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Abstract

We consider the stochastic heat equation with a multiplicative colored noise term

on R
d
for d � 1: First, we prove convergence of a branching particle system in a ran-

dom environment, to the stochastic heat equation with a linear noise term. For this

stochastic partial di�erential equation with more general non-Lipschitz noise coe�-

cients we show convergence of associated lattice systems, which are in�nite dimensional

stochastic di�erential equations with correlated noise terms, provided that uniqueness

of the limit is known. In the course of the proof, we establish existence and uniqueness

of solutions to the lattice systems, as well as a new existence result for solutions to

the stochastic heat equation. The latter are shown to be jointly continuous in time

and space under some mild additional assumptions.
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1 Introduction

The stochastic heat equation considered in this paper is a stochastic partial di�erential

equation (SPDE), which can formally be written as

@

@t
u(t; x) = �u(t; x) + f (t; x; u(t; x)) + � (t; x; u(t; x)) _W (t; x): (1)

Here, u is a random function on R+ �R
d ; where R+ � [0;1); and the operator � denotes

the Laplacian acting on Rd : W is a noise on R+ � R
d that is white in time and colored in

space, for example a spatially homogeneous noise. The coe�cients f and � are real valued

continuous functions on R+ � R
d � R: They are mostly nonlinear, and we pay particular

attention to coe�cients which are not Lipschitz continuous in u:

We are concerned with convergence of rescaled branching particle systems in a random

environment and associated lattice systems, which are in�nite systems of stochastic dif-

ferential equations (SDE), to solutions of (1). Intimately connected to convergence are

questions of existence and uniqueness, for the lattice systems as well as for the SPDE. For

the more delicate case of non-Lipschitz coe�cients, a new existence result is established

through the approximation procedure. In this case, uniqueness has to be shown separately

to assure convergence.

The choice of SPDE and the study of convergence of associated systems to that equation

has been motivated by three factors:

(i) The heat equation with a noise term that is white in space and time arises in studying

the di�usion limit of a large class of spatially distributed (for the most part branching)

particle systems. It is, for example, the weak limit of branching Brownian motion as

well as of lattice systems of reproducing populations. Spatially colored noise re�ects

spatial correlations of solutions to the SPDE. Given the recent focus on interacting

particle systems, it is an intriguing question how the stochastic heat equation with

colored noise relates to such systems or -as an intermediate step- to in�nite systems

of SDEs with correlated noise terms.

(ii) Stochastic heat equations of the form (1), where W is white in space and time, have

function valued solutions only in dimension one. Thus, connections of these SPDEs to

population systems are restricted to a one dimensional state space. Some conditions

on the coe�cients and the noise are known so that the heat equation with colored

noise has function valued solutions in all dimensions. This class of equations can

therefore be expected to o�er a description for population processes in more general

settings. Biologically interesting are in particular the dimensions two and three.

(iii) The particle picture and the approximation by systems of related SDEs provide a

representation of a general class of SPDEs that also arise in other areas of application,

for example in �ltering theory. In our case, the approximation by a system of SDEs

leads to a new existence result for the stochastic heat equation with colored noise

and non-Lipschitz noise coe�cients. Both representations may be exploited further

for numerical purposes or the study of properties of these SPDEs.

In the following we elucidate these points a bit further and point out connections to related

work.
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One of the classical examples for measure valued branching processes is the Dawson-

Watanabe superprocess (see Watanabe [Wat68] and Dawson [Daw75]). It is a process, X;

that takes values in Mf (R
d ); the space of �nite measures on R

d equipped with the topol-

ogy of weak convergence, and can be characterised by the following martingale problem:

Let � 2 C2
b (R

d); the space of bounded continuous functions which are twice continuously

di�erentiable, and let X(�) �
R
Rd

�(x)X(dx): Then

Mt(�) = Xt(�)�
Z t

0

Xs(��)ds; (2)

hM(�)it = �

Z t

0

Xs(�
2)ds; (3)

where M(�) is a martingale with quadratic variation hM(�)i; and � is a constant.

The Dawson-Watanabe superprocess can be obtained as the diffusion limit of branching

Brownian motion. In this population model, individuals independently perform Brownian

paths during their exponentially distributed lifetime, leaving a random number of o�spring

after their death. As approximations one considers then the empirical measure when

particle mass and lifetime are rescaled appropriately,

Xn
t = n�1

X
��nt

ÆY �;n
t

; (4)

where the sum is over all particles � alive at time t: In the n-th approximation, the branch

rate is increased by a factor of n; and each particle contributes a mass 1
n
at its position Y

�;n
t

in the state space. In the limit, the Laplacian in (2) corresponds to the spatial motion,

the quadratic variation (3) re�ects the reproduction with the constant � depending on the

variance of the o�spring distribution as well as on the branching rate.

One may take another step back from these approximating population models. Branching

Brownian motion itself is the di�usion limit of a branching random walk on a lattice, for

example on Z
d: As considered by Dawson [Daw90], one may change the order of limits,

�rst taking the di�usion limit for the reproduction, and then rescaling the motion. The

intermediate step can be described by a lattice system of the form

dxi(t) =
X
j2Zd

mij (xj(t)� xi(t)) dt+ fi (t; xi(t)) dt+ �i (t; xi(t)) dWi(t): (5)

Here, xi describes the population size at lattice point i; and mij migration between site i

and j: In the special case relating to the Dawson-Watanabe superprocess, the migration

is given by the generator of a simple random walk for which mij = 1
2d

if ji � jj = 1
and zero otherwise. Re�ecting that branching is a local property, W i are independent

Brownian motions, and the noise coe�cients �i(t; x) =
p
�x take the same shape as in

the one dimensional Feller di�usion, see [Fel51]. The latter is the di�usion limit of a

Galton-Watson branching process without a spatial component.

While the measure valued process X satisfying (2) and (3) is well de�ned in any dimension,

it has a density, which we denote by u, only in dimension one. It has been shown (see Konno

and Shiga [KS88], Reimers [Rei89]) that u is a solution to the stochastic heat equation

@

@t
u(t; x) = �u(t; x)dt+

p
�u(t; x) _W (t; x); (6)
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where W is a one dimensional space-time white noise. Moreover, one can show (see Blount

[Blo96] and Kotelenez [Kot86]) that (approximate) densities of the particles in a branching

random walk converge directly to the SPDE (6).

The area of superprocesses, in general, has expanded rapidly with the main interest focused

on interacting particle systems. A number of variations of (6), also for white noise and

d = 1; have been linked to generalisations of the Dawson-Watanabe superprocess and other

particle systems. We refer to [Daw91, DP99, Eth00, Per02] for an overview and further

references.

Apart from its connections to population processes, the stochastic heat equation is natu-

rally a prominent example within the area of SPDE. Function valued solutions of the heat

equation with white noise have been studied in one dimension in a multitude of settings,

see for example Dawson [Daw75], Walsh [Wal86], DaPrato and Zabczyk [DZ92], Shiga

[Shi94], Pardoux [Par93], Gyöngy [Gyo98a], and references therein. In higher dimensions,

function valued solutions for the stochastic heat equation with colored noise have been

investigated. The case of a linear noise coe�cient has been treated by Dawson and Salehi

[DS80] and Noble [Nob97]. Manthey and Mittmann [MM99], Kotelenez [Kot92], Peszat

and Zabczyk [PZ97, PZ00], Brze¹niak and Peszat [BP99] and Dalang [Dal99] investigate

solutions with Lipschitz coe�cients. For some results on equations with non-Lipschitz coef-

�cient see amongst others Viot [Vio76], DaPrato and Zabczyk [DZ92], Krylov [Kry96] and

Kallianpur and Sundar [KS00]. However, these earlier results are not directly applicable

to the agenda considered here due to various assumptions like boundedness of the domain,

compactness of the di�erential operator, or nuclear or spatially homogeneous noise.

The paper is organized as follows. In Section 2 we give some notation and state the main

results. In Section 3 we rigorously construct a particle system in a random environment

and show that it converges to the martingale problem associated to (1) with linear noise

coe�cient. In Section 4 we consider related lattice systems with non-Lipschitz noise coe�-

cients and correlated noise terms, and establish their existence and uniqueness in weighted

lp spaces. We then prove existence of the corresponding stochastic heat equations with

non-Lipschitz noise coe�cients on weighted Lp spaces. Convergence of approximate den-

sities of the rescaled lattice systems is shown provided that uniqueness holds for the limit.

Section 5 shows that, under some additional assumptions, the solutions constructed in

section 4 are jointly continuous in time and space.

2 Formulation of the main results

Let (
;F ;Ft;P) be a complete probability space. We use C as a generic constant, which

may change its precise value from line to line. Frequently, we list the quantities that the

constant C depends on in parentheses. Let C1
c be the in�nitely di�erentiable functions

with compact support. The space D(R+ ; E) denotes the càdlàg functions from R+ ! E;

endowed with the Skorohod topology, and C(R+ ; E) the closed subspace of continuous

functions endowed with the supremum norm.

The noises W considered in this work are Gaussian martingale measure on R+ �R
d in the
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sense of Walsh [Wal86]. They can be characterized by their covariance functional

Jk(�;  ) � E [W (�)W ( )] �
Z 1

0

Z
Rd

Z
Rd

�(s; x)k(x; y) (s; y)dxdyds; (7)

for �;  2 C1
c (R+ � R

d ); where W (�) �
R1
0

R
Rd
�(s; x)W (dx; ds): The function k : Rd �

R
d ! R is called the correlation kernel. We remark that some su�cient conditions for the

existence of a martingale measure W corresponding to k are that Jk is symmetric, positive

de�nite and continuous. Thus, necessarily, k(x; y) = k(y; x) for all x; y 2 R
d : Continuity

on C1
c ; is implied, for example, if k is integrable on compact sets.

We note that a general class of martingale measures, spatially homogeneous noises, can

formally be described by (7). Here, k(x; y) = ~k(x� y); and one can show that all spatially

homogeneous noises are of this form if we allow ~k to be a generalised function on R
d :

White noise is probably the most prominent example of this class, which we recover for
~k = Æ0, the delta function. Also, Jk describes a nuclear martingale measure if and only if

k 2 L2(Rd � R
d ): See Sturm [Stu02] pp 18 for more detail.

Here, we focus on colored noises for which k 2 Cb(R
d � R

d): In this case, W is a random

�eld on R+ � R
d : We remark that by letting ~k approach a Æ0-function, this case may be

considered as a �smoothing out� of white noise.

Throughout this work we consider solutions to the formal equation (1) in the mild form in

the sense of the following De�nition 2.1. Let p be the d-dimensional heat kernel

p(t; x; y) =
1

(2�t)
d
2

exp(�jjx� yjj2
2t

): (8)

We will sometimes abuse notation and abbreviate p(t; x� y) = p(t; x; y):

De�nition 2.1 A stochastic process u : 
�R+�Rd ! R, which is jointly measurable and

Ft-adapted, is said to be a (stochastically) weak solution to the stochastic heat equation (1)

with initial condition u0; if there exists a martingale measure W; de�ned on 
; such that

a.s. for almost all x 2 R
d ;

u(t; x) =

Z
Rd

p(t; x; y)u0(y)dy +

Z t

0

Z
Rd

p(t� s; x; y)f(s; y; u(s; y))dyds

+

Z t

0

Z
Rd

p(t� s; x; y)�(s; y; u(s; y))W (dy; ds): (9)

The process u is called a (stochastically) strong solution to (1) if (9) is ful�lled a.s. for

almost all x 2 R
d for a given W:

We assume that the coe�cients f; � : R+ � R
d � R ! R are continuous and satisfy the

following growth condition. For all T � 0; there exists a constant c(T ); such that for all

0 � t � T; x 2 R
d ; and u 2 R;

jf(t; x; u)j+ j�(t; x; u)j � c(T )(1 + juj): (10)

As solution spaces we consider Lp-spaces on R
d for p � 2 with some weight function

 : Rd ! R+ : Set

jjujjp;p =
Z
Rd

ju(t; x)jp(x)dx (11)
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and de�ne

Lp(R
d ) = fu : Rd ! R j jjujj;p <1g: (12)

We write Lp(Rd ) if  � 1: As a choice for the weight function we consider mostly �(x) =
e��jjxjj for � > 0: However, other integrable weight functions, in particular any positive

continuous function that equals � outside a bounded region could be used.

