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Abstract

The properties of circuit structures can be described in terms of their scat-

tering matrix. For the simulation of these structures, we use a Finite Di�erence

Frequency Domain (FDFD) method in order to solve the three dimensional

boundary value problem, governed by Maxwells equations. For the computa-

tion of the discrete grid equations, advanced preconditioning techniques are

applied to reduce the dimension and the number of iterations solving the large-

scale systems of linear algebraic equations by means of a block Krylov subspace

method. The computational domain is truncated by electric or magnetic walls,

open structures are treated using the Perfectly Matched Layer (PML) absorb-

ing boundary condition. Calculating the excitation at the structures ports, one

obtains an eigenvalue problem and thus large-scale systems of linear algebraic

equations. The interesting modes of smallest attenuation are found solving

a sequence of eigenvalue problems of modi�ed matrices. Non-physical PML

modes are detected by checking the eigenfunctions. Due to the high wavenum-

bers that have to be treated in optoelectronic device simulations, the number

of modi�ed eigenvalue problems as well as the dimension of the problem grows

substantially in comparison to microwave structures. To reduce the execution

times a coarse and a �ne grid and parallelization techniques are used.
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1 Introduction

The subject under investigation are passive structures of arbitrary geometry. They

are connected to the remaining circuit by transmission lines and described by the

scattering matrix. In order to characterize their electrical behaviour, in�nite long

transmission lines are assumed at the ports (see Figure 1). The scattering matrix

describes the structure in terms of wave modes on the transmission line sections at

the ports. One can extract this matrix from the orthogonal decomposition of the

electric �eld at two neighboring cross-sectional planes on each transmission line for

a number of linearly independent excitations.

A three-dimensional boundary value problem can be formulated using the integral

form of Maxwell's equations in the frequency domain in order to compute the elec-

tromagnetic �eld [1] and subsequently the scattering matrix. At the ports the trans-

verse electric �eld is given by superposing transmission line modes. The transverse

electric mode �elds are the solutions of an eigenvalue problem for the transmission

lines [2]. On all other parts of the surface of the computation domain the tangen-

tial electric or magnetic �eld is assumed to be equal zero. In order to simulate

open structures we use the uniaxial Perfectly Matched Layer formulation [3] as an

absorbing boundary condition.

Only a few modes of smallest attenuation are able to propagate and have to be taken

into consideration. Using a conformal mapping between the plane of propagation

constants and the plane of eigenvalues the task is to compute all eigen modes in a

region, bounded by two parabolas. The eigen modes are found solving a sequence

of eigenvalue problems of modi�ed matrices [5]. The resulting nonsymmetric sparse

system matrix is complex in the presence of losses and Perfectly Matched Layers.

The method, developed initially for a reliable calculation of all complex eigenvalues

from microwave structure computations [5], is expanded to meet the very special

requirements of optoelectronic structure calculations. Relatively large cross sec-

tions and highest frequencies yields increased dimensions and numbers of eigenvalue

problems. Using the results of a coarse grid calculation within the �nal �ne grid

calculation yields a remarkable reduced numerical e�ort. The use of a parallelized

solver results in an additional speed up of computation time.

The electromagnetic �elds and the scattering matrix elements are computed by the

solution of large-scale systems of linear equations with inde�nite complex symmetric

coe�cient matrices. In general, these matrix problems have to be solved repeatedly

for di�erent right-hand sides, but with the same coe�cient matrix. The number of
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right-hand sides depends on the number of ports and modes. The systems of linear

equations are solved using a block Krylov subspace iterative method. Independent

set orderings, Jacobi and SSOR preconditioning techniques are applied to reduce

the dimension and the number of iterations [6].

In general, the computation of the eigenvalue problem and of the system of linear

algebraic equations have to be done for several frequencies.

