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Abstract. We consider an inverse scattering problem of determining a periodic
structure by near-field observations of the total field. We prove the global uniqueness
results in both cases of the transverse electric polarization and the transverse magnetic
polarization within the class of rectangular periodic structures by a single choice of
any wave number. The proof is based on the analyticity of solutions to the Helmholtz
equation.

§1. Introduction.
In this paper, we consider an inverse scattering problem in a perfectly reflecting periodic
rectangular structure in the following cases:

(1) the transverse electric polarization (i.e., the TE mode)

(2) the transverse magnetic polarization (i.e., the TM mode)

We will formulate the inverse problem according to Kirsch [11], and we can refer
also to Bao [2], and Bao, Dobson and Cox [3]. Let us fix a < 0 arbitrarily and let us
define a set F of all possible (27)-periodic profiles by:

F = {f; f is a piecewise linear curve in {(z1,z3);z2 < 0}
connecting (0, a) and (27, a), and any linear part is
parallel to the z;- or z3- axis. Moreover

(1.1)

N {(k,z2);z2 € R} is a connected segment or one point for any x € R}.

We call a piecewise linear curve f € F a rectangular profile.

Let Qf be the domain over f (i.e., the component of R? separated by f which is
connected to zg = 00.) We assume that Qy is filled by a dielectric medium. We take
a plane wave given by

u™ (21, T2) = exp(ioaz; — iBz2)

as an incident wave on f from the top.
Here and henceforth we set

(1.2) a=ksinf, [B=kcosf

where || < 3: the incident angle and k& > 0: the wave number.
Then the direct scattering problem is to determine the total field u = u(z1,x3)
satisfying (1.3) - (1.4) - (1.6) - (1.7) or (1.3) - (1.5) - (1.6) - (1.7) for given f € F:

(1.3) Au(z) + k*u(z) = 0, z = (z1,22) € Qf
(1.4) (TEmode) u=0 on f

1.5 TM mode) 2% =0

(1.5) ( mode) 5, ~0 on f
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2 DETERMINATION OF RECTANGULAR STRUCTURES

(a-quasiperiodicity)

(1.6) u(z1 + 2w, x2) = exp(2mic)u(z1, z2), (x1,z2) € Qf

(radiation condition)
(1.7)

u(z) = exp(laz, — iBzs) + z Apexp(i(n+ o)z, + ifpz2) if 29 >0,
n€eZ

where % denotes the normal derivative, A,, € C are the Rayleigh coefficients, and

(1.8) 8, = { (k* — (n+a)?)z, In+al <k

i(—k2+ (n+a)?)z, |n+al>Ek

By the definition (1.8), we note that the series in (1.7) and any derivatives of it are
uniformly convergent on any compact set of {(z1,z2);z2 > 0}. As for the direct
problem, we refer to Petit [14].

In this paper, we will consider also the case where the resonance 3,, = 0 may happen
for some n € Z. In the case (1.3) - (1.4) - (1.6) - (1.7) (i-e., the TE mode), the unique
existence of H'-solution is established in Kirsch [11] for f in C?-class, and in Elschner
and Yamamoto [9] for Lipschitz continuous f.

Our main task is

Inverse Problem. Let b > 0. Given a solution u = u(x1,z3) to the direct problem
(1.3) - (1.4) - (1.6) - (1.7) or (1.3) - (1.5) - (1.6) - (1.7), determine f € F by
(1.9) u(z1,b) 0 <z < 2m.

The purpose of this paper is to establish the uniqueness in this inverse problem within
F with an arbitrarily fixed value k£ > 0.
Henceforth we set

(1.10) Ur p = {u; u € H' () satisfies (1.3), (1.4), (1.6) and (1.7)}
and
(1.11) Us v = {u; u € H'(Qy) satisfies (1.3), (1.5), (1.6) and (1.7)}.

Remark. By Elschner and Yamamoto [9], we know that Uy, p is composed of a single
element, that is, there exists a unique solution to (1.3), (1.4), (1.6) and (1.7). However,
in the case of TM mode (1.5), the uniqueness of solutions is not true in general.

We are ready to state the main results.

Theorem 1. (the TE mode) Let f,g € F and u € Us,p, v € Uy p. Then u(z1,b) =
v(z1,b), 0 < z1 < 2w, implies f = g.
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Theorem 2. (the TM mode) Let f,g € F and u € Uy N, v € Uy n. We assume that
u(z1,b) = v(z1,b), 0 < 1 < 2mw. Then f = g follows if a # 0.