It can be shown by standard methods (see for example Walsh [Wal86] and Sturm [Stu02]

Proposition 3.2.3 for detail in this speci�c case) that mild solutions as in De�nition 2.1

satisfy the corresponding martingale problem,

Mt(�) =

Z
Rd

u(t; x)�(x)dx �
Z
Rd

u0(x)�(x)dx (13)

�
Z t

0

Z
Rd

u(s; x)��(x)dxds�
Z t

0

Z
Rd

f(s; x; u(s; x))�(x)dxds

hM(�)it =

Z t

0

Z
Rd�Rd

�(x)�(y)k(x; y)�(s; x; u(s; x)) � �(s; y; u(s; y))dxdyds: (14)

Here, Mt(�) is a continuous square integrable martingale with given quadratic variation

for a class of test functions � that depends on the regularity of the solution sought. With

the appropriate class of test functions, solving the martingale problem is indeed equivalent

to �nding a stochastically weak solution to (9), see [Stu02] pp 103.

Interpreting u once again as the density of a measure, we note that the martingale problem

(13) and (14) makes sense for measure valued solutions if �(t; x; u) = C�u and f(t; x; u) =
Cfu are linear in the solution u; where C� and Cf are constants. In Section 3 we de�ne

a branching particle system that converges to this solution in a measure sense. We do so

in a more general setting since the arguments are identical but take Cf � 0 for notational

convenience.

In the model we consider, the particles move independently from each other on a locally

compact Polish space E with their motion given by a Feller generator (A;D(A)). At

given times, each particle may branch into two particles or die, or just live on. The main

di�erence to the Dawson-Watanabe superprocess lies in the fact that the distribution of the

branching behavior is dependent on a random environment which is correlated in space but

independent in time: At each branch time we consider an independent copy of a random

�eld � on E. We assume that � is symmetric,

P [�(x) > z] = P[�(x) < �z] for all x 2 E; z 2 R; (15)

and that for some � > 0;
E
�
j�(x)j2+�

�
<1; (16)

uniformly in all x 2 E: The correlation of � at di�erent points in space is given by

k(x; y) = E [�(x)�(y)] 2 Cb(E �E); (17)

vanishing at in�nity. The probabilities for a birth/death event to happen at a branch

time are given by the positive/negative part of the (appropriately truncated) random �eld

evaluated at the location of the particle. These birth/death probabilities are rescaled by
1p
n
in the n-th di�usion approximation. For the rescaled empirical measure Xn de�ned as

in (4) we can then establish the following result:
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Theorem 2.2 Let k 2 Cb(E�E) vanishing at in�nity such that jjkjj1 � K; and Xn
0 ) m

in Mf (E): Assume that for some � > 0; supn E
�
Xn

0 (1)
2+�
�
< 1: Then Xn ) X in

D(R+ ;Mf (E)), where X 2 C(R+ ;Mf (E)) is the unique solution of the following martin-

gale problem. For all � 2 D(A);

Mt(�) = Xt(�)�m(�)�
Z t

0

Xs(A�)ds (18)

is a continuous square integrable FX
t �martingale with

hM(�)it =

Z t

0

Z
E�E

�(x)�(y)k(x; y)Xs(dx)Xs(dy)ds: (19)

The model is inspired by Mytnik [Myt96], who considers a related branching mechanism.

In comparison, branching is a rather rare event in our model: As n ! 1 the particles

just live on for the majority of branch times. As a result, the branching does not give

rise to the white noise term which is present in most superprocesses, in the archetypical

Dawson-Watanabe superprocess as well as in Mytnik's limiting superprocess.

For E = R
d and A = �; any density u of X is a solution to (13) and (14) with � linear

and f � 0; corresponding to a weak solution of the linear heat equation with no drift. For

E = Z
d and A the discrete Laplacian we see that solutions X to the martingale problem

are solutions (in l1) to the lattice system (5) for fi � 0 and �i(t; x) = x; and correlated

Brownian motions Wi:

As in the work by Mueller and Perkins [MP92], nonlinear noise coe�cients can be ex-

pected to arise from the above particle picture by an additional density dependence of the

branching mechanism. In Section 4 we consider such nonlinear noise coe�cients which

may, in particular, be non-Lipschitz. Since in this case we need to show convergence of

approximate densities directly to the solution of the limiting SPDE (rather than in a mea-

sure sense), it is convenient to start with the corresponding lattice systems instead of the

particle model itself (see Funaki [Fun83] and Gyöngy [Gyo98b] for this approach applied

to related systems).

Thus, we �rst consider existence and uniqueness questions of the following system:

xi(t) = xi(0) +

Z t

0

fmi (s;X(s))ds +

Z t

0

�i(s; xi(s))dWi(s); (20)

for all i in a countable index set S: We write X for (xi)i2S with xi 2 R: Here, fm is a

function R+ � R
S ! R

S : For each i; �i is a function on R+ � R ! R; and Wi are real

valued martingales with hWi;Wjit = tkij ; where kij are constants. The lattice system that

interests us in particular is contained in this description by setting for each i 2 S

fmi (t;X) =
X
j2S

mij(xj � xi) + fi(t; xi): (21)

In analogy to the de�nition of solution spaces in the continuous setting, (11) and (12), we

consider solutions with continuous paths in the space

l
p
� = fX 2 R

S j jjXjj�;p <1g; where jjXjj�;p = (
X
i2S

ix
p
i )

1
p (22)

7



is a weighted lp-norm on the index set S and � = (i)i2S 2 l1(S): We de�ne the following

growth and Lipschitz conditions on fm and �i : For any T � 0 there exists a constant c(T )
so that for all 0 � t � T;

jjfm(t;X)jj�;p � c(T ) (1 + jjXjj�;p) ; (23)

jjfm(t;X) � fm(t; Y )jj�;p � c(T )jjX � Y jj�;p; (24)

j�i(t; x)j � c(T )(1 + jxj); (25)

j�i(t; x) � �i(t; y)j � c(T )jx � yj: (26)

Strong existence and uniqueness of lattice systems of the form (20) with independent

noise terms Wi have, for example, been investigated by Shiga and Shimizu [SS80]. With

correlated martingale terms they have not been considered in such detail. However, as we

show in Section 4 existence and uniqueness results for solutions in the space l
p
� carry over

from the uncorrelated systems, leading to the following Theorem.

Theorem 2.3 Let p � 2: Assume also 0 � kij � K for all i; j 2 S; and some constant

K > 0; as well as � = (i)i2S 2 l1(S) with all i > 0. Let fm and �i for i 2 S be

continuous in their components, fm with respect to the product topology on R
S : Suppose

that the growth condition (23) holds for fm and (25) holds for �i and all i 2 S:
Then there exists for each initial condition X(0) 2 lp� a solution X to the in�nite dimen-

sional system (20) with paths in C(R+ ; l
p
�): We have the bound

E [ sup
0�t�T

jjX(t)jjp�;p] < C(T ): (27)

If we furthermore assume that fm satis�es (24) for p = 1 and �i satis�es (26) for all i 2 S;
then solutions to (20) are pathwise unique.

We remark that, as in the result for �nite dimensional SDEs, see [YW71], pathwise unique-

ness together with existence of (stochastically) weak solutions implies the existence of

(stochastically) strong solutions. The following corollary demonstrates that the in�nite

dimensional SDEs, that are used as approximations to the stochastic heat equation, are

covered by Theorem 2.3.

Corollary 2.4 Assume that S � R
d is a lattice embedded in R

d : Let � and X0 be as in

Theorem 2.3, and fm be of the form (21). Consider the weight function �(i) = e��jjijj: If

0 � mij �M vanishes for ji� jj > Cm; where Cm is a constant, and for each i 2 S; fi is
continuous and satis�es the growth condition (25), then there exists a solution to (20) as

in Theorem 2.3. If, in addition, fi and �i are Lipschitz continuous, satisfying (26) for all

i 2 S; then solutions are pathwise unique.

We continue to show that the approximate densities of the appropriately rescaled systems

converge to solutions of the stochastic heat equation with colored noise (9) in the spaces

L
p
� : We start with the following system de�ned on the rescaled lattice 1

n
Z
d. For zn =

(zn1 ; : : : ; z
n
d ) 2 1

n
Z
d we de�ne

dun(t; zn) = �nun(t; zn)dt+ f(t; zn; un(t; zn))dt (28)

+ nd�(t; zn; un(t; zn))W (dt; Inzn);

8



where, denoting the unit vectors on Rd by ei; the operator in the �rst term is given by

�nf(zn) = n2
dX
i=1

�
un(t; zn +

ei

n
) + un(t; zn � ei

n
)� 2un(t; zn)

�
: (29)

The discrete Laplacian �n is the generator of a simple random walk, Y n; on the rescaled

lattice, for which time has been speeded up by a factor 2dn2. Hence, jumps to any neigh-

boring site happen independently at rate n2. The W (t; Inzn) are derived from a colored

noise W on R
d with covariance given by (7) and k 2 Cb(R

d � R
d): Speci�cally,

W (t; Inzn) =

Z t

0

Z
In
zn

W (dx; ds); (30)

where the intervals Inzn are de�ned by

Inzn = [zn1 �
1

2n
; zn1 +

1

2n
)� � � � � [znd �

1

2n
; znd +

1

2n
): (31)

The W (t; Inzn) are correlated one dimensional Brownian motions and we note that for k

bounded we have hW (t; Inzn)i � n�2d; explaining the factor nd in de�nition (28).

For putting (28) in its mild form, we de�ne heat kernel approximations. Set for zn; ~zn 2
1
n
Z
d;

pn(t; zn; ~zn) � ndPz
n

[Y n
t = ~zn] � ndP [Y n

t = ~zn j Y n
0 = zn] : (32)

We extend the lattice systems to all of Rd as step functions. For this de�ne �n(x) � zn

for x 2 Inzn : The associated heat kernels are given by

�pn(t; x; y) � pn(t; �n(x); �n(y)): (33)

Note that �pn is not any more a function of x � y: Instead, we will use the translation

invariance of pn and the fact that �n(x)� �n(y) = �n(x� �n(y)) for all x; y 2 R
d ; and we

abbreviate occasionally �pn(t; x) � pn(t; 0; �n(x)): We also write �pnd ; p
n
d and pd to indicate

the dimension if necessary.

The rescaled lattice systems, un(t; x) � un(t; �n(x)); can now be written in the mild form

for all x 2 R
d ;

un(t; x) =

Z
Rd

�pn(t; x; y)u0(y)dy +

Z t

0

Z
Rd

�pn(t� s; x; y)f(s; �n(y); u
n(s; y))dyds (34)

+

Z t

0

Z
Rd

�pn(t� s; x; y)�(s; �n(y); u
n(s; y))W (dy; ds):

We can now state the main theorems proven in Section 4.

Theorem 2.5 Assume that the coe�cients f(t; x; u) and �(t; x; u) are real valued functions

on R+ � R
d � R that are continuous in x and u; and satisfy the growth conditions (10).

Assume further that E [jju0jjp�;p] < 1; for some p � 2: Let W be a colored noise of the

form (7) such that jjkjj1 � K < 1: Then there exists a (stochastically) weak solution,

u 2 C(R+ ; L
p
�(R

d)); to the stochastic heat equation (1) with respect to W: For any T > 0
there exists a constant C(T ); so that

sup
0�t�T

E
�
jju(t; �)jjp�;p

�
� C(T ): (35)

9



Theorem 2.6 Let f; � and u0 satisfy the conditions of Theorem 2.5. Assume further

that there exist (stochastically) strong solutions, un; to the approximating lattice systems

(34). If in addition pathwise uniqueness holds for the heat equation (1) then convergence

in probability of un to u on the space C(R+ ; L
p
�(R

d)) holds. If weak uniqueness holds for

(1) we obtain weak convergence of un to u on the space C(R+ ; L
p
�(R

d)):

Not surprisingly, pathwise uniqueness and thus convergence of the approximations holds

if the coe�cients satisfy Lipschitz conditions (see [PZ00]). But pathwise uniqueness also

holds for the lattice systems if the drift coe�cients are Lipschitz continuous and � satis�es

the conditions of Yamada and Watanabe [YW71]. For the special case �(t; x; u) =
p
u;

and some conditions on u0 one can also show pathwise uniqueness for the limiting equation

(1) on all of Rd ; see Sturm [Stu02] Chapter 3.3. As the colored noise analogue to the

Dawson-Watanabe superprocess, for which pathwise uniqueness is an open question, this

is a particularly interesting case.

