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Abstract: We continue the analysis of the problem of metastability for reversible diffusion
processes, initiated in [BEGKS3], with a precise analysis of the low-lying spectrum of the
generator. Recall that we are considering processes with generators of the form —eA+VF(-)V
on R? or subsets of R?, where F is a smooth function with finitely many local minima. Here we
consider only the generic situation where the depths of all local minima are different. We show
that in general the exponentially small part of the spectrum is given, up to multiplicative
errors tending to one, by the eigenvalues of the classical capacity matrix of the array of
capacitors made of balls of radius e centered at the positions of the local minima of F'. We
also get very precise uniform control on the corresponding eigenfunctions. Moreover, these
eigenvalues can be identified with the same precision with the inverse mean metastable exit
times from each minimum. In [BEGK3] it was proven that these mean times are given, again

up to multiplicative errors that tend to one, by the classical Eyring-Kramers formula.

1. Introduction.

In this paper we continue the investigation of reversible diffusion processes initiated in
[BEGK3|. Recall that we are interested in processes X(t) that are given as solutions of an

It6 stochastic differential equation
dX(t) = VF(X(t))dt + V2edW (t) (1.1)

on a regular domain Q C R?, where the drift VF is generated by a potential function that
is sufficiently regular. We are interested in the case when the function F(z) has several local

minima. We always assume that X, is killed on ¢ if it exists.

For a general introduction to the topic and its history we refer to the introduction of
[BEGK3|. In that paper we have studied the so-called metastable exit times from attractors
of local minima of F' and we have given a precise asymptotic estimate for the mean value of
these times. These estimates were in turn based on precise estimates of certain Newtonian

capacities of sets containing small balls centered at the locations of the minima of F'.

In the present paper we turn to the investigation of the low-lying spectrum of the generators

of the process defined by (1.1), i.e.
L.=—-eA+VF(z)-V (1.2)

of these processes, with Dirichlet boundary conditions on Q¢ (if Q # R?) of these processes.

It is well-known that the spectrum of such operators has precisely one exponentially small

11/september/2002; 12:01 1



eigenvalue for each local minimum of the function F, and more or less rough estimates of
their precise values are known [FW,Ma,Mi|. Wentzell [W2] and Freidlin and Wentzell [FW]
obtain estimate for the exponential rate, i.e. they identify lim. e~ 1n\;(€) using large

+kd were obtained

deviation methods. Sharper estimates, with multiplicative errors of order ¢
for principal eigenvalues by Holley, Kusuoka, and Strook [HKS] using a variational principle;
these methods were extended to the full set of exponentially small eigenvalues by Miclo [Mi]

(see also [Ma)).

Our purpose here is to get sharp estimates, i.e. we seek upper and lower bounds with
multiplicative errors that tend to one as ¢ tends to zero. Such estimates are known in the
one-dimensional case (see e.g. [BuMal,BuMa2] and references therein), whereas in the multi-
dimensional case only heuristic results based on formal power series expansions of WKB type
exist. (see e.g. [Kolo] for an analysis of the situation). While the methods introduced in
the third paper on quantum mechanical tunneling by Helffer and Sjostrand [HS3] should in
principle allow to justify such expansions, their implementation seems rather tedious and has

not been carried out to our knowledge.

Here we will resort to a different approach that combines ideas already suggested in [W1]
with potential theoretic ideas. In fact, this approach was developed in [BEGK2] in the
setting of discrete Markov chains, where indeed many technical problems we will be facing

here disappear, and that may serve as a nice introduction.

We will from now on assume that F' is at least three times continuously differentiable and
has a finite set of local minima, which we denote by M = {z1,...,z,}. We will also assume
V)>a exp(—F(z)/€)dz < Ce™%/¢, where

C = C(a) < oo is independent of e. Our main interests are the distribution of stopping times

that F' has exponentially tight level sets, i.e. that fy: F(

Ta = inf {t > 0|X(t) € A} (1.3)

for the process starting in one minimum, say z € M, of F, when A = B,(y) is a small ball
of radius p around another minimum, y € M. It will actually become apparent that the
precise choice of the hitting set is often not important, and that the problem is virtually
equivalent to considering the escape from a suitably chosen neighborhood of z, provided this

neighborhood contains the relevant saddle points connecting = and y.

