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Abstract

We consider the inverse problem of recovering a 2D periodic structure from scat-

tered waves measured above the structure. First, following [5], the inverse problem

is reformulated as an optimization problem which consists of two parts: a linear

severely ill�posed problem and a nonlinear well�posed one. Then, contrary to [5],

here the two problems are solved separately to diminish the computational e�ort

by exploiting their special properties. Numerical results for exact and noisy data

demonstrate the practicability of the inversion algorithm.

1 Introduction

The scattering theory for periodic structures has many applications in micro-optics, where

periodic structures are often called di�raction gratings. For an introduction to the direct

problem of calculating the electromagnetic scattering produced by periodic interfaces, we

refer to the monograph [19]. The inverse problem of recovering the periodic structure or

the shape of the grating pro�le from the scattered �eld is also of great practical importance

in modern di�ractive optics, e.g., in quality control and design of di�ractive elements with

prescribed far �eld patterns (see [2, 22]).

As in [5], we shall restrict our attention to two-dimensional perfectly conducting grat-

ings and consider the pro�le reconstruction problem for Dirichlet boundary conditions.

Uniqueness results and local stability estimates were obtained in [1, 3, 13, 16], and a result

on conditional (global) stability was proved in [4].

The goal of this paper is to present reconstruction algorithms based on the optimization

method of [5] in the following three cases: (i) gratings given by a truncated Fourier series,

(ii) binary gratings, (iii) piecewise linear gratings.

To this end �rst an unknown density function is computed from measured near��eld

data, which allows to represent the scattered �eld as a single layer potential. This is a

severely ill-posed linear problem with a known singular value decomposition that helps

to solve it with a low numerical expense. Then the computed density function is used as

input to a nonlinear least squares problem which determines the unknown pro�le as the

location of the zeros of the total �eld and is solved by the Gauss�Newton method. This

approach, originally due to Kirsch and Kress in the case of acoustic obstacle scattering,

avoids the solution of a direct problem in each iteration. Additionally, since only the

grating parameters need be improved in each Gauss�Newton step, the linear system is of

low dimension.

In the case when the minimization of the Tikhonov functional for the linear problem and

the defect minimization of the Dirichlet condition is combined into one cost functional,

the mathematical foundation of the optimization method together with its numerical

performance are discussed in [5]; see also [10].
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Numerical results are reported for various smooth and nonsmooth grating pro�les, where

the data are generated by the direct solver of [21]. The computations demonstrate the

practicability of our method, showing its accuracy and low expense.

This paper is organized as follows:

� Section 2. Direct and inverse di�raction problems

� Section 3. The reconstruction method

� Section 4. The linear severely ill�posed part

� Section 5. The nonlinear part. Reconstruction algorithm for

(i)Fourier gratings,

(ii)Binary gratings,

(iii)Piecewise linear gratings.

� Section 6. Numerical results.

2 Direct and inverse di�raction problems

The scattering of time-harmonic electromagnetic waves in the TE (transverse electric)

mode by two-dimensional perfectly re�ecting periodic structures is modelled by the Dirich-

let problem for the Helmholtz equation. Let the pro�le of the di�raction grating be

described by the curve

�f := f(x1; f(x1)) : x1 2 Rg
with a periodic function f of period 2�: If nothing else is said we always assume that

f 2 C
0;1(R); i.e. f is a Lipschitz function. Let


f := fx 2 R
2 : x2 > f(x1); x1 2 Rg

be �lled with a material whose index of refraction (or wave number) k is a positive

constant, where k = !c
�1(��)1=2: Here ! is the angular frequency, c the speed of light, �

the magnetic permeability which is assumed to be 1 everywhere, and � is the dielectric

coe�cient. Suppose that a plane wave given by

u
in(x) = exp(i�x1 � i�x2)

is incident on �f from the top, where � = k sin �; � = k cos �; and � 2 (��=2; �=2)
is the incident angle. Then the direct scattering problem is to �nd the scattered �eld

u 2 C
2(
f ) \ C(
f) such that

�u+ k
2
u = 0 in 
f ; u = �uin on �f ; (2.1)

and (as the incident wave) u is assumed to be �-quasiperiodic:

u(x1 + 2�; x2) = exp(2�i�)u(x1; x2): (2.2)