Finally, in Section 5 we show continuity of the solutions obtained in Theorem 2.5. Let C�

be the space of continuous functions on Rd ; endowed with the weighted supremum norm,

jjujj1;� � sup
x2Rd

ju(x)j�(x): (36)

Theorem 2.7 Let u be a solution of (1) with coe�cients that satisfy the growth condition

(10). Let p > 2; d < p � 2; and assume that E [jju0 jjp1;�
p

] < 1; as well as (35). Then

u 2 C(R+ ; C�
p

); and for any T > 0 there exists a constant, C(T ); so that

E [ sup
0�t�T

jju(t; �)jjp
1;�

p

] � C(T ): (37)

3 A particle system in a random environment

In the following, we rigorously construct the branching particle system in a random envi-

ronment in 3.1 and give the proof of Theorem 2.2 in 3.2.

3.1 Construction of the particle system

In keeping track of the particles and their genealogy we follow the construction of Walsh

[Wal86], which has been used by Perkins [Per02], and -in a setting similar to ours- by

Mytnik [Myt96]. Let all particle be labelled by

I = f� = (�0; �1; : : : ; �N )j�0 2 N; �i 2 f1; 2g for i � 1g: (38)

The quantity j�j = N speci�es the generation of the particle. The unique ancestor of

� = (�0; : : : ; �N ) k generations back is denoted by � � k � (�0; : : : ; �N�k). We note

that I is the index set for all possible particles since in our model there are at most two

o�spring. Which particles really exist is decided by the o�spring distribution.

In the n-th approximation, branching events happen at times i
n
for i 2 N. For t 2 R+ ;

we set tn = [nt]

n
. Now let f ~Y �;ng�2I be a collection of independent Feller processes with

10



generator A and ~Y �
0 = 0. The path of a particular particle and its ancestors is then given

by

Y �;n(t) =

(
x�0 +

Pj�j
i=0

~Y
��(j�j�i);n
(t�in�1)^n�1 for t < j�j+ n�1;

� for t � j�j+ n�1:
(39)

Here, x�0 is the initial position of the �rst particle, and � is a �cemetery�-state.

The branching behavior is dependent on the random environment. Let � be as in (15)

to (17). In order to de�ne the approximating particle systems we need to truncate the

random �elds. For all x 2 E set

�n(x) =

8<
:

p
n for �(x) >

p
n;

�
p
n for �(x) < �

p
n;

�(x) otherwise.

(40)

Analogously to (17), we now de�ne

kn(x; y) = E [�n(x)�n(y)] : (41)

Let (�ni )i2N be independent copies of the truncated random �eld �n on E: Now let (N�;n)�2I
be a family of random variables so that fN�;n; j�j = ig are conditionally independent given
�ni , and the position of the particles in the i-th generation at the end of their lifespan.

Denoting by �n+i and �n�i the positive and negative part of the noise respectively, the

conditional o�spring probabilities are given by

P

�
N�;n = 2j�ni ; Y

�;n
i+1
n

�
=

1p
n
�n+i

�
Y
�;n
i+1
n

�
; (42)

P

�
N�;n = 0j�ni ; Y

�;n
i+1
n

�
=

1p
n
�n�i

�
Y
�;n
i+1
n

�
; (43)

P

�
N�;n = 1j�ni ; Y

�;n
i+1
n

�
= 1� 1p

n
j�ni j

�
Y
�;n
i+1
n

�
: (44)

According to the o�spring distribution we trim the branching tree down to its existent

particles. For any particle � = (�0; : : : ; �N ) we write � �n t whenever the particle � is

alive at time t, which is the case if and only if � had an unbroken line of ancestors. Thus,

� �n t for all t with ntn = N if furthermore N��i;n � �N�i+1 for all i = 1; : : : ; N:

Lastly, we need to de�ne a �ltration. It will be the natural �ltration generated by the

process,

Fn
t = �

�
fY �;n; N�;n

��j�j < ntng [ fY �;n
s

��tn � s � t; j�j = ntng
�
: (45)

We remark that the environment is not a part of the �ltration, and will therefore be

averaged in each step. In the studies of random media this is called the �annealed� case

in contrast to the �quenched� case, where one considers statements for almost all random

environment. The quenched case of a similar model to the one considered here, called the

parabolic Anderson model, has be studied in some detail, see for example [CM94].

For the branching times tn; we also de�ne a discrete �ltration,

~Fn
tn

= �
�
Fn
tn
[ fY �;njj�j = ntng

�
;

11



that will be used later in conditioning. Note that ~Fn
tn

= Fn
(tn+n�1)�

includes the sigma-

algebra generated by the motion of the particles born at time tn; but not that generated

by their o�spring distribution or the random environment at time tn + n�1:

Before proceeding to the proof of Theorem 2.2 we put Xn into a form which gives an

intuitive idea how the limit emerges. For � 2 D(A); � �n tn and t 2 [tn; tn + n�1) we
de�ne the Fn

t -martingales

M
�;n
t (�) = �(Y �;n

t )� �(Y �;n
tn

)�
Z t

tn

A�(Y �;n
s )ds: (46)

Thus, we have for t 2 [tn; tn + n�1);

Xn
t (�)�Xn

tn(�) = n�1
X

��ntn

�
�(Y �;n

t )� �(Y �;n
tn

)
�

(47)

= n�1
X

��ntn

M
�;n
t (�) +

Z t

tn

n�1
X

��ntn

A�(Y �;n
s )ds:

For the di�erence of measures between two branch times we obtain

Xn
tn+n�1

(�)�Xn
tn(�) = n�1

X
��ntn

�
�(Y �;n

tn+n�1
)N�;n � �(Y �;n

tn
)
�

(48)

= n�1
X

��ntn

�(Y �;n

tn+n�1
)(N�;n � 1) + n�1

X
��ntn

M
�;n

tn+n�1
(�)

+

Z tn+n
�1

tn

n�1
X

��ntn

A�(Y �;n
s )ds:

By adding all the di�erences from (47) and (48) we obtain

Xn
t (�) = Xn

0 (�) + n�1
X
sn<tn

X
��nsn

�(Y �;n

sn+n�1
)(N�;n � 1)

+

 
n�1

X
sn<tn

X
��nsn

M
�;n

sn+n�1
(�) + n�1

X
��ntn

M
�;n
t (�)

!

+

Z t

0

Xn
s (A�)ds

� Xn
0 (�) +M

b;n
tn

(�) +M
r;n
t (�) +

Z t

0

Xn
s (A�)ds: (49)

The term M
b;n
tn

(�) is a discrete martingale with respect to the �ltration ~Fn
tn
; as can be

easily by conditioning appropriately and using the fact that for � �n tn;

E

h
(N�;n � 1)

��� ~Fn
tn

i
= E

�
1p
n
�n+j�j

�
Y
�;n

tn+n�1

�
� 1p

n
�n�j�j

�
Y
�;n

tn+n�1

� ���Y �;n

tn+n�1

�

=
1p
n
E

h
�nj�j

�
Y
�;n

tn+n�1

� ��Y �;n

tn+n�1

i
= 0;

because of the symmetry condition (15). The term M
r;n
t (�) is an Fn

t -martingale as a sum

of martingales. We subsequently show that M r;n becomes negligible in the limit whereas

12



the martingale M b;n converges to M in (18) and its quadratic variation to (19). We get a

sense of this by calculating hM b;ni. We note �rst that

E

h
(N�;n � 1)2

�� ~Fn
tn

i
=

1p
n
E

h
�n+j�j + �n�j�j

�� ~Fn
tn

i

=
1p
n
E

h
j�nj�jj(Y

�;n

tn+n�1
)
�� ~Fn

tn

i
(50)

E

h
(N�;n � 1)(N�0;n � 1)

�� ~Fn
tn

i
=

1

n
E [�n+j�j �

n+
j�0j + �n�j�j �

n�
j�0j � �n+j�j �

n�
j�0j � �n�j�j �

n+
j�0j

�� ~Fn
tn
]

=
1

n
E

h
�nj�j(Y

�;n

tn+n�1
)�nj�0j(Y

�0;n

tn+n�1
)
�� ~Fn

tn

i
=

1

n
kn(Y

�;n

tn+n�1
; Y

�0;n

tn+n�1
); (51)

where we have, for notational brevity, not always explicitly stated where � is evaluated.

By conditioning we obtain with (50) and (51),

E

h
(M b;n

tn+n�1
(�))2 j ~Fn

tn

i
= (M b;n

tn
(�))2 + n�2

X
��ntn

�(Y �;n

tn+n�1
)2E

h
(N�;n � 1)2 j ~Fn

tn

i

+n�2
X
��ntn
�0�ntn
�6=�0

�(Y �;n

tn+n�1
)�(Y �0;n

tn+n�1
)E
h
(N�;n � 1)(N�0;n � 1) j ~Fn

tn

i

= (M b;n
tn

(�))2 + n�2
X

��ntn

�(Y �;n

tn+n�1
)2
�

1p
n
E

h
j�nj�jj(Y

�;n

tn+n�1
) j ~Fn

tn

i

� 1

n
kn(Y

�;n

tn+n�1
; Y

�;n

tn+n�1
)

�

+n�3
X
��ntn
�0�ntn

�
E

h
�(Y �;n

tn+n�1
)�(Y �0;n

tn+n�1
)kn(Y

�;n

tn+n�1
; Y

�0;n

tn+n�1
) j ~Fn

tn

i

��(Y �;n
tn

)�(Y �0;n
tn

)kn(Y
�;n
tn

; Y
�0;n
tn

)
�

+

Z tn+n
�1

tn

Z
E�E

�(x)�(y)kn(x; y)X
n
sn
(dx)Xn

sn
(dy)ds

= (M b;n
tn

(�))2 + �
1;n
tn

(�) + �
2;n
tn

(�)

+

Z tn+n
�1

tn

Z
E�E

�(x)�(y)kn(x; y)X
n
sn
(dx)Xn

sn
(dy)ds:

The quadratic variation of M b;n is thus given by

hM b;n(�)itn =
X
sn<tn

E

h
(M b;n

sn+n�1
(�))2 � (M b;n

sn
(�))2 j ~Fn

sn

i
(52)

=
X
sn<tn

�1;nsn (�) +
X
sn<tn

�2;nsn (�)

+

Z tn

0

Z
E�E

�(x)�(y)kn(x; y)X
n
sn
(dx)Xn

sn
(dy)ds:

13



3.2 Proof of Theorem 2.2

The proof of convergence proceeds in several well known steps. First, we show tightness

of the sequence in D(R+ ;Mf (Ê)); where Ê is the compacti�ed space. This implies rela-

tive compactness and thus the existence of a convergent subsequence in that state space.

We then show that all limit points of the sequence are in C(R+ ;Mf (E)) and that they

are solutions to the martingale problem given by (18) and (19). The uniqueness of the

martingale problem �nally implies convergence of the particle system.

In order to show tightness of the measures Xn in D(R+ ;Mf (Ê)) we start with several

lemmas. We de�ne for a process Y in D(R+ ;R); ÆYt � Yt � Yt�; specifying the heights of

the jumps of the process Y:

Lemma 3.1 There is an � > 0 such that for all T � 0 and � 2 D(A) bounded

(i) E
�
sup0�t�T X

n
t (�)

2+�
�
is uniformly bounded in n.

(ii) E

h
sup0�t�T M

b;n
tn

(�)2+�
i
is uniformly bounded in n:

(iii) E

h
sup0�t�T jÆM

b;n
tn

(�)j2+�
i
! 0 as n!1:

PROOF. We �rst obtain an Lp(
)-estimate on hM b;n(�)itn as given in (52). For 0 � t � T

and p � 1 we have for C
(p)
1 (�) � E

h
j
P

sn<tn
�
1;n
sn (�)jp

i
;

C
(p)
1 (�) �

�
jj�jj212(1 +K)p

n

�p

E

" 
n�2

X
sn<tn

X
��nsn

1

!p#
(53)

�
�
jj�jj212(1 +K)p

n

�p

T p�1
Z tn

0

E
�
Xn
sn
(1)p

�
ds;

where we have used the fact that, for all x 2 E, E [j�n(x)j] � E [j�n(x)j2] 12 =
p
kn(x; x) �p

K � 1 +K; as well as Jensen's Inequality.

