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ABSTRACT. We study pairs of interacting measure-valued branching processes
(superprocesses) with (1 + 8)-branching mechanism. The interaction is real-
ized via some killing procedure. The collision local time for such processes
is constructed as a limit of approximating collision local times. For certain
dimensions this convergence holds uniformly over all pairs of such interacting
superprocesses. We use this uniformity to prove existence of a solution to a
competing species martingale problem under a natural dimension restriction.
The fact that the branching mechanism does not have finite variance requires
the development of new methods for handling the collision local time which
we believe are of some independent interest.
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2 FLEISCHMANN AND MYTNIK

1. INTRODUCTION

1.1. Background and motivation. Measure-valued branching Markov processes
(superprocesses) arise as limits of branching particle systems undergoing random
migration and critical (or nearly critical) branching. In the last decade, there
has been interest in the study of such processes with interactions. Superprocesses
with finite variance branching have received much attention in the study of models
with interactions (see, e.g., [EP94, Per95, DP98, Myt98b, MP00, FX01, DEF*+02a,
DEF*02b, DFM*02]). In the present paper, we would like to pay attention to in-
teractive superprocesses with infinite variance branching where a killing mechanism
is at play (including a point type interaction).

In the case of superprocesses with finite branching mechanism, Evans and Perkins
[EP94] initiated the study of a pair of (sub)critical continuous super-Brownian mo-
tions in R? with an additional point interaction (the preparation for that model
was done by Barlow et al. [BEP91]). This model is introduced to describe two pop-
ulations of competing species where inter-species “collisions” result in causalities
on either side. To be more precise, when different species come within an infinites-
imal distance of each other, then either of the colliding (infinitesimal) individuals
is killed with an infinitesimal probability. By this interaction, the basic indepen-
dence assumption in branching theory is violated, and hence the usual tools (such
as log-Laplace transforms and equations) of handling superprocesses break down.
On the other hand, a very handy feature of the model is that it is bounded from
above by two independent critical continuous super-Brownian motions (opposed to
the case of the more complicated mutually catalytic branching model of Dawson
and Perkins [DP98] and Mytnik [Myt98b]; see [DF02] for a recent survey).

Among the others, the following basic tools were used in [EP94] to construct
such a competing species model in dimensions d < 4 :

(i) a Girsanov type theorem of Dawson [Daw78], and

(ii) a Tanaka type formula for collision local times of some interacting critical
continuous super-Brownian motions in R?, d < 6, from Barlow et al. [BEP91,
Theorem 5.9].

Our main purpose is to construct a competing species model of this type, while
dropping the finite variance branching mechanism assumption. Then the former
main tools (i) and (ii) are not available anymore. In fact, Girsanov’s theorem
requires continuity in time of the martingale component, and hence finite variance
of the branching mechanism, which we want to give up. Moreover, Barlow et al.’s
proof of already mentioned Tanaka formula relies on some uniform in time and
space bound of critical continuous super-Brownian motion’s mass in small balls
(see [BEP91, Theorem 4.7 and Corollary 4.8]). This bound is not anymore true
under our assumptions, and validity of the Tanaka formula in the more general
setup remains open. So we had to find a different approach to construct the desired
competing species model. In doing this, we also allow the two species to have their
own branching and motion indices, but, for simplicity, restrict everywhere to critical
branching mechanisms.

1.2. Sketch of main results. Let us start with a brief modelling. For i = 1,2,
fix constants

(1) 0<a’<2, 0<pi<1, ¥>0
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(please, do not misunderstand frequently appearing right upper indices as pow-

ers, which also occur), and introduce the (weighted) fractional Laplacian A, :=
—9i(—=A)*"/2 in R, Moreover, let (¢!, TIi ,, r > 0, = € R?) denote symmetric o’
stable processes with generator A,:, semigroup S* = {S¢: ¢ > 0}, and continuous
transition kernel p® = {pi(y) : ¢ > 0, y € R?}, where, for convenience, we use
a time-inhomogeneous writing of the laws Hi,z, even though the processes are
time-homogeneous. The a’-stable process ¢! will serve as the motion process of
individuals of type 1.

Let Mg = M;(R?) denote the set of finite (non-negative) measures equipped
with the weak topology. Write (u, f) for the integral [p(dz) f(z) and ||u|| for the
total mass (u,1). If we have pairs pu = (u',u?) and f = (f!, f?) instead, by an

abuse of notation we write

(2) (u,£) = (u', F1) + (W, 1?)-
Such pair p will describe a state of the system.

Here is the rough description of a martingale problem (MP)Z’ﬁ for a pair X =
(X', X?) of interacting superprocesses in R? starting from Xo = p, where X*
has the underlying a’-stable symmetric motion and the branching index 1+ 3¢. We
impose a killing described by a pair A = (A!, A2) of (random, possibly dependent)
measures on Ry x R?, which by the abuse of notation Ai := A([0,] x +) < oo,
t > 0, are also considered as non-decreasing M;—valued processes. (For more
precise formulations, see Definition 5 below.) In fact, the pairs X = (X! X?)
and A = (Al A%) are assumed to be F.—adapted MZ—valued processes on some
stochastic basis (Q,F,F.,P) starting from Ay = 0, and such that ¢t — A; is non-
decreasing and continuous, and, for each pair ¢ = (!, p?) of suitable non-negative
test functions on R,

t
(3) t o e (X _ o= (1) +/ ds e*<xs""><Xs, Ao — <P1+ﬁ>
0

t
- / (Adgs,p)eXe®) >0,
0

is an F.-martingale starting from 0 at time ¢ = 0. Here, in the spirit of our
convention (2),

(4) <xsa Aap — ‘P1+ﬂ> = Z <X;, Aai(pi — ((pi)1+5i>
i=1,2

and, if I C Ry is an interval,

6 A= [ = Y [ ai() vi)

I im1.2 JIxRd
for suitable pairs of time-space functions ¢ = (*,9?) > 0. We call X an (a,d,3)—
pair of interacting superprocesses in R? starting from Xo = p, and with killing
mechanism A. Note that, in general, due to the interaction via A, neither X
nor the X% are superprocesses in the original meaning (as, for instance, in Dynkin
[Dyn94]). Note also that (MP)Z"ﬁ implies that

t
© = (X)) - a5 (XL Awe)+ (4he). =12,
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are F.—martingales starting from 0 at time ¢ = 0, for each choice of the test
functions ¢ used in (3) (see Corollary 20.) In (6), again the role of the additional
killing is good visible. Actually, we will show that X is almost surely dominated by
apair X = (X', X?) of independent critical (o, d, ?)-superprocesses X%, i = 1,2,
which uniquely solve the martingale problem (MP)Z"ﬂ if the A’~terms are dropped
there [see Proposition 21(b)].

Next we recall the notion of collision local time Ly of a pair Y = (Y!,Y?) of
Mi—valued processes. Loosely speaking, it is the measure

") Ly (d(s,2)) = ds Y (da) [ Y2(dy) dole — )
Rd
on Ry x R%. A bit more carefully, it is the limit in probability

t
®)  (Ly(®), f) = lim [ ds [ Y}(de) [ Y}(dy) (= —y) F (L),
el0 Jo R4 Rd

if it exists for all + > 0 and all bounded continuous functions f on R?, where J.
is a regularization of the é—function &y (for more details, see Definition 1). Note
again that most of the time we will consider Ly as a non-decreasing measure-
valued process {Ly(t) : t > 0} where, with an abuse of notation, Ly (t)(B) :=
Ly([o, t] x B) .

In the case of the mentioned pair X of independent (at,d, 3¢)—superprocesses
X% i=1,2, the collision local time Lg exists non-trivially, provided that

ol o? Lo

9) 15d<ﬁ+ﬁ+(a Va©),

see Mytnik [Myt98a, Theorem 1(ii)]. Now, at least intuitively, the domination
X < X suggests that also the collision local time Lx may exist non-trivially for
the (o, d, B)-pair X of interacting superprocesses in these dimensions. But this
does not necessarily imply that in these dimensions the desired competing species
model exists. Actually, for this model to make sense one expects that a single
“intrinsic particle” collides with the other population with positive probability.
This, in turn, will require a stronger dimension restriction.

Our main result will state, roughly speaking, that in dimensions d satisfying

at o
(10) 1§d<(ﬁ+a)/\(@+a),
for all solutions (X, A) of the martingale problem (MP)z’/3 the convergence Ly —
Lx as e | 0 holds uniformly in (X, A), provided that the pair X, of initial
measures satisfies an energy condition (see Theorem 7). The dimension restriction
as in (10) is intuitively clear, since, for example, in dimensions d satisfying

1 2
Qa Qa

(11) E+a2 <d< EJrof,

an “intrinsic type 2 particle” is not expected to collide with the type 1 population,

whereas an “intrinsic type 1 particle” may collide with the type 2 population. In

other words, then in (3) we should effectively have A2 = 0 in the martingale

problem (MP)::’ﬁ (this means, degeneration to a “one-sided interaction”).
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Note that with o =2 and B¢ =1 we recover results of [BEP91, Theorems 5.9
and 5.10], where (9) and (10) are read as

(12) 1<d<6 and 1<d<4,

respectively.

As an application we construct the desired more general competing species model
(see Theorem 9). Roughly speaking, for this we will replace both A! and A2 in
the martingale problem (MP)Z"/3 by a multiple of the continuous collision local

time Lx . Note that with af =2 and 8¢ =1 we recover the model introduced in
[EP94, Theorem 3.6].

Acknowledgment Much of this work was carried out while the first author was
visiting the Technion in Haifa and the second author the Weierstrass Institute in
Berlin. Kind hospitality is acknowledged. We are grateful to Luis Gorostiza for his
helpful hints concerning the fractional Laplacian. Thanks go also to Ingo Bremer
for his assistance with TEX.

2. STATEMENT OF RESULTS

In this section we will state our main results, Theorems 7 and 9.

2.1. Preliminaries: Notation, collision local time and measure. With ¢
we always denote a positive constant which might change from place to place. The
symbol cx however refers to a specific constant which occurred first around formula
line (#).

If (Q,F) is a measurable space, write bF for the set of all bounded measurable
functions f :  — R. In particular, bB = bB(R?) denotes the space of all bounded
measurable functions f : R? — R, and bC = bC(R?) the subspace of bounded
continuous functions. Write f € C = C(R?) if f € bC can be continued to a
continuous function on the one-point compactification R¢ of R%. Equipped with
the supremum norm || - ||e, the Banach space C is separable. Denote by & the
subset C(? = C()(RY) of all functions f € C which have the first two derivatives in
C. Working again with supremum norms, & is a separable Banach space, too. We
will take ®2 (the non-negative cone of ®?) as the set of test functions ¢ = (¢!, ¢?)
in our martingale problems. Note that ® coincides with the domain D(A,) of
the fractional Laplacian —(—A)?/2, for each 0 < a < 2 (see, for instance, [Yos74,
Section 9.11 and Example 9.5.2]). We also need the set U2, where ¥ = C(1:2) =
C2 (R, x R?) is the set of all functions on Ry x R?, which derivatives up to the
order (1,2) can be extended to continuous functions on R x R?.

For constants ¢ > 1 and T > 0, introduce the Lebesgue spaces

(13) £° := L°(R%,dz) and £97 := £2((0,T) x R%, dsdz).

Let Dr, = D(Ry, M¢(R?)) denote the space of all cadlag paths v : Ry — M;
equipped with the Skorohod topology. If it is not stated otherwise, under a random
process we will understand a random element in Dpy, or D3, over some stochastic
basis (2, F,F.,P) (which we might need to enlarge from time to time). In this case,
by a slight abuse of notation, we simply write Y € Dy, or Y € Df\,[f , respectively.
Sometimes we consider also continuous processes: Y € Ca, := C(Ry, M¢(R%))
equipped with the topology of uniform convergence on compact subsets of R, .
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For Y € Duy,, let FY denote the completion of the o—field N,y o{Ys: s <
t+e}, t>0.

Recall next the notion of collision local time [compare with (7) and (8)]:
Definition 1 (Collision local time Ly). Let Y = (Y'1,Y?) be a pair of random
processes (in Day,). A non-decreasing random process t — Ly(t) = Ly(t, -) (in
Dn,) is called the collision local time of the pair Y, if we have the convergence
in probability

(14) (L5 (1), f) % (Ly(t),f), t>0, febC.

Here the approximating collision local times L5, = L%J are defined by

(15) <L§((t),f> = /ds

Y (dz) | Y2(dy) J(z —y) f(TFY),

0 Rd Rd

where

(16) J.(z) = e I(z/e), z € RY,

and J is a mollifier, that is, a non-negative, continuous, radially symmetric func-
tion on R? with support in the unit ball in R% and total mass Jradz J(z) = 1.
(Sometimes we write LE‘}J instead of L5, to stress the dependence on J within
the definition of approximating collision local times.) Moreover, the limit Ly is
required to be independent of the choice of the mollifier J. o

It is also convenient to give up the symmetry in the definition of the collision
local time:

Lemma 2 (Equivalent definition of collision local time). In Definition 1 of
the collision local time one can replace the approximating collision local times LS, =
LY by L = Ly or L3 = L3%7 defined by

¢
an (Y O.0) = [a [ Vavine e, 120 few
0

and
(18) LY = Loy
Proof. Follows easily by the uniform continuity of f on compacts; see, for instance,
the proof of Lemma 3.4 in [EP94]. |

We will also need the notation of collision measure for a pair of random processes
in DMf :

Definition 3 (Collision measure Ky). Let Y = (Y1,Y?) be a pair of random
processes (in Dy, ). A progressively measurable M¢—valued process t — Ky (t) =
Ky (t, -) is called the collision measure of the pair Y, if we have the convergence
in probability

(19) (Ke (). 1) =3 (Kx@).f), t>0, febC.
Here the approximating collision measures K35 = K@J are defined by

(20) (K3 (1), f) = /RdY#(dw) /RdYE(dy) J.(@ —y) f(22),
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with J. as in (16). Again, the limit Ky is required to be independent of the
choice of the mollifier J. <

Remark 4 (Open problem). It seems to be an open problem whether the pro-
cess t — Ky(t) can be realized in Dy, . o

2.2. (a,d,B)—pair of interacting superprocesses with killing. First we will
a.B

make precise the martingale problem (MP);

mentioned around (3).

Definition 5 (Martingale problem (MP)z"B). For pairs a,83, and 9 asin (1),
and p = (p',p?) € MZ, let X = (X', X?) and A = (4!, A%) be F.—adapted
processes (in D/2\4f) such that ¢t — A, is non-decreasing, continuous, starting from
Ay =0, and, for each ¢ = (¢',¢?) € ®%,

¢
(21) t o e~ (Xu#) _g=(me) +/ ds e_<x5*‘P)<Xs, Anp — <P1+'B>
0

t
_/ <Ad87<p) e*<xs,90>7 t Z 07
0

is an F.—martingale starting from 0 at time ¢t = 0 [where we used obvious con-
ventions as in the formula lines (4) and (5)]. Then we say that (X, A) solves the
martingale problem (MP)z’B. o

A solution (X, A) of this martingale problem is called an (a,d, 8)-pair X =
(X1, X2) of interacting superprocesses in R? starting from X, = p and with
killing mechanism A. (For existence of a solution, think of the case A = 0 of
independent superprocesses; see, for instance, Lemma 14(a) below with °A = 0.)

We will use the following terminology.

Definition 6 (Measures of finite energy). The pair p = (u!,p?) € M? of
measures is said to have finite energy if

1
(22) / ds [ dz p'+pl(z) p?*p2(z) < oo.