2 Scattering Matrix

The incoming modes a�;� are re�ected and transmitted at the discontinuity. The

resulting outgoing modes are denoted by b�;� . The scattering matrix

S = (S�;�); b�;� =

msX
�=1

S�;�a�;�; �; �; � = 1(1)ms; (1)

with ms =

pX
p=1

m(p); � = l +

p�1X
q=1

m(q) (2)

describes the structure in terms of wave modes on the transmission line sections at

the ports. m(p) denotes the number of modes which have to be taken into account

at the port p. p is the number of ports. The modes on a port p are numbered with

l. The scattering matrix can be extracted from the orthogonal decomposition of the

electric �eld at a pair of two neighboring cross-sectional planes p and p+�p on each

waveguide for a number of linear independent excitations of the transmission lines.

transmission line I transmission line II

cross-sectional plane cross-sectional plane 

cross-sectional plane

8 8discontinuity

p+  p

a

b b

a

zp

p=1 p=2

l

l l

l
(1)

(1) (2)

(2)

Figure 1: Structure under investigation

3 Boundary Value Problem

The electromagnetic �eld is computed using a three dimensional boundary value

problem. We start from Maxwell's equations in the frequency domain, written in
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integral form, H
@


~H � d~s =
R


|![�] ~E � d~
;

H
@


~E � d~s = �
R


|![�] ~H � d~
;

H
[


([�] ~E) � d~
 = 0;

H
[


([�] ~H) � d~
 = 0

(3)

with the constitutive relations

~D = [�] ~E; [�] = diag (�x; �y; �z) ;

~B = [�] ~H; [�] = diag (�x; �y; �z) :

(4)

With the PML regions being �lled with a complex anisotropic material, diagonal

complex tensors have to be introduced, describing this arti�cial material.

At the ports p the transverse electric �eld ~Et(zp) is given by superposing transmission

line modes ~Et;l(zp). On all other parts of the computation domains surface the

tangential electric or magnetic �eld is assumed to be equal to zero:

~Et(zp) =

m(p)X
l=1

wl(zp) ~Et;l(zp); ~E � ~n = 0; ~H � ~n = 0: (5)

The transverse electric mode �elds are the solutions of an eigenvalue problem for

the transmission lines (see section 4).

The problem is solved numerically by the Finite Di�erence Method in Frequency

Domain (FDFD) [1]. Staggered nonequidistant rectangular grids are used. Using

the lowest-order integration formulaeI
@


~f � d~s �
X

(�fisi);
Z



~f � d~
 � f
 (6)

Maxwell's equations are transformed into a set of Maxwellian grid equations [4]:

ATDs=�
~b = |!�0�0DA�

~e; BDA�
~e = 0;

ADs~e = �|!DA�

~b; ~BDA�

~b = 0:
(7)

The vectors ~e and~b contain the components of the electric �eld ~E and of the magnetic

�ux density ~B of the elementary cells, respectively. The diagonal matricesDs=�, DA�
,

Ds, and DA�
contain the information on cell dimensions and material properties.

A, B and ~B are sparse and contain the values 1, -1 and 0 only. Substituting the

components of the magnetic �ux density from the two equations of the left-hand

sides of (7) the number of unknowns can be reduced by a factor of two and we get

the system of linear algebraic equations

(ATDs=�D
�1

A�
ADs � k2

0
DA�

)~e = 0; k0 = !
p
�0�0; (8)
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which has to be solved using the boundary conditions. k0 is the wavenumber in

vacuum.

4 Eigenvalue Problem

Assuming the transmission lines to be longitudinally homogeneous any �eld can be

expanded into a sum of modal �elds which vary exponentially in the longitudinal

direction:
~E(x; y; z � 2h) = ~E(x; y; z)e�|kz2h: (9)

kz is the propagation constant. 2h is the length of an elementary cell in z-direction.