Let T (j) be the semigroup on Ej of j independent motions with generator A, and de�ne

for x; y 2 E the function dn(x; y) = �(x)�(y)kn(x; y). Then,

C
(p)
2 (�) � E

"
j
X
sn<tn

�2;nsn (�)jp
#

(54)

= E

h
jn�3

X
sn<tn

� X
��nsn
�0�nsn
�6=�0

(T
(2)
1
n

� I)dn(Y
�;n
sn

; Y �0;n
sn

)

+
X

��nsn

(T
(1)
1
n

� I)dn(Y
�;n
sn

; Y �;n
sn

)
�
jp
i

� max
i=1;2

jj(T (i)
1
n

� I)dnjjp1E
�
j
Z tn

0

Xn
sn(1)

2dsjp
�

� (jj�jj21K)pT p�1
Z tn

0

E
�
Xn
sn(1)

2p
�
ds:
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Note that the last line follows from jjdnjj1 � jj�jj21K and T (j) being a contraction semi-

group as well as Jensen's Inequality. Similarly,

C
(p)
3 (�) � E

�
j
Z tn

0

Z
E�E

�(x)�(y)kn(x; y)X
n
sn
(dx)Xn

sn
(dy)dsjp

�
(55)

� (jj�jj21K)pT p�1
Z tn

0

E
�
Xn
sn
(1)2p

�
ds:

We also need a bound on the jumps of M b;n(�). For doing this we de�ne ÆM
b;n
tn

(�) =

ÆB
1;n
tn

(�) + ÆB
2;n
tn

(�), where

ÆB
1;n
tn

(�) = n�1
X
��ntn

�(Y �;n

tn+n�1
)

�
N�;n � 1� 1p

n
�nj�j(Y

�;n

tn+n�1
)

�
;

ÆB
2;n
tn

(�) = n�1
X
��ntn

�(Y �;n

tn+n�1
)
1p
n
�nj�j(Y

�;n

tn+n�1
):

Indexed lexicographically by � �n tn and conditioned on �( ~Fn
tn
[ �nj�j); each ÆB

1;n
tn

(�) is

a discrete martingale with respect to its natural �ltration since E [(N�;n � 1)j�nj�j(x)] =
1p
n
�nj�j(x): The term C

(p)
4 (�) � E [sup0�t�T jÆB

1;n
tn

(�)j2p] can be bounded by using the

martingale properties,

C
(p)
4 (�) � E

2
4 X
0�tn�T

jÆB1;n
tn

(�)j2p
3
5 (56)

�
X

0�tn�T

E

h
E

h
jÆB1;n

tn
(�)j2p

����( ~Fn
tn [ �

n
j�j)
ii

� C(
jj�jj1
n

)2p
X

0�tn�T

�
E

�
sup
��ntn

jN�;n � 1� 1p
n
�nj�j(Y

�;n

tn+n�1
)j2p
�

+E

" X
��ntn

E

�
(N�;n � 1� 1p

n
�nj�j(Y

�;n

tn+n�1
))2
����( ~Fn

tn
[ �nj�j)

�!p#�

� C(
2jj�jj1
n

)2pn

Z T

0

�
1 + npE

�
Xn
tn(1)

p
��
dt;

where in the third inequality we have used Burkholder's Inequality for discrete martingales

(see [Bur73]) resulting in some constants C: For the fourth inequality note that jN�;n �
1� 1p

n
�nj�j(Y

�;n

tn+n�1
)j � 2: We are left to estimate ÆB2;n(�) :

C
(p)
5 (�) � E

"
sup

0�t�T
jÆB2;n

tn
(�)j2p

#
(57)

�
X

0�tn�T

E

"
jn�1

X
��ntn

�(Y �;n

tn+n�1
)
1p
n
�nj�j(Y

�;n

tn+n�1
)j2p
#

� n1�pjj�jj2p1 sup
x2E

E
�
j�(x)j2p

� Z T

0

E

�
sup
0�s�t

Xn
sn
(1)2p

�
dt;
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where we have �rst applied Jensen's Inequality to the particle sum. Now, because A is a

conservative operator we have for � � 1 that A� � 0. Thus we obtain from (46) and (49),

Xn
t (1) = Xn

0 (1) +M
b;n
tn

(1). By the same version of Burkholder's Inequality as above and

for � small enough as in (16), setting p = 1 + �
2
; it now follows that

E

"
sup

0�t�T
Xn
t (1)

2+�

#
� C

 
1 + E

"
sup

0�t�T
M

b;n
tn

(1)2+�

#!
(58)

� C

 
1 + E

h
hM b;n(1)i1+

�
2

T

i
+ E

"
sup
tn�T

jÆM b;n
tn

(1)j2+�
#!

� C(T;K)

�
1 +

Z T

0

E

�
sup
0�s�t

Xn
s (1)

2+�

�
ds

�
:

The last line and the choice of the constant C(T;K); which is independent of n; followed

from (53) to (55) and (56) as well as (57). But the function T 7! E
�
sup0�t�T X

n
t (1)

2+�
�
<

E [(Xn
0 (1)2

nT )2+�] is a bounded measurable function, and thus we can apply Gronwall's

Lemma to obtain the bound E
�
sup0�t�T X

n
t (1)

2+�
�
� C(T;K): This completes the proof

of (i) since E
�
sup0�t�T X

n
t (�)

2+�
�
� jj�jj2+�1 E

�
sup0�t�T X

n
t (1)

2+�
�
:

Property (ii) follows now from the calculations in (58) with an additional constant depend-

ing on jj�jj1 and the boundedness of the mass shown in (i).

Property (iii) follows from (56) and (57) combined with the boundedness of the total mass

shown in (i). 2

Using the above Lemma 3.1(i) we can now show that both, M r;n(�) as well as the � terms

in (52), become indeed negligible.

Lemma 3.2 For all T > 0;� 2 D(A), limn!1 E
�
sup0�t�T M

r;n
t (�)2

�
= 0:

Since the motion of the particle system is no di�erent from that of the Dawson-Watanabe

superprocess considered by Perkins [Per02] in the same set-up we may simply refer to his

Lemma II.4.3 for proof. To show convergence of the remaining terms we need the following

lemma which is a consequence of condition (16), see [Stu02] Lemma 6.2.1 for proof.

Lemma 3.3 sup(x;y)2E�E jkn(x; y)� k(x; y)j ! 0; as n! 0:

Lemma 3.4 We have for i = 1; 2; � 2 D(A) and all T � 0,

E

"
sup

0�t�T

X
sn<tn

�i;nsn (�)

#
! 0:

PROOF. For i = 1 the statement follows immediately from (53) because of the boundedness

of the total mass (Lemma 3.1(i)). For i = 2 we refer to (54) combined with Lemma 3.1(i)

and note the fact that for i = 1; 2 and n ! 1, jj(T (i)
1
n

� I)dnjj1 ! 0: The latter follows

since jjdn� djj1; where d(x; y) � �(x)�(y)k(x; y); converges to zero by Lemma 3.3. Also,

jj(T (i)
1
n

� I)djj1 converges to zero because of the strong continuity of the semigroups. 2

We now show that the martingale as well as the integral part of Xn are tight.
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Lemma 3.5 For all � 2 D(A) we have that M b;n(�) and hM b;n(�)i as well as Cn
t (�) �R t

0
Xn
s (A�)ds are C-tight sequences in D(R+ ;R).

PROOF. Lemma 3.1(ii), together with Markov's Inequality and Burkholder's Inequality,

implies that M
b;n
tn

(�) and hM b;n(�)itn are tight in R for any �xed t � 0: To complete the

tightness proof we estimate for 0 � t � T and 0 � u � Æ; using (52) and the calculations

in (53) to (55),

E

"
sup

0�t�T
jhM b;n(�)i(t+u)n � hM b;n(�)itn j

#
(59)

� (u+
1

n
) C(jj�jj1;K)

 
1 + E

"
sup

0�t�T+Æ
Xn
t (1)

2

#!
:

Due to Lemma 3.1(i) this converges to zero uniformly in n as Æ ! 0: Theorem 8.6 of

Chapter 3 in [EK86] now implies the tightness of hM b;n(�)i: The tightness of M b;n(�)
follows exactly with the same calculation by observing that

E

h
jM b;n

(t+u)n
(�)�M

b;n
tn

(�)j2
i
� E

h
jhM b;n(�)i(t+u)n � hM b;n(�)itn j

i
:

It remains to show C-tightness of Xn: For the quadratic variation we just need to observe

according to Proposition VI.3.26 of [JS87] that

P

"
sup

0�t�N
jÆhM b;n(�)itn j > �

#
� 1

�
E

"
sup

0�t�N
jhM b;n(�)itn+ 1

n
� hM b;n(�)itn j

#
;

which converges to zero by (59). For M b;n(�) itself, the same condition has already been

shown in Lemma 3.1(iii). The arguments for Cn
t (�) follow the same pattern using the

boundedness of jjA�jj1 and Lemma 3.1(i). 2

Denote by Ê = E [ � the one point compacti�cation of E: The generator A and its

semigroup Tt are extended to Ê by setting for f 2 C(Ê), Ttf = f(�) + Tt(f � f(�)):

Proposition 3.6 The Xn are a tight sequence in D(R+ ;Mf (Ê)) and all limit points are

continuous.

PROOF. By (49), Xn
t (�) = Xn

0 (�) +M
b;n
tn

(�) +M
r;n
t (�) + Cn

t (�): Here, the �rst term

converges weakly by assumption, the branching part M b;n(�) and Cn(�) are C-tight in

D(R+ ;R) by Lemma 3.5. The martingaleM r;n(�) converges to zero in C(R+ ;R) in L
2(
)

by Lemma 3.2 so certainly also in law. Thus Xn(�) is C-tight in D(R+ ;R) for � in

a dense subset of Cb(Ê). As Mf (Ê) is compact, the compact containment condition is

ful�lled naturally, and thus [RC86] now implies tightness in D(R+ ;Mf (Ê)). All limit

points X must have continuous sample paths since X(�) is continuous for � in a dense

subset of Cb(E): 2

Now, let Xnk be a subsequence which converges weakly in the space D(R+ ;Mf (Ê)):
By Skorohod's Representation Theorem we can �nd a probability space and on it a se-

quence ~Xnk such that L(Xnk) = L( ~Xnk) with ~Xnk converging to ~X almost surely in

D(R+ ;Mf (Ê)):
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Lemma 3.7 For any a.s. convergent subsequence ~Xnk ; ~M b;nk
t (�) converges in probability

for each t � 0 and � 2 D(Â): The limit is a square integrable continuous martingale,

M(�); with quadratic variation given by (19).

PROOF. By the continuity of the limit, for all t � 0; sup0�s�t j ~Xnk
s (�) � ~Xs(�)j ! 0

a.s., and so
R t
0
~Xnk
s (Â�)ds!

R t
0
~Xs(Â�)ds a.s.. By Lemma 3.2, sup0�s�tM

r;n
s (�)! 0 in

L2(
). Thus,

~M b;nk
t (�) = ~Xnk

t (�)� ~Xnk
0 (�)� ~M r;nk

t (�)�
Z t

0

~Xnk
s (Â�)ds (60)

converges in probability on D(R+ ; Ê): The limit is a square integrable martingale because

of Lemma 3.1(ii). It is continuous since all the terms in (60) have continuous limits. It

only remains to show that the quadratic variation converges to the appropriate expression.

Thus, consider a.s.

j
Z tn

0

Z
Ê�Ê

�(x)�(y)knk(x; y)
~Xnk
snk

(dx) ~Xnk
snk

(dx)ds

�
Z t

0

Z
Ê�Ê

�(x)�(y)k(x; y) ~Xs(dx) ~Xs(dx)dsj

�
Z tn

0

Z
Ê�Ê

�(x)�(y)jknk(x; y)� k(x; y)j ~Xnk
snk

(dx) ~Xnk
snk

(dx)ds

+j
Z t

0

(1fs�tng

Z
Ê�Ê

�(x)�(y)k(x; y) ~Xnk
snk

(dx) ~Xnk
snk

(dx)

�
Z
Ê�Ê

�(x)�(y)k(x; y) ~Xs(dx) ~Xs(dx))dsj:

Here, the �rst term converges to zero by Lemma 3.3 and Lemma 3.1(i). The second term

converges since ~Xnk
tnk

� ~Xnk
tnk

! ~Xt � ~Xt a.s. on Mf (Ê � Ê) according to Lemma 2.1.2

of [Daw91]. The remainder terms of the quadratic variation, see (52), converge to zero in

L1(
) due to Lemma 3.4. Thus, the expression (19) is the a.s. limit of h ~M b;nk(�)it. 2

Lemma 3.8 The limit takes values in space C(R+ ;Mf (E)):

The proof follows standard arguments, see [Stu02] p102 for detail. The proof of Theorem

2.2 is now complete upon noting that following result which is contained in the main

theorem of Mytnik [Myt96].