0 Rd
In this case we write p € Mg . &

Note that p € M? has certainly finite energy if one of the measures p is absolutely
continuous with a bounded density function.
Here is our main result:

Theorem 7 (Uniform convergence in approximating Lx-). Fiz o, satis-
fying the dimension restriction (10), and p € My . Consider any family {(X™, A™):
n > 1} of solutions to the martingale problem (MP)Z"ﬂ on (Q,F,F.,P). Then,

for n fized, X™ has a continuous collision local time Lxn . Moreover, for each
T>0, febl, and § € (0,1),

(23) lim sup 73( sup |<L5Xn ), f) — (Lx=(t), f>| > 6) = 0.
el0 p>1 0<t<T
Loosely speaking, for this family {X"™ : n > 1}, continuous collision local times
Lx» could be defined as a uniform in n limit of approximating collision local
times.
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2.3. Existence of an (o, d,3)—pair of competing superprocesses. Next we
specify the former martingale problem (MP)Z"ﬂ by requiring A = X\'Lx, i =1,2.
Definition 8 (Martingale problem (MP)Z"E’A). For pairs a,8,9 asin (1), p
in Mj, and any pair A = (A',X?) € R}, let X = (X', X?) be an F.—adapted
process (in D3 ) such that, for each pair ¢ = (o', ¢%) € 83,

¢
(24) t oy e Xe#) _ o= (me) +/ ds e_<X"“°><Xs, Aoy - <P1+ﬁ>
0

t
- / <Ad8 ) ‘P) e_<XS7‘p)a t Z 07
0

is an F.—martingale starting from 0 at time ¢ = 0, where
(25) A = (AYAY = (\'Lx, N Lx).

Then we say that X solves the martingale problem (MP)Z"B’)‘. &

As an application of Theorem 7 we will derive the following existence statement:

Theorem 9 (Existence of the competing species model). Fiz o, satisfy-
ing the dimension restriction (10) and p € Mso. Then, for each A € Ri, there
is a solution X to the martingale problem (MP);"'B’A.

Such solution X we call an («,d, 3)-pair of competing superprocesses in R¢
starting from Xo = p, and having competition rates A = (A1, \2).

To verify Theorem 9, our strategy will be to show that to each £ > 0, there
is a solution (X%, A?) to the martingale problem (MP)Z"ﬁ where A% := ML
i =1,2, with (asymmetric) approximating collision local times Lg’f from Lemma
2. The construction of (X¢, A°) is done via a Trotter type scheme: On small
time intervals only one population is affected by the killing provided by the other
population. The roles of populations are alternated on subsequent intervals. Then
the interval length is shrinked to zero. Based on Theorem 7 we then pass to a limit
along a suitable subsequence €, | 0 to construct the desired competing species
model.

Remark 10 (Some open problems). Uniqueness for the martingale problem
(MP)z”3 * remains an open problem. We see two different possible ways to attack
this. One could try to reformulate the competing species model in the historical
setting and to use Evans and Perkins [EP98] to get historical uniqueness of the
model. The other approach may be to use a duality technique (see [Myt99] for
the finite variance case) to prove the ordinary uniqueness for (MP)Z’ﬁ * but this
approach probably works only in the symmetric case a! = a?, g = g2, 9 =2,
and Al = )2

Another open problem which seems to be interesting is to prove non-ezistence

of solutions to (MP)Z"B  in dimensions
at o, a?
(26) d2<ﬁ+a)/\<ﬁ+a)

for A1A% > 0. &
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2.4. Outline. The remainder of the paper is organized as follows. In the next sec-
tion we will show that, on some probability space, interacting superprocesses with
killing satisfying the martingale problem (MP)Z"ﬂ can simultaneously be domi-
nated by a pair of independent superprocesses (without killing). In Section 4 we
introduce solutions to some evolution equations with generalized input data. Prop-
erties of solutions to these equations will be crucial for the proof of Theorem 7
which will be provided in the subsequent section. The proof of Theorem 9 is given
in Section 6. It is based on Theorem 7 and an analysis of the limiting behavior of
approximating competing species models. Some auxiliary results are collected in
an appendix.

3. DOMINATION BY INDEPENDENT SUPERPROCESSES

In this section we will show that interacting superprocesses with killing can
be simultaneously dominated by independent superprocesses. These results are
generalizations of the case of continuous super-Brownian motions dealt with in
[BEP91]. In Subsections 3.1-3.6 we provide auxiliary results mainly related to
the martingale properties of the processes. They will be used for the proof of the
domination property (see Proposition 21 and Corollary 23 in Subsections 3.7 and 3.8
below). For basic facts on superprocesses, we refer to [Daw93, Dyn94, LG99, Eth00],
or [Per02].

3.1. Extension of the martingale problem (MP)Z’ﬁ . By standard techniques,

we get the following extension of the martingale problem (MP)z’ﬁ (we skip the
details, cf., for instance, Lemma 6.1.2 in [Daw93]). Recall our conventions as in (4)
and (5), and the set U3 of time-space test functions introduced in the beginning
of Subsection 2.1.

Lemma 11 (Extension of (MP)Z‘ﬁ) If (X,A) is a solution to the martingale
problem (MP)Z"ﬁ, then for all 9 € ¥3 ,

¢
0
(27) t = e Xe¥) _ o (ko) +/ ds e_<x"¢s><xs, Aaths + a'lps - §+ﬂ>
0

t
_/ <Adsa’$5)ei<xs’¢5)a tZOa
0

is an F.—martingale starting from 0 at time ¢t = 0.

3.2. (a,d,B)—pair of independent superprocesses. We start by recalling the
notion of an (e, d, 3)—pair of independent superprocesses X with immigration °A
(no dimension restriction is needed here).

Definition 12 (Martingale problem (MP)Z‘”EA) For pairs a,3,9 as in (1),
p = (p',p*) € Mg, and (deterministic) non-decreasing A = (°A',°4%) € Dy,
with %Ag = 0, let X = (X', X?) be an F.-adapted process (in D) such that
for each pair ¢ = (', ¢?) € &%,

t
(28) ¢ o Keu®) _ o (me) +/ ds e*<xs*‘f’><xs, Aacp_<p1+ﬁ>
0

" / (Ads,p)e Xe?l 1>,
(0,¢]
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is an F.—martingale starting from 0 at time ¢ = 0. Then we say that X ="X
solves the martingale problem (MP)Z"O'BA : <o

Note the difference with Definition 5: There is no extra killing by some A, but
we allow immigration according to °A.

Definition 13 (Pair of log-Laplace functions). Consider pairs ¢ = (¢!, p?) €
bB%(R?) and 9 = (¥',9?) € bBA(Ry x R?). For fixed i € {1,2} and ¢ >0, let
ubt = ub(p?,4?) denote the unique non-negative solution to the so-called log-
Laplace equation

(29) @) = T[e(E) / ds i(€) / ds (ui (€)'
= S|_,¢' ($)+/ds St bl (x /dsS it 1+/3’)( ),

(r,z) € [0,%] x R%. We call ut =ul(p,) := (ubt(p!,¢1),u>(p?,¢?)) the pair of
log-Laplace functions (on [0,t] and with input data ¢, ). o

For the unique existence of solutions, see, for instance, [Dyn02, Theorem 4.1.1].
Note that the u! are continuous functions on [0,t) x RZ. Moreover, for ¢ € o
¥ € B2, and i,t fixed, ub! = ub(p?,9") > 0 from the log-Laplace equation (29)
is the unique solution to the ®—valued ordinary differential equation

(30) aarul ) = Ay uiﬂf(x) - (uf_,t(x))l-‘rﬁi +1¢ on (0,t) x R

with terminal condition ul’ = ¢t

In the following lemma we collect some standard facts on superprocesses, see, for
instance, Roelly-Coppoletta [RC86], [Isc86, Theorems 3.1 and 3.2], Dawson [Daw93,
Chapter 6], and Dynkin [Dyn93, Theorems 2.1, 3.1, and 4.1].

Lemma 14 (Independent superprocesses with immigration). Consider
a,B,9,u,°A as in Definition 12. Then the following statements hold.

(a) (Uniqueness) There is a unique (in law) solution X to the martingale
problem (MP) oa Of Definition 12.

(b) (Strong Markov): This X is a time-inhomogeneous strong Markov pro-
cess starting from Xo = p, having independent marginal processes.

(¢) (Log-Laplace representation): X has the following log-Laplace transi-
tion functionals: For 0 < r <t, non-negative ¢ = (¢',¢?) € bB%(R?), and
non-negative ¥ = (y*,4?) € bB2(R; x RY),

P{exp[ (X;, 0 /ds (Xs,s) ‘f}
= exp[ — (X, up) — (A, 0’ >(T’t]]’

where, for t fived, u' = ul(p,) is the pair of log-Laplace functions accord-
ing to Definition 13.
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(d) (Expectations): For r,t,¢ as in (c),

,P{<Xt7<P)|-7:r} = Z <*Xvz IZS 7‘90>

i=1,2
" izzl;2 /(rt]deOAz (d(o,2) Sir¢" (@)
(e) (Exponential martingale): For fized T > 0 and in the case ¢ € ®%
t - exp[ — (X, uf (p,0)) + <°A,uT(<p,0)>(0’t]], 0<t<T,
is an F.—martingale.

We call this process X the («,d,B)-pair of independent superprocesses with
immigration °A, starting from X, = p. Of course, then the X! are ordinary
independent critical (o, d, 3%)-superprocesses with immigration processes °A%, i =
1,2. We write

(31) (%0, F, F. " Pua)
for the canonical basis of this process.

3.3. Properties of log-Laplace functions. We add here a couple of properties
of these log-Laplace functions, the proofs are postponed to Subsection A.4 in the
appendix.

Lemma 15 (First order considerations of log-Laplace functions). Consider
t,e >0, (@) € ®% x 3 and the pairs u’ = u'(p,) and vt =u'(p,2h) of
log-Laplace functions according to Definition 13. Fiz i € {1,2}. Then the following
statements hold.

(a) (Bounded pointwise convergence): For ¢ € &,
1 i
5( up e (p,0) — ) ? Ay — P boundedly pointwise on R%.
=2
(b) (Uniform boundedness): For p € @,

sup =~ [uit(,0) — o] . < [1Aaiplloo + [l

t<s<t+e €

(¢) (Uniform convergence in time-space): For (p,9) € &4 x U,

— 0.
eJl0

(5<Pa5¢ t rf = /dS Ss r¢3 oo

sup |
0<r<t E

Occasionally we will also need to handle the case of terminal conditions in £!.

Lemma 16 (£! terminal condition). Fiz i € {1,2} and t > 0.
(a) (Unique existence): Let ¢ € LY. Then there is a unique non-negative
solution u®t = ubt(p,0) to equation (29), and ub! is continuous (on RY),
for all v € [0,1).
(b) (Convergence): Let ¢. € LY, ¢ € [0,1], and assume that p. — ¢y in
L' as €l0 and

sup esssup|<,05 | < 0.
0<e<1 gzeRd
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Then, for each r € [0,t),

u®t (e ,0) R) ub(pg,0)  wuniformly on compacts of R%.
E.

34. An exponential martingale for solutions to (MP)Z""‘a . From the ex-
tended martingale problem in Lemma 11 we will construct another exponential
martingale:

Proposition 17 (Exponential martingale related to (MP)Z"ﬂ). Fiz o,B8,9
as in (1) and p € M?. Consider a solution (X,A) to the martingale problem
(MP)z’ﬁ of Definition 5. Then, for each T >0 and ¢ in ®%,

(32) t— exp[_ <Xt 7u$(¢,0)> _‘/0 <Ads;u3(¢70)>]7 0 S t S T7

is an F.—martingale. Conversely, let X and A be F.—adapted processes (in waf)
such that t — Ay is non-decreasing and continuous. If for each T > 0 and
@ in B2 the process in (32) is an F.-martingale, then (X, A) is a solution to the

martingale problem (MP)z’ﬁ.
To prepare for the proof of this proposition, we deal with the following lemma.

Lemma 18 (Expectation). Let (X,A) be an F.-adapted process in Dy, with
deterministic initial state Xo and such that A is non-decreasing, continuous,
starting from Ag = 0, and, for each T > 0, ¢ € @i, the process in (32) is
an F.—martingale. Then

(33) P((X¢,1) +(A¢,1)) = (Xo,1), t>0.

Proof. By Lemma 15(c), we have

(34) éui’T(el,O) (z) 5) 1, uniformly in (s,z) € [0,T] x R
Hence,

(35) %(1 —exp[— (XT,51)>—/OT(Ads,usT(al,O»D

E} (XT , 1) + <AT s 1> y P-a.s.

On the other hand, by (32) and again by Lemma 15(c),
1 T
(36) - ’P(l —exp[— <XT,61)>—/ <Ads,usT(51,0)>]>
0

_1 T

= (1 - exp[— (Xo,uy (61,0)>]) 5} (Xo,1).
By Fatou’s lemma, we get
(37) P(<Xt ) 1) + <At ’ 1)) S <X0 ) 1) < 0.

Now use the above procedure again, domination % ul'(¢1,0) < 1, and apply dom-
inated convergence to get the desired result. ]
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3.5. Proof of Proposition 17. 1° (First claim). Let (X, A) be a solution to
(MP)z’ﬁ , and fix T, ¢ as in the proposition. Consider additionally ¢ € 3 . Re-

call our convention (5). From the integration by parts formula for semimartingales
(see, for instance, Protter [Pro90, Corollary 11.22.2]),

(38) e*(xt,’l/’t> e_<A"¢'>[0,t] . e*<x0 o)

t
= _‘/0 <Ads;¢s> exp[ - <Xs 7"/’s> - <A7¢>[073]

+ de—<x5a"/’8)e*<Aa"~/’>[o,s] .
(0,¢]

In fact,
(39) t e BM¥ou 0<t<T,

is a continuous function of bounded variation, hence its quadratic variation process
is constantly 0. But then the bracket process of the two semimartingales

(40) tye Xewd) and ¢t e APoa
vanishes (use, e.g., the Kunita-Watanabe inequality, [Pro90, Theorem II.25]). Note

also that by the continuity of A no left limits appear in (38). Next use the extended

martingale from Lemma 11 to substitute for de™X«¥<) into (38). This implies
that

(41) > exp| = (Xe, ) — (A, 9) 5 | — e~ Xord)

+ /Otds exp[ — (X, %) — (A,’l/])[o,s]] <Xsa Aaths + %"/’s - :+/3>’

0 <t <T, is an F.—martingale. Specializing to 1 = u”?(¢,0), the first claim in
the lemma follows since this 1 solves the differential equation (30).

2° (Second claim). Now let (X, A) and ¢ be such that the process in (32) is a
martingale. Assume for the moment that

t

(42) t — Zy +/ ds Z, <XS, Agp — ‘P1+ﬁ> is a martingale,
0

where

(43) Zi = exp| = (Xi, 0) — (A @], t2>0.