Let us now state the main results of this paper. One key notion we will need is that of the

saddle between two sets A, B C R?. We say that z* = 2*(A4, B) is a saddle point between A



and B, if

F(z*(A,B)) = F(w(t)) (1.4)

inf sup
wiw(0)€A,w(1)EB ¢e[0,1]
where the infimum is over all continuous paths going from A to B. Note that z*(A, B) may

not be uniquely defined; we call Z(A, B) the set of all possible solutions.

Given two disjoint closed sets A, D, we will denote by h4 p(z) the equilibrium potential,
by ea,p(dy) the equilibrium measure, and by cap 4 (D) the Newtonian capacity corresponding
to the Dirichlet problem with boundary conditions one on A and zero on D. The precise
definitions of these classical quantities (see e.g. [BluGet,Doo,Szni]) are recalled in Section 2
of [BEGK3).

Theorem 1.1: Assume that F has n local minima, x1,...,ZT, and that for some 6 > 0 the
minima z; of F' can be labeled in such a way that, with My = {x1,...,zx} and My = Q°,
F(z"(zk, My-1)) = Fz) < min (F(2" (zi, Mi\zi)) — F(2:)) -0 (1.5)
holds for all k = 1,...,n. We will set B; = B(x;) and Sy = UleBi, and hi(y) =
hp,,s._.(y). Assume moreover that all saddle points z*(xy, Mk—_1) are unique, and that
F' has a non-degenerate Hessian at all these saddle points and at all local minima. Then

there exists § > 0 such that the n exponentially small eigenvalues Ay < Ao < --- < A, of L.

satisfy:
Ak _ Cap B, (S;—l) (1 + 0(6_6/5))
[hxll3
1

=L (tor
(1406

(1.6)

_ MG (@, Me-1))] det(V2F(zy)) o [F(=" (@x, Mi 1)~ F(ax)] /¢
27 | det(V2F (2*(zk, Mk—1)))]

x (140 (/%))

where A} (z*) denotes the unique negative eigenvalue of the Hessian of F' at the saddle point
z*. Note that if @ = R, then cap p,(M,) = cap g, (0) = 0.

Remark: The theorem can be seen as containing three results: First, an asymptotically sharp
identification of the exponentially small eigenvalues with the inverse mean exit times from
local minima, this is a general feature of metastable systems (see e.g. [D1,D2,D3,GS,GM]
for earlier results). Second, it relates these eigenvalues precisely to Newtonian capacities;

this is the key difference from our results to e.g. the approach of Kolokoltsov and Makarov



[KoMal,KoM2,Kol], since it allows thirdly to get an explicit expression for the eigenvalues

in terms of the potential F'.

Remark: Conditions (1.5) state that “all valleys of F' have different depth”, which is in some
sense the generic situation. In this case a number of simplifications take place, in particular we
do not have to deal with degenerate eigenvalues. These conditions are completely analogous
to the conditions imposed in [BEGK2]. Our general approach does, however, in principle
also allow to treat degenerate situations. We postpone the treatment of such cases to future

work.

In the course of the proof of Theorem 1.1 we will also obtain rather detailed control on

the eigenfunctions of L. corresponding to its small eigenvalues.

Theorem 1.2: Under the assumptions of Theorem 1.1, if ¢ denote the normalized

eigenfunction corresponding to the eigenvalue Mg, then there exists § > 0 s.t.