Theorem 3.9 Solutions to the martingale problem (18) and (19) are unique in distribu-

tion.

The proof is based on the observation that X would be dual to itself if it was su�-

ciently regular: If u and v are the densities of two independent processes that satisfy the

martingale problem (18) to (19), then it would follow that E
�
exp(�

R
E
ut(x)v0(x)dx)

�
=

E
�
exp(�

R
E
u0(x)vt(x)dx)

�
: For proving uniqueness, it su�ces then to construct a suitably

regular approximation to X; and apply an approximate duality argument.
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4 Convergence to the heat equation

Here, we outline �rst the proof of Theorem 2.3. follows the arguments of Shiga and Shimizu

[SS80] closely, and we will therefore only be explicit about the necessary modi�cations. We

then prove Corollary 2.4, which shows that the stepping stone models approximating the

heat equation ful�ll the conditions of Theorem 2.3.

Subsequently, after citing some auxiliary lemmas, we give the proof of Theorem 2.5 and

Theorem 2.6. We �rst show tightness of the rescaled systems. Thus, we are able to prove

existence of weak solutions to the heat equation with colored noise for continuous coe�-

cients that obey a linear growth bound, see Theorem 2.5. When the strong existence of the

approximating systems and uniqueness of the SPDE, well-known for Lipschitz coe�cients,

and for non-Lipschitz coe�cients investigated in [Stu02], is known, Theorem 2.6 establishes

convergence of the approximations.

4.1 Proof of Theorem 2.3

We approximate the solution X to (20) by �nite dimensional di�usions. So choose Sn � S

�nite such that Sn " S, and let Xn be the solution of the di�usion

xni (t) = xi(0) +

Z t

0

fmi (s;Xn(s))ds+

Z t

0

�i(s; x
n
i (s))dW

n
i (s)

for i 2 Sn: Set x
n
i (t) = xi(0) for i =2 Sn. Note that the W n

i can be represented by a

linear combination of at most n independent Brownian motions. Thus, existence of weak

solutions with continuous sample paths is a classic result, see for example, Theorem 3.10

of Chapter 5 in [EK86].

The key of the proof is to obtain a uniform bound on the approximating �nite dimensional

solutions Xn in the norm (27), which can then be used to bound temporal di�erences in

the same norm.

In order to be able to apply Gronwall's Lemma we use a stopping time argument and de�ne

T (N;n) = infft � 0 j jjXn(t)jj�;p � Ng. Now, we consider

gn;N (T ) � E

"
sup

0�t�T^T (N;n)

jjXn(t)jjp�;p

#
(61)

� C (
X
i2S

ijxi(0)jp + E

"
sup

0�t�T^T (N;n)

X
i2Sn

i

����
Z t

0

fmi (s;Xn(s))ds

����
p
#

+ E

"
sup

0�t�T^T (N;n)

X
i2Sn

i

����
Z t

0

�i(s; x
n
i (s))dW

n
i (s)

����
p
#
) :

While the �rst term is bounded by assumption, the next two terms can be bounded by

C(c; T;K)(1 +
R T
0
gn;N (s)ds) :

E

"
sup

0�t�T^T (N;n)

X
i2Sn

i

����
Z t

0

�i(s; x
n
i (s))dW

n
i (s)

����
p
#
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�
X
i2Sn

iE

"
sup

0�t�T^T (N;n)

����
Z t

0

�i(s
0; xni (s

0))dW n
i (s)

����
p
#

� C(p)T
p
2
�1
X
i2Sn

ikiiE

"Z T^T (N;n)

0

j�i(s0; xni (s0))jpds
#

� C(p; c; T;K)

�
1 +

Z T

0

gn;N (s)ds

�
;

where we have used Burkholder's Inequality and Jensen's Inequality as well as the growth

condition (25) on the �i. The term involving fm is estimated similarly using (23). Thus,

by Gronwall's Lemma, gn;N (T ) is bounded by a constant that is independent of n and

N: The sample paths are a.s. continuous for each n and therefore bounded on [0; T ],
albeit not uniformly. This implies P[T (N;n) � T ] ! 0 as N ! 1; and as a conse-

quence limN!1 sup0�t�T^T (N;n) jjXn(t)jjp�;p = sup0�t�T jjXn(t)jjp�;p a.s.. Thus, by Fatou's

Lemma,

sup
n
E

"
sup

0�t�T
jjXn(t)jjp�;p

#
� sup

n
lim inf
N!1

gn;N (T ) � C(T ): (62)

Using this bound and an almost identical calculation leads to

sup
0�s�t�T
jt�sj�Æ<1

E

h
jjXn(t)�Xn(s)jjp�;p

i
� C(p; c;K; T )Æ: (63)

The estimates (62) and (63) combined with Theorem 8.6 of Chapter 3 of [EK86] show that

each coordinate is tight in C(R+ ;R): By a diagonalisation argument one can then �nd

a weakly convergent subsequence in C(R+ ;R
S ); where RS is equipped with the product

topology. Using the continuity of the coe�cients one can show that all limit points solve

(20), which completes the proof of existence. We remark that this argument does not

imply any convergence on C(R+ ; l
p
�); and thus (27) needs to be veri�ed separately for the

solution to the in�nite dimensional lattice system. By (62) and Fatou's Lemma we obtain

�rst sup0�t�T E
h
jjX(t)jjp�;p

i
< 1: From this (27) follows by a calculation analogous to

that of (61). The a.s. continuity of the sample paths in the space l
p
� follows from this

bound with a similar calculation as in (63). Pathwise uniqueness follows now with the

same calculations as for the uniform bound if the Lipschitz conditions on the coe�cients

are assumed. Here we estimate the di�erence of two strong solutions with respect to

the same noise using the Lipschitz conditions where we have previously used the growth

conditions.

4.2 Proof of Corollary 2.4

For existence of solutions we merely have to verify (23).X
i2S

�(i) j
X

ji�jj�Cm

mij(xi � xj) + fi(t; xi)jp

� (C(M;Cm) + 1)p�1
X
i2S

�(i)(
X

ji�jj�Cm

mijjxi � xj jp + cp(1 + xi)
p)

� C(M;Cm; p; c; �)
X
i2S

�(i)(
X

ji�jj�Cm

(mij +mji

�(j)

�(i)
) + cp)jxijp:
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Here, we have �rst used Jensen's Inequality and the growth condition (25). Then we use

that �(�) is summable over S: Finally, we note that the term in parentheses is bounded

by a constant since for ji� jj � Cm; �(j)=�(i) � e�C(Cm;d):

For uniqueness we have to verify (24), which works in an analogous way, using the Lipschitz

condition (26) instead of the growth condition (25).

4.3 Auxiliary lemmas

We start with stating a number of technical lemmas, proofs of which can be found in the

appendix. Lemma 4.1 estimates spatial and temporal di�erences of the heat kernels �pn;
as well as of the di�erences of �pn and p: Lemma 4.2 provides an estimate for the heat

kernels �pn and p integrated against the weight function �: In order to show tightness of

the approximations we need a compactness criterion on L
p
�(R

d ); which is stated in Lemma

4.3. This is an adaptation of the Frechet-Kolmogorov Theorem to our setting.

Lemma 4.1 We have the following properties of �pn and the heat kernel p :

(i)
R
Rd

�pn(t; x; y)dy =
R
Rd
p(t; x; y)dy = 1 for all x 2 R

d ; t � 0:

(ii) F �pn(t; �)(�) �
R
Rd

�pn(t; y)ei��ydy = exp(�n2t
Pd

i=1(1� cos �i
n
)) for all � 2 R

d .

(iii) supx;y2Rd j�pn(t; x; y)� p(t; x; y)j ! 0 as n!1 for each t > 0.
supx2Rd

R
Rd
j�pn(t; x; y)� p(t; x; y)j dy ! 0 as n!1 for each t > 0:R t

0
supx2Rd

�R
Rd
j�pn(s; x; y)� p(s; x; y)j dy

��
ds! 0 as n!1 for any � > 0:

(iv)
R t
0
supx2Rd

�R
Rd
j�pn(s+ h; x; y) � �pn(s; x; y)j dy

��
ds! 0 uniformly in n for any � >

0 as h! 0: The analogous result holds for p:

(v) supjjx0jj�Æ
R
Rd
j�pn(t; x+ x0; y)� �pn(t; x; y)j dy ! 0 as Æ ! 0; for almost all x and all

t > 0: Similarly, as Æ ! 0;
supx2Rd supjjx0jj�Æ

R
Rd
jp(s; x+ x0; y)� p(s; x; y)j dy ! 0:

Lemma 4.2 Let �(x) = e��jjxjj; and � 2 R: Then there exists a constant C(Æ; �)! 1 as

Æ ! 0 such that

sup
x2Rd

sup
jjyjj�Æ

�(x� y)

�(x)
< C(Æ; �): (64)

Also, for all T � 0; there exists a constant C(T; �) independent of n such that for all

x 2 R
d and 0 � t � T; Z

Rd

�pn(t; x; y)�(y)dy � C(T; �)�(x); (65)

and likewise Z
Rd

p(t; x; y)�(y)dy � C(T; �)�(x): (66)

21



Lemma 4.3 A set CK in Lp(Rd) is relatively compact if and only if the following condi-

tions hold,

(i) supf2CK
R
Rd
jf(x)jpdx <1;

(ii) limy!0

R
Rd
jf(x+ y)� f(x)jpdx = 0 uniformly for all f 2 CK ;

(iii) lim�!1
R
RdnB� jf(x)j

pdx = 0 uniformly for all f 2 CK ;

where B� is the ball with radius �:

A set CK in L
p
�(R

d) is relatively compact if the above conditions hold for Lebesgue measure

replaced by �(x)dx:

4.4 Proof of Theorems 2.5 and 2.6

By the assumptions on the coe�cients in Theorem 2.6, Corollary 2.4 assures existence of

(stochastically) strong solutions to the system (34) with initial conditions u0. In this case,

we set �fn(t; x; u) = f(t; �n(x); u) and likewise for ��n: By the continuity of f and � we

obtain pointwise convergence: For all (t; x; u) 2 R+ � R
d � R as n!1;

��n(t; x; u)! �(t; x; u) and �fn(t; x; u)! f(t; x; u): (67)

In order to obtain approximations driven by a given noise W to the SPDE of Theorem 2.5

we exploit the continuity of f and � and de�ne ~fn and ~�n which converge pointwise as in

(67), and satisfy in addition to the growth condition (10) the Lipschitz condition

j ~fn(t; x; u) � ~fn(t; x; v)j + j~�n(t; x; u) � ~�n(t; x; u)j � C(n)ju� vj

for all t 2 R+ ; x 2 R
d ; and u; v 2 R: Corollary 2.4 now implies pathwise uniqueness and

thus existence of strong solutions to (34) with initial condition u0 and coe�cients ~f and ~�;
and so we de�ne in this case �fn(t; x; u) = ~f(t; �n(x); u) and similarly ��n: Note that these
functions also satisfy (67).