By the integration by parts formula (see, for instance, [Pro90, Corollary I1.22.2]),
applied to the semi-martingales

(44) te Z, and tr Ao
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we get

t
(45) e~ Xe#) = Zy e Py = Z0+/ d(e<A,<P)[0,s1) Zs+ d(Z,) e(AP)0,0]
0 (0,]

t
= Zo+ / (Ads, @) e!A®h0.0 Z,
0

t
_ / ds Z, <Xs; Anp — ‘p1+ﬁ>e(A,‘P>[o,s]
0

+ d(local martingale), {4+ 0.2,
(0,t]

where in the last step we used the martingale (42). Hence, by definition (43) of Z,

(46) o~ (Xip) — o= (Xo,p)
t
b [ ((Aawoh +s (X, ~Bap+ 1)) e o) 1 a7,
0

where M¥ is alocal martingale. To get the martingale statement (21), we need to
show that M¥ is indeed a martingale. But for any 7" > 0,

(47) sup |M{| < sup |e~Xe#) — o= (Xowe)|
<T <T

t
+ sup/
t<T Jo

T
< 1t el (A7 1+ (I8aplloc + I*) [ ds (X,.1).

e (Xs a‘P)

(Ads, ) +ds <Xs  —Anp + <p1+6>

where, by a slight abuse, we use notation as |||l := ||¢*|lco +[|¢?|lco - By Lemma
18, the latter expression has finite expectation, hence P sup,<; |M;| < co. Now
the martingale claim on M¥ follows, for instance, from [Progﬁ, Theorem 1.47]. It
remains to verify the martingale statement (42).

3° (Sufficient condition for (42)). Note first that

1 € 1/
(48) t —P{/ ds Zoys ft}——/dsP{Zs+5—Zs|]-'s}
€ 0 € Jo

is a martingale, for each £ > 0 (see, for instance, [EK86, Proposition 2.7.5]). The

first term goes to Z; in L' = LY(P) as € | 0, for each t > 0, by dominated
convergence. Now, in order to get (42), it is enough to check that in £,

1/t t

(49) —/ ds P{Zs1c—Zs| Fs} — —/ ds Z, <x57 Aacp—cp1+ﬁ>,
€ Jo el0 0

for each ¢t > 0. Note that

e " P{Zyye—Zi | T}

— o (Ao, o1 ’P{exp[ _ <Xt+5 7 uiii(‘P: 0)> — (A, ‘P>[t,t+s]] — o~ (Xexp)

a
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We split this into the two terms
(50) Is,t = e*(A#‘)[o,t] 5—1 ’P{ exp[ — <Xt+5 s uiii ((p, 0)> — <A, ‘P>[t,t+s]]

- eXp[—(Xt+s,<.0)—/:JrE(AdSaUZ“(%O))] ‘ft}

and

t+e
(51) Iy = e—<A"f’>w}us1P{exp[—<xt+g,<p>— (Ads,ut(,0))]
t

7).

4° (Error term I..). For the “error term” I.; we use the estimate

t4e

571 fP{ e (A,¢P>[¢,t+a]_exp|:—/ <Adsa (QO 0)>]‘ ‘ft}
t

6_1'P{ /tt+E<Ad3; |‘P ut-‘rs( ’0)|> ‘ft}.

By Lemma 15(b), we have

(53) e —ul (L 0)|, < | Awil] IR = ess = esale),
t <s <t+e. Therefore, with 0 <e <T A1,

— e7<xt"P)

(52) |l

IN

IA

T T
(54) P /0 dt L] < ess /0 dt P(AL 1)

T+s
05373(/ t (A¢,1) / dt (A, 1)

T+e
C53p/ dt <At,1) S € Cs3 P(AT+1,1)
T

IN

IN

1) — 0
ecs3 (p,1) o
where the last inequality follows from Lemma 18. Hence, we get that

T
(55) / dt |I. 4| ? 0 in L', for any T > 0.
0 =

5° (Main term II. ;). We start with the identity

t+e
P{exp[_<xt+sacp>_‘/t <Ad83 t+6 ‘P: ‘ft}

t+e

_ exp[/(Ads, (cp,O))] ’P{exp[ (Xiye, ) — <Ads; * (e, )>Hft}

— e_ <Xt7ut (‘P’O))’
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where in the last step we used the martingale assumption concerning the process
in (32). Thus,

(56) I, = e~ (Ao gt (e_<xt’“:+5(‘/’70)) — e*(me)),
But
(57) 1i§]1 g1 (e*<xt’“:+s(‘f”°)) - e_(Xt,w))

= — e—(xu<P> 11?(’)1 6_1<Xt,ll§+5((p,0) _ <P>
€

= — ¢ X <Xt, Aqp — cp1+ﬁ>, t>0, P-as.,
where the last limit follows by Lemma 15(a). Combined with (56), this gives
(58) lim I, = ~Z, <xt, Anp — p'HP > t>0, P-as.
Now note that

1

the 1
(59) |IIs,t| < ‘e—<Xt,ut+ (CP,O)) — e—(xu‘P)‘ < g <Xt, |u§+s((P70) _ ‘P|>

m

< c53 <Xt , 1) , &t>0, P-as.,

where the last inequality follows from (53). Hence, since fOT ds (X¢,1) <oo, by the
dominated convergence theorem, we obtain

T T
(60) / dt IIE,t ? —/ dt Zt <Xt7 Aa‘p — (P1+ﬁ>, P*&.S., T>0.
0 € 0

Apply again (59), Lemma 18, and dominated convergence to conclude that conver-
gence in (60) is also in £!-space. This gives (49), and hence finishes the proof of
Proposition 17. ]

3.6. Another martingale. Proposition 17 and Lemma 18 immediately have the
following implication:

Corollary 19 (Expectation). Let (X, A) be any solution to the martingale prob-
lem (MP)>? . Then,

Another consequence is the following result.

Corollary 20 (Another martingale). Let (X,A) be any solution to the mar-
tingale problem (MP)z’ﬁ. Then, for i € {1,2} and ' €

t
(62) ¢ Mi(eh) = (Xi, o) — (ot — / ds (Xi, Agio®) + (4L, o)

are F.—martingales starting from O at time t = 0.
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Proof. Without loss of generality, take i = 1 and ¢ = (¢*,0). Then

(63) t — Mtl’s(cpl) = %(1—@ (xieo? )_ é(l_e ptiept )
t

1 t
T / ds e Xee') (X1 eA gty + [ (AL, 0ty e (Xoe?)
0 0

1 t
+ E/o ds e~ (=) (X1, 40 (o)1)

is a martingale. Now let us check that all the terms converge in £!. Clearly,

1 o

(64) g(l—e =) - (heh):

Also,

(65) 1(1—e*<X3’E<P1>) — (X}, in L', t>0,
€ €l0

by Corollary 19 and dominated convergence. The third and fourth terms in (63)
are dominated by

¢
(66) /ds <X51,|Aa1<,01|> and <A%,<,01>,
0

and hence converge in £! to

t
(67) /ds <X81,Aa1<,01> and <A%,gol>,
0

respectively, again by Corollary 19 and dominated convergence. Similarly, the
last term converges to 0 in £!. Since all these terms converge in £, we get the
convergence statement

(68) M) — M) i L

Hence M!(p!) is a martingale, and we are done. [

3.7. Domination by independent superprocesses. Here we want to make pre-
cise the mentioned domination property. For this purpose, let (X, A) be any solu-
tion to the martingale problem (MP)7 *#_Conditioned on (X, A), we will consider
the (a,d,B)-pair AX of superprocesses with immigration A and starting from
the pair AXO = 0 of zero measures. Our purpose is (by using this random family
AX) to construct an (a,d,3)-pair X of independent superprocesses dominating
X, by, loosely speaking, adding up X 4+ 4X =: X. In other words, we reintroduce
the population masses #X which had been killed by A within the process X. This
requires some formalism which we essentially recall from [BEP91, Theorem 5.1].

For this purpose, write now (Q', F', F',P') for our original stochastic basis en-
tering into the martingale problem (MP) P of Definition 5. Recall (X,A) =
(X(w"), A(w')) is a solution to this martlngale problem. Recall also from (31) the
canonical basis (°Q, 7, 7F.,°Py ) corresponding to the (e, d, 8)-pair of indepen-
dent superprocesses with immigration °A of Lemma 14. Redefine

(69) N :=Qx°Q0, F:=Fx%F, F =Fx%F,
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and set

(70) X(w) == W, w= (W, W) e N

Then we reintroduce a probability measure P on (2, F) by

(71) P(dw) := P'(dw') “Poa(dW), w= (v, W)€,

where, according to Lemma 14, °Pg s is the canonical law of the (e, d, 3)—pair
A)X of independent superprocesses with immigration A(w') and starting from
A(@) Xy = 0. We will show below that this implies that conditioned on (X, A) the
process X coincides in law with the (a,d, B)-pair AX of independent superpro-

~

cesses with immigration A and starting from Xq = 0, just as desired. Finally, write
m:Q — Q for the projection map w = (v, W) — ', and set

(72) X = Xon+X.

Proposition 21 (Domination). Fiz o,3,9,u as in Definition 5. With notation
as in (69)—(72), the following two statements hold.

(a) (Interchange): For any F € bF' and t > 0,
P(Fom|F) = P'(F|F)om, P-as.
(b) (Pair of independent superprocesses): X = Xon+X is the (a,d, 8)-

pair of independent superprocesses without immigration (that is, A = 0 in
Lemma 14) starting from Xo = .

Roughly speaking, by enlarging our stochastic basis we got the almost sure
domination X < X of the (e, d,8)-pair X of interacting superprocesses by the
(er,d, B)—pair X of independent superprocesses, where Xo = Xo.

Proof. Part (a) follows as in the proof of the corresponding statement in [BEP91,
Theorem 5.1], but for (b) we need some modifications of their proof as the lack of
continuity of the processes induces us to use exponential martingales.

Clearly, X has the required pair g of starting measures. Fix ¢ € P2 . Set

(73) Fy = F'x°F, t>0.
First we will show that for 0 <r <,

(714) Pl XKo@ | £} = exp[—<XT,ui(<p,0)>—<A,ut(<p,0)>[r,t]], P-as.,

with u’(¢,0) from our Definition 13. In fact, for B’ € F' and B € %,, by
definition (71) of P,

(75) Plp s (e<x"“°>—exp[ - <Xr,utr(<p,0)> - <A,ut(cp,0)>[r’t]D
B’

_ P'(dw') °Po oa 1o <exp [— <A(wl)7 u'(p, 0)>[0,t]]

°Po,a {exp[ — (Xe,0)+ (AW, u'(0,0))

o]_-r}

—exp[ — (X, ,ul(,0)) —<A(w')a“t("‘”0)>[r,t]]>'
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But by Lemma 14(e), for each fixed ¢ and ',
(76) 1 exp[— (Xe,ul(p,0))+ (AW), ul(0,0)), 4], 0<r<t,

is an F—martingale. Hence, since ul(p,0) =¢p, the middle, conditional expectation
expression at the right hand side of identity (75) equals

(77) exp| — (X, ul(p,0)) + (AW), u'(¢,0)), ]

Thus, altogether the right hand side of (75) vanishes, and the claim (74) follows.
Next, from Proposition 17 and the part (a), we get that for fixed ¢ > 0,

(78)  r — exp[— (Xrom,ul(p,0)) — (Ao 7r,ut(<p,0)>[07r] ], 0<r<t,
is an F.—martingale. We will use this to show that for 0 <r <,
(79 Plew[-Xiom, o)~ (Aomul(o0),, |7}

= eXp<Xr o, _ui(‘Pa 0)>

Indeed, the left hand side can be written as

exp[(A ow,ut(cp,0)>[0’r]] ’P{exp[ —(Xpom ) — (Ao Waut(%o))[o,t]]

7},

exp[ (Ao mu(,0)), | exp[ = (X, o7, ul(,0) = (Ao mul(,0)), ]

and (79) follows.
Finally, we will show that for 0 < r <,

From (78) we may reformulate it as

(80) P{exp<Xt o+ Xt ’ _‘P> ‘ -7:7"} = eXp<Xr o+ XT‘ s _ui(‘Pa 0)>a
which by the log-Laplace representation in Lemma 14(c) says that X = X o7 + X

is the desired (e, d, 3)—pair of independent superprocesses without immigration.
We start from

P{GXP<Xt om+ Xy, —p) ‘ .7:7'} = ’P{e_(x“’”"”)P{e_(X"“’) ‘ .7:}} ‘ .7-',.}.
By (74) we may continue with
= P{e_<xi°”"’°> exp[— (X, ,ul(p,0)) — (A ow,ut(cp,0)>[r’t]] ‘ }“T}

= eXp<X7‘ ’ —llf.((P,O)>,P{ exp[_ <Xt om, ‘P) - <A Oﬁaut(¢70)>[r,t]] ‘ ]:7'}
By (79) we get

(81) = eXp<Xr , _ui (‘P; 0)) exp<xr om, _ui(‘Pa 0)> = exp<xr , —Uf«(% 0))7

finishing the proof. ]
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3.8. Simultaneous domination by independent superprocesses. In the pre-
vious subsection, for each solution (X, A) to the martingale problem (MP)Z"ﬂ
we found a stochastic basis such that, on this basis, X is a.s. dominated by the
(a,d, B)-pair of independent superprocesses X without immigration. This con-
struction can actually be done simultaneously to all solutions to (MP)Z"/B , that is,

on a common stochastic basis, with the same X. This follows from the following
lemma.

Lemma 22 (Simultaneous domination). Let {Y" €D}, : ve T} be a col-
lection of pairs of random processes. Suppose that for each v € T there erists
YV € D}, such that

(82) Y'< Y as,
where all the YV are identically distributed. Then there exists a common probability

space (Q, F,P) on which some {Z’ € D3, : ve Y} and Z € D}, are defined
such that (YV,YV) coincides in law with (Z,Z), for eachv € Y.

In words, there is a Z which equals in law to any of YV and dominates a.s. all
the ZV simultaneously.

Proof. Denote by Q the law on D, of YV (recall that Q is the same for any
ve ). Let Z €D}y, be defined over a probability space (s, F2,Ps) with law Q.
Fix an arbitrary v € T. Denote by QV the joint law on D3, x D3, of (Y, Y").
Also, let @ denote the regular conditional distribution on D/%,tf of YV given
YV =y. Hence,

(83) QV(d(y1,92)) = Q% (dy1) Q(dya),  (y1,92) € Dy, .

Let (1, F1,P1) be another sufficiently rich probability space. Now for P,—almost
all wy we may construct Z?(w;,ws) on

(84) (Q,F,P) == ( xQg, Fr ® F2, P1 X Pa)
with conditional law Q%(w2). Piecing everything together we get that the pair
(ZV,Z) is defined on (Q,F,P), and its joint distribution is given by (83), which

coincides with the law of (Y“,?) . By repeating this construction on (Q,F,P)
for all v € ¥ with the same Z, we get the desired result. ]

Combining Lemma, 22 with Proposition 21 we obtain the following result:

Corollary 23 (Simultaneous domination). Fiz «,(3,9,u as in Definition 5.
Let {(X“, AY):v e T} be a family of solutions to the martingale problem (MP)Z"ﬁ.
Then there exists a probability space (Q,F,P) on which a family
{(XV,A",X): veT}
is defined and posses the following properties:
(a) (Same laws): (‘XY ,'AY) coincides in law with (XY, AY), for each v € Y.

(b) (Independent superprocesses): X is the (e, d,B)-pair of independent
superprocesses without immigration, starting from Xg = .
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(c) (Domination): For any v € Y, given ('X",’A?),
XV .= X -'XV
is the (a,d, B)—pair of independent superprocesses starting from 'X§ = 0,
and with immigration Av.

For convenience, we introduce the following convention.

Convention 24 (Simultaneous domination). Without loss of generality, from
now on we will assume that any family {(X",A?): v € T} of solutions to (MP)Z"’B

is defined on a common probability space where they enjoy simultaneous domination
by X as described in Corollary 23. o

4. LOG-LAPLACE EQUATION INVOLVING GENERALIZED INPUT DATA

In this section we establish some properties of solutions to log-Laplace equa-
tions involving generalized input data (see, e.g., Proposition 34). The developed
framework is used in Subsection 4.4 to show the existence of collision local times
and collision measures for pairs of independent superprocesses for a more general
class of initial measures than was known before. We also give their log-Laplace
representations (Proposition 35). The log-Laplace technique will be also crucial in
Section 5 for the proof of Theorem 7.