We consider the �eld components in three consecutive elementary cells. The electric

�eld components of the vector ~e (see (8)) Exi;j;k+1
, Exi;j;k�1

, Eyi;j;k+1
, Eyi;j;k�1

, Ezi;j;k�1
,

Ezi+1;j;k�1
, and Ezi;j+1;k�1

are expressed by the values of cell k using ansatz (9). The

longitudinal electric �eld components Ez can be eliminated by means of the electric-

�eld divergence equation BDA�
~e = 0 (see (7)). Thus, we get an eigenvalue problem

for the transverse electric �eld ~e on the transmission line region:

C~e = ~e;  = �4 sin2(hkz): (10)

The relation between the eigenvalues  and the propagation constants kz is nonlinear:

kz =
|

2h
ln

�


2
+ 1 +

r


2

�
2
+ 2
��

= � � |�: (11)

We are interested only in the modes with the smallest magnitude of imaginary part,

but possibly with large real part of their propagation constant. The computation

of all eigenvalues in order to �nd a few propagation constants must be avoided for

the high-dimensional problem. For numerical treatment we have to limit the search

for propagation constants by a maximum value kf of their real part. A reasonable

estimation of this maximum value is derived for the lossy case including PML for

inhomogeneously �lled waveguides in [7]:

<(kz) � kf = !<(
p
�m�m): (12)

�m and �m are properties of the material that yields the largest value of the right-

hand side of Equation (12). Using the limited kf and a preset maximum value

�m of the imaginary part of the propagation constants the region containing the

interesting constants is de�ned as a rectangle F̂ bounded by the lines

� = �kf and � = ��m: (13)

We can use the approximation

 = �4 sin2(hkz) � �4(hkz)2 = u+ |v (14)
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in (10) if we choose h to be small enough. With aid of the approximation (14) we

get a conformal mapping between the plane of eigenvalues (-plane) and the plane

of propagation constants (kz-plane, see (11)):

u = �4h2(�2 � �2); v = 8h2��: (15)

Using this mapping the rectangle F̂ of the kz-plane is transformed into a region F

of the -plane bounded by the two parabolas

v = �4hkf
q
u+ 4h2kf

2;

v = �4h�m

p
�u+ 4h2�m

2:

(16)

That means, we have to �nd all eigenvalues of the region bounded by the parabolas.

In an additional step all computed modes that are related to the PML boundary

are neglected, using the power part criterion given with [8].

5 Computation of Propagation Constants

The dimension n of the eigenvalue problem (10) is too large to use a direct method.

We need an iterative algorithm that computes just a few selected eigenvalues and

eigenvectors of a complex sparse matrix. A state-of-the-art algorithm for such prob-

lems is the Arnoldi method [9], [10]. In general, the Arnoldi method converges for

our problem only using the invert mode and looking for eigenvalues of largest mag-

nitude. Thus, a simple way to �nd the eigenvalues located in the region F would be

to look for all eigenvalues of smallest magnitude, which are located in a circle cen-

tered on the origin and covering the region F . Caused by the high wavenumber kf ,

the number of eigenvalues located in this circle is too much in general for a feasible

computation using an iterative method. Especially, due to the high wavenumber in

optoelectronic devices the potential modes of smallest attenuation are located in a

longsome region F (see (16)). That means, also the two step procedure covering

the region F̂ by a circle and a lemniscate (see [7]) cannot be applied in this case.

Thus, we solve this problem covering the region F with s � 1 circles Ci; i = 1(1)s,

centered on the u-axis and calculating the eigenvalues located in these circles. That

is done in the following way. s points

P̂i(�i; �m); �1 =
kf

s
� ��; �s = kf ; �� =

p
3�m (17)

are de�ned on the interval [0; kf ] of the line � = �m. The meaning of the distance ��

is discussed below. The points P̂i are transformed into the points Pi of the -plane.

They are located on the parabola ((16), second formula). The s circles Ci of the

-plane

(u+mi)
2 + v2 = ri

2; ri =
p

(=(Pi))2 + (mi � <(Pi))2; i = 1(1)s; (18)

6



with

m1 = 0; mi =
(<(Pi+1))

2 � (<(Pi))
2 + (=(Pi+1))

2 � (=(Pi))
2

<(Pi+1)� <(Pi)
(19)

are centered on the u-axis, covering the region bounded by the parabolas.

