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ABSTRACT. For mappings f : 5 1 X ~ n --+ 5 1 X ~ n ( n ~ 2) of the form f ( t, ~) = 
(0t, ,\~ + 11(t)), where 0 E LE, 0 ~ 2, ,\ E (0, 1), 11 E C 1(51 , ~n) we consider the 
open subset Sn,e,>. of 0 1(51 , ~n) which consist of all 11 for which the restriction 
off to its attractor is injective. It is shown that for,\< min(t, e- 2/Cn-l)) this 
set Sn,e,>. is dense in C 1 (S1 , ~n) and that for each odd nit is not dense provided 
,\ ~ 549-2/(n-1), 
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1. RESULTS 

Let 52 =IR (modulo 1) be the unit circle. The Cartesian product V = 5 1 xIRn can 
be regarded as an open (n + 1)-dimensional solid torus. We always assume n ~ 2. 
For an integer E> > 1, a real A E (0, 1) and a er mapping v: 5 1 ~ IRn (r ~ 0) we 
consider the mapping 

f:v~v 

which is given by 

f(t, x) = (E>t, Ax+ v(t)) (t E 51, x E IRn). 

If we want to point out that f is determined by E>, A, v we shall write f = fe,>.,v· 
Since 0 < A < 1 this mapping has a compact attractor which will be denoted by At 
or by A. To visualize this attractor we consider a compact solid torus Vp = 5 1 x ID?;, 
where ID?; .is the compact ball in IRn with radius p and centre o and where 

p;::: 1 ~>. sup(v(t)), 
tES1 

or, equivalently 

Then f(Vp) C Vp and 
00 

A= n t(Vp). 
i=O 

The image f(Vp) is obtained by stretching Vp in the direction of 51, contracting 
it in the direction of ID?; and wrapping it around in Vp exactly E> times without 
folds. (Self intersection of f(Vp) are not excluded.) If f is injective in Vp, i.e. if 
f ( Vp) has no self in terpreti tions, then the images Ji ( Vp) ( i = 1, 2, ... ) form a 
nested sequence of solid tori, and fi(Vp) for i large is thin and runs around in Vp 
exactly E>i times. As mentioned above A is the intersection of these tori, and this 
intersection is the well known solenoid. So A has a simple structure in this case. If 
the restriction off to A is known to be injective, then, by compactness of A, there 
is a neighbourhood of A on which f is injective, and it can be shown that A is a 
solenoid in this case too. 

In this paper we look for conditions under which a mapping fe,>.,v is injective on 
its attractor. The result concerns the 0 1 case and can roughly speaking, be stated 
as follows. If for a fixed E> the number A is sufficiently small, then generically for 
all v the restriction of f e,>.,v to its attractor is injective. 

Theorem 1. For n, E>, A as above let Sn,e,>. be the set of all v E 0 1(51, IRn) for 
which f e,>.,v is injective on its attractor. If A < ~ and A < e-2/Cn-1) then Sn,e,>. is 
open and ·dense in G1( 51 , IRn). 

As easily senn the set 
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is an open interval (0, An, (0)), and the theorem is equivalent to the inequality 
1 

An(0) ~ min( 2' e-2/(n-l)). 

Theorem 2. For each odd dimension n ~ 3 
An( B) ~ 329-2/(n-l) 

holds for all B ~ 2. 

Remark 1. If fe,>.,v is injective on its attractor A, then for each t E 8 1 the section 
({ t} x JR.n) n A is a Cantor set, and by standard methods it is easy to see that 
the Hausdorff dimension of this Cantor set is log B / log t. The Hausdorff dimension 
of a subset of JR.n can not exceed n, and therefore A > 0-1/n implies that for any 
v E C0 (S1, JR.n) the restriction of fe,>.,v to its attractor can not be injective, and 
therefore 

Remark 2. Let e > 0 be fixed. If n and(} are sufficiently large (the lower bound 
for B depends on n ), then the factor 32 in Theorem 2 can be replaced by 8 + e. 
This fact can easily be derived from our proof below. Modifying this proof (the set 
~r e.g.) a further reduction of this factor is possible. 

2. PROOF OF THEOREM 1 

Let n 0 A be fixed such that A < 1 A < e-2/(n-1) 
' ' 2' . 