Moreover, we require that u satis�es a radiation (or outgoing wave) condition, i.e., u is

composed of bounded outgoing plane waves:

u(x) =
X
n2Z

An expfi(n+ �)x1 + i�nx2)g; x2 > kfkC(R) (2.3)
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with �n := (k2� (n+�)2)1=2 for jn+�j � k; �n := i((n+�)2� k
2)1=2 for jn+�j > k and

the Rayleigh coe�cients An 2 C : We further exclude resonances by assuming �n 6= 0 for

all n 2 Z throughout the paper. Then the sum over the �nite index set

U := fn 2 Z : jn+ �j < kg;

i.e. �n > 0 for n 2 U ; corresponds to the propagating modes of the scattered �eld,

whereas the terms in (2.3) for n 2 Z n U represent evanescent (exponentially decaying)

waves. For general Lipschitz grating pro�les, the existence of a unique solution to the

Dirichlet problem (2.1)�(2.3) is established in [10].

Our goal in this paper is to study the inverse problem of pro�le reconstruction. More

precisely, given the incident wave uin and b > kfkC(R); we introduce the 'output' operator

A : f ! u(x1; b);

which maps the pro�le function f onto the trace of the scattered �eld on the line x2 = b:

In terms of this operator, given the exact scattered �eld on x2 = b (or, equivalently, the

Rayleigh coe�cients An for all n 2 Z), the inverse problem consists just in solving the

nonlinear equation

A(f) = ub := u(x1; b) (2.4)

for the unknown pro�le function f: As observed in [2],[4], solving the equation (2.4) is a

severely ill-posed problem. Hence it is quite natural to apply regularization methods to

this equation.

3 The reconstruction method

Assume, that we have the a priori information about our inverse periodic di�raction

problem (2.4) that, without loss of generality, the unknown pro�le �f lies above the line

x2 = 0 and below x2 = b: We try to represent the scattered �eld as a single layer potential

u(x) =

Z 2�

0

'(t)G(x1; x2; t; 0)dt (3.1)

with an unknown density function ' 2 X = L
2(0; 2�) and the free space quasiperiodic

Green function (cf., e.g., [15])

G(x; y) =
i

2�

X
n2Z

1

�n
exp(i(n+ �)(x1 � y1) + i�njx2 � y2j); x 6= y: (3.2)

The function (3.2) is well de�ned since we assumed �n 6= 0 for all n 2 Z: For �xed f;

introduce the linear operators T; Sf : X ! X by

T'(x1) =

Z 2�

0

'(t)G(x1; b; t; 0)dt;

(3.3)

Sf'(x1) =

Z 2�

0

'(t)G(x1; f(x1); t; 0)dt:

Note that T' approximates the output Af of the scattered �eld u on x2 = b; whereas

Sf' (which is nonlinear with respect to f) represents an approximation of u on the pro�le
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�f : Here and in the following we identify the (�-quasiperiodic) space L2(�f) with X via

v ! v Æ f

(v Æ f)(t) = v(t; f(t)); t 2 [0; 2�];

such that

kv Æ fkX =
1

2�
(

Z 2�

0

jv(t; f(t))j2dt)1=2; v 2 L
2(�f)

is a uniformly equivalent norm when f varies in a set of pro�le functions with uniformly

bounded C
0;1 norm. If ' is given as a Fourier series

'(t) =
X
n2Z

'n exp(i(� + n)t) 2 X; 'n 2 C ;

then from (3.2) and (3.3) we obtain

T'(t) = i

X
n2Z

'n�
�1
n exp(i(� + n)t+ i�nb);

(3.4)
Sf'(t) = i

X
n2Z

'n�
�1
n exp(i(� + n)t+ i�nf(t)):

Because of j�nj � jnj as n!1 and our a priori assumption on �f ; the series in (3.4) are

convergent in any �-quasiperiodic Sobolev norm. Moreover, it can be easily checked that

T : X ! X is an injective compact operator with dense range and with the exponentially

decreasing singular values j��1n exp(i�nb)j: Hence, given the output ub of the scattered �eld,
the determination of the density ' from ub by solving the �rst kind equation T' = ub is

a severely ill-posed problem.