In order to �nd all eigenvalues, located in the circle Ci, l points Qj are de�ned on

the periphery of Ci. The matrix C is extended by the diagonal matrix Q. The

diagonal elements of Q are the l complex elements Qj:

�C =

�
Q

C

�
; Q = diag(Q1; :::; Ql): (20)

The s eigenvalue problems

( �C �miI)~e = ( �mi)~e; i = 1(1)s; (21)

are solved by means of the implicitly restarted Arnoldi method using the invert

mode. The number m of eigenvalues to be computed for one circle must be l on the

�rst call to the Arnoldi procedure. The main idea is to increase an increment m by

l as long as at least one value Qj is found. The eigenvalue problems can also be

computed for subintervals de�ned by

i = i1(1)i2 or i = i2(�1)i1; 1 � i1 < i2 � s: (22)

The distance between the points have not to be equidistant and is controlled. Since

m � �n (�n order of matrix �C) for a feasible computation, one has to restrict the

number m of required eigenvalues by mmax. If m exceeds mmax, we insert a point

P̂
i+

1
2
between P̂i and P̂i+1 and restart with m = l. The same procedure is used if a

given number �max of iterations in the Arnoldi method is exceeded. If the condition

�P̂ = <(P̂
i+

1
2
)� <(P̂i) �

�m

2
(23)

cannot be ful�lled, we have to restart with new parameters mmax, �max and possibly

�m.

If all eigenvalues Qj are found in case of m > l, we look for the eigenvalue max of

largest magnitude. If
p
jmaxj > ri, a new circle ~Ci of radius

p
jmaxj with the same

center as Ci is de�ned. The left intersection point of this circle with the parabola

((16), second formula) is used as new point Pi+1, and �P̂ = <(P̂i+1) � <(P̂i) as

distance for the next step. m is reduced by the number of eigenvalues with
p
jj > ri

for the next circle.

Separating the new values on each eigenvalue problem i, we are sure to have found

all eigenvalues which are located in the corresponding circles Ci. Applying mapping

(15) the circles Ci (see (18)) are transformed into Cassinian curves Ĉi

(�2 + �2)2 �
mi

2h2
(�2 � �2) =

ri
2

16h4
�

mi
2

16h4
; (24)

7



which cover the rectangle containing all desired propagation constants. Propagation

constants outside of the rectangle and PML related modes are eliminated. The

Cassinian curves Ĉi; i = 2(1)s, consist of two separated ovals, if ri < mi. Using
�� as minimum distance between two points P̂i and P̂i+1 (see (17)) other shapes of

Cassinian curves (e.g. waisted ovals), which would lead to higher execution times,

are avoided.

Because the invert mode of the Arnoldi method is used a time and memory consum-

ing system of partly ill-conditioned nonsymmetric complex linear algebraic equations

has to be solved on each iteration step. The linear sparse solver PARDISO [11], [12]

is applied in order to ful�ll the high accuracy requirements of the eigenvalue problem,

and to reduce the computing times in comparison to the formerly used UMFPACK

[13]. Additionally, the dynamic memory allocation of PARDISO allows to diminish

the memory requirements. The algorithm is split into three phases: symbolic fac-

torization, numerical factorization, and forward and backward solve. The symbolic

factorization can be used for all modi�ed matrices of our problem. The numerical

factorization has to be repeated for every new shift. The factorization is applied

to matrix C. The diagonal matrix Q (see (20)) is considered in the forward and

backward solve phase.

The typical ratio of factorization time to solution time on a single CPU can be

used to de�ne �max in the subinterval control process. This ratio amounts on the

average 20. That means, the costs using �max = 60 Arnoldi iterations for the

computation of m eigen modes in a circle Ci de�ned by the points Pi; Pi+1 are

comparable with the costs, de�ned by the costs for two circles de�ned by the points

Pi; Pi+
1
2
and P

i+
1
2
; Pi+1 using �max = 20 iterations. On the other hand the time is

lost, interrupting the computation of m eigen modes after �max = 60 iterations and

starting a new iteration process for two reduced circles. Thus, we use a greater �max.