Since our attractors are compact it is not hard to see that for any r 2:: 0 the set of 
all v E cr(81 ,~) with injective restriction to its attractor is open in Cr(81,~). 
This holds for 0 < a ~ oo, where ~ = Rn. Therefore Sn,e,>. is open, and we 
have only to prove that Sn,0 ,). is dense in 0 1(81 , JR.n). Moreover it is sufficient to 
prove, as we shall do below, that for an arbitrary a (0 < a < oo) the intersection 
Sn,0,). n C1(S1, ~) is dense in C1(S1, ~). Therefore for the rest of the proof in 
addition to n, 8 and A the positive real numbers a and p > 1 ~). will be fixed. Then 
f8,).

1
v(Vp) C Int Vp for any v E Cr(S1, ~), and 

00 • 

Ate,">.,v = n J~,>.)Vp)· 
i=O 

If mis a proper multiple of B, i.e. m = Om' with m' E Z, m' > 1, we consider 
the points ti= ~ and arcs Ii= [ti_1, ti] in 81 (i E Z). The family of these arcs will 
be denoted by Pm and called a Markov partition of 8 1. Of course ti = ti', Ii = Ii' 
if and only if i = i' (modulo m), so that Pm consists of the m arcs Ii, ... ,lm. 
Moreover 

Bti = tei, BI = [te(i-1)> tei] = Ie(i-1)+1 U · · · U lei· 
If Pm is fixed, then each v E C0 (S1 , IR.n) which is linear on each arc of Pm is 
determined by them points Vi= v(ti) in lR.n (i = 1; ... ,n), and we identify this 
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piecewise linear v with the point (v1, ... ,vm) in Rmn. So Rmn is embedded in 
0°(S1, Rn) and thos~ v E Rmn which belong to 0°(S1, ~) are just the ·points in 
(~)m. This set (~),when regarded as a subset of 0°(S1, Rn), will be denoted by 
Vm· 

For v E 0°(S1, Rn) we define 

lvlo = sup lv(t)I 
tes1 

lvl1 =max( Iv lo, !via), 
where v = ~~ : S1 ~Rn. If Pm is a Markov partition and v E 0°(S1, Rn) is 0 1 on 
each arc Ii of Pm, then we define 

lvl1 =max( Iv lo, sup {lv(t)l It E LJ Int Ji}). 
liE1'm. 

Obviously for v E 0 1(S1, Rm) the two definitions of lvl1 coincide. If v E Vm then, 
as easily seen, 

lvl1 :::; 2mlvlo, 
and I lo and I 11 define the same topology in Vm which coincides with the natural 
topology of (~ r. 
Lemma 1. If Vo E 0 1 ( S1 ' ~) and e > 0, then there is . a positive integer m and a 
mapping V1 E V m such that Iva - V1 I < e. 

Lemma 2. The set Sm= {v E Vmlfe,A,vlA
191

).,,, injective} is open and dense in Vm. 

Lemma 3. If Vo E 01(S1,~),v2 E Vm, Iva - v2l1 < e for some e > 0, then for 
each 6 > 0 there is av E 0 1(S1' ~) such that Iv - val1 < e, Iv - v2lo < 6. 

These three lemmas easily imply Theorem 1: Let v0 E 0 1(S1, ~)and e be given. 
We have to find a v E 0 1(S1, ~) such that Iv - v0 l1 < e and the restriction of 
fe,A,11 to its attractor is injective. 

By Lemma 1 we find a V1 in some Vm such that Iva - v11 < e/2. Now we apply 
Lemma 2 to get a V2 E Sm such that lv1 - v2lo is so small that Iva - v2l1 < e. 
Since the set of all v E 0°(S1, D~) with an injective restriction fe,A,vlA19 Av is open 
in 0°(S1, D~) we can apply Lemma 3 to find av E 0 1(S1, D~) with the

1 

property 
required above. 

Lemma 1 is almost obvious and its proof can be omitted. To prove Lemma 3 we 
merely have to smoothen the corners of v2 • Therefore it remains to prove Lemma 
2. 