The proof of the theorems now proceeds as follows. Proposition 4.4 gives a uniform bound

on un in the jj � jj�;p-norm. Proposition 4.5 estimates temporal and spatial di�erences of

un in this norm. Using these results and Lemma 4.3, we prove compact containment in

Proposition 4.6. Finally, we show tightness and identify the limit points -establishing the

existence statement of Theorem 2.5- and prove the convergence result of Theorem 2.6. We

proceed to show a uniform bound on the approximating solutions:

Proposition 4.4 Assume the linear growth condition (10) on �fn and ��n as well as jjkjj1 �
K < 1. Then, for all � with � > 0; p � 2 and u0 with E [jju0 jjp�;p] < 1; there exists a

constant Cp(T ) so that

sup
n

sup
0�t�T

E
�
jjun(t; �)jjp�;p

�
� Cp(T ): (68)

PROOF. Let 0 � t � T:We treat the three terms in (34) separately. Thus, by Jensen's In-

equality, gn(t) � E
�R
Rd
jun(t; x)jp�(x)dx

�
� 3p (A1 +A2 +A3) ; where, by Lemma 4.1(i),
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Jensen's Inequality and Lemma 4.2,

A1 � E

�Z
Rd

j
Z
Rd

�pn(t; x; y)u0(y)dyjp�(x)dx
�

� E

�Z
Rd

�Z
Rd

�pn(t; x; y)�(x)dx

�
ju0(y)jpdy

�

� C(T; �)

Z
Rd

E [ju0(y)jp] �(y)dy < C(T; u0; p; �):

For A2 we use the growth condition (10) as well as � 2 L1 in addition to the same line of

arguments:

A2 � E

�Z
Rd

j
Z t

0

Z
Rd

�pn(t� s; x; y) �fn(s; y; un(s; y))dydsjp �(x)dx

�

� C(T; c; p)E

�Z t

0

Z
Rd

�Z
Rd

�pn(t� s; x; y)�(x)dx

�
(1 + jun(s; y)j)pdyds

�

� C(T; c; p; �)

�
1 +

Z t

0

gn(s)ds

�
:

For A3 we �rst apply Burkholder's Inequality and the growth condition, and then Jensen's

Inequality as well as jjkjj1 � K: The last inequality follows as in the calculations for A2:

A3 � E

�Z
Rd

j
Z t

0

Z
Rd

�pn(t� s; x; y)��n(s; y; un(s; y))W (dy; ds)jp�(x)dx
�

� C(c; p)

Z
Rd

E

h� Z t

0

Z
Rd

Z
Rd

�pn(t� s; x; y)�pn(t� s; x; z)k(y; z)

(1 + jun(s; y))j)(1 + jun(s; z)j)dydzds
� p
2

i
�(x)dx

� C(c;K; p)

Z
Rd

E

2
4
 Z t

0

�Z
Rd

�pn(t� s; x; y) � (1 + jun(s; y)j)dy
�2

ds

! p

2

3
5 �(x)dx

� C(c;K; p)T
p

2
�1
Z
Rd

E

�Z t

0

Z
Rd

�pn(t� s; x; y) � (1 + jun(s; y)j)pdyds
�
�(x)dx

� C(T; c;K; p; �)(1 +

Z t

0

gn(s)ds):

Taken together, we obtain that there is a constant C = C(T; c;K; p; �; u0) independent of
n such that for all t � T; gn(t) � C(1 +

R t
0
gn(s)ds): But each gn is bounded according to

(27). Thus, sup0�t�T g
n(t) � CeCT =: C(T ) by Gronwall's Lemma. 2

Using this bound we can prove the following approximation of di�erences.

Proposition 4.5 Assume the conditions of Proposition 4.4. Then the approximating so-

lutions satisfy

lim
Æ!0

sup
n

sup
0�t�T

sup
0�h�Æ

E
�
jjun(t+ h; �) � un(t; �)jjp� ;p

�
= 0: (69)

For the di�erence of spatial translations we obtain for all 0 � t � T;

lim
Æ!0

sup
n
E

"
sup

0�jjx0jj�Æ
jjun(t; �+ x0)� un(t; �)jjp�;p

#
= 0: (70)
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PROOF. In order to show (69) we use the decomposition (34) and split the integral into

�ve parts. Abbreviate the di�erence �pnh(t; x; y) � �pn(t + h; x; y) � �pn(t; x; y); and observe

that by Jensen's Inequality

E

�Z
Rd

jun(t+ h; x)� un(t; x)jp�(x)dx
�

� 5p
�
E

�Z
Rd

j
Z
Rd

�pnh(t; x; y)u0(y)dyjp�(x)dx
�

+E

�Z
Rd

j
Z t

0

Z
Rd

�pnh(t� s; x; y) �fn(s; y; un(s; y))dydsjp�(x)dx
�

+E

�Z
Rd

j
Z t+h

t

Z
Rd

�pn(t+ h� s; x; y) �fn(s; y; un(s; y))dydsjp�(x)dx
�

+E

�Z
Rd

j
Z t

0

Z
Rd

�pnh(t� s; x; y)��n(s; y; un(s; y))W (dy; ds)jp�(x)dx
�

+E

�Z
Rd

j
Z t+h

t

Z
Rd

�pn(t+ h� s; x; y)��n(s; y; un(s; y))W (dy; ds)jp�(x)dx
� �

� 5p
5X

i=1

Bi:

For bounding B1 let us �rst assume that E [jj�u0jjp�;p] <1: Then,

B1 = E

�Z
Rd

j
Z t+h

t

Z
Rd

�pn(s; x; y)�nu0(y)dydsjp�(x)dx
�

� sup
x2Rd

�Z t+h

t

Z
Rd

�pn(s; x; y)dyds

�p�1

�E
�Z

Rd

Z t+h

t

Z
Rd

�pn(s; x; y) � j�nu0(y)jpdyds�(x)dx
�

= hp�1E

�Z t+h

t

Z
Rd

�Z
Rd

�pn(s; x; y)�(x)dx

�
j�nu0(y)jpdyds

�
� C(T + h)hpE

�
jj�nu0jjp�;p

�
� C(T + h)hpE

�
jj�u0jjp�;p

�
:

We have applied Jensen's Inequality twice before using Lemma 4.2. For general u0 consider

u�0(x) �
R
Rd
p(�; x�y)u0(y)dy: Observe that �p(�; x; y) = ( 1

�2
jjx�yjj2� d

�
)p(�; x; y): Thus,

with arguments almost identical to those of Lemma 4.2 we obtain
R
Rd

�p(�; x; y)�(y)dy �
C(�)�(x); as well as E [jj�u�0jj

p
�;p] � C(�)E [jju0jjp�;p] <1: Now,

B1 � E

�Z
Rd

j
Z
Rd

(�pn(t+ h; x; y)� �pn(t; x; y)) (u0 � u�0)dyjp�(x)dx
�

+E

�Z
Rd

j
Z t+h

t

Z
Rd

�pn(s; x; y)�nu�0(y)dydsjp�(x)dx
�
:

By applying Lemma 4.2 we obtain that for all � � 0 bounded, a.s. jju�0jj
p
�;p � Cjju0jjp�;p <

1: Thus, by �rst applying Lebesgue's Di�erentiation Theorem and then using the above

bound and Lebesgue's Dominated Convergence Theorem we obtain E [jju�0 � u0jjp�;p]! 0
as � ! 0: It follows that B1 converges to 0 uniformly in n and 0 � t � T by �rst letting
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h! 0 and then �! 0: Similarly to the previous calculations we obtain for B2;

B2 � sup
x2Rd

�Z t

0

Z
Rd

j�pnh(t� s; x; y)jdyds
�p�1

� E
�Z

Rd

Z t

0

Z
Rd

j�pnh(t� s; x; y)jj �fn(s; y; un(s; y))jpdyds�(x)dx
�

� sup
x2Rd

�Z t

0

Z
Rd

j�pnh(t� s; x; y)jdyds
�p�1

� cp2C(T + h)T sup
0�t�T

E
�
jj 1 + jun(t; y)j jjp�;p

�
! 0;

uniformly in n as h ! 0 according to Lemma 4.1 (iv) and Proposition 4.4. Likewise, we

can bound

B3 � hp�1C(T + h)cpE

�Z t+h

t

Z
Rd

(1 + jun(s; y))j)p�(y)dyds
�

� hpC(T + h)cp sup
0�t�T

E
�
jj 1 + jun(t; y)j jjp�;p

�
! 0;

as in the term B2: For B4 we use in addition Burkholder's Inequality as well as the bound-

edness of k:

B4 � C(p; c)E
h Z

Rd

(

Z t

0

Z
Rd

Z
Rd

j�pnh(t� s; x; y)�pnh(t� s; x; z)jk(y; z)

� (1 + jun(s; y)j)(1 + jun(s; z)j)dydzds)
p

2 �(x)dx
i

� C(p; c;K)T
p
2
�1
E

h Z
Rd

Z t

0

(

Z
Rd

j�pnh(t� s; x; y)j

� (1 + jun(s; y)j)dy)pds�(x)dx
i

� C(p; c;K; T )E
h Z

Rd

Z t

0

sup
x2Rd

(

Z
Rd

j�pnh(t� s; x; y)jdy)p�1

� (
Z
Rd

j�pnh(t� s; x; y)j(1 + jun(s; y)j)pdy)ds�(x)dx
i

� C(p; c;K; T )

 Z t

0

sup
x2Rd

(

Z
Rd

j�pnh(t� s; x; y)jdy)p�1ds
!

sup
0�t�T

E
�
jj1 + jun(s; �)jjjp�;p

�
:

We have used Jensen's Inequality �rst for the time, and then for the spatial integral. In

the last equality we applied Lemma 4.2. The quantity now converges to zero by Lemma

4.1 (iv) and Proposition 4.4. The calculation for B5 follows closely that for B4; and we

obtain

B5 � C(p; c)h
p
2
�1
E

�Z
Rd

Z t+h

t

Z
Rd

j�pn(t� s; x; y)j � (1 + jun(s; y)j)pdy
�
ds�(x)dx

� C(T; p; c)h
p

2 sup
0�t�T

E
�
jj 1 + jun(s; �)j jjp�;p

�
;

which converges to zero as h! 0 uniformly in n; due to Proposition 4.4.
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For proving (70), de�ne pathwise x0n;Æ(t) 2 R
d such that jjx0n;Æ(t)jj � Æ � 1 as well as

supjjx0jj�Æ jjun(t; � + x0) � un(t; �)jjp�;p = jjun(t; � + x0n;Æ(t)) � un(t; �)jjp� ;p: Since the shift

operator is continuous on L
p
� ; such a x0n;Æ(t) does exist. Set �pnx0(t; x; y) = �pn(t; x+ x0; y)�

�pn(t; x; y): According to (34) we have to bound the following terms,

E
�
jjun(t; �+ x0n;Æ(t))� un(t; �)jjp�;p

�
� 3p ( E

�
jj
Z
Rd

�pnx0
n;Æ

(t)(t; x; y)u0(y)dyjjp�;p
�

+E

�
jj
Z t

0

Z
Rd

�pnx0
n;Æ

(t�s)(t� s; x; y) �fn(s; y; un(s; y))dydsjjp�;p
�

+E

�
jj
Z t

0

Z
Rd

�pnx0
n;Æ

(t�s)(t� s; x; y)��n(s; y; un(s; y))W (dy; ds)jjp� ;p
�
)

� 3p
3X
i=1

Ci:

We now estimate the �rst term similarly to B1;

C1 � E

h Z
Rd

(

Z
Rd

�Z
Rd

j�pnx0
n;Æ

(t)(t; x; y
0)jdy0

�p�1

(71)

�
�pn(t; x+ x0n;Æ(t); y) + �pn(t; x; y)

�
�(x)dx) ju0(y)jpdy

i

� sup
jjx0jj�Æ

sup
y2Rd

 Z
Rd

�Z
Rd

j�pnx0(t; x; y0)jdy0
�p�1

�pn(t; x; y)
�(x)

�(y)
dx

!

�
 

sup
jjx0jj�Æ

sup
x2Rd

�(x+ x0)

�(x)
+ 1

!
E
�
jju0(y)jjp�;p

�

� C(u0)

Z
Rd

sup
jjx0jj�Æ

�Z
Rd

j�pnx0(t; x00; y00)jdy00
�p�1

�pn(t; x00)��(x
00)dx00

In the second inequality we have used that jjx0n;Æ(t)jj � Æ; together with a shift of variable

and (64) of Lemma 4.2 for the �rst term in the sum. In the third inequality we have

estimated
�(x)

�(y)
� C��(x� �n(y)) with (64). We have then performed the variable shifts

x00 = x � �n(y) as well as y
00 = y0 � �n(y) , and exploited the shift invariance of pn (see

(33)). For �xed n the supremum converges to zero as Æ ! 0 for almost all x00 due to Lemma

4.1(v). Since it is bounded by 2 and �pn(t; x00)��(x
00) is integrable by Lemma 4.2 the result

follows for �xed n and any t > 0 by Lebesgue's Dominated Convergence Theorem.

Similarly, using the growth conditions on �fn and ��n as well as Burkholder's inequality for

the stochastic integral, we obtain that C2 and C3 are bounded by

C(T ) sup
n

sup
0�t�T

E
�
jj1 + jun(t; �)jjjp�;p

�
(72)

�
Z t

0

sup
jjx0jj�Æ

sup
y2Rd

�Z
Rd

(

Z
Rd

j�pnx0(t� s; x; y0)jdy0)p�1�pn(t� s; x; y)
�(x)

�(y)
dx

�
ds;

where the expectation is bounded according to Proposition 4.4. Thus, with the same

arguments as for (71) plus an additional application of Lebesgue's Dominated Convergence

Theorem for the time integral convergence follows for each n �xed as Æ ! 0:
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To obtain convergence uniformly in n we note that the arguments in (71) and (72) are true,

uniformly in n; if p replaces �pn: Furthermore, when j�pn� pj replaces the spatial di�erences
j�pnx0 j in the Ci we obtain convergence to zero as n!1: For example, the stochastic integral

is bounded by

C

Z t

0

sup
x2Rd

�Z
Rd

j�pn(t� s; x; y)� p(t� s; x; y)jdy
�p�1

ds � sup
n

sup
t�T

E
�
jj1 + jun(t; �)jjjp� ;p

�
;

which converges to zero according to Lemma 4.1(iii) and Proposition 4.4. Inserting p(�; x; y)
and p(�; x+x0; y) and using (64) as well as a 3� argument now implies convergence uniformly

in n: 2

We obtain the compact containment condition of the approximating sequence of solutions.