Remark. In Theorem 2, in the case of « = 0, there is a counterexample for the

uniqueness. Let k > 0 and let us set a = — %, u(z1, z2) = exp(—ikzs) + exp(ikz2). Set
T
f:{(ﬂfl,—E);0<$1<27T}
and
T T mmw
g:{(xl,—g);0<:c1<p1,p2<x1<27r}U{<$1,—E—T>;p1Sﬂhéxz}
U{( ) o T_mro_ 7r}
T1,T2);x1 = IT1=pP2, —7 — 75 T2 —7¢,
1,22); L1 = P1 1= P2 k k 2 i

for arbitrarily fixed p1,ps € (0,27) and m € N. Then Au+ k?u =0 in Q and in Q,,
and % =0on f or on g. However f # g.
For the uniqueness, we have to assume that f and g pass the same point (0,a).

Without this condition, an example breaking the uniqueness is known (Bao [2], Hettlich
and Kirsch [10]).

Example. Let f = {(z1,a);0 < z; < 27} and

2T
g:{<x1,a—ﬁ);0<$1<2ﬂ'}.

u(z1,z9) = exp(iazy — ifxa) — exp(iazy + iB(x2 — 2a)), z2 > a

Then

and

v(z1, z2) = exp(iazry —ifzrs) — exp(iazry +if(ze — 2a)), z2>a-— %r
satisfy (1.3), (1.4), (1.6) and (1.7) with f and g respectively. Clearly f # ¢ but
u(z1,b) = v(z1,b), 0 < 21 < 27.

Our uniqueness results do not require any condition on k£ € R or changes of values of
k. Under some conditions on k, several uniqueness results for profiles given by graphs
of C2-functions, are proved in the TE mode (1.4):

(1) In the case of a lossy medium (i.e., Imk # 0), the observation (1.9) for a single
k guarantees the uniqueness (Bao [2]).

(2) For general k > 0, uniqueness results with a single k£ are not known. Hettlich
and Kirsch [10] prove the uniqueness with observations (1.9) for finitely many
(but not one, in general) wave numbers k.

As for the uniqueness, we further refer to Ammari [1], Kirsch [12]. On the other hand,
within the class of C?-profiles, local uniqueness and stability results are proved with a
single k in Bao and Friedman [4]. For similar results for Lipschitz continuous profiles,
see Elschner and Schmidt [8]. As for the stability without such restrictive class of
profiles, we can refer to Bruckner, Cheng and Yamamoto [5], [6] where k& > 0 is small
or k is not real. In the case of TM mode (1.5), to the authors’ knowledge, no uniqueness
is known.

This paper is composed of three sections. In Section 2, we show key lemmata. In
Section 3, we complete the proofs of Theorems 1 and 2.
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§2. Key Lemmata.

We will show the following three key lemmata which are necessary for the proofs of
Theorems 1 and 2. Henceforth for points Q, R € R?, by QR we denote the segment
connecting Q and R and not containing @ or R.

Lemma 1. Let Q, R be any neighbouring vertices of f, that is@ C fandletQ',R
be any two points on QR such that the closure of Q'R' is in QR. If u € Us N, then
there ezists a neighbourhood U of Q'R’ such that u € H*(U N §y).

As for the proof, we can refer, for example, to §5 of Chapter 2 of Lions and Magenes
[13].

Lemma 2. Let Q C R? be an unbounded domain such that Q D {(z1,72); c1 < 1 <
ca, Ty > c3} with some c1,c9,c3 such that 0 < ¢; < ¢3 < 2w and c3 € R. Let
v =v(z1,z2) satisfy

(2.1) Av+k*v=0 inQ.
(1) If
(22) U(pa 'T2) = Oa 1 <Z2<q2

with some p, g1, g2 satisfying c; < p < c3 and c3 < q1 < qa, then v(p,z3) =0, T2 > c3.

(i) If
ov

(2.3) 8—9:1(p’ z3) =0, g1 <z2 < Q2

with some p, q1, g2, then 53—;(1), z9) =0, 23 > c3.

Proof of Lemma 2. Since v = v(x1,2) is real analytic with respect to (z1,z2) in
Q (e.g., Colton and Kress [7]), it follows that v(p,-) and aa—;’l(p, -) are analytic with

respect to the second variable. Thus we complete the proof of the lemma.

Lemma 3. Let 3, € C be defined by (1.8), |Cn| = 1 for n € Z, and let P = {n €
Z; B, € R}. We assume that

(2.4) ag exp(—ifzy) + Z AnCr(n + ) exp(ifnz) =0
nez

for xo > ¢ with some c € R. Then ap =0 and ), . p AnCn(n + a) exp(iBnz2) = 0 for
X9 > C.

We note by (1.8) that P is a finite set and we set £ = | P| (the number of the elements
of P).