We may solve its Tikhonov regularized version


'+ T
�
T' = T

�
ub; (3.5)

with regularization parameter 
 > 0: Given the solution '
 2 X of (3.5) and the corre-

sponding approximation u
 of the scattered �eld, we can then seek the pro�le �f of the

grating by minimizing the defect

kuin + u
kL2(�f ); f 2 M; (3.6)

over a class of admissible curves �f :

Here a class M of pro�le functions is called admissible if the norm kfkC0;1 is uniformly

bounded for all f 2 M; see [10].

To cover the practically important case of binary gratings, where the pro�le is given by a

step function, the above approach has to be generalized slightly. In that case the defect

(3.6) should be minimized over an admissible class of periodic Lipschitz curves �f with

parametrization

f(t) = (f 1(t); f 2(t)); 0 � t � 2�;

where f
1 and f

2 are uniformly bounded Lipschitz functions and the corresponding do-

mains 
f (above �f) satisfy an "-cone property uniformly in f 2 M; see, e.g., [20], chap.3,

for de�nition. Note that under these conditions the norm kvkL2(�f ) is equivalent to�Z 2�

0

jv(f 1(t); f 2(t)j2dt
�1=2

;
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uniformly in f 2 M: Then the convergence results of [5], [10] can be carried over to this

more general class of grating pro�les.

However, in Sections 5 and 6 we shall apply an alternative method to binary gratings, re-

garding the step functions as the graph of functions with a �nite number of discontinuities

and performing the defect minimization only over the horizontal segments. Though this

approach is not justi�ed by the convergence theory, it produces satisfactory numerical

results.

4 The linear severely ill�posed part

Consider the Hilbert space X = L
2(0; 2�) with the scalar product

< x; y >=
1

2�

Z 2�

0

x(t)y(t)dt;

the norm kxk =
p
< x; x > and the orthonormal basis vn; n 2 Z;

vn(t) = exp(i(� + n)t):

Then

Tvn = �nvn; n 2 Z;

where

�n = i�
�1
n exp(i�nb); n 2 Z:

The adjoint operator T � satis�es

T
�
vn = �nvn:

De�ning

un =
�n

j�nj
vn;

a singular value decomposition of T is given by

fj�nj; vn; un; n 2 Zg:

Now, consider the exact near��eld (cf. (2.3) and (2.4))

ub =
X
n2Z

y
b
nun;

where

y
b
n = An exp(i�nb)

j�nj
�n

:

Then ub 2 D(T y) if and only if the Picard condition

X
n2Z

jybnj2
j�nj2

=
X
n2Z

jAnj2j�nj2 <1;

is ful�lled (cf.[11], p.38), which cannot be guaranteed in general. Here D(T y) denotes the

domain of the generalized inverse of T: Moreover, usually ub will not be given exactly but

perturbed by measurement errors. So instead of the problem

kT'� ubk2 ! inf
'2X

;
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which is not solvable in general, let us consider its Tikhonov regularized version

kT'� ubk2 + 
k'k2 ! inf
'2X

for a suitable 
 > 0: Its solution '
 can be represented as (cf. [11], p.117)

'
 =
X
n2Z

j�nj
j�nj2 + 


< ub; un > vn =
X
n2Z

a


n < ub; vn > vn;

where

a


n =

(
�i��1n exp(�i�nb)

��2n +

if n 2 U

j�nj�1 exp(�j�njb)

j�nj�2 exp(�2j�njb)+

if n 2 ZnU

:

One may expect a fast convergence of this series such that only a short part, say jnj � N;

will be necessary in the implementation. In our numerical examples N will be always

chosen such that U � fn 2 Z; jnj � Ng:
Notice that each term appearing in this section (including �; �n; vn; un; �n; ub; 
; '
; N)

may depend on the characteristics k; � of the incoming wave uin: So, if one wants to incor-

porate measurements ub for nr di�erent experiments, one must perform nr computations

for the quantities '
:

5 The nonlinear part

Now let us investigate the nonlinear problem

kuin Æ f + Sf'
k2 ! inf
f2M

;

where '
 is the input, computed in the previous section, and the admissible set M will

be speci�ed later. Using the explicit representations of the incoming wave u
in and the

operator Sf (cf. (3.4)) and the input '
 as

'
 =
X
jnj�N

a


n < ub; vn > vn;

where 
 � 0 and N 2 N have to be chosen suitably, the problem takes the form

k exp(�i�f(:)) +
X
jnj�N

Zn exp(i�nf(:))vnk2 ! inf
f2M

: (5.1)

Here

Zn = i�
�1
n a



n < ub; vn > : (5.2)

In the case of nr inputs '
 one has to minimize a sum of nr functionals (5.1), where Zn

depends on the respective input.

Before specifying types of admissible sets for the pro�le function f let us go to describe

the further treatment in an abstract way, con�ning ourselves to a single input. For more

than one input one has to modify the functional (5.1) in a straightforward way.
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Let us suppose that f depends smoothly on �nitely many real parameters p�; � = 1; :::;M

f(t) = f [p1; :::; pM ](t);

and that

F = k exp(�i�f(:)) +
X
jnj�N

Zn exp(i�nf(:))vnk2

can be represented as

F =
X

1�j�K

r
2
j ;

where

rj = rj[p1; :::; pM ] 2 R+

depends smoothly on p1; :::; pM : In the case where the sum of nr functionals (5.1) is to be

minimized, K is the number of all residuals involved.

Consider the vectors

r = (r1; :::; rK); p = (p1; :::; pM)

and the matrix

J = (@rj=@p�);

with K row indices j and M column indices �:

Then the least squares problem X
1�j�K

r
2
j ! inf

p

can be solved by the Gauss�Newton method iteratively via

p
new

= p
old

+ �q;

where q solves the linear system

J
T
Jq = �JT r

and � is a suitably chosen positive real number less or equal 1 (cf.[18]).

De�ning

Fj = r
2
j ;

we have @rj=@p� = 1
2
F
�1=2
j @Fj=@p�; and the linear system takes the form

1

4

X
1���M

 X
1�j�K

F
�1
j

@Fj

@p�

@Fj

@p�

!
q� = �1

2

X
1�j�K

@Fj

@p�
; � = 1; :::;M;

which is used in the implementation. Notice that the matrix and right hand side are

computed by only using the known parameter vector pold:

In our cases the Hessian

r2
F =

 X
1�j�K

@
2
Fj

@p�@p�

!
1��;��M
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can be computed without much expense. So, as an alternative for updating the parame-

ters, we can also use the Newton correction q, i.e. the solution of the linear system

(r2
F )q = �rF;

where

rF =

 X
1�j�K

@Fj

@p�

!
1���M

:

Now we consider 3 types of admissible sets for the pro�le function f:

(i) Fourier gratings.

Let f be given as

f(t) = a0 + 2
X

1���m

(c� cos(�t) + d� sin(�t));

where m is considered to be �xed. Then

M = 2m + 1;

and the (bounded) set of real parameters characterizing f is

a0; c1; :::; cm; d1; :::; dm:

Let K be a natural number and

sj =
2�

K
(j � 1); j = 1; :::; K;

an equidistant partition of [0; 2�]: Then, using the trapezoidal rule, the functional F can

be approximated by

F �=
X

1�j�K

Fj; Fj =
1

K
j exp(�i�f(sj)) +

X
jnj�N

Zn exp(i�nf(sj))vn(sj)j2;

where f(sj) = fj[a0; c1; :::; cm; d1; :::; dm] should be noticed.