Proof of Lemma 2. We choose a fixed Markov partition Pm of S1 with arcs Ii and 
partitioning points ti. If k 2:: 1 in an integer let Vm(k) be the set of all v E Vm for 
which the mapping Je,A,v is injective on the neighbourhood f;,;.~(Vp) of the attractor 
Ate,).,,,. As easily seen Vm( k) consists of all v E Vm with the following property. If 
Si, S2 are points in S1 such that ek-l . St f= ()k-l . S2 but Bk . S1 = Bk . s2, then 
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f3,>.., 11(D(s 1 )) n f3,>..,µ(D(s 2 )) = 0, where D(si) are the meridional disks { si} x 1IJY; of 
Vp. Obviously Vm( k) C Vm( k + 1 ), and · 

k=l 

The complement Vm\Vm(k) will be denoted by Wm(k). In Vm = (~)m we con-
sider the Lebesgue measure which will be denoted by vol. Since a su~set of Vm 
whose complement has measure 0 must be dense in Vm, Lemma 2 is an immediate 
consequence of .A < 0-2/(m-l) and the following lemma. 

Lemma 2 '. There is a real r such that 
vol Wm( k) ::; 102k _xk(n-1) (k=l,2, ... ). 

By Jk we denote the set of all pairs (I, J) of arcs in S1 such that ()k-l I, ()k-l J are 
different arcs of our Markov partition Pm and ()k I= ()k J. The number of elements 
in Jk is bounded by 

#Jk = ; . ()k. ok-1(8 - 1) < m02k. (1) 

For (I, J) E Jk we consider the sets 

W(I, J) = {v E Vmlft,>..,v(I x TIJ,;) n ft,>.., 11(J x TIJ,;) -f. 0}. 
This definition implies 

Wm(k) = LJ W(I,J). 
(I,J)E:J1e 

This last equation together with (1) reduces the. proof of Lemma 2' to the proof of 
the following lemma. 

Lemma 2". There is a real r which does not depend on k, I, J and for which the 
fallowing inequality holds 

vol W(I, J) ::; ,_xk(n-l). 

Let (I, J) be a fixed pair in Jk· We write I= [s1 , s2], J = [s3 , s4] and define for 
each v E Vm four points x11,; (1 ::; j ::; 1) in 1D1; by 

ft>.. 11(s;,o) = (Oks;,xv,j) (1::;j::;4), 
I I 

where o denotes the centre of JIJ;. The four points Pi= (Oks;, x11 ,;) are the end points 
of the two segments Jk(Jx{o} ), Jk(Jx{o}) in the cylinder Z = (}k IxJIJ; = ()kJxJIJ; 
(see Fig. 1). The image fk(I x 1D1;) is the union of all n-disks in Z which are parallel 
to the bottom of Z, whose centres lie on Jk(J x {o}) and whose radius in p.Ak. The 
cylinder Jk( J x IDT;) is obtained similarly from Jk( J x {o} )._If, as above, the points 
in JR.mn are identified with the elements of C0 (S1, JR.n) which are linear on each 
arc of Pm, then the mapping v -t (x11,1, ... ,x1114) of Vm = (~)m to (JDY;)4 can be 
extended to a linear mapping cp : JR.mn -t 1R.4n. This extension is characterized by 
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k 
x; = L Al-1v( ()k-l s;) (1 ~ j ~ 4). 

l=1 
Later in the proof of Lemma 2" we shall need the following lemma. 

Fig. 1 

Lemma 4. There is a real {o which depends on;\ but not on k, I, J such that for 
any compact subset Q of(~ )4 we have 

vol (cp-1(Q) n (~r) ~ {o vol Q, 

where vol denotes the Lebesgue measure in lR.mn or in IR.4n, respectively. 

Proof of Lemma 4. Let 6 = .\/(1 - A). (Here we apply ;\ < ! so that 6 > 0.) 
The lemma will be proved if we have found a 4n-dimensional linear SU bspace L of 
lR.mn such that c,olL : L ~ lR.4n is regular with determinant at .least 54n, where the 
determinant is defined with respect to the natural metrics in L and IR. 4n. 