4.1. Energy conditions. We define the suitable sets of measures and measure-
valued paths used as input data for log-Laplace equations.

First we need some more notation. Besides the space Dy, , for each T > 0, we
introduce the space D}, of all cadlag paths v : [0,T] - M¢(R?), equipped with
the Skorohod topology. We need also the space BT of all (equivalence classes of)
measurable paths v : [0,7] — Mg(R?). Note that to each v € DY, there is a
unique element in $B7. For this reason, we do not distinguish in notation within
this correspondence.

Besides the spaces bC and C, we need to introduce the spaces bC., which refer
to bC but equipped with the topology of uniform convergence on compacta (the
index “co” stands for “compact open”).

For T > 0 and measurable g:[0,7] — R, put

(85) llgllr := esssup|gs|,
0<s<T

whereas for measurable 9 : [0,7] x R - R and B C R? set

(86) l|¥||lT,p := sup esssup |¢T(a:)|
z€B 0<r<T
and write
(87) I-l7e0 = [l llT,Ra-
Write S and p for the semigroup respectively for the continuous transition kernel
of the symmetric a-stable process with generator A, := —9(—A)*/2A,, ¥ > 0,
0 < a<2. For n€[0,d) (with d the dimension of RY), set
(88) hen(y) = le—y|™", =,y €R™

Definition 25 (Energy conditions). Fix 7 € [0,d).
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(a) (Measures): We say the measure pu € M has weakly finite n—energy and
write p € M{°, if

(89) {tty he ) < 00 foru—almost all z € R™.

(b) (Paths): Fix T > 0. We say, the deterministic (measurable) path v in
BT has finite n—energy and write v € P, if

(90) W= = sup ||V, hom)|p < oo
rER4

It is said to have weakly finite n—energy and we write v € 770, if
(91) (Vs, hg ) < oo for dsvg(dz)-almost all (s,z) € [0,7] x R?
holds. <o

Example 26 ((«,d, 8)—superprocess). Fix any n € (0,min(e/f,d)). Let X
denote the («,d, §)—superprocess starting from pu € M¢. Then

X, e M{°, P-as., t>0,

92
(92) {Xp:t<T}eptme, P-as, T >0,
(see [Myt98a, Lemma 22 and Corollary 4]). &
In P77 we introduce a topology by saying that v™ — v° in P17 if
(93) sup esssup ||| < oo,
n>0 0<s<T
(94) sup [|[v"|| -y < 00,
n>0
(95) ds v7'(dz) — ds v2(dz) in M{ = M;([0,T] x R?)
nToeo

(equipped with the weak topology). Roughly speaking, the v™ converge, if the
measures v?(dz) are uniformly bounded, the paths ™ have uniformly finite n—
energy, and they converge weakly as time-space measures.

Lemma 27 (Some compact sets). Fiz T > 0. Suppose C is a compact subset
of D}y, - Let

(96) C = {I/E‘IST’": 35 € C with v <7 in q:;T}.
For m >0 fized, set
(97) C™ = {veC: ||v[-pr <m}.

Then C™ is a compact subset of BT°7.

Proof. Fix m,T > 0. Let {v™: n > 1} be any sequence in C™. We have to find

a subsequence {v™ : k > 1} converging in BT" as k1 oo to some v € C™.
First of all, to each n there is a #™ € C' such that

(98) vt < o
Since C is compact, there is a subsequence {7™ : k > 1} converging in Cc Df,tf

as k 1 oo. From the domination (98), we get (93) with sup,,», replaced by sup,,; -
Moreover, (94) follows from (97), again excluding n = 0. Introduce the measures

(99) pF(d(s,z)) = ds v (dz) < ds it (dz) =: *(d(s,2))
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on [0,T]xR®. Since the #™ convergein D}, , the measures fi* convergein Mf.
Then the domination (99) gives the relative compactness of {u*: k> 1} c M.
We may assume that this sequence converges as k 1 oo (by taking a subsequence
if needed) to some u® € MY. It remains to show that p° has the form

(100) p’(d(s,z)) = dsv)(dz) with vJ € M for almost all s,
and that 0 satisfies

(101) esssup |0 < oo and ||W0||_p7 < o0.
0<s<T

From the weak convergence pf — p° in MT we get

T
(102) [astowrg = [ () L),
0 ktoo Jio,T1xR4
f€C([0,T]), ge€C. However, by (93),
(103) sup (™, 1)||, < oo,
k>1

hence, from (102), for any fixed g € bB, the (finite) signed measure

(104) 01(ds) i= [ #(d(5,2)) glo)
Rd
has a total variation bound
(105) |09(ds)| < gl sup [ (", 1) ds.

Thus, for any g € bB, the signed measure ©9(ds) is absolutely continuous, that
is, by Radon-Nikodym it can be represented as

(106) ©9(ds) = ©Jds
(see, for instance, [Doo94, Theorem 10.7]). But as a functional of g € bB, the

signed density functions s +— ©Y are almost everywhere non-negative, provided
that g > 0, they are almost linear, that is,

(107) 03/*by — 40f + 109, fora.a. s, where a,beR, f,g€bB,
and they satisfy
(108) ey A 0 for a.a. s, if 0<g,7Tg foraa. s.

mtoo

Then by [Get74, Proposition 4.1], there is a bounded kernel from [0,7] to Mg,
denoted by v°, such that

(109) 07 = (2,9), for almost all s.

Consequently, (100) is true. It remains to show that (101) holds.
Clearly, the first part of (101) follows from the dominations (98) and (105). On
the other hand, the n-energy of 1° is bounded by m. In fact, define

(110) he = hag AL £>1, zeR.L

Since v™ € C™ for all k, we have

£
(111) @Z“’ ds < sup ||(V.’““,hﬁ’n)||Tds < mds, £>1, zeR%
k>1
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Hence, by (109) and (111),

£
(112) @57 = (W,hL,) <m, aas €>1, zeR%
By monotone convergence,
(113) (W0, hyp) = lim (W,nt,) <m, aa s, zeRL
Thus, ||°]|_,,r < m, that is, ° € C™, and the proof is finished. n

4.2. Log-Laplace equation involving generalized input data. To describe
the log-Laplace functionals of some collision local times and collision measures, we
need to allow that generalized input data enter into the log-Laplace equation.

In this subsection, we fix constants

(114) a€(0,2], €01, 9>0, and 0<n<d.

Combining the proofs of the Theorems 2 and 3 in [Myt98a], we get the following
result.

Proposition 28 (Log-Laplace equation involving generalized input data).
Suppose d < § +1. Fiz T >0, p€ M{°, and v € PT"° (recall Definition 25).

(a) (Existence): There exists an element w” = wT(u,v) € LYT n LFPT

satisfying

(115) w?(m) = pu*xpr_,(z) + / ds vsx ps_p () — / ds Ss—r((wsT)1+5) (2),

for almost all (r,z) € [0,T) x R%.
(b) (Uniqueness): For each solution wT € £ 0 LT to (115),

(116) u*pT,T(-)Jr/ ds vs*pH(-)—/ ds Ss—r ((wD)™P) (+)

= ol = o (uv) € L1’

T

is well-defined for all r € [0,T). Moreover, if 'wT 2wT € E:L’T OE:L+B’T are
solutions to (115) and '@wT,2wT are defined as in (116), then
(117) Yol = 2wl in L1, for all r €[0,T).
; — ; 1,7 1+8,T
In particular, *w” = 2w in L37 N LT,

Note that heuristically integral equation (115) can be written as

d o vr(dz)
~ZuT = AT — (wI)HE 4 T) x R
(118) 6,er awr (wr ) + d.’E (07 ) X
with terminal condition wl_=p

and with generalized derivatives % of the measures v,(dz) as force term.

Remark 29 (Extending the dimension range). If in the previous proposition,
u is absolutely continuous (with respect to Lebesgue measure), then the assumption
on the dimension can be weakened to d < a + 5 + 1, again by Theorems 2 and 3

(and their proofs) in [Myt98a. O
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Further on we will need to define particular everywhere non-negative represen-
tatives of solutions introduced in Proposition 28. The next two technical lemmas
are a necessary preparation for this.

Lemma 30 (Continuous representative under truncation). Fiz T > 0 and
vesphne. Let pe MP° and d < n+% , or u as in Remark 29 and d < a+%+n.
For fixed t € (0,T), define

(119) vi(dz) = 1p7(s) vs(da), 0<s<T,

and consider the solution w? = w™ (u,v?) according to Proposition 28. Then,

T T
(120) @7 () == pspr—r (a) + / ds V% py_r (x) — / ds S_r (W) ) (2)

r€[0,T), z € RY, defines a representative wl = wT (u,vt) of wT (u,vt) which,

for each r € [0,t), is non-negative and continuous on R%.
Proof. By Proposition 28,
(121) wy (p,v') € L1 .

Moreover, by definition (119), and the semigroup property of solutions, it is easy
to see that

(122) oy (p,v") = ul(w/ (n,v"),0), 0<r<t.

Hence, by (121) and Lemma 16(a), we are done. |

We will use this lemma to proof the following result.

Lemma 31 (Non-negative representative). Impose assumptions as in the pre-
vious lemma. If w? = wT (u,v) solves (115), then the following inequality holds

T T
(123) / ds Ss_r (wD)**P) (z) < pxpr—, (2) +/ ds vgx ps_p (@)

for all (r,z) € [0,T) x R%, for which the integral at the right hand side is finite.

Proof. Fix r € [0,T) and let ng so large that 7+ 1/ng < T. Then with @7 from
Proposition 28, define, for 0 < s < T and n > ng,

(124a) wh™ = wT(,u, I/T+1/”),

(124b) ol = w7 (p, v Hm),

where

(125) vt m = 1 /nmy(5) va(da), 0<s<T.

By Lemma 30, @w."" is non-negative and continuous on R? for all n > ny. By
monotonicity properties (see Corollary 3 of [Myt98a]), for all n > m > ng,

(126) w™(z) > wl™(z) for almost all z € RY,

hence, by the continuity of w!*",

(127) @ "(x) > @ ™(z) for all x € R



26 FLEISCHMANN AND MYTNIK

On the other hand, for all z € RY,
T

(128) 0 < @5"™(x) = p*pr_r (m)—}—/ ) ds vex ps—r (T)
r+1/n

T
—/ ds Ss,r((wZ’")1+B) (z).
T
As n 1 oo, by Theorem 3(i) in [Myt98a],
n ,00 . 1,T 1+8,T
(129) wh™ 1 some w?’ in L7 NLY AT

Note that wl>> = wl for s € [r,T). By monotone convergence theorem, from
inequality (128) we get

T T
(130) 0 < peprr @)+ [ dsvrpes @)= [ dsSer (WD) (@),

for all those x € R? for which the first integral term at the right hand side stays
finite. This finishes the proof. ]

Definition 32 (Non-negative representative). Under the assumption in Lem-
ma 30 we now define the following representative u! = u®'(u,v) of w? = w? (pu,v)
from Proposition 28:

H* PT—r (13) +/ ds Vs* Ps—r (.’L’) - / ds SS*T((wg’)l—i_ﬂ) (iE)

(131) ul(z) = for all (r,x) € [0,T) x R?, for which the first
integral term is finite,

400, otherwise.

Note that by Lemma 31, ul is non-negative everywhere on [0,T) x R? and we
have the domination

T

(132) 0 < ul(z) < p*pr_,(z) +/ ds vs* ps—r (), (r,,x) €[0,T) x R
T

For the further procedure, we adopt the convention to set F(+oc) := 0 in case u”

enters as an argument into a function F' on R . <

Lemma 33 (Subadditivity). Let u,v and u',v' satisfy the assumptions in Lem-
ma 30 (or Lemma 31). Then for the representatives from Definition 32 we have

(133) wT(u+u',v+v") < ul(u,v) +ut(y',v")  everywhere on [0,T) x R

Proof. This follows easily from Lemmas 10 and 11, and Corollaries 2 and 3 in
[Myt98a] together with the monotone limit construction of @’ in the proof of
Lemma 31. [ ]

4.3. Continuous convergence of log-Laplace functions. As a preparation for
Section 5, we will establish some uniform convergence properties of log-Laplace
functions with respect to input data. We need to impose the following parameter
restrictions:

(134) a€ (0,2, Be(0,1], ¥>0, and ne ((d—a);,d).
Recall notation J. from (16).
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Proposition 34 (Continuous convergence). Fiz T > 0 and a constant 1 sat-
isfying (134). In BT, consider a converging sequence v™ — ° as n 1 co. Let
J' and J? be any mollifiers. For n>0, T >0, and 0 <e',e?2 <1 fized, let

(135) wrt T = T (0,075 [Jh + JE]) > 0

be the unique solution to the equation
Tt ,e? g 1 2
(136) upT @) = [ ds (724l + T2]) e (o)
T

T
= [ ds S (@) @)

(r,z) € [0,T] x R? (recall Definition 13). Then, if (ry,zx) — (r,z) in [0,T] x R?
as k1T oo, the limit

(137) lim u"’T’El’EZ(xk) =: ul(z)
exists, and v’ = {ul(z): (r,z) € [0,T] x R} is the time-space continuous rep-

resentative uT(0,20°) of wT = wT(0,20°) € LT N LT, the unique solution
from Proposition 28 [with (u,v) replaced by (0,20°)].

Compared with Proposition 28, the novelty of this proposition is that it states

the unique existence of a continuous solution u? = 4T (0,20°).

Proof of Proposition 34. 1° (Uniform domination). Fix all the quantities as in
the proposition. First of all, note that, for fixed n,e!,e2, the functions

(138) (s:9) = vPx[Ja +JE](y),  0<s<T, yeR’
satisfy
(139) ||Vn*[J611 + J622]||T00 < 0

[recall notation (87)]. Therefore unT " in (135) is well-defined (see Definition
13 and references afterwards). Next, there is a constant cj40 = c140(J, @, d) such
that for ¢ = 1,2,

(140) J' < ciq0p1, hence 0 < Jsi < €140 Pee e > 0.