Proposition 4.6 For each t � 0; and � > 0 there exists a compact set CK in the space

L
p
�(R

d) such that for all n;

P [un(t; �) 2 CK ] � 1� �: (73)

PROOF. We start by showing that for each � > 0;

lim
Æ!0

sup
n
P

"
sup

jjx0jj<Æ

Z
Rd

jun(t; x+ x0)� un(t; x)jp�(x)dx > �

#
= 0: (74)

Using Markov's Inequality, the convergence is implied by (70) of Proposition 4.5. We will

also need to show that for all � > 0

lim
�!1

sup
n
P

"Z
RdnB�

jun(t; x)jp�(x)dx > �

#
= 0: (75)

We de�ne an auxiliary function


(�)

� (x) �
�
�(x) for jjxjj > �;

e��� for jjxjj � �:
(76)

which, as an immediate consequence of Lemma 4.2, also satis�es (65). Thus, we obtain as

in the proof of Proposition 4.4,

E

�Z
Rd

jun(t; x)jp(�)� (x)dx

�
(77)

� C(T )

�Z
Rd

(1 + E [ju0(x)jp])(�)�
(x)dx+

Z t

0

E

�Z
Rd

jun(s; x)jp(�)�
(x)dx

�
ds

�
:

Since the �rst term is independent of n and converges to zero as � ! 1 by Lebesgue's

Dominated Convergence Theorem, we obtain uniform convergence of (77) to zero by Gron-

wall's Inequality. But 1RdnB�� � 
(�)

� ; and so (75) follows by Markov's Inequality.

Now, by (74) and (75) we can for any � > 0 and k 2 N choose Æk and �k such that

sup
n
P

"
sup

jjx0jj<Æk

Z
Rd

jun(t; x+ x0)� un(t; x)jp�(x)dx >
1

k

#
� �

3
2�k;

sup
n
P

"Z
RdnC�k

jun(t; x)jp�(x)dx >
1

k

#
� �

3
2�k:
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Also choose N such that P [jjun(t; �)jjp�;p > N ] � �
3
; and de�ne the sets

C1
K � funj jjun(t; �)jjp�;p � Ng;

C2
K �

1\
k=1

funj sup
jjx0jj<Æk

Z
Rd

jun(t; x+ x0)� un(t; x)jp�(x)dx �
1

k
g;

C3
K �

1\
k=1

funj
Z
RdnC�k

jun(t; x)jp�(x)dx �
1

k
g;

CK � C1
K \ C2

K \ C3
K :

By Lemma 4.3 CK is a compact set in L
p
�(R

d); and by the above de�nitions, we �nally

conclude that infn P [u
n(t; �) 2 CK ] � 1� �

3
(1 + 2

P1
k=1 2

�k) = 1� �: 2

For the proof of Theorem 2.6 we require another Lemma (see Lemma 4.4 of [Gyo98b]).

Lemma 4.7 Let E be a Polish space equipped with its Borel �-algebra. A sequence of

E-valued random elements un converges in probability if and only if for every pair of sub-

sequences ul and um there exists a subsequence vk � (ul(k); um(k)) converging weakly to a

random element v supported on the diagonal f(u; u0) 2 E �E
��u = u0g:

PROOF OF THEOREM 2.5 and THEOREM 2.6.

Taking together the tightness condition for each t � 0; that has been shown in Proposition

4.6, and the estimation of the di�erences in time given by (69) of Proposition 4.5, we obtain

tightness of un in D(R+ ; L
p
�(R

d )) according to Theorem 8.6 of Chapter 3 in [EK86]. Since

all un are continuous in time (Theorem 2.3), they are relatively compact in C(R+ ; L
p
�(R

d )):
This implies that we can �nd a subsequence which converges weakly on C(R+ ; L

p
�(R

d ))
to a process u:

By Skorohod's Representation Theorem we can �nd another probability space ~
; and on

it a further subsequence, ~un; as well as a noise ~W equivalent in law to un and W; so that

~un converges almost surely to ~u in C(R+ ; L
p
�(R

d)):We now show that, by taking a further

subsequence if necessary, the right hand side of (34) converges a.s. for all t � 0 in Lp�(R
d)

to the appropriate expressions for the limit process ~u: This implies that ~u satis�es (9) and

is thus a solution to the heat equation with colored noise as in De�nition 2.1.

Following the calculations for B1 in the proof of Proposition 4.5, we obtain for any t � T;Z
Rd

�Z
Rd

(�pn(t� s; x; y)� p(t� s; x; y)) u0(y)dy

�p

�(x)dx

� C(T )

�Z
Rd

(�pn(t� s; x; y)� p(t� s; x; y)) dy

�p�1 Z
Rd

ju0(y)jp�(y)dy:

Here, the �rst term converges to zero as n!1 by Lemma 4.1(iii), and the second integral

is bounded a.s. by assumption. We consider nextZ
Rd

� Z t

0

Z
Rd

�
�pn(t� s; x; y)��n(s; y; ~un(s; y)) (78)

� p(t� s; x; y)�(s; y; ~u(s; y))
�
~W (dy; ds)

�p
�(x)dx � D1 +D2:
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Here, we split the integrand into a term, D1; involving the di�erences of the convolu-

tion kernels, and one, D2; involving the di�erences of the solutions. With a calculation

analogous to that of B4 in the proof of Proposition 4.5 we obtain that E [D1 ] is bounded
by

C(p;K; T )jjE
h Z t

0

� Z
Rd

j�pn(t� s; x; y)� p(t� s; x; y)j��n(s; y; ~un(s; y))dy
�p
ds
i
jj1�;1

� C(p;K; T; c)

Z t

0

sup
x2Rd

�Z
Rd

j�pn(t� s; x; y0)� p(t� s; x; y0)jdy0
�p�1

ds

� sup
0�t�T

E
�
jj1 + ~un(s; y))jjp�;p

�
;

which converges to zero by Proposition 4.4 and Lemma 4.1(iii). By choosing a further

subsequence if necessary, a.s. convergence follows. To estimate the second di�erence,

D2; we de�ne VT � supn sups�T jj~un(s; y)jj
p
�;p; which is bounded a.s. because of the

convergence of the ~un in C(R+ ; L
p
�(R

d )): As a consequence, we have limN!1 P[VT >

N ] = 0: Since, by Markov's Inequality, P[D2 > �] � P[VT > N ] + 1
�
E [D2 j VT � N ]; it

su�ces to show for any �xed N; limn!1 E [D2 j VT � N ] = 0: With a similar calculation

as for D1; we bound this expectation by

C(p;K; T )

Z t

0

E

h
jj��n(s; y; ~un(s; y))� �(s; y; ~u(s; y))jjp�;p

���VT � N
i
ds: (79)

By taking a further subsequence if necessary, ~un(s; y) ! ~u(s; y) a.s. for a.a. y and all s:

Thus, the continuity of ��n and � and (67) imply that ��n(s; y; ~un(s; y)) ! �(s; y; ~u(s; y))
a.s. for a.a. y and all s: But by (10),

j��n(s; y; ~un(s; y))� �(s; y; ~u(s; y))j � c (2 + j~un(s; y)j+ j~u(s; y)j) : (80)

Since ~un(s; �) ! u(s; �) in L
p
�(R

d ) a.s. for each s; the right hand side and so also the

left hand side of (80) is a uniformly integrable in L
p
�(R

d) a.s. for each s: Therefore, the

norm converges a.s. for each s: The conditioning on the event fVT � Ng and Lebesgue's

Dominated Convergence Theorem, now imply that (79) converges to zero. Thus, D2 ! 0
in probability as n!1; and a further subsequence converges a.s..

Taking the two estimates together, we have proven that, for a further subsequence if

necessary, (78) converges to zero a.s. for t 2 [0; T ] and so, since T is arbitrary, for all t � 0:
We can perform essentially the same, albeit slightly simpler, calculation to show that for

the chosen subsequence ~un;Z
Rd

� Z t

0

Z
Rd

�pn(t�s; x; y) �fn(s; y; ~un(s; y))�p(t�s; x; y)f(s; y; ~u(s; y))dyds
�p
�(x)dx! 0;

as n ! 1 a.s. for all t � 0: Thus, ~u is a solution to (1), which by Proposition (4.4) and

Fatou's Lemma also satis�es (35). Since (~u; ~W ) have the same distribution as (u;W ) we
have shown the existence result of Theorem 2.5.

It remains to complete the proof for Theorem 2.6. The weak convergence result follows

immediately from weak uniqueness of the limit. For convergence in probability when

pathwise uniqueness of the limit is known we consider a pair of subsequences ul and um:

By the tightness on C(R+ ; L
p
�(R

d)) we can �nd further subsequences ul(k) and um(k) that
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converge weakly on C(R+ ; L
p
�(R

d )): The above calculation shows that both limit points

satisfy the heat equation with respect to W: Thus, the pathwise uniqueness implies that

they are equal a.s., and so on the diagonal of E �E: Theorem 2.6 follows now by Lemma

4.7. 2

5 Continuity of solutions

5.1 Proof of Theorem 2.7

We �rst show that under the assumptions of Theorem 2.7, (35) implies (37). Set �p � �
p
;

and bound E [supt�T jju(t; �)jj
p
1;�p

] by

3X
i=1

Si � E

"
sup
t�T

jj
Z
Rd

p(t; �; y)u0(y)dyjjp1;�p

#

+E

"
sup
t�T

jj
Z t

0

Z
Rd

p(t� s; �; y)f(s; y; u(s; y))dydsjjp1;�p

#

+E

"
sup
t�T

jj
Z t

0

Z
Rd

p(t� s; �; y)�(s; y; u(s; y))W (dy; ds)jjp1;�p

#
:

Note that Lemma 4.2 and E [jju0 jjp1;�p
] < 1 bound S1: To bound S2 and S3 we use a

factorisation method �rst introduced by DaPrato, Kwapie« and Zabczyk [DKZ87], which

is based on the fact that for 0 < � < 1;Z t

s

(t� u)��1(u� s)��du =
�

sin(��)
:

To demonstrate the argument we focus on the stochastic integral S3 and de�ne

J��1u(t; x) =
sin(��)

�

Z t

0

Z
Rd

(t� s)��1p(t� s; x; y)u(s; y)dyds;

J�u(t; x) =

Z t

0

Z
Rd

(t� s)��p(t� s; x; y)�(s; y; u(s; y))W (dy; ds);

so that with the stochastic Fubini Theorem (see Theorem 2.6 of [Wal86]),

J��1J�u(t; x) =

Z t

0

Z
Rd

p(t� s; x; y)�(s; y; u(s; y))W (dy; ds):

Thus, S3 is equal to

E

"
sup
t�T

jjJ��1J�u(t; �)jjp1;�p

#

� CE

"
sup
t�T

jj
Z t

0

(t� s)��1
�Z

Rd

p(t� s; �; y)��
2
(y) � jJ�u(s; y)j

p

2 �
2
(y)dy

� 2
p

dsjjp1;�p

#

� CE

"
sup
t�T

jj
Z t

0

(t� s)��1
�Z

Rd

p(t� s; �; y)2��(y)dy
� 1

p

� jjJ�u(s; �)jj�;pdsjj
p
1;�p

#
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� C(T )E

"
sup
t�T

�Z t

0

(t� s)
��1� d

2p jj
Z
Rd

p(t� s; �; y)��(y)dyjj
1
p

1;� � jjJ�u(s; �)jj� ;pds
�p
#

� C(T )

�Z T

0

s
(��1� d

2p
) p
p�1 ds

�p�1

E

�Z T

0

jjJ�u(s; �)jjp�;pds
�
: (81)

We have �rst used Jensen's and the Cauchy-Schwartz Inequality. We have then used (66)

of Lemma 4.2 and (84) of the proof of Lemma 4.1 to see that
R
Rd
p(t� s; x; y)2��(y)dy �

C(T )(t � s)�
d
2 ��(x): Lemma 4.2 and a subsequent application of Hölder's Inequality

completes the calculation. Now, for all t � T; by Burkholder's Inequality and jjkjj1 � K;

E
�
jjJ�u(t; �)jjp�;p

�
(82)

� C(K)E

"
jj
Z t

0

(t� s)�2�
�Z

Rd

p(t� s; �; y)�(s; y; u(s; y))dy
�2

dsjj
p

2

�;
p

2

#

� C(K)

�Z T

0

s�2�ds

� p

2
�1

� E
�Z t

0

(t� s)�2�jj�(s; �; u(s; �))jjp� ;pds
�

� C(K; c)

�Z T

0

s�2�ds

�p

2

�
 
1 + sup

t�T
E
�
jju(t; �))jjp� ;p

�!
:

Thus, by (35), the term is bounded provided that �2� > �1 and (� � 1 � d
4p
) p
p�1 > �1

(from (81)), which can be ful�lled if and only if d < p � 2: The term S2 works similarly,

implying the same conditions on �:

In order to see that u(t; �) 2 C�p
for any 0 � t � T; consider a.s. ju(t; x)�u(t; x+x0)j for

jjx0jj < 1: The di�erence can again be bounded by three terms according to (9). The term

involving the initial condition converges as jjx0jj ! 0 due to Lemma 4.1(v) and Lemma

4.2. We focus again on the stochastic integral, which may be approximated analogously to

(81), and is thus bounded by

C(T )

�Z T

0

s
(��1� d

2p
)

p

p�1ds

� p�1

p
�Z T

0

jjJ�u(s; �)jjp�;p

�(
Z
Rd

jp(t� s; x+ x0; y)� p(t� s; x; y)j��(y)dy) ds

� 1
p

:

By Lemma 4.2 the integral of the heat kernel di�erences is bounded by C(T; x): Since
J�u 2 Lp([0; T ]; Lp� ); a.s. it is su�cient by Lebesgue's Dominated Convergence Theorem

to note that the integral of the heat kernel di�erences converges to zero for each s � t:

This is again a consequence of Lebesgue's Theorem combined with Taylor's Theorem and

Lemma 4.2.

We end the proof by showing that u 2 C([0; T ]; C�p
) for any T > 0; and thus in

C(R+ ; C�p
): Once again, we use the de�nition in (9) and show continuity of the stochas-

tic integral. We note that the drift term can be treated similarly and that the �rst term

converges according to Lemma 4.1(iv) and Lemma 4.2. Hence, we bound a.s.

jjJ��1J�u(t+ h; �) � J��1J�u(t; �)jj1;�p
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� jj
Z t+h

t

Z
Rd

(t+ h� s)��1p(t+ h� s; �; y)J�u(s; y)dydsjj1;�p

+jj
Z t

0

Z
Rd

(t� s)��1 jp(t+ h� s; �; y)� p(t� s; �; y)j � jJ�u(s; y)jdydsjj1;�p

� C(T )(

�Z h

0

s
(��1� d

2p
) p
p�1ds

� p�1

p
Z T

0

jjJ�u(s; y)jjp�;pds

+

�Z t

0

jj
Z
Rd

jp(t+ h� s; �; y) � p(t� s; �; y)j��(y)dyjj1;� � jjJ�u(s; �)jjp�;pds
� 1

p

):

We have used that (t+h�s)��1 � (t�s)��1 for s 2 [0; t]: Arguments analogous to those in

(81) explain the second inequality. We observe for the �rst term that
R T
0
jjJ�u(s; y)jjp�;pds

is bounded a.s., for the second that the inner integral is bounded by Lemma 4.2 and

converges pointwise for each s > 0: Thus, both terms converge to zero by Lebesgue's

Dominated Convergence Theorem as h! 0:

6 Appendix

6.1 Proof of Lemma 4.1

We use the random walk Y n as in the de�nition (32) of �pn. Property (i) merely states that

the transition probabilities �pn and p sum (respectively integrate) to one.

The Fourier transform in (ii) is given by

Fpn(t; 0; �n(�))(�) = E [ei��Y
n
t ] =

dY
i=1

E [ei�iY
n
i;t ] =

dY
i=1

�y(n
2t;

�i

n
);

where �y(t; r) = exp(�t(1 � cos r)) is the characteristic function for a one dimensional

simple random walk y at time t (see for example [Fel51]), and (ii) follows.

In order to show (iii) we use a result in [DEF+02]. For d = 1 and � > 0 there exist

constants K0(�) and C(K0) such that

sup
z;~z2 1

n
Z

jpn1 (t; z; ~z)� p1(t; z; ~z)j � �t�
1
2 +C(K0)

1

n2
t�

3
2 (83)

for all n > K0

�
t�

1
2 . Also stated in [DEF+02] is that there exists a universal constant c1;

independent of n and t; such that

sup
x;y2Rd

max(�pn1 (t; x; y); p1(t; x; y))t
1
2 � c1: (84)

We observe via Taylor's Theorem that there exists another universal constant c2 such that

for all x; y 2 R
d

jp1(t; x; y)� p1(t; ~x; ~y)j � c2(jx� ~xj+ jy � ~yj)t�1: (85)
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Therefore, combining (83) and (85) implies for all n > K0

�
t�

1
2 ;

sup
x;y2Rd

j�pn1 (t; x; y) � p1(t; x; y)j � sup
x;y2Rd

(j�pn1 (t; x; y)� p1(t; �n(x); �n(y))j

+ jp1(t; �n(x); �n(y)) � p1(t; x; y)j)

� �t�
1
2 + C(K0)

1

n2
t�

3
2 +

2c2
n
t�1: (86)

In d dimensions we have �pnd(t; x; y) =
Qd

i=1 �p
n
1 (t; xi; yi) and the analogous form for pd.

Thus, with (84) and (86) we �nally obtain for n > K0

�
t�

1
2 that

sup
x;y2Rd

j�pnd (t; x; y)� pd(t; x; y)j

�
dX
i=1

j�pn1 (t; xi; yi)� p1(t; xi; yi)j �
Y
j<i

�pn1 (t; xj ; yj)
Y
k>i

p1(t; xk; yk)

� d
�
c1t

� 1
2

�d�1�
�t�

1
2 + C(K0)

1

n2
t�

3
2 +

2c2
n
t�1
�
: (87)

Since � > 0 may be chosen as small as we like the �rst part of (iii) now follows. For the

two remaining statements we �rst note that since �n(x)� �n(y) = �n(�n(x)� y); we can
deduce that supx2Rd

R
Rd
j�pn(t; x; y)� p(t; x; y)j dy is bounded byZ

Rd

j�pn(t; y)� p(t; y)j dy + sup
x2Rd

Z
Rd

jp(t; �n(x); y)� p(t; x; y)j dy:

Convergence of the second term is deferred to (v). For the �rst term we use that, for all

� > 0 and T � 0; there exists a compact set C�;T independent of n so that

sup
0�t�T

Z
RdnC�;T

(�pn(t; y) + p(t; y)) dy < �: (88)

This is a consequence of the tightness of the associated measures in D(R+ ;R
d); following

from the classical functional Central Limit Theorem (see for example [EK86]). Thus, on

for any t � T; Z
Rd

j�pn(t; y)� p(t; y)j dy �
Z
C�;T

j�pn(t; y)� p(t; y)j dy + 2�:

Hence, the �rst part of (iii), (84) and Lebesgue's Dominated Convergence Theorem im-

ply that the integral on the right hand side converges to zero. The second part of (iii)

now follows by letting � ! 0: The last part of (iii) is obtained by another application of

Lebesgue's Dominated Convergence Theorem upon noting that, by (i), the spatial integrals

are bounded by 2:

For property (iv) consider �rstZ t

0

sup
x2Rd

�Z
Rd

jp(s+ h; x; y)� p(s; x; y)j dy
��

ds

�
Z t

0

sup
x2Rd

�Z
Rd

j
Z s+h

s

�p(�s; x; y)d�sjdy
��

ds

�
Z t

0

 
h sup
�s2[s;s+h]

sup
x2Rd

Z
Rd

j�p(�s; x; y)jdy
!�

ds;
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where the term in brackets is bounded by 2� by (i) and converges to zero as h ! 0 for

all s > 0; since sup�s2[s;s+h] supx2Rd
R
Rd

�p(�s; x; y)dy < C( 1
s2

+ 1
s
): Lebesgue's Dominated

Convergence Theorem now implies statement (iv) for p: For �pn we use a decomposition as

in (87) as well as property (i) to obtain thatZ t

0

sup
x2Rd

�Z
Rd

j�pn(s+ h; x; y) � �pn(s; x; y)j dy
��

ds

� C(�)
dX
i=1

Z t

0

sup
x2Rd

�Z
R

j�pn1 (s+ h; xi; yi)� �pn1 (s; xi; yi)jdyi
��

ds:

But by the de�nition of �pn the term in absolute values equalsZ s+h

s

n2

2
(pn1 ( �s; �n(xi); �n(yi)+

1

n
)+pn1 (�s; �n(xi); �n(yi)�

1

n
)�2pn1 (�s; �n(xi); �n(yi)) ) d�s:

Thus, by property (i) the integral is bounded by C(�)td(2hn2)�; which proves (iv) for any

given �pn: That the convergence is uniform in n follows now by a 3� argument from the

statement for p and the appropriate convergence shown in (iii).

For the �rst statement of (v) we merely note that, for all x in the interior of the intervals In

(see the de�nition of �n), the spatial di�erences of �p
n are identically zero for Æ small enough.

But the boundary of these intervals form a null set. To show (v) for p we use arguments

analogous to those in(88). For all �; Æ > 0; �nd a compact set C such that, for all jjx0jj � Æ

and t � T;
R
RdnC p(t; x

0; y)dy < �: Thus, supjjx0jj�Æ
R
C
jp(t; x0; y)� p(t; 0; y)j dy ! 0;as

Æ ! 0: Because of shift invariance in x this establishes the convergence result for p:

6.2 Proof of Lemma 4.2

For property (64) note that

�(x� y)

�(x)
= e��(jjx�yjj�jjxjj) � ej�j�jjyjj: (89)

Let Y n be a simple random walk as in the de�nition (32) of �pn. Using the norm equivalence

on R
d we obtainZ

Rd

�pn(t; x; y)e��(jjyjj�jjxjj)dy

�
X

yn2 1
n
Zd

P
�n(x)[Y n

t = yn]nd
Z
In
yn

eCj�j
Pd

i=1(jyij�jxij)dy

�
dY
i=1

0
B@ X

yni 2
1
n
Z

P
�n(xi)[Y i

i;t = yni ]n

Z
In
yn
i

CeCj�j(y
n
i ��n(xi))dyi

1
CA

=

0
B@C X

~yn2 1
n
Z

P
0[Y n

1;t = ~yn]eCj�j~y
n

1
CA

d

=

�
Ce

�
1
2

�
e
C�
n +e�

C�
n

�
�1
�
n2t
�d

=

�
Ce

P
1

k=1
C�2kn(�2k+2)

(2k)!
t

�d

�
�
Ce

P
1

k=1
C�2k

(2k)!
t

�d

�
�
Cee

C�T
�d
:
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In the �rst inequality we have used the symmetry in x as well as (64) and subsequently

Lemma 4.1(ii). By similar arguments (66) follows, see [Stu02] p. 75 for detail.

6.3 Proof of Lemma 4.3

The �rst part of the theorem is just the Frechet-Kolmogorov Theorem (see IV.8.21 of

[DS58]). Observe now that fn ! f in L
p
�(R

d) if and only if fn
1
p

�
! f

1
p

�
in Lp(Rd): Thus,

conditions (i) and (iii) transfer immediately to their analogues on L
p
�(R

d ): For condition
(ii) considerZ

Rd

jf(x+ y)
1
p

� (x+ y)� f(x)
1
p

� (x)j
pdx

� 2p
�Z

Rd

jf(x+ y)� f(x)jp�(x)dx+

Z
Rd

jf(x+ y)jp
1
p

�
(x+ y)� 

1
p

�
(x)jpdx

�

� 2p

 Z
Rd

jf(x+ y)� f(x)jp�(x)dx+ sup
x2Rd

j1�
�
�(x� y)

�(x)

� 1
p

jp
Z
Rd

jf(x)jp�(x)dx
!
:

Provided condition (i) is ful�lled, the second integral converges to zero uniformly for f 2
CK due to (64) of Lemma 4.2. Uniform convergence of the �rst integral, which corresponds

to condition (ii) with the measure �(x)dx; is thus su�cient for compactness.
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