To define L we consider the arcs ()k-l I, ()k-l J. These arcs belong to Pn, and we 
can write 
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where ti1 , ••• , ti4: are partitioning points of Pm(l ~ i; ~ m ). Since ak-1 I i= ak-i J 
but ()k I = ()k J we get actually four points ti;, i.e. no two of them coincide. Now let 
L be the space of all v = ( v1 , .•• , vm) E JRmn for which Vi = o unless i is one of the 
four indices ii, ... , i4. 

We can identify L with the tensor product JR4®JRn, where forµ= (µ1, ... , µ4) E 
JR 4, x E JR n the product µ ® x is identified with v = ( V1' ... 'Vm) given by 

if i = ii ( 1 ~ j ~ 4)' 
otherwise. 

Moreover, eachµ= (µ1 , ••• , µ4 ) E JR4 will be identified with the function µ: S 1 ~ 
JR which is linear on each arc of Pm and satisfies 

µ(t;) = { 'ti if i = ii ( 1 ~ j ~ 4)' 
otherwise 

for the end points of these arcs. Then, if e : JR4 ~ JR4 denotes the maps given by 

e(µ) = (vµ,1, · · ·, Vµ,4), 

k 
vµ,j I.: .A1- 1 µ( ak-z s;) (1 ~· j ~ 4), 

l=1 
we get 

cp IL = e ® id : L = JR 4 ® JR n ~ JR 4n = IR 4 ® JR n' 

where the equation on the right hand side is realized by 

To prove det 'PIL 2:: 54n it is sufficient to prove det e 2:: 64 • To this end we consider 
the 16 points e = (e1 , ..• , e4 ) in JR4, where leil = 1. Their convex hull is a cube K 
with volume 24 • The images e( e) = ( Ve,1, ... 'Ve,4) are given by 

k k k-1 
ve,i = L .Az-1e(ak-ls;) = e; + L .Az-1e(ak-l s;) = e; + L Aze(ak-l-1 s;). 

Z=l Z=2 l=l 

(Here we apply e(Bk-1s;) = e(ti;) = e;.) So we have 

with 

' v~I < ~ .A1 = _.A_ = 1 - 6. 
3 -L.J 1-.A . l=1 

If Fe denotes the part 

Fe= {(v1, ... , v4) E JR 4lv;e; 2:: 6} 

of IR4, then e(e) E Fe, and it is a simple geometric fact that the convex hull e(K) 
of the 16 points e(e) contains the cube K' = {(v1, .. ., V4) E JR4l lv;I ~ 6} whose 
volume is (26)4 • (See Fig. 2 where the situation is illustrated in the 2-dimensional 
case.) Now det e;::: 64 is implied by vol (K) = 24, vore(K);::: (26)4. II 
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e(1,1) 
Fc-1,1) 

Fc-1,-1) 
e(-1, -1) 

Fig. 2 

We continue the proof of Lemma 2" with the definition of a function d* : IR4n ~ 
IR: 

If [t', t"] denotes the arc ()k I = ()k J in S1 and t is the point t' + T( t" - t') in 
[t', t"], then x1 + T(x 2 - x1 ), x3 + T(x4 - x3) are the points at which the segments 
Jk(I x { o} ), Jk( J x { o}) pierce the disk { t} x ~. Therefore d*( xi, ... , x4) may be 
regarded as the vertical distance between these segments. Since Jk(J x ~) is the 
p.;\k-neighbourhood of Jk(J x {o}) with respect to this distance and the same holds 
for f k ( J x ~) and f k ( J x { o}), the function d* characterizes the set W (I, J) by 

W(I,J) 

So we get the inclusion 

{v E Vmld*(xu,1, ... , X1114)::; 2p.:\k} 
{ V E Vm Id*( cp( V )) ::; 2p.:\k}. 

(2) 

This inclusion suggests to look for the structure of the sets { x E JR. 4nl d* ( x) ::; 
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e} ( e > 0 small), and we are led to introduce the further set 

{ x E 1R.4nld*( x) = 0}. 

As easily seen this set is contained in 

F = {(xi, ... , x4) E 1R.4nlxi - X3, X2 - X4 linearly dependent in JRn}. 

It will turn out below that F has a simple shape (it is an (n + 1)-dimensional . 
cone over a smooth manifold), and we relate the sets {x E JR.4nld*(x)::; e} to F by 
showing that, for e small, they lie close to F. Indeed, the following lemma proves 

(3) 

where Ne(F) denotes the clo~ed c;-neighbourhood of Fin JR.4n. 