) = hBe(mk)ySk—l (y) (

= 14 0(e™%) + 0(e~%/¢) (1.7)
||th(mk)7Sk71 ||2

or(y

where hBe(mk),Sk—1(y) = ]P’y [TBe(-’Bk) < Tsk—l]

Remark: We give even more precise expressions for the eigenfunctions in the course of the
proofs later on. Note that there is considerable interest in the knowledge of eigenfunctions in
the context of numerical schemes designed to recover metastable sets from the computation of
eigenfunctions. See in particular references [S,SFHD,HMS]. Let us emphasise that, using the
bounds on equilibrium potentials obtained in Corollary 4.8 of [BEGK3], Theorem 1.2 implies
that the eigenfunction corresponding to a Minimum z; is exponentially close to a constant
(~ eF(#)/€) in the connected component of the level set {y : F(y) < F(z*(z;, Mi_1))} that
contains z; (i.e. in the valley below the saddle point that connects z; to the set that lies
below z;), while it drops exponentially in the other connected components of the level set
of this saddle; below the level of z; it is exponentially small in absolute terms. Note that
this implies that the zeros of ¢ are generally not in the neighborhood of the saddle points,
but much closer to the minima in M;_;. This fact was also observed in [HMS]|. We would
like to stress that the fact that the eigenfunctions drop sharply at the saddle points makes
them very good indicators of the actual valley structure of the potential F', i.e. they become
excellent approximations to the indicator functions of the metastable sets corresponding to

the metastable exit time 1/A;.

Finally, it is almost a corollary from the results obtained above that metastable exit times



are asymptotically exponentially distributed, when appropriate non-degeneracy conditions

are met.

Theorem 1.3: Assume that the Hessian of F is non-degenerate at all local minima and

saddle points. Let x; be a minimum of F and let D be any closed subset of R such that:

(i) If M; = {y1,...,yx} C M enumerates all those minima of F such that F(y;) < F(z;),
then U5_, Bc(y;) C D, and

(ii) dist (S(z;, M;), D) > > 0 for some § independent of e.

Assume further that the conditions of Theorem 1.1 are satisfied. Then, there exist § > 0
independent of € and of t, such that for allt > 0,
B, fro > By o] = (140 (e=51°)) 05/

+ Z O(e—J/E)e—tAjEszD + 0(1)e—to(ed71)EkaD
i>k

(1.8)

The results of this paper together with those of [BEGK3| show that the methods to
analyse metastable behaviour in discrete Markov chains introduced in [BEGK1,BEGK2] can
be naturally extended to the treatment of continuous diffusion processes. In particular we see
that the metastable behaviour of continuous and discrete diffusions is virtually identical, and
that all results for the discrete chains treated in [BEGKI1] carry over to the corresponding
diffusion approximations. In fact, our results in the diffusion case are sharper, since we were
able to identify the constants in the prefactors of exponentially small or large terms (we
expect, however, that with some extra work this improvement can also be carried over to the
discrete chains, at least under certain conditions). There are a number of generalizations of
these results that can be investigated: First, one can consider diffusion processes on more
general Riemannian manifolds. Second, one can consider extensions to locally infinitely
divisible processes with mixed diffusion and jump components. Such extensions will require
some extra work, but in principle our approach appears applicable, and qualitatively similar
results should be obtainable. Another potentially interesting generalization concerns non-
reversible diffusion processes. Here the main difficulty is the determination of the invariant
measure, which our methods do not address at all. However, it is to be expected that at
least in uniquely ergodic situations, some of our results can still be carried over. We hope to

address these issues in future publications.

The remainder of this paper is organized as follows: In Section 2 we prove an a priori



estimate on the spectrum of the generator when Dirichlet conditions are applied to small
neighborhoods of all the local minima of F. In Section 3 we then show that the eigenvalues
of the full generator are asymptotically close to those of the capacity matrix, which in turn
are then evaluated in the generic situation. In the course of the proof we also identify the
eigenvalues of the generator with the principle eigenvalues of appropriate Dirichlet operators.

Finally, we derive from these results the exponential distribution of the mean exit times.

Acknowledgements: We thank an anonymous referee of [BEGK2] for drawing our attention
to the paper [W2] by Wentzell. We also thank M. Eckhoff for participation in an early stage
of this work. A. Bovier thanks the EPFL and V. Gayrard the WIAS for hospitality and

financial support that made this collaboration possible.