Moreover, we have a signi�cant di�erence between the length and the height of the

rectangular region F̂ in the kz-plane in case of high wavenumbers. Consequently,

a large number s of eigenvalue problems has to be solved. In order to diminish

this number we use Cassinian curves with relatively large diameters. That means,

a number of non desired eigenvalues outside of the area F̂ has to be calculated. In

general, the computation of a large numberm of eigenvalues in one circle needs more

iterations than a small number.

The number s of eigenpairs to be computed depends on the frequency !. Commercial

applications of microwave circuits cover the frequency range between 1 GHz and

about 100 GHz, special applications in radioastronomy use even higher frequencies

up to 1 THz. For these kinds of structures only a few separate eigenvalue problems

have to be solved within our algorithm. Hence a single CPU calculation is almost

su�cient.
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6 Application to Optoelectronic Devices

For optoelectronic devices frequencies about several hundred THz are common. The

region containing potential propagating modes grows substantially. A signi�cant

higher number of eigenvalue problems have to be solved within our algorithm. Ad-

ditionally, the maximum cell size of the discretization should be less than �

10
, where

� denotes the wavelength in the material with the highest <(�). Additional mesh

re�nements have to be used for structure regions with highly varying �elds. Besides,

large cross sections are common for the waveguides under investigation. Thus high

dimensional problems have to be handled.

In addition, due to electric and magnetic walls terminating the PML regions, un-

desired modes are generated inside the computation domain. These non-physical

modes can be detected by examining the eigenfunctions. Anyway, the number of

eigen modes to be calculated increases because of the shifted modes.

Due to the signi�cant di�erence between the magnitude of the real and imaginary

part of the propagation constant a high computational accuracy is required. That

means, the numerical e�ort increases signi�cantly.

To overcome these problems we bene�t from two properties. First, the few inter-

esting modes are located in a partial region of the longsome rectangle F , and only

the corresponding eigenpairs have to be computed with high accuracy. Second, the

eigenvalue problems can be solved separately. Thus, to reduce the execution times,

in a �rst step the problem is solved using a coarse grid with lower accuracy require-

ments in order to �nd approximately the locations of the interesting propagation

constants. Anyway, the number of modi�ed eigenvalue problems to be solved is

high. Thus, we split the interval [0; kf ] (see (17)) into subintervals (see (22)), and

compute the corresponding eigenpairs independently and in parallel, for instance on

di�erent workstations or shared memory multiprocessors.

Finally the interesting modes are calculated in a second step for an essentially re-

duced region described by (22) using a �ne grid, that ful�lls higher accuracy require-

ments. The parallel CPU mode of PARDISO provides the additional possibility to

reduce the computing times for high dimensional problems on shared memory mul-

tiprocessors without essential additional memory requirements.

7 Semiconductor Laser Example

As an example we have calculated the guided mode of an optoelectronic device which

leads to a more moderate dimension of the corresponding eigenvalue problem. A

so called self aligned stripe (SAS) laser is investigated (see Figure 2). The laser

structure contains an additional, antiguided layer outside the emitting stripe. This

high power laser diode excites only the fundamental mode, the active region is useful

for wavelengths shorter than 800 nm. The frequency is �xed to 299:7925 � 1012Hz.
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Figure 2: Laser (ampli�er)

A graded mesh of 121 times 127 elementary cells, including 10-cell PML regions, is

used as a coarse grid. The maximum cell size amounts 80 nm, and the minimum

cell size 4 nm. Maximum cell size is scaled down exponentially in the vertical direc-

tion near the emitting zone and in the horizontal direction near the material cut at

the end of the active zone. The dimension of the eigenvalue problem is 29 625. 84

Cassinian curves have been used to cover the long small region of the complex plane

(�m = 2500m�1, kf = 21 765 592m�1, see (13)) containing potential guided modes.