Lemma 5. For (xi, ... , x4) E 1R.4n 

dist ((xi, ... , x4), F)::; 2d*(xi, ... , x4). 

Proof of Lemma 5. Obviously we may assume lxi -x3I ::; lx2 - x4I, xi =/:- X3, X2 -f=. 
x4. First we consider the case x 3 = x4. let the points y, z E JR.n be determined by 
(see Fig. 3) 

(i) (y, x2, X3, x3) E F, i.e. y, x2, X3 collinear, 
(ii) y - xi1-xi - x 2 , i.e. the scalar product (y - xi, xi - x 2 ) vanishes, 

(iii) z, xi, x 2 collinear 
(iv) z - X31-Xi - X2, i.e. (z - X3, Xi - x2) = 0. 

y 

Fig. 3 

Then d*(xi, x2, x3, x3) 2:'.: lz- x3I, and by lxi - x3I ::; lx2--:- x4I we have IY- xii ::; 
2lz - x31. Therefore 

dist ((xi, x2, x3, x3), F) < l(xi, x2, x3, x3) - (y, x2, X3, x3)I 
IY- xii 

< 2lz-x3l 
< 2d*(xi,x2,x3,x3). 
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To prove the lemma in the general case we introduce the point x* = x2 - (x4 - x3). 
Then 

d*( X1, x*, X3, X3) = d*( X1, X4, X3, X4), 
dist ((x1, x*, X3, x3), F) = dist ((x1, x2, x3, x4), F), 

and the general case is reduced to the special case considered above. 

Using (2) and (3) we get 

W(J, J) c (lIJ~r n cp-1(N4>.1c(F)). (4) 

The set cp(~)m is contained in the subset (TIJ; )4 of Ill4n, and we get the further 
inclusion 

W(I, J) c (~r n cp- 1 ((~)4 n N4>.1c(F)). 
We shall show that there is a real Tl such that for each e > 0 

vol (Ne(F) n (JIJ;)4 ) ::; T1en-1 , (5) 

where vol denotes the Lebesgue measure in Ill4n. Since neither F nor (JIJ; )4 depends 
on k,I, J,'the number Tl is also independent of k, I, J. This inequality (5) (with 
e = 4-Xk) together with ( 4) and Lemma 4 (with Q = N4>.•(F.) n (TIJ; )4 ) immediately 
implies Lemma 2" (with T = TaT1 ) and therefore Lemma 2 and Theorem 1. 

So we must prove (5). To this aim we describe the set F. If a : Ill4n ~ Ill 2n is 
the projection which is defined by 

a( X1, . .. 'x4) = ( X1 - X3, X2 - X4), 
then F = a-1(Fa), where 

Fa= {(x1, x2) E Ill2nlx1 ,x2 linearly dependent in Illn}. 

This set Fa is a cone with vertex o, i.e. x E Fa and T E Ill imply TX E Fa. To find 
a basis of this cone we consider the neighb9urhood B = ~ x ~ of o in Ill2n. Th~ 
boundary of B is · 

8B = (8~ x ~) U (~ x 8~) = (sn- 1 x ~) U (~ x sn-1
), 

where sn~1 = 8JDr is the (n - 1)-dimensional unit sphere. Each of the sets 

Fan (sn-l x ~) = {(x, TX )Ix E sn-l, -1 ::; T ::; 1} 
Fan(~ x sn-l) = {(Tx, x)lx E. sn-l, -1::; T::; 1} 

is a smooth compact n-dimensional manifold, and ( x, T) i--t ( x, TX), ( T, x) i--t (TX, x) 
(x E sn-1 , T E [-1, 1]) define homeomorphisms sn-l x [-1, 1] ~ Fan (sn-l x 
~),[-1,1] x sn.;_1 ~Fan (JIJ1i1-1 x sn-1), respectively. Both manifolds have the 
same boundary 

Fa n ( sn-l x sn-l) = { ( x' TX) Ix E sn-l' T = ± 1} 
. and no further common points. Therefore their union Fa n 8B is a topological 

manifold without boundary, and this manifold is a basis of the cone Fa. So Fa is 
the cone over an n-dimensional topological manifold which is the union of two 
smooth compact n-dimensional manifolds with common boundary, and it is not 

9 



hard to see that F0 \ { 0} is a smooth ( n + 1 )-dimensional manifold. The co dimension 
of F0 in JR. 2n is n - 1, and we can find a real 1' such that for any e :> 0 we have 

vol (Ne(Fo) n (TIY;p)2) ::; 1'en-1 , 

where vol denotes the Lebesgue measure in JR. 2n. Since cr( (IDT; )4 ) C (ID1;p) 2 this 
inequality shows that there is a 11 which satisfies (5). 