2. A priori spectral estimates.

Most of the preparatory background and necessary technical a priori estimates were in-
troduced in [BEGK3] and will be imported from there. In this section we give an additional
a priori estimate on the spectrum of certain Dirichlet operators associated to L.. More pre-
cisely, we derive a priori lower bounds on principal eigenvalues and for the Dirichlet problem
in (regular) open sets D C R? with closure D. We denote by 0D the boundary of D. We
denote by A(D) = A;(D) the principal eigenvalue of the Dirichlet problem

(L. — Nf(z) =0, ze€D

f(z)=0, zeD° @1)

and sometimes use the notation LP® to indicate the Dirichlet operator corresponding to the
problem (2.1).

The following lemma is a classical result of Donsker and Varadhan [DV]:

Lemma 2.1: The principal eigenvalue (D) satisfies

X(D) > 1

_ 2.2
~ sup,ep Ee Tpe (2.2)

In the case when we consider diffusions on a compact set, Lemma 2.1 will yield a sufficiently
good estimate. If D is unbounded, the supremum on the right may be infinite and the
estimate becomes useless. However, it is easy to modify the proof of Lemma 2.1 to yield an

improvement.
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Lemma 2.2: Let ¢p denote the eigenfunction corresponding to the principal eigenvalue of
LP.

Let A C D be any compact set, Then

AD)> L (1 —~ / dye—F@’/flqéD(y)l?) (2.3)
D\A

Sup,e 4 Ez Tpe

Moreover, for any § > 0, there exists bounded A C D such that

(D) > 1

¥ SbeaErp .

Proof: Let w(z) denote the solution of the Dirichlet problem
Low(z)=1, z€D

w(z) =0, ze€D° (25)

Note that (see e.g. Eq (2.22) of [BEGK3|) w(z) = E,7p.. Using that for any C > 0,
ab < 1(Ca® + b?/C) with ab = ¢(z)$(y) and C = w(y)/w(z), one shows readily that

/da:e_F("‘”)/E )(Led)(x /d:l: —F(=)/e x))
- / dre T/ A2 4 (2.6)
D w(z )
/dxe—F(m)/e¢2( )

(Lew)(x)¢()

- SUPzecA w

Choosing ¢ as the normalized eigenfunction with maximal eigenvalue yields (2.3).
We now claim that for any v > 0,
[ v @) < 0, < o0 (2.7)

This clearly implies (2.4). The estimate (2.7) follows from a standard Combes-Thomas esti-
mate for the ground-state eigenfunction, ¢. It is convenient to introduce v(y) = e~ F®)/2¢p(y),

which is the corresponding ground state eigenfunction of the operator
H, = e FO/2e], oFO/2e (2.8)
which is a symmetric operator on L2(R¢,dy). By a standard computation,

= /dyu*(y)eiaF(y)/EHEe_i“F(y)/eu(y) (2.9)
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defines a closed sectoral form (in the sense of Kato [Ka]), which is analytic in the strip
|Sa| < 1/2. The Combes-Thomas estimate (see e.g. [RS]) then implies that v satisfies

/dye(l_"’)F(y)/e|v(y)|2 <Cy <o (2.10)

which is equivalent to (2.11). This completes the proof of the lemma. {

We will first establish that A(D) is at most polynomially small in € if D does not contain

local minima, more precisely, define

M, = {z € Q|dist(z, M) < ¢} (2.12)

Lemma 2.3: Assume that D N M, = 0. Then there is a finite positive constant C such
that

sup E; 7pe < Csup [{y: F(y) < F(z)}| e 4tl (2.13)
z€D z€D

Proof: The starting point of the proof is the relation (which is an immediate consequence
of [BEGK3], Eq. (2.27))

/ dye FW)/ep g (@),pc(y) > inf E,Tpecap g, (2)(D°) (2.14)
D pPA=D z€0B,(x) L

between mean time, equilibrium potential and capacities. It follows from the well known

relation

B, 7p- = / Gp(w,y)dy (2.15)
D

between mean time and Green function that the Harnack inequality of [BEGK3], Lemma

4.1, carries over to E, 7p<, implying that, if p = ce, then

sup E,7p- <C inf E,7pe (2.16)
2€E0B,(z) z€0B,(x)

Combining this with (2.14) gives us that

dye=FW/ehp o\ pe
sup E,7mp- < CID ye B, (2).D ()