The eigenpairs have been computed with the relative accuracy tol = 10�7, and with

mmax = 16; l = 5 (see section 5). A maximum number �max = 120 of Arnoldi iter-

ation has been used. The total computational time amounts approximately 1 145 s.

One guided mode according to the lasers fundamental mode, was found. The circle

that contains the guided mode is known after this step. The computed complex

propagation constant is given by kz = 20 818 302 + j 1 401 using this coarse grid.

A graded mesh of 283 times 345 elementary cells, including 10-cell PML regions, is

used as a �ne grid. The maximum cell size amounts �

12
= 25nm, where � denotes

the wavelength in the material with the highest <(�). The minimum cell size is

1nm. The dimension of the eigenvalue problem is 192 423. The eigenpairs have

been calculated with the relative accuracy tol = 10�10. The time to �nd the accurate

value of the guided mode in the reduced region using the �ne grid amounts only 70 s.

10



The computed complex propagation constant is given by kz = 20 817 578 + j 1 488

using the �ne grid.

Applying only the �ne grid for the long small region on a single CPU the total

computational time amounts approximately 3 h and 23 minutes. Thus, the compu-

tational time is reduced by a factor of 10 using a coarse and a �ne grid. A Compaq

Professional Workstation with processor XP1000 alpha 667 MHz has been used for

the computations.

Splitting the interval [0; kf ] into q subintervals (see (22)) and solving the corre-

sponding eigenvalue problems in parallel the time for the coarse grid computation

is reduced by a factor of q. Additionally, applying the parallel CPU mode of PAR-

DISO to the �ne grid computation in the reduced region the computing times for

LU decomposition and and for the solve phase could be reduced to 68% and 86%,

respectively, using two processors.

8 System of Linear Algebraic Equations

Multiplying (8) by D
1=2

s yields a symmetric form of linear algebraic equations:

�A~x = 0; �A = (D1=2

s
ATDs=�D

�1

A�
AD1=2

s
� k2

0
DA�

) (25)

with ~x = D
1=2

s ~e. Four kinds of preconditioning and a block quasi-minimal residual

algorithm are applied to solve the large scale systems of linear algebraic equations.

Details are given with [6].

The gradient of the electric �eld divergence (see (3))

[�]r([�]�2r � [�] ~E) = 0 (26)

is equivalent to the matrix equation

�B~x = 0; �B = D�1=2

s
DA�

BTD�1

V��
BDA�

D�1=2

s
: (27)

The diagonal matrix DV�� is a volume matrix for the 8 partial volumes of the dual

elementary cell. Taking into account the boundary conditions Equations (25) and

(27) yields the form
~A~x = ~b; ~B~x = 0: (28)

The e�ect of the addition of Equations (28) can be interpreted as preconditioning

with the preconditioner (I + ~B ~A�1)�1 for system ((28), left equation):

( ~A+ ~B)~x = ~b: (29)

( ~A+ ~B) is a complex inde�nite symmetric matrix.

In addition, independent set orderings, Jacobi and SSOR preconditioning are applied

to accelerate the speed of convergence of the used block Krylov subspace method
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[14] for the system of linear algebraic equations (29) that has to be solved with the

same coe�cient matrix, but multiple right-hand sides. The number ms (see (2)) of

right-hand sides depends on the number of ports and guided modes.

In comparison to the simple lossy case the number of iterations of Krylov subspace

methods increases signi�cantly in the presence of Perfectly Matched Layers. The

speed of convergence depends on the relations of the edges in a elementary cell of the

nonequidistant rectangular grid in this case. The best results can be obtained using

cube similar grids. Moreover, overlapping PML conditions on the corners down-

grade the properties of the coe�cient matrix, and should be avoided. Otherwise,

eigenvalues of the matrix are shifted into the negative half plane. That means, the

Krylov subspace methods need more iterations.
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