3. PROOF OF THEOREM 2 

We fix an odd integer n = 2n' + 1 ~ 3. The main part in the proof of the theorem 
will be the proof of the following lemma; 

Lemma 6. Let r ~ 1 be an integer, and let 

Br = 22n'+2 (; )rn'' 

Then there is a non empty open subset Ur of 0 1( S1, Rn) such that for any v E Ur 
the restriction of fe",).,v to its attractor is not injective. 

Before ·proving this lemma we show how it implies Theorem 2. Since !r-1 

/ '(n)l/n' 1/ ' 21+2 n n' B; n' as an immediate consequence of the lemma we get 

.A (B ) < 21+2/n' (n) l/n' B-1/n'. n r _ n' r 

( )
l/n' 

For n 1 --+ oo the value :, tends from below to 4, and it is easy to see that 

If Br::; B < Br+i, r ~ 3, then 

.An(B)::; .An( Br)::; 24B;1/n' = 24 (~)1/n' B-1/n' < 24 ( 8£f )11n' 0-1/n' 

< ::; 32()-l/n' 

If 2::; B < 83 then we use .An(B)::; B-1/n (see Remark 1). So we get 
.An( B) ::; B-1/{2n'+i) = e<n'+i)/[n'(2n'+i)lB-1/n' 

< 9~n'+1)/[n'(2n'+1)]9-l/n' 

22{n'+1)2 /[n'(2n'+l)] (;) (n'+l)/[n'(2n'+l)]3{n'+1)/(2n'+l)()-1/n' 

< 28/3 . 32/3 . 32/3 . B-1/n' 
< 328-1/n'. 

Therefore for each 8 ~ 2 we have .An(B)::; 32()-l/n', and since 1/n' = 2/(n - 1) the 
theorem is proved. 

In the proof of Lemma 6 we shall apply the following Lemma 8. Let i1(p) be 
the set of all n-dimensional cubes Q in Rn whose edges are parallel to the axes of 
Rn and have length p. The k-dimensional skeleton of a cube Q, i.e. the union of 
its k-dimensional faces, will be denoted by Sk( Q). 
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Lemma 7. Let Q', Q" be q-dimensional cubes in Rq, where q = 2q' is even. We 
assume that Q', Q" intersect, that Q', Q" have the same edge length and· that the 
edges of b·oth cubes are parallel to the axes of Rq. Then Sq1(Q') n Sq1(Q") f:. 0. 

Lemma 8. If Q'( T ), Q"( T) ( T E [O, 1]) are two continuous families of cubes in 
.Q(p), then Q'(O) n Q"(O) f:. 0, Q'(l) n Q"(l) = 0 implies that there is a To E [O, 1] 
such that Sn1(Q'(To)) n Sn'(Q"(To)) f:. 0. 

The proof of Lemma 7 is easy and can be omitted. The topological background of 
Lemma 8 is the fact that for two cubes Q', Q" of .Q(p) with Q' n Q" f:. 0, Sn' ( Q') n 
Sn' ( Q") = 0 these two n'-dimensional skeletons must be linked as indicated for 
n = 3, n' = 1 in Figure 4. 

Fig. 4 

Proof of Lemma 8. We define 

To= sup{T E [O, l]IQ'(T) n Q"(T) f:. 0}. 