2.17
2€0B,(z) cap B, (z)(D®) (2.17)

We now distinguish the regions {y : F(y) > F(z)} and {y: F(y) < F(z)} in the integral. In

the former, we just use that hp,(,),p-(y) < 1, while in the latter we invoke the upper bound



from Proposition 4.3 in [BEGK3]. This gives

dye_F‘(y)/6

s Erp. < o dven:rw)>Fe)
z€0B,(x) ca'po(“’)(Dc)
oo,
cap g, (z)(D°) JyeD:F(y)<F(a)

(2.18)
_F(y)/e 3P B, ) (Bp(2))

+C
cap g, (y) (D°)

dye

Using the upper and lower bounds on the capacities from Proposition 4.7 of [BEGK3]|, we
get that

sup E,7pc < C'ep_d+2e+F(m)/€/ dye—l"“(y)/E
2€0B,(=) y€D:F(y)>F(x)

+ C'ep_d+2/ dy
y€D:F(y)<F(z)

By our assumption on F, the first integral is bounded by a constant times exp(—F(z)/¢) and
the second is equal to the volume of the level set {F(y) < F(z)}. This implies the claimed
bound.$

(2.19)

Combining our results yields the

Corollary 2.4: If DN M. = 0, then there erists a finite positive constant C < oo,
independent of €, such that

X(D) > Cce?? (2.20)

We can generalize the bounds obtained so far to sets D containing some of the local minima
of F. Le. let N C M be nonempty and let

N, = {y € R¥| dist(y,N) < €} (2.21)

Assume that D D N, and set A(z) = {y : hp, (z),0°\B.(2)(¥) = Maxyem hB, (2),D¢ baB.(z)(¥)}
Then

Lemma 2.5: Under the assumptions of lemma 2.2,

S Z fA(m,) e_F(y)/Edy
( ) N CapBe(mi)(D\BE(xi))

it ENe

‘ -

(2.22)

>~

Proof: The proof is similar to that of the preceding corollary combined with the estimate

on mean times given in Theorem 6.2 of [BEGK3]. We leave the details to the reader.$
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Remark: The key fact we need to extract from lemma 2.5 is that

X(D) >~ min e [FE @iMe)=F(z:)l/e (2.23)

iix; EN

3. Characterization of the small eigenvalues.

It is a well-known fact that if F' has n local minima, then L. has n eigenvalues that are
exponentially small in € and that the next largest eigenvalue is of the order of a constant
[FW,Kolo]. It is also known ([Kolo], Chapter 8, Proposition 2.2) that the eigenspace of
these eigenfunctions is exponentially close in the L?(exp(—F(y))dy)-distance to the linear
hull of the n indicator functions y; of the attractors of the minima z; under the deterministic

dynamical system g(t) = —VF(y(t)).

In this section we will derive a precise characterization of these eigenvalues that togeth-
er with the estimates on capacities of [BEGK3] will ultimately yield the exact asymptotic
formulae of Theorem 1.1. This is the analogue of Section 4 of [BEGK2] for the diffusion
case. Our approach can in to some extent be seen as an application of the ideas of Wentzell’s
remarkable paper from 1973 [W2]. As we will see, the application of these ideas is not as

straightforward as in the discrete case, but in principle very similar.
Before we turn to the details of this construction, it is useful to explain the general strategy.

Let us now consider a set of disjoint compact sets B; = Bc(x;), i = 1,...,k. Let A
denote the principal eigenvalue of the Dirichlet operator L. with Dirichlet conditions on
Sk = UF_| B; (and possibly on some further set 2). Consider, for A < A, the solution of the
Dirichlet problem

(Le — A f*z) =0, z€Q\0Sk
A (z)=¢(z), z€dS

(i.e. we consider the Dirichlet problems in the exterior and the interior of the balls simulta-