Thus, for (r,z) € [0,T] x R?,

(141) 0

IA

T
/ ds (V?*[Jb_ll + ngz]) * Ps—r (T)

IA

T

0140/ ds V.?* [p(sl)"+sfr + p(sz)"‘+sfr] (.’L‘)
T

But there is a constant ¢j142 = c142(d, a,7) such that

(142) ps(z) < ciao s (d=n)/a |z| ™™, s>0, zeR?
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see [Myt98a, Lemma 4]. Note that (d —n)/a < 1, by our assumption (134).
Therefore, there is a constant ci43 = c143(J, @, d,n) such that

T
(143) / ds (vI*[Jh + J2]) % ps—r (2)

e+T—7r
< c43 Sup||u"||,n’T/ ds s—d=m/e o
n>0 0

with € := (e!)® + (¢?)®. In particular,
1_2 24T
(144) 0 < umTe = (z) < cuas sup||1/”||_,7,T/ ds s~(d=m/e < oo,
n>0 0
2° (Decomposition). Assume additionally that r < T, and take § > 0 such that

r+ 2§ <T. We may also assume in addition that r; < r + 4, for all k. Choose a
compact C C R? such that z € C for all k. Then we decompose

T
(145) I = 2T () = / ds (VP*[Jh + JZ]) * Dsery (2) = L+ I

Tk

where
Te+0

(146a) L= / ds (VP*[Th + J2]) * Pen (z0),
T

(146b) L = / ds (VP [Th + J5]) * Pen (z0).
Te+0

3° (Error term I). By (143), I is bounded from above uniformly in k£ and n
by

e+4d 5
¢ sup ||V =, T / ds s~(@=m/e 4 ¢ gup ||1/"||_,,,T/ ds s~(d=m/e,
n>0 0 €120 n>0 0
which goes to 0 as d | 0.
4° (Conwvergence of I»). First of all, with GT=? from (A1) in the appendix,
T—6
1 _2 1 _ 2

W0 b= [t e @) = @) @),

Tk

where, for the fixed §,
(148) Pre s = (k[ Jh + JR]) ks, 0<s<T -4
Using notation (87), it is easy to see that by (93),

(149a) sup [0 s < Ps(0) sup esssup V7| < oo,
n>1, 0<el £2<1 n>1 0<s<T
(149b) 19ll7-5,00 < Ps(0)esssup|v?] < oo,
0<s<T
where
(150) Yy = (w91 )*ps, 0<s<T—4
Moreover,
(151) lim ¢?’51’52 (z)dsdx = vy(z)dsdz in MI~°.

ntoo, €1,e2,0
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Then, by Lemma A3 in the appendix, GT % € bC ([0,T — 6] x R?), and

: T—6,,n,e g2 _ T—6
(152) el (G ) () = (@) (@),

that is,

T
153 li I, = ds (200 ) .
( ) k,nTool,Hsll,s%o 2 /T+6 s ( Vs)* Ps—r ()

5° (Convergence of I). Combining steps 3° and 4° we get

T
(154) kao{l}i’n;l’szw Irnk’T’El’EQ (z) = ‘/T ds (21/2)* Ps—r (),
that is,
(155) lim GT(v"«[Jh + J%]) = GT(20%) in bC ([0,T] x RY).

k,ntToo, 1,200

6° (Non-linear term). By (144), the set

(156) {(umT’El’f)lH’ cn>1,0<ele?< 1}

of functions on [0,7] x R? is uniformly bounded. Then Lemma A1l implies that
(157) {GT(u"’T’El’EZ)1+ﬁ cn>1,0<ele? < 1}

is relatively compact in bCJ ([0, 7] x R?). Thus, for each subsequence of n 1 oo,
el,e? | 0, there is a further subsequence such that along this subsequence, in
bCH ([0, T] x R?) we have the convergence

(158) GT (T ") 148 5 some FT.
Combining with step 5°, we obtain that along this subsequence,
(159) w5 some u”

in bCJ; ([0,7] x R%). Then use again (158) and Corollary A2 to see that

(160) GT (un T8 GT ()P in bCE ([0, T] x RY)
along this subsequence. Putting all together, we obtain that
(161) u? = GT(20°) — GT(u")P in bCe([0,T] x RY),

or equivalently,

(162) UTT(@’) = /Tds (2’/2)* Ps—r (%) — /Tds Ss—r((UsT)Hﬁ) (@),

(r,z) € [0,T] x R%. By Proposition 28 and Definition 32, the function u” is the
non-negative (and actually continuous) representative u”(0,20°) of the unique
solution w”(0,20°) € LT N L7 of (115) [in the case (u,v) = (0,20°)]. By
this uniqueness, u? € bCJ ([0, T] x R?) does not depend on the choice of all the
subsequences, and the proof is complete. [
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4.4. On collision local times and measures of independent superprocesses.
The main result of this subsection, Proposition 35, extends Theorem 1 of [Myt98a]
for a more general class of initial measures.

Let X be the (a,d, 3)pair of independent superprocesses without immigration
with parameters «,d, 8 satisfying condition (10).

Proposition 35 (Log-Laplace functionals of collision processes).

(a) (Collision measure): If

al a2

R
then for each pair p € M3 of initial measures, the collision measure Kx

(recall Definition 3) exists, and we have the following log-Laplace representa-
tion

(163) d <

Pe Kz = pe-(ww"XEL0) - p50, fedy,

with uwb*(X2 - £,0) from Definition 32.
(b) (Collision local time): If

ot o

(164) d < E+ﬁ+(alv@2),
then for each p € Ms e the collision local time Lg exists, and
Pe Ix®F) = pe(v'ug*(0.X%f) t>0, fely,
with u**(0, X2 - f) from Definition 32, provided that o' > o®.
Clearly, the role of the indices 1 and 2 can be interchanged in the previous propo-
sition.

Proof of Proposition 35. Fix t >0 and f € Cy.
1° (a) Let 0 < e < 1. Define

(165) W@ = | K@) La-n i), ek

While checking the proof of Theorem 1(i) in [Myt98a] (see p.762 there), we realize
that it is enough to show that P—-almost surely,

(166)  up’ (¥ +¢°,0) —— ul?(2X? - £,0) uniformly on compacts of R%.
e,e']0

Note that by our assumption (163) we can choose 7 satisfying

1 2

(167) (d—%)+ <5< %/\d,

and, by Example 26, we have X? € M?°, P-as. Hence uy’(2X? - f,0) makes
sense. Recall the semigroup property

(168) ug (4 +9°,0) = ug" "’ (ug® (¢ + 7, 0),0)

for ¢ € (0,t), domination and boundedness

(169) sup  [lug® (@ +97,0)| < sup S5 +97)|, < oo,
0<e,e' <1 0<ee’ <1
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‘P-a.s., and the convergence

170 ug®? (W +9°,0) —— ul®(2X2- £,0) in £'(R?)
0 o' 10 0 t

(see [Myt98a, 1st display after 3.5]). Therefore, by Lemma 16(b) we get that
At w0 +97,0,0) —= ' (ug " (2X7 - £,0),0),
g,

uniformly on compacts of R?, P-a.s. Again by the semigroup property,
(172) ug' ™" (ug” (2X7 - £,0),0) = up'(2X7 - £,0),
and the proof of (a) is finished.

2° (b) Suppose a! > o?. By Lemma 2, we may switch to the non-symmetric
definition of approximating collision local time. Hence, it is enough to check that
<L;—(’E (T), f) converges in probability as & | 0, and that

(173) lim Pe Lz Wf) = pe{W ' @X%N) 450 fed,

(in order to identify the limit). Note that by our assumption (164) we can choose
n satisfying

1 2
(174) (d—al—%)+ <n< %/\d,
and, by Example 26, we have
(175) {X2:0<s<t}ephn®, P-as.,

hence the solution uy*(0, X2- f) makes sense. Let us check (173). Choose ngy such
that 1/ng < t. For n > ng, define

(176a) LE(E 1) = Ly (t) — Ly (L),

(176b) X3 = 1y () X2, 0<s<t

(176¢) P (y) = lpmr(s) X2+ Jo(y) fly), 0<s<t, yeR™
Then

(177) ‘73 o (LX®).5) _ pe—(ul,ué’t(O,X2~f))‘

< |7> e~ (Ex°M.F) _ pe—<L§—gE(1/n,t),f>‘
+ ‘Pe_<L;'€E(1/n’t)’f> _pef<u1,ué’t(0,X2-f)>‘
" "P e_<u1,u(1),t(0,)?2.f)) _p e_<”1’u(11’t(0’)_(2'f)) |

= I®""+ %" + 11
with the obvious correspondence.
3° (b.I) It is easy to see that

1/n
(178) 15" < P(LLE(L), f) = / ds / dy u'* pl (9) 12+ D2W) % - (4) £(0).
0 R4

Now there is a constant c179 = c179(J, o, a?) such that
(179) J < cirgPr*plai_.e,  0<e<l,
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implying

(180) J(x) = e I(z)e) < crrget /R Ay plly — /) s _r )

roe ™ [ ay vl (0 =2)/¢) s 0/

= C179/ dy plai(y —2)p2ar(y) = ciro Plar* P2 (2).
Rd

g

Inserting into (178) gives

e

IA

1/n
C”f”oo/o dS/Rddy prEpy o () p P (y)

€ 1+1/n
(181) CIIflloo/ 1 ds/Rddy s (y) 1% D3 (y).

Since p belongs to Mg, for 6 > 0 we find N = N(J) such that
(182) P < foral e€(0,1] and n > N.
The latter argument also immediately shows that for any ¢ > 0,
(183) lim‘LsOup P(Ly (t),1)
1

e 4+t
< clirnsup/ ds/ dy p'*p; (y) p** p3(y) < oo.
€10 gt Rd

4° (b.II) Let us turn to II*™. By the definition of log-Laplace transform, it is
easy to see that

(184) D (LEA/n0.1) _ po—{putt 0p7m)
By the semigroup property and the definition (176c) of ¥*" we get

(185) ugt(0,9°") = ug® (u(0,4°™),0),

where we set s, := 1/2n. By adopting the argument used in the proof of Theorem
1(ii) of [Myt98a], it is easy to get that [recall notation (176b)]

(186) ult(0,4™) v ult(0,X*"- f) in L', P-as.
1

Moreover, since X2 is truncated we obtain
a8 sup ubtem|L < sup [SL (uht0,45m)] < oo,
0<e<1 0<e<1

and hence by Lemma 16(b),

ug*" (uy (0,4°™),0) = ug™ (ult(0,X>™ . ),0) = up'(0,X>" - f)

uniformly on compacts of R¢, P-a.s. Therefore,

(188) II*" -0 as )0, foral n>1.
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5° (b.III) Finally, we deal with III"™. By Lemma 33 and domination (132),
(189)  u*(0, X% ) (&) = ug" (0, X*™ - f) () < wg” (0,(X* = X*™) - f) (=)

1/n _
< [ as(R2-prpi(a),  weRe
0
Hence,
Pl [ ) (0.5 1) @) - 0.3 ) )
1/n
(190) < Ifll / ds / Ay (2R ) (WD () <5 N,
0 R
Combining (182), (188), and (190), we obtain
(191) limsup (I=N + 115N 4+ 111Ny < 26,
el0
and therefore
(192) limsup [Pe™ (L") _ pe- <“1’”3’t(0’)_{2'f)>‘ < 26.

el0
Since § was arbitrary, claim (173) is verified.

6° (Conclusion) By adopting the proof of (173) (see also the proof of Theorem 1(ii)
in [Myt98a]), we can easily derive that

(199) pletiron) o R0 o

Now claim (b) follows from (193), (183), and (173). ]
Proposition 35 implies the following first moment formulas for L and Kx.

Lemma 36 (Expectations in the superprocess case). For t >0 and f € C,
the following identities hold.

(a) (Collision measure): Under dimension restriction (163), if u € M2,

PUKs(0).f) = [ doutsot @04+ 82 @) f(@).
(b) (Collision local time): Under (164), if p € Mg,

¢
PULx(®.0) = [ ds [ do et ()82 (@) S (o)
0 Rd
Proof. We will start with (b) and give afterwards some hints concerning the simpler
case (a).

1° (b) Without loss of generality, we may assume that ol > a?. Clearly, for
0<r<tand fel,,

(194) P(Lg(t) = Lx(r). ]) = lim P % (1 - e (=0=2x0e1)).

Note that we introduced an r > 0 to have later available an additional smoothing
which simplifies the proof. By the Markov property and Proposition 35(b),

(195) Pe—({LxW-Lx(r)ef) — p=(Xrup'(0.X%cf))
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In order to interchange limit with expectation, we use the following domination

(196) <l—e (Xount(0,%*: Ef>>) < é(}‘(l ult(0,X2 - cf))

ryor
< ||f||oo/ds/ X}(de) X2+ p)_, (@),
But by the expectation formula for X and by independence,
t B _ t 5
P [as [ Xao)X2epl (@) = [ds [ doptapl(e) iepten, (@
r R4 r R4
t
(197) = [as [ doptepl (@) wpl@) < .
T R4

since p is assumed to have finite energy. Thus, by dominated convergence,

(198)  lim pl (1 - e—<)?l’ui"(0,ff2-sf>)) — Plim L (1 _ e—(fi,ul"(O,X2~sf)))_
el0 € €l0 €

Again by dominated convergence, (X},ul'(0,X?-ef)) — 0 as € | 0, hence, the
latter expectation expression equals

P hfg = (Xj, ulbt(0,X?-¢f)) = lim P% (X}, ubt(0,X?-¢f))
1 _
= lsiﬁ)l’Pg (b, Srur(0,X? - ef))
. 1 1 1,,1,t v 2
(199) = P lim (', Z SJu}"(0.X” &),

where in the first and third equality once more we used dominated convergence.
Recall that the non-negative function u!* = u!*(0,X2-¢f) solves

(200) /ds f)*pl . /dsS ub)+P) ().

Inserting into (199), € drops out in the linear term. For the other term we use
domination:

(201) W) < ellfllo / ds' X2 %pl_, (),

where by Lemma 24 and Corollary 4 in [Myt98a] the latter integral expression
belongs to £'*5* P-a.s. Therefore,

(202) é /ds SH((uh)+) )

aﬁ||f||oo< Jassi(([ o Xs,*ps,_s)w»

5 1 1 1+
< € lflloo [l sup Ipprloo ds dw ds Xi*py_ s(93)) :
r<r'<t

IN

AN
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which P-a.s. converges to 0 as € | 0. Hence, the non-linear term is negligeable,
and we get

1 - (-
: 1 Lql, 1t 2 _ 1 2 1
P lim <p < Supt(0, X ef)> P<p ,/Tds (X2 f)*ps>
t
(203) = [as [ ay G epho) 45D ) S0
But as r | 0, the latter double integral converges to the expression claimed in (b).

Now it suffices to note that Lg(r) L 0 as r | 0, P—almost surely, to finish the
proof of part (b) by monotone convergence.

2° (a) In a similar way,

. — lm P2 —(Kx(6)f)
(204 P(Ex(),f) = lip P (1-e )
= lim P 1 (1 _ e—<u1,ué’i()_(f.sf,0)))
el0 £ )
and proceed along the same lines as in the previous step to finish the proof. ™

Lemma 36 will be applied to get the following regularity property of collision
local times:

Corollary 37 (Absolute continuity of collision local time). Let p € My,
and assume (163).

(a) (Representation): We have
t
Lg(t) = /dsK)—((s), t>0, P-as.
0

(b) (Continuity): The M;-valued process t — L (t) is continuous.

Proof. (a) By Proposition 35, a diagonalization argument and the definitions of
collision measures and collision locale times, we can easily get that for all ¢t € Q4
(the set of all non-negative rational numbers), f € bC, and some sequence &, | 0
as n 1 oo,

t

<L)—((t),f> = lim <L§—Z (t),f) = lim ds <K§—(" (s),f>

ntoo ntoo

0
1tds liminf (K3 (s), f) = /tds (Kx(s),f), P-as.
0

0 ntoo

(205)

v

On the other hand, from Lemma 36 we get

t
(206) P(Lg(®),f) = P /0 ds (Kx(s), f)-

Therefore the inequality in (205) is even an equality.
From monotonicity in ¢, we can remove the restriction to ¢t € Q4 . Finally, since
f €bC and t € Ry were arbitrary, claim (a) follows.

(b) is an immediate consequence of (a), finishing the proof. ]
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5. UNIFORM CONVERGENCE OF COLLISION LOCAL TIMES

The purpose of this section is to prove the uniform convergence Theorem 7.
The key argument is the Cauchy property of approximating collision local times in
Lemma 39 below.

5.1. Tightness of A™. As usual, we say that a family of random objects is tight
in low, if their laws form a tight family. In the later procedure we will need the
following property:

Lemma 38 (Tightness of A™). Let {(X", A"):n > 1} be a family of solutions
to the martingale problem (MP):’:’"j as in Theorem 7. Fiz arbitrary T > 0. Then
the family {A" (d(t7 w)) n > 1} of pairs of random measures in MY is tight in
law.