(ii) Binary gratings.

Let here

M = 2n0;

n0 � 1 a �xed natural number. Consider the parameters

t1; t2; :::; t2n0�1; h;

such that 0 < t1 < ::: < t2n0�1 < 2� and 0 < g < h hold, g given. Let t0 = 0; t2n0 = 2�

and de�ne

f(t) =

�
h if t2j�2 � t � t2j�1; j = 1; :::; n0

g if t2j�1 < t < t2j; j = 1; :::; n0
:

Vividly, n0 can be interpreted as the number of 'towers' of the grating of height h � g

over the level g; and t2j�2 and t2j�1 are the positions of the 'walls' of the j-th tower.
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Then

F =
X

1�j�M

Fj;

i.e. K = M; and

Fj =

Z t2j�1

t2j�2

j exp(�i�h) +
X
jnj�N

Zn exp(i�nh)vn(t)j2dt; j = 1; :::; n0;

Fn0+j =

Z t2j

t2j�1

j exp(�i�g) +
X
jnj�N

Zn exp(i�ng)vn(t)j2dt; j = 1; :::; n0:

(iii) Piecewise linear gratings.

Now, let ` � 1 be a given natural number and let us take as parameters ` � 1 partition

points

0 < t1 < t2 < ::: < t`�1 < 2�

and ` positive, bounded real numbers

d1; d2; :::; d`:

Denote t0 = 0; t` = 2�; d0 = d`; and take the pro�le f as piecewise linear with the property

f(t�) = d�; � = 0; :::; `:

Then

F =
X
1�j�`

Fj;

so that we have M = 2`� 1; K = ` in this case. Furthermore,

Fj =

Z tj

tj�1

j exp(�i�(xjt + yj)) +
X
jnj�N

Zn exp(i�n(xjt+ yj))vn(t)j2dt; j = 1; :::; `;

where

xj =
dj � dj�1

tj � tj�1
; yj =

dj�1tj � djtj�1

tj � tj�1
; j = 1; :::; `:

In the special case ` = 4`0 and

h = d0 = d1 = d4 = d5 = ::: = d`�4 = d`�3;

g = d2 = d3 = d6 = d7 = ::: = d`�2 = d`�1;

h > g > 0; the pro�le will be called a linear `0� tower pro�le of height h � g over the

level g:

To obtain an admissible set of grating pro�les for the minimization problem in the cases

(ii) and (iii), we have to assume that the heights h resp. dj are uniformly bounded and

that the minimal distance between partition points tj remains uniformly bounded from

below.
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6 Numerical results

Here we present the results of numerical experiments using our method with exact and

noisy data. The near �eld measurements ub are simulated by �rst solving the direct

problem by a �nite element like method ([21]) and then disturbing with random errors:

ub(r�) + Æ!�; j!�j2 � 1; (6.1)

where Æ � 0 is the noise level and fr�g is an equidistant partition of [0; 2�] used as dis-

cretization in the computation of the data Zn via (5.2). Data where only the propagating

modes (i.e. n 2 U) are taken into account will be called far��eld data.

In the following experiments, if nothing else is mentioned, the unknown pro�le will be

probed by the single incoming wave with characteristics k = 4:45; � = 0; where

U = fn 2 Z; jnj � 4g;

i.e. the propagating modes correspond to jnj � 4:

(i)Fourier gratings:

In the case of a Fourier grating the pro�le function f(t) is given as a trigonometric

polynomial. We performed numerical experiments for the following two pro�le functions,

chosen as in the examples discussed in [14] and [12] :

f0(t) = 2 + �(cos(t) + cos(2t) + cos(3t)) ; (6.2)

f1(t) = 1:5 + 0:2esin(3t) + 0:3esin(4t) : (6.3)

Concerning the case (6.2) take � as a measure of the pro�le steepness. As was found in