(3.1)

neously; note that the principal eigenvalue of L. within a ball will always be larger than Ay
and so plays no role). The basic idea is now to construct an eigenfunction of the full operator
L. as a solution of the problem (3.1) with suitably chosen ¢. Indeed, if A is an eigenvalue of
L. and if we choose ¢(x) as the eigenfunction corresponding to this eigenvalue, then f*(z)
is equal to ¢ everywhere. To see this, note that since ¢(z) = f*(z) on 8Sk, we have that for

z €S

(Le = N> (f* = §)(@) = (Le = (> — ¢)(z) =0 (3.2)
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But since A is not in the spectrum of LS*, this implies that f*(z) = ¢(x) on S¢ as well. The
same argument applies in the interior of Sy This means that A < Ay is an eigenvalue of L. if
and only if we can find a function ¢ on dSk, such that the solution of the Dirichlet problem
(3.1) is actually an eigenfunction of L. with eigenvalue A. In other words, any eigenfunction
corresponding to eigenvalues below the principal Dirichlet eigenvalue can be represented as
solution of (3.1).

Thus the eigenvalue problem reduces to finding out for which values of A for suitable
¢ on the boundaries of B;, (L. — A)f* = 0 everywhere. In fact, (L. — A)f* is in general a
measure concentrated on the surface 0Sg; demanding that this surface measure be zero yields
in general an integral equation for ¢(z) on ASy, which is not particularly easy to handle. In
the case of discrete Markov processes, we have considered a very similar problem in [BEGK2].
There, the balls B; were, however, simply the points z;. The measure (L. — A)f* was then a
simple measure on the finite set My, and the boundary condition reduces to the k& numbers
¢(z;), and the integral equation was reduced to a simple linear equation for the unknown
vector ¢(x;),i = 1,...,k. The condition for A\ to be an eigenvalue was thus simply that
a certain determinant vanishes. It would be more than nice if we could reduce ourselves
to a similarly simple condition in the present case. Indeed this would be so, if we knew
beforehand that ¢(z) is constant on each surface dB;. While this cannot be truly the case,
if € is small we may expect that ¢ varies little. In that case, we could, as we shall see, use
perturbative arguments to arrive at the desired conclusion. Unfortunately, to obtain such
control on eigenfunctions looks rather difficult. While the Harnack- and Holder inequalities
will give us the desired control if we know that the eigenfunction does not change sign in a
suitable neighborhood of the minimum, one cannot exclude that some minima are close to

such zeros. To deal with these cases creates a number of complications.

Regularity properties of positive harmonic functions. We first state a simple appli-
cation of the Harnack- and Hoélder inequalities (see [GT] , Corollaries 9.25 and 9.24) that we
have stated as Lemmata 4.1 and 4.2 in [BEGK3].

Lemma 3.1: Assume that x is a local minimum of F. Let ¢ be a positive strong solution
of (Le—A)¢ =0, |A| <1, on a ball By (). Then there exists a constant C' < oo and a > 0,
both independent of € such that

05Cyep. (2)(y) < Ce*/?* min ¢(z) (3.3)
yEBc(x)
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Proof: We can use Lemmata 4.1 and 4.2 stated in [BEGK3] with A=A =¢,v=1,c= A,
and

v=¢?2 sup |VF(y)|% < conste?! (3.4)
YEB, se(=)

Then, with R = 24/¢, we obtain first from Lemma 4.2 that

sup  ¢(y) <C inf  o(y) (3-5)
Yy€B, /() YEB, so(z)

and then from Lemma 4.1 that
a d+1
oscyen.(0)9(z) < O’ sup  g(y) (1+ v |N) (3.6)
YEB, /()

This implies the lemma if A is not too large.{

Principal eigenvalues revisited. We will now improve on the estimates on principal
eigenfunctions A(D) obtained in Section 2 by showing that in the case when D contains a

local minimum of F', these estimates are essentially exact.

Proposition 3.2: Assume that D contains | > 1 local minima of the function F and that

there is a single minimum = € D that realizes

F(2*(z, D%)) — F(x) = max[F (2" (z;, D°)) — F(;)] (3.7)

=

We write B = B.(x). Then there ezists a > 0,C < 00,d > 0, independent of €, such that
principal eigenvalue A\(D) of the Dirichlet problem on D satisfies

C&PB(DC)(l — Ce2)(1 — =31y < A(D) < cap p(D°)

< 14 Ce/2)(1 + e 9/¢ 3.8
S Mg 2 ) ) B8

where here and henceforth ||-||2 denotes the L? norm with respect to the measure e~ F®W)/<dy.