Then Q'( To) n Q"( To) f:. 0, but Int Q'( To) n Int Q"( To) =:= 0. If Hi, ... ' H2n are 
the (n - l)-d1mensional Hyperplanes in Rn each of which contains an (n - 1)-
dimensional face of Q'( To), then there is at least one Hi such that Q'( To), Q"( To) lie 
on different sides of Hi. (Otherwise the interiors of the two cubes would intersect.) 
Let F', F" be the (n - 1 )-dimensional faces of Q'( To), Q"(!.o), respectively, which 
lie in Hi. Then F' n F" f:. 0, and since n - 1 = 2n1 is even we can apply Lemma 
1. So we get Sn1(F') n Sn1(F") f:. 0 and therefore Sn1(Q'(To)) n Sn1(Q"(To)) f:. 0. 
II 
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Proof of Lemma 6. Let Dr(r 2:'.: 1 an integer) be the lattice of all cubes from 
D(r-1 ) whose vertices belong to the point lattice (r-1zr in JR.n. By s+tr we denote 
the set of all Q E Dr with Q C In, Q n 8n1(ln) f; 0, where Jn is the cube [-1, 1r 
in ·JR.n. Since an n-dimensional cube has 2n-n, (:,) n1-dimensional faces and since 
the edge length of In is 2, the number #s+tr of cubes in s+tr can be estimated by 

#s+tr ~ 2n'+l (:1) (2r t 1 = 22n1
+1 (; )rn'. 

We fix numbers Br, .A as in the lemma and consider the set 8 1 x In which can be 
regarded as a solid torus with corners in 8 1 x Rn. Then we define Ur to be the set 
of all v E C1(81 , JR.n) with the following two properties. 

(i) If t E 8 1 , Q E s+tr, then there is a t1 E 8 1 such that the cube ler,>.,u( {t1
} X In) 

contains the cube { t} x Q in its interior. 
(ii) There is a t* E 8 1 such that 

fer,>.,v( {t*} x In) n ler,>.,11((81\{t*}) x r) = 0. 
Using an compactness argument it is not hard to see that Ur is open in C1(81, Rn). 

To prove that Ur is not empty, i.e. to find a mapping v in C1(81, JR.n) which 
belongs to Ur, we remark first that Br > 2#s+tr and that .A times the edge length 
of In is greater than the edge length of the cubes in s+tr· Let s+tr = {Qi, ... , Qp}, 
and let Zi be the centre of Qi. We decompose [O, 1] in the B subintervals Ii = 
[i(j 1 , ~] (1 ~ i ~ B). Since B 2:'.: 2p it is easy to find a v E C1(81 , Rn) such that 
v( t) = Zi for all t E I2i (1 ~ i ~ p ). Obviously for such a v the mapping fer,>.;v 
has the property (i). Then to get property (ii) we define t* = 2

1
8 and modify v in 

the interval 11 so that the equation of (ii) is satisfied. 
To prove Lemma 6 we must show that for v E Ur the restriction of fer,>.,v to its 

attractor A is not injective. Therefore we shall construct points x 1 f; x 11 in A with 
fer,>.,v( x') = fer,>.,v( x11

). 

In the first step of the construction we apply (i) to find points t~, tr in 81 such 
that 

t1 -1- t 11 8t1 
· - Bt" 1/1' 1- 1 

fer,>.,v( {ta x r) n ler,>.,v( {ta x In) # 0. 
Obviously ti can not coincide with the point t* of (ii). 

In the second step we denote the point t* of (ii) by ti and coinsider the point 
ti* for which the arcs [t~, ti], [t~, ti*] have the same length so that Bti = Bti*· By 
(ii) the cubes 

ler,>.,v( {ta X In), ler,>.,v( { t~*} X In) 
are disjoint, and we consider the following two families of cubes 

Q'(r) = fer,>.,v({ti + r(ti - t~)} x r) 
T E [O, 1] 

Q11(r) = ler,>.,v({tr + r(ti* - tr)} x In). 
Since Q1(0) n Q11(0) = 0, Q1(l) n Q11(l) =/:- 0 we can apply Lemma 8 and find a value 
r 0 such that for 

s~ = t~ + r0 (t~ - t~), s~ = t~ + r0(t~* - t~) 
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we have 
l_J. II 8' 8" S1 I S1' S1 = S1' 

8n(fe,.,>.,11({sa x r)) n 8n(fe,.,>.,11({s~} x In)) :f 0. 
This implies that there are cubes Q~, Q~ in ~r for which 

Je,.,>.,11( { sa x QD n Je,.,>.,11( { s~} x Q~) i= 0, 
and applying (i) we find points t~, t~ E 81 such that 8t~ = s~, 8t~ = s~ 

fe,.,>.,11( {t;} x r) :J {sax Q~, Je,.,>.,11( {t~} x r) :J {sax Q~. 
These points t~, t~ have the following properties 

8t~ :f 8t~, 82 t~ = 82t~, 

Ji,.,>.) { t~} x In) n Ji,.,>.,11( { t;} x r) :/= 0, 
and we conclude the second step of the construction with the remark that 8t~ can 
not be the point t*. 