Proof of Lemma 3. By the definition (1.8) of §,, we note that the left hand side of
(2.4) and any derivatives of it are convergent uniformly on any compact set of {z2 > c}.
Without loss of generality, we may assume that ¢ = 0. By (2.4), we see that

0= (ao exp(—ifzs) + Z Ay eXP(iﬁnﬂiz))

neP

(25) + Z An exp(iﬂnarg) = 51(372) + SQ(SUQ), To > 0.
n€Z\P
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Here by the same letters A,,, we denote A, C,(n + «) for simplicity, and we note that
there exists a constant ¢y > 0 such that —i3,, > ¢y > 0 for all n € Z\ P and (3, ~ |n|i
as |n| — oo. First we have

(2.6) —B ¢ {Bu}ncr,

because 8 > 0 and (3, > 0 by the definition (1.8). Then it is sufficient to prove
(27) S1(.’E2) =0, o > 0.

Because if (2.7) will be proved, then we have ag = 0 by (2.6).

Proof of (2.7). Henceforth let %, g—;‘r be all irrational numbers. Otherwise we need
not choose integers m?, mg,, Ny as follows and our proof is more direct. Then, for
n € P, there exist sequences {Ng}ren, {Mkn tren and {mQ}ren of integers such that
limk_,oo Nk = oo and

IBn Mgn

2 Nk

— oNiET
Ny

(e.g. Corollary 1B (p.27) in Schmidt [15]).
Then the function

S¥(z9) = ag exp(m22mizy/Ny,) + Z A, exp(mgn2mizy/N), keN
nepP

is Ng-periodic and we have
|1 (x2) — 5% (x2))|
<lao|| exp(—iBz2) — exp(mp2miza/Ni)| + Y |An||exp(iBaza) — exp(mpn2mizs/N)|

neP
0
m Mkn
<Jaol |(-8) ~ TE2m ool + Y [Anl |8 — 221 o
neP
< el
_Nk]:__i_HLl 2

Here the constant C; > 0 is independent of k. Let € > 0 be given arbitrarily. Since
—if, > co > 0 for all n € Z \ P, there exists k € N sufficiently large such that

(2.8) |Sa(z2)| < &, zg > Ni.

Therefore, for € > 0, we can further choose k£ € N sufficiently large, so that
(2.9) |S1(z2) — Sf(m2)| <, 0 < z9 < 2Ng.

Therefore (2.5), (2.8) and (2.9) yield

|S{C(CIJ2)| S 26, Nk S i) S 2Nk
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By the Ng-periodicity,

|S{“(:E2)| < 2¢, 0 < zy < 2Ng.
Hence (2.9) implies

1S1(z2)| < [S1(z2) — St(22)| + ST (22)]
<3e, 0 <z < Ng.

This means that Si(z3) = 0 for 0 < z9 < 27. Since S; is real analytic in z5, we can
complete the proof of (2.7).

§3. Proof of Theorems 1 and 2.
Since the proof of Theorem 1 is carried out by the same way, we will prove only Theorem
2. First we note by the interior regularity of an elliptic equation (e.g., Colton and Kress
[7]) that u € Uy v is sufficiently smooth in any open set O such that O C Q.
Assume contrarily that f # g. Since f,g € F, both curves start at A(0,a), so
that there exist points B(p1,a), C(p2,a) and D(p1,q) such that 0 < p; < p3, ¢ > a,
ABUBC C f, ABUBD C g and BD C Q.
Let u(x1,b) = v(x1,b), 0 < 21 < 2w. Then the uniqueness of the direct problem
with the profile zo = b yields u(z1, z2) = v(z1, z2), 3 > b. Therefore

ou ov

—A(z1,22) = —(@1,22), x3>b.

axg( 1,T2) axz( 1,T2) 2
Consequently by the unique continuation of solutions to the Helmholtz equation: Aw+
k?w = 0, we see that

u = v in any open set of Oy N,

(3.1) which is connected with the straight line zo = b.

We arbitrarily take two points B’(p1,a’) and D’(p1,¢q’) such that a < o’ < ¢’ < gq.
Then the domain V' = Qf N Q) is connected with z3 = b and satisfies

(3.2) oVng>B'D.

Hence, by (3.1), we have u —v = 0 in V. Lemma 1 and the trace theorem yield

fu _ 2 = 0in H2(B'D’). By v € Uy y and (3.2), we obtain 2% =0 on B'D’. By

f,g9 € F, the half line {(p1,z2);z2 > a'} is in Qy, so that we can apply Lemma 2 to

obtain g;‘l (p1,x2) = 0, g > a’. Therefore, by the radiation condition (1.7), we have

ae e’ P exp(—ifz2) + Z(n + @) Ape' "t Pt exp(if,zs) = 0,
n€ez

for £o > a’. Lemma 3 implies that ae’®e!*P* = 0, that is, @ = 0. By the assumption in
the theorem, we have o # 0 and we have a contradiction. Thus the proof of Theorem
2 is complete.
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