Proof: Set D° = D\B. Then we know by Lemma 2.5 that there exists § > 0 such that
X(DO) > e—[F(z*(m,Dc))—F(m)]/eeﬁ/e (39)
while we know that A\(D) < A(D°) (and expect X ~ e~ [F("(@D)=F(=)l/e i e much smaller).

By the general philosophy outlined above, we know that the principal eigenfunction can be

represented as the solution of the Dirichlet problem (both inside B and outside B)

(Le = A\)fMy) =0, yeD\OB
) =¢ply), yeoB (3.10)
fy) =0, yeD°
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where the boundary conditions ¢p are given by the actual principal eigenfunction. We will
assume that dist(z, D¢) > é > 0, independent of e. Then By, (z) C D, and since ¢p is the
principal eigenfunction, it may be chosen positive on D. Therefore Lemma 3.1 applies and
shows that

inf ¢p(y)=c< sup ¢p(y) < (1+Ce™)c (3.11)
y€EOB y€dB

We will normalize the eigenfunction s.t. ¢ = 1, Thus we can write f(z) = hg’Dc (z) + 9 (),
where hg’ pe = h* is the A-equilibrium potential (see [BEGK3], Chapter 2) that solves

(Le —A)h*(y) =0, y€ D\dB
y € OB (3.12)
hy) =0, yeD°

>
>
—~
3
~
Il
J—‘

while 1* solves
(Le =Ny (y) =0, ye€ D\dB

Y y)=¢p(y)—1, y€oOB (3.13)
P y) =0, yeD°

We want that (L. — A)f*(z) = 0 on all of D. Here we have to interpret (L. — A)f> as a

surface measure on dB. le., if g is a smooth test function that vanishes on D¢,
[ e )L~ = [ dye T P )E - NP W)

- / dye=F@/<fA(y)(L, — Ng(y) + / dye=F @/ A (y)(L. — Ng(y)
D\B

int B

= /BB e (g(y)Bn(u) S (¥) — F(¥)Buy9() dos(v) (3.14)
te / "W/ (9(1)0-n(p) @) — I ¥)0-n()9(y)) don (y)
OB

= e/aB e~ Fy)/e (g(y)an(y)f’\(y) + g(y)a_n(y)f’\(y)) dUB(y)

where dop(y) denotes the Euclidean surface measure on 0B, and 0., (y) denote the normal

derivative at y € OB from the exterior and interior of B, respectively. Thus we can identify

dye™ PO (L = N[ (y) = ee 7O (8,0) () + 0-n(y) S (v))do B (y) (3.15)

To get control on A, we can ask at least that the total mass of this measure on B vanishes,
i.e. that
0= /aB e_F(y)/E(an(y)f)\(y) + a_n(y)fA(y))do_B (y) (3]_6)
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To evaluate this expression it will be convenient to observe that on 0B, hp p-(y) = 1 for
y € OB (where hg p. = h%jgc is the Newtonian potential (see [BEGK3], Chapter 2)).
Moreover, on B, hp p<(y) = 1, so that 0_,)hp,p-(y) vanishes on dB. Using these facts
together with Green’s second identity (see Eq. (2.8) in [BEGK3)]), we get from (3.15) the

condition

_ . A _ .
OZ/BBB F)/ On(y)hB,0-(¥) [ (y) — Z/Ddye FW/ehg pe(y)f(y)

€

A
- /6 eFO 0k pe(y) — 2 /D dye™F O/ hp pe(y)h} pe (y) (3.17)

- € A - €
+ /6 e FWd, 4 hp,pe ()0 () — = /D dye=F®/hg pe(y)y* (y)

(Note that the derivative 0,(,) is in the direction of the interior of B). The two terms
involving ¥* will be naturally treated as error terms. In fact, since On(y)hB,D(y) > 0, using

Lemma 3.1, we get that

0< /BB e—F(y)/eBn(y)hB,Dc (y)¢k(y) < Ce/? /aB e—F(y)/ean(y)hB,Dc (v) (3.18)

If we define d¢* = > — 90, we see that 1> solves the Dirichlet problem
(Le = N9 (y) = M°(y), y € D\OB
oY*(y) =0, yedB (3.19)
sy (y) =0, yeD°

and thus
Sy (y) = MLEVE — X))y’ (y) (3.20)
and so \
S lg < ——||[9° 3.21
I e < oy =519l (3.21)
By the same argument we also have that
13,0 — hopells < <=l | (3.22)
B,Dc B,Dc||2 = X(DO) Y B,D<||2 .