Proof. Let {yk : k> 1} be the sequence of run away functions on R? defined in
Lemma A5. It suffices to show that for i = 1,2,

(207) sup P(AT o) — 0
n>1 ktoo

[where, of course, A" = (A™! A™2)]. By Corollary 20,

. . . T .
(A7 on) = (p'on) — (X7, on) +/ ds (XM, A,ipr) + (martingale)r .
0

Hence,

. . T .
(208) P(AT" o) < (N';‘Pk>+/0 ds PX, | A i)

But from Corollary 23, X™! < X? with X’ the (af,d, ?)-superprocess with-
out immigration and starting from u’. Moreover, from the expectation formula in
Lemma 14(d),

(209) P(Xi,p) = (u'Siw), @ €EDB.

Inserting both into (208) gives

. . T . .
(210) Pz o) < (o) + [ ds PO SE Al

Clearly, the first term at the right hand side tends to 0 as k 1 oo since p! is
a finite measure. But also the second term vanishes by Corollary A6. This gives
statement (207), and we are done. |

5.2. Cauchy property of approximating collision local times. The purpose
of this subsection is to prove the following statement.

Lemma 39 (Cauchy property of approximating collision local times).
Let {(X", A") :n > 1} denote any family of solutions to the martingale problem
(MP)z’ﬁ with pairs o, B satisfying (10) and with p € Mse. Fiz T > 0, and a
function f € bC([0,T] x RY). Then, for any mollifiers J' and J?,

(211) sup P(|<L§§;J1 (1), f) — (L7 (1), f)‘ > 5) — o,

n>1 el,e2]0
for all § > 0.
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Here, by an abuse of notation, an expression as <LY @®,f > in case of a time-space
function f means

(212) (Ly(t), f) = /[0 t] Ix(ds.2) fi(o).

Proof of Lemma 39. 1° (Decomposition of collision local time). Recall from Corol-
lary 23 that the X™ are a.s. dominated by the (a, d, 3)—pair of independent super-

processes X without immigration and with Xo = p, and that, given (X", A®),
(213) X-X" =: X"

is the (e, d, B)-pair of independent superprocesses with immigration A™ starting
from X% = 0. Then decomposition (213) yields the identity

Ei,.] et J et Jt Ei,.]i i .
(214) L% = Ly —L(X1 £n2) L()zn,l,xn,2)7 n>1, 0<e<1, i=1,2.
We want to show that all the terms at the right hand side of (214) satisfy statements
as in (211), then yielding (211).

2° (First term). Fix T > 0. First of all, by Lemma 2 and Proposition 35 and its
proof, we have

(215) 157 L g oin ME, i=12,

€tl0
and hence, the claimed Cauchy property is certainly true for Li—é’ﬂ. Next we want
to deal with the third term at the right hand side of (214). The second term in
identity (214) will be treated in step 9.
3° (Third term: Preparation). In the following procedure, by Lemma 2 we will
often replace approximating collision local times LF" by their asymmetric versions

L**" introduced in (18). So we would like to show at this stage that for fixed
£ €bC([0,T] x RY),

(216)  sup P(‘(L“ T (D), ) = (LT (T),f)‘ >5) — 0,

n,1 xn,2 n,1 xn,2
1 X , X ) (X 1 Xm, ) 61,52“)

for all 6 > 0. . ~
Recall the fact that (X™!, X™2) < X, the (a,d, 3)-pair of independent super-
processes without immigration. This implies that

(217) Lf;n{ xny(T) < 2T, =12

Combined with (215) we see that the family of random measures

@8)  {E%7 sy ([AE2) Lom(®) : n>1, 0<e' <1, i=1,2} e M]

is tight in law.
Take

(219) n € ((d— 1)+, min(az/B2, d)),

which is possible by our assumption (10). Then we may recall again Example 26
to conclude that

(220) {X2:0< s <t} ePH"°, P-as.,



38 FLEISCHMANN AND MYTNIK

For m > 1, set

(221) Bo = {(5,2) € [0,T] xR s (X2, hyp) <m},
with hg , defined in (88). Put

(222) X2™(dz) = X2%(dz)1g,,(s, 1), (s,z) € [0,T] x R%,
and

(223) XZme .= X2 _ X%m,

Note that by (220) and Lemma 3(ii) of [Myt98a], X?™ belongs to P17, P-a.s.
Since

(224) B, T By := {(s,x) €[0,T) xR : (X2 hyp) < oo} as m1 oo,
and

(225) X2(dz)ds =0
B,

(where B¢ denotes the complement of the set B), we obtain that
(226) X2m(dz)ds 1+ X2(dz)ds as m 1 oo.
Similarly, for m,n > 1, set
(227) X2m(dg) = X™2(dz) 1B,.(s, ), (s,x) € [0,T] x R%,
and X™2mc¢ .= X2 _ Xxm2m_ Note that X™>™ < X2™ ¢ BT, and that
(228) xmrme — xn2 _ xndm o grme

4° (Purther decomposition). For fixed f in bC([0,T] x R%), let us bound
(229) \(Lf;;lz{fxn,Z)(T),f)—<L§;§iszx,.,2)(T),f>‘ AR AR

where

(2302) I

‘<L?§:’{TXM2)(T)= f> - <L?}§:’,{fxn,2,m)(T), f> . i=1,2,

(230b) IT5 5 -

2,1—:1“]1 2’52,‘]2
‘<L<Xn,1,Xn,zm>(T)’ 1) =B i (D, f>‘-

5° (Middle term II,E:;,fZ: Preparation). Let us start with IIi:;,fQ. We want to show
that for fixed m,

P
(231) IIf:T’sz —— 0, uniformly in n.

el,e2]0
By dominations as in (217) and tightness as for (218), it suffices to prove
2

sup P 0.

n>1

2,et,J1 2,62,J2
eXp<L(;n,17Xn,2,m)(T)5 _f> - eXp<L(;"!1,Xn’2’m)(T), —f>

el e2]0
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But for this it is sufficient to show that

232 li s
(232) i, o

P exp [ -2 <L?§::1J,1X"’2”") @), f>]

B Pexp[_ <L?;1:f’1Xn,2,m)(T), f>— <Lf§i’,ffxn,2,m)(T),f>H = 0.

For this, we will use the log-Laplace representation from Lemma 14(c).

6° (Reformulation of (232)). In fact, by definition (18) of L2< (and interchanging
the order of integration),

T
e, J? 2,02 >, n,m,et,e?
233) (Ll oy @+ DL @1 = [ ds (27 gz )
) ) 0
with

1) ) = |

RdXs"’z””(dy) [Th + T2)(x —y) fs(y),

0<s<T, zeR% Hence, by Lemma 14(c), applied to X" given (X", A"),

(285) P {exp<L§;§,.:f, snamy D) F LT (1), =) ‘ (x", A”)}
T A 1 _2

P {exp[_/ ds <)(:gn”]'7 w;l,m,&' s€ >] ‘ (xn)Afn)}
0
T 1.2

= exp[—/ <Ag;1 R (R )>],

0

with ul*T(0,¢"’m’51*52) solving (29). Similarly, define

(236) G0 (2) = 2 [ XP2M(Ay) Th(w—y) fily), 0<s<T, weRL
R4

Then, (232) (for fixed m) is equivalent to

P exp [ — /OT <A3;1 , ui’T(O,J"’m’El)>]
_ ’Pexp[— /OT <Ag;1 7 ui,T(0,¢",m,sl,g2)>] ‘ — 0.

237 lim su
( ) el,e2]0 nZI;

7° (Proof of (237)). To verify this we want to apply Proposition 34 with
(238) vi(dy) = XM (dy) f(y)-

First note that by Lemma 38 to every ¢ € (0,1) there exists a compact subset
K°® c MY such that

(239) P (A™'(d(s,2)) € K°) > 1-6, n>1
On the other hand, choose a compact subset C? of D}C,lf such that

(240) P(X?e(C% > 1-4.
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(Here and in similar cases we mean, of course, the restriction of A™! and X? to
the time interval [0,T].) Set

(241) ct = {u epT: 35 e % with v <7 in mT}
and, for k> 1,
(242) Co* = {veC®: |v||—nr <k}

Note that by Lemma 27, C%F is a compact subset of P77,

In the expectation expressions in (237) we now distinguish between two cases.
First we assume that X™2™ ¢ C%% and A™! € K%. Then by Proposition 34 we
get

243 li
SR PR

a0, 9™ (@) = up T (0,4 ) (@) = 0,

uniformly in (s, 2, X™*™) € [0,T] x B x C%* where B is any compact subset of
R<. Therefore,

T
(244) Elliégio Sl;[; /0 ds <AZ;1, u;aT(ijn,m,gl) _ u;,T(0,¢ﬂ,m,gl’52)>‘ _ 07

uniformly on (X™2™ Am™) € C%F x K. This gives (237) if we restrict the ex-
pectations additionally to the event {(X™1™, A™1) e CO%* x K%}
But by (239) and (240),

(245) P ((X”*l’m,A"’l) ¢ OO x K‘f) < P(X2 ¢ C%) + P(A™! ¢ K°) < 26.

Thus, if in (237) we restrict now to the complementary event, we get the bound
44. Since § was arbitrary, (237) follows immediately.

8° (Remaining terms If:’n’z) By (229), to complete the proof concerning (216), it
suffices to show that for § > 0 we can find an m > 1 such that

(246) sup PIZ <6, i=1,2.
n>1, 0<e<1 ’

By (228),
@47) I = (I )| < L5 o) D11

By domination X™! < X1 and definition (18) of asymmetric collision local time,
we may continue with

T
(248) < fllroe / s / R2me(dy) XixTi(y), =12,
0 Rd

where || f||7,0o < 0o by assumption. But X has independent components, hence
X?m¢ and X' are independent, and therefore we can built their expectations
separately. Now, by the expectation formula in Lemma 14(d),

(249) PX,(d2) = p'xp;(2)dz,

hence,

T
(250) Pl < ISl [ ds [ TEme@utepbadie), =12
0 R
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Take &' € (0,T). First we restrict in the previous integral additionally to s < §'.
Here, using

(251) X»me < X? and PX;(dy) = p*xpi(y)dy,

we come to

61
(252) / ds [ dy p®pl(y) p'* py*JL (y).
0 Rd

Arguing as in step 3° of the proof of Proposition 35, we choose a ¢’ sufficiently
small, such that (250) with the integral restricted to s < &' is smaller than /2,
uniformly in n,m,e, and i =1,2.

We restrict now the integral in (250) to ¢’ < s < T. Here we exploit that

(253) sup ||u'* psllec < 00 and dz Ji(z) = 1.
5 <s<T Rd

Thus, to complete the proof of (246), it remains to verify that

T
(254) P/ ds || X2™°|| — 0.
0

mToo
But by (223) and (226),
(255) | X2™C|| N\, 0, P x ds-almost everywhere,

mtoo
and [|X2™°|| < ||X2|| where P [ ds|X2?|| = T||g?|| < oco. Hence, by domi-
nated convergence, (254) follows. This finishes the proof of (246), thus the proof
concerning (216), and hence of the third term at the right hand side of (214).

9° (Second term). It remains to explain the modifications which we need to make
to get also the Cauchy property for the second term at the right hand side of (214).
Instead of condition (219) we work with

(256) n € ((d — az2)+, min(ay /B, d)),

which again is based on (10). Define X!™ and Xbme analogously to (222) etc.
Pass once more to the asymmetric version L? of the approximating collision local
time and bound

(257) (B 1) = (0T (0 1)

analogously to (229). In the definition (234) of the ™™ (z) now X'™ enters
instead of X7%™, and for the log-Laplace expression (235) condition additionally
on X'. The further procedure is even simpler, since we have less n—-dependence.
We skip any further obvious details.

This finishes the proof of Lemma 39 altogether. ]

5.3. Continuous convergence of collision local times. One can easily derive
from Lemma 39 the existence of collision local time for any solution to the mar-
tingale problem (MP)z’ﬁ with p € Mg . The main purpose of this subsection
is to show that the family of approximating collision local times corresponding to
solutions of (MP)z’ﬁ is relatively compact in Ca4q, (the precise meaning of this
will be clear from Proposition 42). But first let us prove the following result.
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Lemma 40 (Existence of collision local times). Let (X,A) be any solution
to the martingale problem (MP)Z"ﬁ with o, B satisfying (10) and p € Mg . Then
the local time Lx exists. Moreover, for any sequence {e,: n > 1} converging to
0 as n 1 oo, there exists a subsequence {e!, : n > 1} such that

(258) L (t) 7, Lx() in M

A
uniformly in t on any compact interval of continuity of t — Lx(t), P—almost
surely.

Proof. Fix arbitrary T > 0 and €, | 0. Let D denote a countable dense subset of
bC ([0, T] x R%). By Lemma 39, for each f € D, and any mollifier J, the limit in
probability

(259) lim (L37(T), f) =t Ix(T. f)

exists and does not depend on the mollifier J. We can use this and a diagonalization
argument to show that along some subsequence ¢/, | 0,

(260) (L7 (T), f) 2 Ix(T.f),  feD, Pas

Define the measures
(261) ve(d(t,2)) = PLY(d(t, 2)) Ljo,11(0)
ptx ptxJo (z) p? x pi () Lo, (t) dt de,

where the inequality follows by the domination X < X and Lemma 14(d). Arguing
as in step 3° of the proof of Proposition 35, it is easy to check that {v. : 0 < e <1}
is tight in M. This combined with (260), Lemma A7 (with d replaced by d+1)
and Lemma 2 implies, that there is a random measure Lx € M such that

IA

(262) L% (d(t,2)) Lo (t) 2 Lx(d(s,2) in MT, Poas
Now we can define the non-decreasing measure-valued process

¢
(263) t o Lx(t,dz) = /Lx(d(s,x)), 0<t<T.

0

Since T' was arbitrary, the process t — Lx(t) can easily be defined for all ¢ > 0.

Moreover, by weak convergence properties of the measures L;’E" we get that P-
almost surely,

(264) L3 (t) = Lx(®) in My
for all points ¢t > 0 of continuity of s — Lx(s). Finally, the uniformity statement
within (258) follows easily by a standard theorem on convergence of monotone

functions (see e.g. Theorem 10.10 in [Do094]). [

Now for any solution (X, A) to prove the uniform in time convergence of L;I"
to Lx (as needed for Theorem 7), it is enough to show that Lx is a continuous
Mi—valued process. The simplest way to do this is to use the continuity of the
Lg—process (Corollary 37) and the domination X < X.
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Corollary 41 (More on collision local time). Let (X,A) be any solution to
(MP)z’ﬁ with o, B satisfying (10) and with p € Ms . Then the following state-
ments hold:

(a) (Continuity): The Mg¢—valued process t — Lx(t) is continuous.
(b) (Convergence on path space): For any sequence e, | 0 there is a sub-
sequence €l | 0 such that

Ly T) Lx in Cpn,, P-a.s.
nrToo

Proof. (a) Use the domination X < X and the convergence
Lk (d(t,2)) 1jo,7(2) = Lx (d(t,2)) 1jo,7(t) in M{, T >0, in P-probability,
=

to get the domination
(265) Lx(d(t,z)) < Lg(d(t,z)).

By Corollary 37, L is continuous, non-decreasing, Ms—valued, and hence Lx is
also continuous.

(b) follows immediately from (a) and Lemma 40. The proof is complete. |
Now we are ready to prove relative compactness of approximating collision local

times as we announced at the beginning of this subsection.