[5] the reconstruction becomes worse when the steepness of the pro�le increases. In [5]

we obtained satisfactory results for � � 0:05� . Here, our improved algorithm allowed

treating the case � � 0:1�: We used undisturbed far-�eld data without regularization and

updated 7 parameters in each of 50 iterations. The results are given in Table 1.

a0 c1 c2 c3 d1 d2 d3

target 2.00 .157 .157 .157 0 0 0

initial 1.80 0 0 0 0 0 0

calcul 2.04 .165 .131 .112 -.001 -.001 -.002

Table 1: Case (6.2) for � = 0:1�

Instead of (6.3) we used its truncated Fourier series

f1(t) =< f1; v0 > +2
X

1���8

(Ref< f1; v� >g cos(�t) + Imf< f1; v� >g sin(�t));

which can be approximated by

f(t) = 2:133+2[�0:02715 cos(6t)�0:0407 cos(8t)+0:11303 sin(3t)+0:1695 sin(4t)]: (6.4)

In our computations given in Table 2, for N = 4 the outgoing modes were used, while for

N = 5 two additional modes only appearing in the near��eld were taken into account. In
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both cases a regularization parameter 
 = 0:1 was appropriate yielding the result given in

Table 2. Moreover, again using 
 = 0:1 perturbations (6.1) with Æ = 0:1 of the near��eld

corresponding to a noise of 5.3% led to deviations of about 10% in the result.

The computations were performed assuming a priori that all coe�cients not appearing in

the (unknown) target vanish so that only 5 parameters had to be updated in the iterations.

To reach stationarity 400 iterations were enough, taking two or three seconds all together

on a workstation. Without the a priori information satisfactory results could be achieved

only for suitable start values.

a0 c6 c8 d3 d4

target 2.13 -.027 -.040 .113 .169

initial 2.13 0 0 0 0

calcul 2.20 -.004 -.049 .036 .130

Table 2: Case (6.3)

(ii)Binary gratings:

Here we used undisturbed far��eld data without regularization from the three incoming

waves for k = 4:45 and � = 0; 45;�45 degrees. We calculated a two-tower pro�le of height

1.2 over the level 2. After 200 iterations with � = 0:1 the computation became stationary

till the 12th digit. The results, given in Table 3, proved to be stable when the initial values

for t1; t2; t3 were changed coarsely, but turned out to be rather sensitive with respect to

h:

t1 t2 t3 h

target 1.000 3.000 5.000 3.200

initial 0.5 1.5 5.5 3.0

initial 0.5 1.5 3.0 3.2

calcul1 1.069 2.881 5.371 2.958

initial 0.5 1.5 3.0 3.4

initial 0.5 1.5 3.0 4.0

initial 0.5 1.5 6.0 4.0

calcul2 1.074 2.957 5.082 3.830

Table 3: Binary grating, 2-tower pro�le

(iii)Piecewise linear gratings:

We considered a linear two-tower pro�le of �xed height 1 over the bottom level 2 given

by the 7 target parameters t1; :::; t7 speci�ed in Table 4. We made calculations with

undisturbed and disturbed data. For N = 4; also for disturbed data a regularization was

not necessary, while for N = 5 we had to regularize with 
 = 10�5 or greater even in the

undisturbed case. For 
 = 10�7 the calculation became unstable. Starting at di�erent

initial values, we made calculations with 1000 iterations each and � = 0:01 leading for

exact data to identical results given in Table 4. For diminishing the rather large number

of iterations we combined each iteration with a line-search (cf.[18]), but this gave no

improvement compared to the constant step length � as chosen.
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Figure 1: Fourier grating, case (6.3)
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Figure 2: Linear grating

The results became stationary till the fourth digit and proved rather unsensible against

changes of initial values.