In the third step we consider the point t; E 81 for which 8t; = t~ = t* and the 
arc [t~, t;] does not contain any further point t with 8t = t*. Then t'here is a unique' 
point t;* for which the arcs [t~, t;], [t~, t;*] have the same length so that 82t; = 82t;*. 
By (ii) 

Ji,.,>., 11( { t;} x In) n J't,.,>.,11( { t~*} x In) = 0, 
and as in the second step we find points s~ E [t~, t;], s~ E;: [t~, t;*] such that 

8s; :f 8s~, 82 s~ = 82s~, 

8n(fi,.,>.,11( {s~} x In)) n 8n(fi,.,>.) {s~} x r)) i= 0. 
Then there are cubes Q~, Q~ in ~r such that 

Ji,.,>.,11( { sa x Q~) n Je,.,>.,11( { s;} x Q~)) i= 0, 
and by (i) we find t~, t~ E 81 such that Bt~ = s~, Bt~ = s~, 

Je,.,>.,11( {t;} x In) :J {s~} x Q~, Je,.,>.,11( {tax fn) :J {s~} x Q;. 
So we have 

82t' _J. 82t" 83t' - 83t" 3 I 3, 3 - 3 

Ji,.,>.,11( {t;} x r) n Ji,.,>.) {tax r) ¥= 0. 
C t . . . th" fi d . t t' t' t" t" h th t on Inmng In IS way we n pom s 1 , 2 , ••. , u 2 , •.• sue a 

ek-1 t~ :f rl-1 t~, ekt~ = ekt~ 

J;,.,>.,11( {ta x r)nJ;,.,>.,11( {t%} x r) :f 0 (k = 1, 2, ... ). 

(6) 
(7) 

To get the points x' x" we consider t' - (Jk- 1t1 t" - ek-1t11 and the centres x' x" of ' k - le> k - le le> k 
the cubes J;,.~I.11 ( {tax In), J;,.j,11( {tk}xr) in {tax Rn or in {t~}xRn, respectively. 
All these points x/c, xZ belong to a compact subset of 81 x Rn, and we can find a 
sequence k1 <. k2 < ... of indices for which the sequences ( xlc; ), ( xZ; ), (j = 1, 2, ... ) 
converge to points x', x", respectively. To see that x', x" lie in A we consider a 
compact subset K of 81 x Rn such that 81 x In C K, Je,.,>., 11(K) C K. Then 

00 

x', x" E n ft >. 11(K) c A. Now we show x' :f x". If t', t" are the projections of 
k=l 7'! I 
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I II • 1 -/ • -/ -II • -11 ( ) -/ _J_ -11 x, x , respectively, to S , then t = Jim tk·, t = Jim tk·· By 6 w~ have tk· 1 tk· 
J-+00 , J-+00 , , 3 

but Ot~; = Otk; and therefore dist(t~;, t~;) 2:: 0-1 which implies dist(t', t") 2:: 0-1 

and hence x' 'f:. x". Finally we prove fe,.,>.,v(x') = fe,.,>.,v(x"). By (7) the cubes 
J3,.,>.) {t~;}xln), !3,.,>.,v( {tZ)xln) with centres fe,.,>.,v(x~;), fe,.,>.,v(xZ;), respectively, 
and edge length .X k; intersect so that the distance between these two points is at 
most .Jii,.X k;. Since 

fe,.,>.,v( x') = Jim Je,.,>.,v( x~; ), fe,.,>.,v( x") = ~im fe,.,>.,v( x~; ), 
J-+00 J-+00 

this implies Je,.,>.,v( x') = fe,.,>.,v( x"). 
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