Proposition 42 (Relative compactness in Cpy;). Let {(X",A"): n>1} bea
sequence of solutions to (MP)Z"E as in Theorem 7. Then for each sequence €y, | 0
and ny T oo there is a subsequence {(g},,n}) : k> 1} such that the families

(266) {Ll)’(i’“,k k> 1} and {Lx,,,k k> 1}
are relatively compact in Crq,, P—almost surely.
Proof. Recall the domination

(267) X"< X, n>1, P-as.

By Corollary 41(b) and a simple application of Lemma 2, for any ¢ | 0 we can
find a subsequence €}, | 0 such that

(268) {L;E;“ s k> 1} converges in Crq,, P-a.s.
Then, from (267), for 0 < s <t and f € bC,

@00 | (B0~ (g ens)| < (5 0) - (L o0

X

Hence, by Arcela-Asconi, from (268) we get that for each f € bC,

(270) {t — <L;ii (t),f> k> 1} is relatively compact in C(R4,R), P-a.s.
Adding the fact that for any 7" > 0 the set of measures

(271) {L;’i(s):ogng,o<sgl,nz1}

is P-a.s. tight in My [use again (267)], we get that

(272) {Ll)’:;“ k> 1} is relatively compact in Cpy, a.s.

7ol
"k
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The proof of almost sure relative compactness of {Lx~ : n > 1} goes along the
same lines (use the domination Lx» < Lg, n > 1), so we omit it. |

5.4. Proof of Theorem 7. Let {(X",A"): n > 1} be as in the theorem. Com-
bining Lemmas 39, 40, and a diagonalization argument, we can easily get that for
each sequence €5 | 0 and ny 1 oo there is a subsequence {(5;g yny) s k> 1} such
that for T > 0 and P-a.s.,

l,E;e N ,
@3)  [Eyh @) = (L ®.0)] =2 0. teQun,T], febe
Moreover, by Proposition 42,

(274) {(Ll)’:,:’“,’c ,an;e) k> 1} is relatively compact in C},,, P-a.s.

Hence, the convergence statement in (273) holds uniformly in ¢ on each compact
subset of Ry, that is

1,6} . )
(275) 0235T|<an,c<t),f> (L@ £)] 2 0, T>0, febe,

P—a.s. Since the sequence {(¢x,nk): k> 1} was arbitrary, the proof is finished
by a simple application of Lemma 2 and its proof, and by [Kal97, Lemma 3.2]. m

5.5. Continuity of the map X — Lx. For the proof of Theorem 9, which
is based on construction of the converging sequence of approximating competing
species models, we will need the following result.

Proposition 43 (Continuity of the map X — Lx). For each n > 0, consider
solutions (X™, A™) to (MP)z’ﬂ as in Theorem 7. Suppose that X"— X° as
ntoo in Df\,lf, P-a.s. Then:

(a): Lxn» — Lxo as nt oo, in Cy, in P—probability.

(b): L. = Lxo as nt oo and €, 10, in Crq, in P-probability.

(¢): L7 — Lxo as ntoo and €, 10, in Cry, in P—probability, i =1,2.

Proof. (a) is proved along the lines of the proof of Lemma 3.5 in [EP94, p.135].
That is, Lx is a uniform limit of continuous maps,
(276) o —— Lo, €20,

X X0

and by Theorem 7, Lx is the uniform (in probability space) limit of these mappings
as € | 0. Hence, the limiting mapping is also continuous.
We skip the proof of (b) and (c), since it uses the same reasoning. |

5.6. A general tightness result. Here we will prove some tightness criterion that
will be useful in the proof of Theorem 9 in Subsection 6.2.

Proposition 44 (General tightness criterion). Let (X", A™) be any sequence
of solutions to (MP)z’ﬁ. Suppose that the family A" € C?Mf is tight in law. Then
the family

(277) (X", A") € D}y, x D3y, n>1

7

is tight in law, too.
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Remark 45 (Thightness in C%, ). Note that from Lemma 38 we know the tight-
ness in law of the A" as measures on [0,7] x R?, for any T. However, this propo-
sition requires more from the A™ : namely, to be tight in C%Af . <

Proof of Proposition 44. For the proof it is enough to check that the {X" : n >
1} € D, are tight in law. By the domination

(278) X" < X, n>1,
(recall Corollary 23), it suffices to verify that for (o', ¢?) € ®3 the processes
(279) {((X”’l,(pl), (X™2,0%) : n> 1} € D?(R,,R) are tight in law.

By Aldous’ criterion of tightness (see, for instance, [Wal86, Theorem 6.8]), state-
ment (279) is true if the following two conditions hold:
(i) Foreach t € Q4 , the family of random variables {(Xt"’i, ey:n>1,i=1,2}
is tight in law.
(ii) For any sequence {7, : n > 1} of bounded stopping times and 6, J. 0,

2
(X2 ps,00) = (X200 22 0.

By the domination (278), part (i) follows trivially. Next check (ii). Assume 7, < T,
n > 1. Again by the domination (278),

(280) {(XZHHH ,<p>, <an ,<p> tn > 1} are stochastically bounded.
Hence, it is enough to check that
2
(281) P ‘exp (X2 5, —p) —exp(X" | —cp>‘ % 0.
nlToeo

For this it suffices to demonstrate that
P

(282a) I, = ‘pe—(xfﬁan 20) _ P (Xr 45, 0) (X7, )| Ty 0,
ntoo
(282b) I, = ‘Pe*x%sn #) (X2, ) _ pe= (X7, 2 Ti> 0.

We will verify (282a) since (282b) goes along the same lines with obvious modifi-
cations.
We start with comparing the first term in (282a) with

Tn+0n
( zs,no)].

(283) Pexp[ — (X 5, 20) —

Tn

Then its absolute difference is bounded by

Tn+0n
l—exp[—/ (A’és,Z(p)]

n

(284) P

By our assumption, the processes {A" : n > 1} € CJQMf are tight in law. Therefore,
the expectation (284) will vanish as n 1 oco.
Similarly, we compare the second term in (282a) with

Tn+0n
@9)  Pew| -~ (Xt ) - (X0 - [ ).

n

By the same argument, the difference will converge to 0 as n 1 oo.
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Next we compare (283) with

Tn+0n

250 Pexp| (Xt s 200 - [ (AL up o 20,0))]

n

with u from Definition 13. Its absolute difference is bounded by

Tn+0n
(287) Pop| = [ (AL, 2o - up o 20,0)] )]
Tn
But by Lemma 15(b),
(288) sup  ||2¢° —uy ™ (207,0)|| . — O,
Tn <8<Tn+6n ntoo

and therefore (287) will tend to 0 as n 1 oco.
In a similar way, we compare (285) with

Tn+0n
89 Pewp| ~ (Xt s, 0) - (Xh0)— [ (AL, 0)].

n

By the same reasoning, the difference will vanish as n 1 co.

Since 2¢¢ = u'TTl'gd (2¢%,0), by the exponential martingale Proposition 17 we

can rewrite (286) as

(290) 'Pexp[ — (X2 a0 (20, 0))]
Analogously, (289) equals

(201) Pexp| — (X7, , 2t (¢,0) + o).
But by time-homogeneity,

(202) W (2,0) = ™ (26°,0),
and again by Lemma 15(b),

(293) [ ué® (2¢7,0) — 26| — 0.

ntoo

Recalling domination (278), the difference between (290) and
(294) P exp [ —(x® ,2<p>]

will go to 0 as n 1 oo.
In the same way, (291) approaches (294) as n 1 00, t0o.
Consequently, I, — 0 as n 1 oo, that is, (282a) is true, finishing the proof. =

6. CONSTRUCTION OF THE COMPETING SPECIES MODEL

Here we want to prove Theorem 9, based on approximating competing species
processes which will be constructed afterwards (Subsections 6.3-6.5).



INFINITE VARIANCE COMPETING PROCESSES 47

6.1. Approximating competing species model. Recall from Lemma 2 the ap-
proximating collision local times Ly and L3 of a pair Y = (Y1,V?) € Dy, -
Definition 46 (Martingale problem (MP)Z"ﬂ’)"E). For fixed pairs «,3, and
9 asin (1), p € M}, apair A = (A',A?) € R}, and £ € (0,1], let X® =
(Xe!, X%?) be an F.—adapted process (in Dy, ) such that, for each ¢ = (¢',¢?) €
@2

=+

t
(295) b e (X @) | = (m) +/ ds e—<X§,¢><X§, Aa¢_¢1+ﬁ>
0

¢
—/ (A%(ds), pye Xo®) ¢ >0,
0
is an F.—martingale starting from 0 at time ¢ = 0, where
(296) A° = (AY5A%F) = (VLR NLEE).
Then we say that X° solves the martingale problem (MP)Z"’B e <o

In a sense, (MP)z’ﬁ ¢ describes an approximating competing species model.
Heuristically, each particle with path s — &; in the first population X%! is killed
according to the additive functional t — A! f(f ds X2 x J.(&,), and conversely for
the particles from the second population. Our goal is to show that whenever ¢ | 0,
then the weak limiting points of the solutions to (MP)Z"[3 A< satisfy (MP)Z"ﬁ A
which in turn will give a proof of Theorem 9. But first we need to state the existence

of a solution to (MP)z’ﬂ’)"s.

Proposition 47 (Approximating competing species model). For each choice
of our constants o,B,9,u,\, and €, there is a solution X* to the martingale prob-
lem (MP)z’ﬁ’}"s.

The proof of this proposition is deferred to Subsections 6.3-6.5.

6.2. Proof of Theorem 9. Fix o,3,9,u,\ as in the theorem, and a sequence
€n 40 (as n 1 o00). Consider X from Proposition 47 and A" as in (296).

Lemma 48 (Tightness). The family (X, A*~) € D}, x C3,. is tight in law.

Proof. By Proposition 44, it is enough to prove that the family {A;" : n > 1} of

processes in C%Af is tight in law. But this follows from Proposition 42. [
Based on this lemma, now we prove the following result.

Lemma 49 (Limit points). Let (X, A) be any weak limit point of (X°, A®").
Then

(297) A = (M ILx,\Lx)

holds, and X s a solution to the martingale problem (MP)z’ﬁ’)‘.

Proof. By Lemma 48, we can choose from {(X¢», A°»): n >1} a subsequence
converging in law on D, x C, . By an abuse of notation, we denote this sub-
sequence by the same symbol. Going to the Skorohod space, we may assume that
there exists (X, A) such that

(298) (X, A") — (X, A) in D}y, x Ciy,, P-aus.

ntoo
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But by Proposition 43, convergence of X~ implies that
(299) Aben = \ILben - MLx in Cp,, in P—probability.
nToe

Combining (298) and (299), we get
(300) (Xem, A% o (X,\'Lx ,\’Lx) in D}, xCi,, P-as.

In particular, we get this convergence in the weak sense on the original probability
space, and (297) is true.

The last thing to check is that the X we constructed is a solution to (MP)z’ﬁ A,
By the exponential martingale Proposition 17, for each n > 1, T'> 0, and ¢ € @i,

(801) o Mpr(p) = exp[—<Xiﬂ,utT<so,0)>— / <A3:,u2"<so,0)>],

0 <t <T, is a martingale. Switch again to the Skorohod space where (300) holds.
Since the martingales M¢~(¢) are bounded uniformly in n, they converge to the
martingale

@) o Mile) = exp| - (Xl (0,0)) - [ t<Ads,usT<so,o>>],

0<t<T, with A from (297). Again by Proposition 17, (X, A) solves (MP)z’ﬁ,

and therefore X is a solution of (MP)®#*

PRI finishing the proof. ]

Consequently, based on Proposition 47 (which proof was deferred), we con-

structed a solution to the martingale problem (MP)Z’ﬁ 2 that is, we verified
Theorem 9.

6.3. Outline of the proof of Proposition 47. In the finite variance competing
species model of [EP94], approximating competing species processes had been con-
structed by an application of Girsanov’s theorem. As we have already mentioned,
this “luctionary” tool is not available in our case, so we have to take another root.
Actually, we use tools developed in the previous sections. Since the matter here is
even simpler, we do not provide all the details.

Fix a,8,9,\, u,e as in the martingale problem (MP)z’ﬁ’A’E of Definition 46.
Loosely speaking, for each m > 1 we would like to start from a solution X™ =
(Xm1 X™2) of the following martingale problem (MP)z’ﬁ"\’E’m :

For each ¢ € ®7,

t
(303) b e XTe) o (i) +/ ds e7<x;",<p><xgn, AW_(P1+5>
0

¢
- / <A67m(d8)3 ‘P> e—(X;",cp), t 2 03
0
is a martingale starting from 0 at time ¢t = 0. Here, A*™ is defined as follows:
AS™(ds) = (AUS™(ds), A25™(ds)) = ()\1 J™LLE (ds), A2 jm™2 L2, (ds)),

where

, 2 if ki <g o 2kl B s
(304) Jgt = " "

0 otherwise,
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i = 1,2. That is, on time intervals of length %, starting with an odd multiple

. . s . 1,
of L, only the first population X™! is affected by killing provided by A!Ly:..

Conversely, on the remaining time intervals only the second population X™?2 is
affected by killing using )\2L§(’Em . Clearly, as m 1 oo we expect the weak limiting
points to solve the martingale problem (MP)z”3 2 of Definition 46.

In the following subsections we want to define precisely these processes X™, to
show their tightness in law, and to prove that any weak limit point X* is a solution
to (MP)z’ﬁ’)"E. This will verify Proposition 47.

6.4. Processes with “one-sided” conditioned killing. For i = 1,2, let

(305) (L, F, F., Q! )

Tvp/ivni
be the canonical stochastic basis of the subcritical (o, d, f*)—superprocess X with

continuous killing rate ' : Ry x R¢ — RY, starting at time r > 0 with measure

ut € Mg. That is, X! is time-inhomogeneous Mg—valued Markov, and for ¢’ in
(I)-l- )

(306) (X)) = o (whur)

zmﬁ',n" e ’
where v¥! is the unique non-negative solution to
o . ) ) ) ) 145
— —vbt(x) = Ayivit(x) — kl(z)vii(z) — (vii(z
(307) 50 (@) o VP (@) = KL(2) v} () — (V1 (2))

on (0,t) x R%, with terminal condition vi"! = .
Now, for fixed A = (A!,A?) € RZ and ¢ € (0,1], let
(308) k' =0 and K? := 2X2 X' (w')*J..

That is, atitonomously X1 is the critigal (al,d, B*)-superprocess, and, given a re-
alization X!(w!) of X!, the process X?2 is constructed as a subcritical (a?,d, %)
superprocess with killing at time s at site  given by 2)\2 X1(w!)xJ. (z). Write

(309) Prn(d) = QL o0 Q2 s gunyes, (06°),

w = (w',w?) € °Q x X, for the joint law of X : = (X!, X?) in the present special
case of one-sided conditioned killing. For ¢ = 1,2 denote by F* a right-continuous
filtration generated by X?. Note that the process (X,A) defined by

(310) X1:=0, A':=0 and X?:=X2 A%2.= 2)\2L§.(’5,
solves our martingale problem (MP)z’ﬁ under the law Py ,{-| FL} (implying a

degenerate first component).

