1√
2π

∫ ∞

−∞
ĝj(k)exp

(
i(kx− ω(k)t)

)
dk, (3.5)

where U(x, t) is a vector-function of the unknown variables ρS, ρF , vS, vF and
vectors ĝj(k) are the linear combinations of the Fourier transforms of the initial
data. Let us consider the part of the solution (3.5), which corresponds to the Biot
slow wave:

UP2(x, t) =
1√
2π

∫ ∞

−∞
ĝP2(k)exp

(
i(kx− ωP2(k)t)

)
dk. (3.6)

One can prove that for su�ciently large time t (more precisely for Πt À 1) the main
input to this integral is due to its value in the vicinity I0 of k = 0, where ReωP2 = 0

and ImωP2 = − rc2f
1+rc2f

k2

Π
+ O(k3) (see (2.4)). Thus, one �nds the leading term of
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kcr 400 600 800 1000
k

0.05

0.1

0.15

0.2

0.25

CP2

CP2
m

Figure 7: Phase velocity of the P2 wave: comparison of matched approximation
cm
P2 (thin curve) with the numerical solution cP2 (dashed curve); r = 0.06, cf =

0.27, Π = 10, ε = c2
f ; k0 = 340, ξ = 10

kcr50000 100000 150000
k,1� m

400

800

1200

CP2,m� s

Figure 8: Phase velocity of the P2 wave, evaluated in physical variables: kcr ≈
34989.45 m−1 (oil-saturated sandstone)

asymptotic expansion for (3.6):

Uas
P2(x, t) =

1√
2π

∫

I0

ĝP2(k)exp
(
ikx− rc2

f

1 + rc2
f

k2

Π
t
)
dk. (3.7)

It is not di�cult to show that Uas
P2(x, t) satis�es the following parabolic equation

∂

∂t
Uas

P2(x, t) =
rc2

f

1 + rc2
f

1

Π

∂2

∂x2
Uas

P2(x, t), (3.8)

with the initial data
Uas

P2(x, t)|t=0 = gP2(x).

Thus, for t large limit behavior of the P2 wave is not hyperbolic. It is described by
the parabolic equation (3.8) with the di�usion coe�cient DP2 =

rc2f
1+rc2f

1
Π
. Obviously,
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DP2 di�ers from the corresponding coe�cient in the Darcy law, which equals 1
Π
.

Parabolic behavior of the Biot slow wave near k = 0 arises from the fact that there
exists k-domain, where ReωP2 = 0.

4. Conclusions
The results presented in the paper concern construction of uniform asymptotic ex-
pansion for the velocity of the Biot slow wave. It was shown that derived earlier
long- and short-wave asymptotics for the velocity of the P2 wave [1] approximate
well exact solution. Moreover, existence of the overlap domain, where both long- and
short-wave approximations are valid, allowed one to construct matched asymptotic
expansion. Procedure for the construction of uniform asymptotic expansion with
prescribed accuracy was suggested. It was demonstrated graphically that matched
asymptotics results in rather good approximation of exact solution.
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