We considered perturbations (6.1) with Æ = 0:1 corresponding to a noise of 3.4% leading

to a deviation in the result of less than 1%.

t1 t2 t3 t4 t5 t6 t7

target 0.5 1.5 2.0 3.0 3.5 4.5 5.5

initial 0.5 1.5 2.0 3.0 3.5 4.5 5.5

initial 1.0 1.4 2.5 3.2 4.0 4.6 6.0

calcul 0.45 1.67 1.86 3.04 3.51 4.71 5.17

Table 4: Linear 2-tower pro�le

To the reader's convenience, some of our computational results presented in the Tables

are additionally drawn in Figures 1�4.
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Figure 3: Binary grating, target

initial
computed

Legend

2

2.2

2.4

2.6

2.8

3

3.2

3.4

3.6

3.8

 

0 1 2 3 4 5 6 

Figure 4: Binary grating, calcul2

[2] G. Bao, D.C. Dobson, J.A. Cox, Mathematical studies in rigorous grating theory, J.

Opt. Soc. Amer. A 12 (1995), 1029�1042.

[3] G. Bao, A. Friedman, Inverse Problems for scattering by periodic structures,

Arch.Rat.Mech.Anal.132 (1995), 49-72.

[4] G. Bruckner, J. Cheng, M. Yamamoto, An inverse problem in di�ractive optics:

conditional stability, Inverse Problems 18 (2002), 415-433.

[5] G. Bruckner, J. Elschner, M. Yamamoto, An optimization method for grating pro�le

reconstruction, Preprint No.682, Weierstrass Institute, Berlin, 2001, to appear in

Proceedings 5.ISAAC congress Berlin 2001.

[6] O.P. Bruno, F. Reitich, Numerical solution of di�raction problems: a method of

variation of boundaries. II.Finitely conducting gratings, Padé approximants, and

singularities, J.Opt.Soc.Amer. A 10 (1993), 2307-2316.

[7] J. Cheng, M. Yamamoto, One new strategy for a priori choice of regularizing param-

eters in Tikhonov's regularization, Inverse Problems 16 (2000), L31�L38.

[8] D. Colton, R. Kress, Inverse acoustic and electromagnetic scattering theory, 2nd

Edition, Springer, Berlin, 1998.

[9] J. Elschner, G. Schmidt, Inverse scattering for periodic structures: Stability of polyg-

onal interfaces. Inverse Problems, 17(2001),1817-1829.

[10] J. Elschner, M. Yamamoto, An inverse problem in periodic di�ractive optics: Recon-

struction of Lipschitz grating pro�les, Applicable Analysis, to appear.

13



[11] H.W.Engl, M.Hanke, A.Neubauer, Regularisierung of inverse problems, Kluwer Aca-

demic Publishers, Dordrecht, 1996

[12] F. Hettlich, Inverse Problems 18(2002),701-714.

[13] F. Hettlich, A. Kirsch, Schi�er's theorem in inverse scattering for periodic structures,

Inverse Problems 13 (1997), 351-361.

[14] K. Ito, F. Reitich, A high-order perturbation approach to pro�le reconstruction:

I.Perfectly conducting gratings. Inverse Problems 15 (1999), 1067-1085.

[15] A. Kirsch, Di�raction by periodic structures, In: Proc.Lapland Conf.Inverse Prob-

lems (eds L.Päivärinta et al.), Springer, Berlin, 1993, pp.87-102.

[16] A. Kirsch, Uniqueness theorems in inverse scattering theory for periodic structures,

Inverse Problems 10 (1994), 145-152.

[17] A. Kirsch, R. Kress, An optimization method in inverse acoustic scattering, In:

Boundary elements IX, Vol.3 (eds.Brebbia et al), Springer, Berlin, 1987, pp.3-18.

[18] J. Nocedal, S.J. Wright, Numerical Optimization, Springer Series in Operations Re-

search, New York, 1999.

[19] R. Petit (ed), Electromagnetic Theory of Gratings, Springer, Berlin, 1980.

[20] O. Pironneau, Optimal Shape Design for Elliptic Systems, Springer, New York, 1984.

[21] A. Rathsfeld, Personal communication.

[22] J.Turunen, F.Wyrowski (eds), Di�ractive optics for industrial and commercial appli-

cations, Akademie Verlag, Berlin, 1997.

14