Lemma 50 (Another exponential martingale). Let X have the law 1Py as
introduced in (309). Then for any T >0, and ¢ € ®3 ,

t = My(p) == exp|— (X, uf (,0)) —2/\2/[0 - L (d(s,2)) u2 ™ (¢%,0) ()|,
,t] xR4

(with u”(p,0) from Definition 13) is an (F! ® F2)-martingale on [0,T].
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Proof. Fix r € [0,T) and D € F! ® F2. Then, for t € [r,T],

(311) P1lpM(p) = Plp o (Xt T (01,0)) 'P{exp[— <th2,uf,T((p2’0)>

_ 2)\2/[0 ) R‘1L§~(’E(d(s,w)) ujT(w?,O)(x)] ‘ FL ®j:3}_
sU X

Recall that (X, A) defined by (310) solves (MP)Z’ﬁ under P, { | FL}. Hence,
by Proposition 17, the expression inside the conditional expectation in (311) is an
FL ® F2-martingale. Thus, (311) equals

P (1D o~ (XLulT(610) o

exp| = (X227 (%,0)) ~ 28 |

[0,r] xR

2,e s
L3 d(s,2)) 12 (6%,0))] )
= P(ID exp[ —(X2,u2T(%,0)) — 2)\2/[ ] L?{ (d(s, ) uz’T(ch,O)(m)]
0,r]xR4
« P (BT 0) | 1 g ff}).

Now apply Proposition 17 to X! alone without killing [recall (306)-(308)], to see
that the latter conditional expectation equals e_<XT1’“i’T(“’1’O)>. Then we arrive at
the expression P 1p M,.(p). Since r and D were arbitrary, M () has the claimed
martingale property, and the proof is finished. [

Next we alternate the previous construction, that is, we let X = (X1, X2) be
distributed according to

(312) Pn0) = Qi old?) Q1 sy, (097):

In other words, X2 is an autonomous critical superprocess under 2P, ., and then,
conditioned on X2, the process X! is constructed with killing by 2A! X2x.J. .

6.5. Alternating conditional killing. Now we put together the pieces for our
Trotter type construction of the process X™. Let F! denote the right-continuous
filtration generated by X™*% (which we want to construct). On the time interval
[0, 7], let X™ evolve according to the law 'Py . Conditioned on 7}, ® F|, .

. . 1 . 1 2 : 2
starting at time - with X7, let X™ evolve on [, =] according to P%,X?}m'
Continuing this way, we define the process X™.
Set

. . t . . .
(313) Ay®™(dz) = )\’/ L¥m (d(s,w)) jmi and  AS™ = (AbS™ AZE™),
0

Then from the given construction of (X™, A>™) and Lemma 50, it is easy to get
that

(B14) ¢ M) = exp| — (X7 uf (0,0)) - /0 (A5 (0,00,

is an F! ® F?-martingale on [0,T], for any T > 0 and ¢ € &3 . Hence, by the
second part of Proposition 17, (X™, A5™) is a solution to the martingale problem

(MP)Z’ﬁ, for each m > 1 (and the fixed ¢).
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Lemma 51 (Tightness of (X™, A5™)). The sequence
{X™,A45™) : m > 1} € Diy, x C3y,

is tight in low, and any weak limit point of the X™ is a solution to the martingale
problem (MP)z’ﬁ’)"E.

Proof. As we mentioned just before the lemma, {(X™, A=™): m > 1} is a family
of solutions to the martingale problem (MP)z’ﬁ . Hence, by Proposition 44, to
show the tightness in law on Djz\,lf X C/2\4f it is enough to check the tightness of
{A=™: m > 1} in law on C3,, .

By domination X™ < X, we immediately get the domination
(315) A5™ < 2(N Ly NLY),  m> 1L

Since A#&m is a non-decreasing measure-valued process, for any m > 1 and
1=1,2, and L;—’(E is a non-decreasing, continuous, measure-valued process, we im-
mediately get from the domination (315) the tightness of {A%™ : m > 1} in law on
C34, - Altogether, by Proposition 44 we get the tightness of {(X™, A=™): m > 1}
in law on D}y, x Ciy, -

Now let (X, Af) be any weak limit point of {(X™,A=™): m >1}. Then on
an appropriate Skorohod space,

(316) (X™,A5™) — (X, A7), P-as.

m7Too
(by passing to a subsequence if necessary). From the definition of (X™, A5™) it is
easy to see that, as X™ — ;100 X, then

(317) AP — (WL NLYS), P-as.,

m7Too

that is A® = A°. Also, on the same Skorohod space, the martingales M™*(¢p)
defined in (314) converge to the martingale

t
@18 e M) = ep[ - (Xl (0,0)) - [ (45,07 (0,0)].

0<t<T, ¢ € ®. Then by the second part of Proposition 17, (X, A%) is a

solution to (MP)Z"ﬁ , and hence, X solves the martingale problem (MP)Z"ﬁ e
This finishes the proof of Lemma 51. [ ]

With Lemma 51 also the proof of Proposition 47 is finished.

APPENDIX: AUXILIARY FACTS

A.1. Some convergencies in bCe, ([0, 7] x R%). For convenience, here we collect
some standard facts; cf. for instance with [Myt99, Lemma A.4].
Fix T > 1. Introduce G acting on measurable ¢ : [0,7] x R - R by

(A1) (GTY)r(2) == /Tds Ss—rtps (z),  (r,z) €[0,T] x R,

with S and p denoting the semigroup respectively the continuous transition kernel
of the symmetric a-stable process with generator A, := —9(=A)*/2, 0 < a < 2,
¥ > 0. Recall our notation || - ||1,cc introduced in (87).
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Lemma A1l (Relative compactness). For m > 1, let ™ be (real-valued) mea-
surable functions defined on [0,T] x R? such that

(A2) sup [[¢$™||7,00 < 00
m>1

Then the set {GTwm m > 1} is relatively compact in the space bCCO([O,T] X Rd)
of continuous functions on [0,T] x R? equipped with the topology of uniform con-
vergence on compacta.

Proof. First of all, for 0 <r <¢' <T and z € R?,

(A3) / ds Su_rt™ () < 9™ l10 (' — 1),

T
in particular, the set {GT9™ : m > 1} is uniformly bounded on [0,7] x R%. By
Arcela-Ascoli it remains to show its equi-continuity on [0, T]|xC, say, where C C R¢
is compact. For this purpose, consider 0 <r <7’ <T and z,z' € C. Then

(A9 (G @) = @@ < [ as sl @)

T
+ / ds / Ay [per(y=2) = pemr (v = )| [ )]

By (A3), the first term on the right hand side is bounded by ||¢™||7,00 (' — 7). On
the other hand, by a change of variables, the second term is bounded from above
by

T
(A5) ”,(pm”TyOO / ds/ dy |ps+7'77" (y - -Z') - ps(y - -Z'I)|
0 R4

Fix 0 < € < 1. If we restrict the integration in (A5) additionally to s < g, then
the restricted double integral is bounded by 2¢. On the other hand, we can find a
compact set K C R? such that

T+1
(A6) sup / ds / dy ps(y —z) < e.
zeC Jo c

Now fix § € (0,¢) such that for all
(A7) z,o' € C and 0<r <7 <T satisfying |z—2a'|+|r—71'| <4,

we have
T
(A8) / ds /Kdy |Ps4r—r(y — ) —ps(y —2')| < e
Hence, by (A3)-(A8) we get
(A9) [(GTP™)r(2) = (GTY™) (2")| < 5 sup 4™ 7,00 €

for z,z'r,r' asin (A7). Since £ was arbitrary, equi-continuity follows, and we are
done. ]

Corollary A2 (Convergence). If, in addition to the assumptions in Lemma Al,

(A10) liTm lv™ |7 = 0, for each compact set K C RY,
m1Too
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then
(A11) GTyp™ — 0 in bCeo([0,T] x RY).

mtoo

Proof. Fix a compact set C C R%. For any € > 0, take a compact set K C R¢,
such that (A6) is satisfied. Then,

(A12) IGT Y™ Irc < ellp™lIre0 + T ll9™ |7k,
and the claim follows. ]
We need also another version of the previous result:

Lemma A3 (Convergence). Let ¥v™ > 0, m > 0, be (real-valued) measurable
functions defined on [0,T] x R? satisfying

(A13) sup (|9 ||l7,00 < 00
m>0
and such that in M{,
(A14) Y7 (@)dsdz — 4;(z) dsda.
Then,
(A15) Gl s GTU% in Beo([0,T] < RY).

Proof. Tt is easy to check that
(A16) (GTY™)r(@) — (GT¢")(@),  (r,2) €[0,T] x R%.
mToo

Since by Lemma A1, {GT¢™ : m > 1} is relatively compact in bCeo ([0, 7] x RY),
claim (A15) follows. |

For convenience, we add here another simple statement.

Lemma A4 (Uniform convergence). For n > 1, consider f, € C. Suppose

(A17) sup || fallee < o0
n>1
and that
(A18) fn—=0 as ntoo, uniformly on compacta of R%.
Then, for all T > 0,
(A19) sup Syfn — 0 as n?1oo, uniformly on compacta of R
0<s<T

Proof. Fix T > 0 and a compact set C' C R?. Then the set of measures
(A20) {Bo2(dy) = puly — @) dy : (5,2) € (0,T] x C'}

on R? is tight. Consequently, for each § > 0 we can find a compact set Ks C R?

such that p,,(K§) <4, for any (s,z) € (0,T] x R% Therefore it is easy to check

that

(A21) sup <Ns,w 7fn> < 6 sup || falloo + sup |fn(y)| — 6 sup || falleo
0<s<T, zeC n>1 yeK nfoo  p>1

where in the last step we used (A18). By (A17), the claim follows, since J was

arbitrary. =
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A.2. On the fractional Laplacian A, . This subsection is devoted to some el-
ementary properties of the (weighted) fractional Laplacian A, = —9(—A)%/2,
0 < a<2 ¥ >0. Recall first that D(A,) = @, introduced in the beginning
of Subsection 2.1.

Lemma A5 (Run away functions). For k > 1, let ¢ € &4 satisfy pr < 1
and

_ [ 0 for =ze€ By(0),
(@) = { 1 for x€ B;,,(0),

(with By, = Br(0) = {z € R?: |z| < k}). Then

(A22)

(A23) |Anpr] F 0 wuniformly on compacta of R%.

Proof. For the proof, we may assume that 9 = 1 (otherwise, use scaling). The
following representation is well-known, see, e.g., [Yos74, formula (9.11.5)]:

(420 Aap(0) = rons /Owdss—l—a“ [o(@) - SPp ()], ped,

where S denotes the semigroup of Brownian motion in R¢ related to A, and T
is Euler’s Gamma function.

Fix an N > 1, and consider x € By(0). Then, for all k£ sufficiently large we
have o (z) =0 and ¢r(z+y) =0 for all |y| < k— N. Using representation (A24)
for ¢, it suffices to show that

(A25) / ds s_l_a/z/ dy s~ e lvl?/as 0,
0 ly|>k ktoo

which follows immediately by dominated convergence. ]

Corollary A6 (Run away functions). Fiz T > 0 and p € Ms. Then, with
{or : k>1} C &4 from Lemma A5,

T
/ ds (u,Ss|Aacpk|> F 0.
0 o0

Proof. By Lemma A5, |Aspr| = 0 as k1 oo, uniformly on compacta. Hence, by
Lemma A4,

(A26) sup S;|Aqpr| — 0 uniformly on compacta of R,
0<s<T
Since p is finite, this gives the claim. ]

A.3. On weak convergence in M. We need the following simple fact.

Lemma A7 (Sufficient criterion for weak convergence in M;). Let D be a
countable dense subset of the separable Banach space C, and {Y, : n > 1} be
a sequence of random finite measures on R% defined on some probability space
(Q,F,P). Assume that

(A27) (Yn,f) — some Y(f)eRy, feD, P-as,

ntoo

(A28) {PY, : n>1} is relatively compact in M;s.
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Then there is a random finite measure Y on R® such that

(A29) Y, T) Y in Mg, P-as.,
(A30) Y,y =Y(f), feD, P-as.

Proof. Take Qy € F such that the convergence statement in (A27) holds for all
w € Q. Fix such w. We may think of Y,(w) as measures in M¢(R?), where
R? = R?U {oo} is the one-point compactification of R%. By [Do094, Theorems 8.4
and 8.5], it follows from (A27) that there exists a finite random measure Y (w) on
R? such that

(A31) Yp(w) — Y(w) in M¢(RY).

ntoo

The proof will be finished, if we show that

(A32) <Y(w),1{oo}> = 0.
In fact, then
(A33) Yo (w) T) Y(w) in Mg,

implying the claims (A29) and (A30).
Take oy := 1p, with By, = By(0). Clearly, ¢ | 1{o0} =: ¢ as k 1 oo, pointwise
on R?. By monotone convergence

(A34) (Y(w),0x) 4 (Y(w), ) as k1 oo,
hence
(A35) P(Y,01) L P{Y,9) as k1 co.

Assume for the moment that P (Y(w), cp) = 0, then (A32) follows, restricting the
set Qo if needed. But by (A35) and Fatou,

(A36) P(Vg) = lim P (Vr) < Jim liminfP (Y, p0).

n?too
In view of (A28), for any J > 0 there exists N5 > 1 such that

(A37) sup P(Y,,pr) < 6, k> Ns.
n>1

Then (A36) gives P (Y, ) < . Since § was arbitrary, the proof is finished. |

A.4. Some first order considerations of log-Laplace functions. First we
provide the Proof of Lemma 15. Fix t,p,1 as in the lemma.

(a) From the log-Laplace equation (29),

(A38) L™ (.0) (@)~ (@) = ~(Sip(a) — ()
- t+sdr Sf_t((ui’t)“rﬂi) (z), z € R%.
t

By letting £ go to 0 the result follows easily.
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(b) By a minor change in (A38), for s € [t,t + €] we have
1 .

(A39)  —[[uy(p,0) = |

1 t+e—s . 1
< - dr S} (A, H -
- £ H A g ST( (P) oo + £

t+e ) ) 5
| [ arsio, (it )

s

‘ oo

IA

1 t+e—s 1 t+e g
el 2 [ ar i

s
< Al + Nl

where for the last inequality we used the domination

t
(A40) utt(p, ) < Si_,p + / dr' 8¢, ¢,  0<r<t
r

(c¢) From the log-Laplace equation (29),

1

t
(Aa1) S (ui(epen)) -~ i — [ dsSi v

1ot it 1+5°
- g ~/1: ds szr ((us (E()Da 6¢)) )J
so we need only to deal with the last term. But by domination (A40),
(A42) | Sifr((ui’t(sso, 6¢))1+51) ‘ < H (ubt (e, )
o0

< e (|[olloo + tllle,00)

[recall notation (87)]. This implies claim (c), finishing the proof of Lemma 15. m

Proof of Lemma 16. (a) Choose ¢, € bB such that ¢, 1 ¢. By subadditivity
(Lemma 33) and domination, for n > m we immediately get

[uét(pn,0) = ut (o, 0)| < ulH(pn = om,0) < Si_(pn—om) —> 0

n,mtoo

uniformly on compacts of R, for each fixed r < t. This gives the existence of a
continuous limit

(A43) w7 (,0) := lm u'(pn,0).
The fact that u®* solves (29) follows easily by monotone convergence. The unique-
ness argument is standard.

(b) First of all, S¢ 9. — S{_,¢o uniformly on compacts on R?. Since
(A44) [ur*@e- 0l < [Si-ree, 0)llg < esssup foe ()]

by Lemma Al, setting

(A45) Pi(x) = (ub'(pe ,0))l+ﬁi , 0<s<t, zeR’

we have that {G'9°: 0 < e <1} is relatively compact in bCeo([0,%] x R?). Argu-
ing as in the proof of Proposition 34, it is easy to check that each limit point solves
the required equation, and the convergence is uniform on compacts. [
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