On the other hand, using the Poisson kernel representation of 1°,

$(z) = —e /6  (@0(6) = D20 Corae. ) (v) (3.23)

where G p\p(z,y) denotes the Green’s function for the Dirichlet problem with in D\B (see
[BEGK3|, Chapter 2). Since the normal derivative of the Green’s function is negative on dB,
we get that

0 < 9°(z) < Ce*?hp p(2) (3.24)
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With
e/ e_F(y)/ean(y)hB,Dc (y) = cap p(D°) (3.25)

(3.17) implies that ”

0> cap p(D°) — Allhp,pe|3(1 — Ce*/2)(1 = A/(X(D°) — X)) (3.26)

0 < cap p(D°)(1+ Ce*’?) = A||hp,p|3
This implies the claimed bound on A(D). Note that, while we have only used a necessary
condition for A(D), the fact that there must be such an eigenvalue implies that it actually
lies in the bounds given by (3.26). {

Remark: In the case when several of the minima within D satisfy (3.7) (i.e. if D contains
several minima that are “equally deep”), one has to remove balls B.(z;) for each of these
minima. Then one may proceed as before. The only difference is that now there appears one
value ¢; for each of the minima that is yet to be determined. One sees that in such a case

(D) is determined by a variational formula

_ _ Jp e TW/|Vh(ey,... a3
AMD) = min
(D)= min h(cr,- -, el

(1+ O0(e*/?,e7%/2)) (3.27)

where
L.h(zy,...,a)(y) =0, ye D\ Uﬁzl OB.(x;)

h(Cl,---,Cl)(y) =c¢, Y€ aBE(w'L)
It is easy to see that the result differs only by a constant factor from that in the non-degenerate

(3.28)

case stated in the proposition.

Uniform estimates on principal eigenfunctions. The proof of Proposition 3.2 has
already provided us with an approximation for the principal eigenfunction, namely hg p-.
We have seen that in L? this approximation is good on the order ¢®/2. We will now show

that this approximation is also uniformly good.

Proposition 3.3: Under the hypothesis of Proposition 3.2, the principal eigenfunction,
ép, of LP®, normalized such that infycop ¢p = 1, satisfies
hp,0=(y) < ¢p(y) < hp,pe(y)(1 + Ce*/?)(1 + e7/) (3.29)

Proof: Let us first assume that D is bounded. Observe that set §f* = f* — f°. Then §f*
satisfies the Dirichlet problem

Lbfy) = A y), ye D\dB
5f (y) =0, yedB (3.30)
§f*y) =0, yeDr
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Thus we can write

Sy 1 ] ]
hB,DC(y) B L\B hB’Dc(y)GD\B(y’ )hByDC( )

h) A
fi(z) (3_31)
hp,pe(2)

Assume that M = sup,¢p\p ,J;”’T(j’()y) < 00. Then (3.31) together with (3.24) implies that

1
M<1+4+Ce®2 + AM sup / ——Gp\(Y,2)hB,p:(2)
yeD\B JD\B hp p<(y)

=14 Ce®’? 4+ XM sup E, [tB|TB < TDe]
y€D\B

(3.32)

Using the representation of the conditional mean time from Proposition 6.1 of [BEGK3], one

shows that

sup E, [tg|Tp < 7p:] = 1/A(D\B) (3.33)
yED\B
so that /
1 a
+ Ce < (14 Ce/?)(1 4 ¢~/ (3.34)

T 1-XD)/AD\B) ~

Since by construction kg p-(y) < ¢p(y), the assertion of the proposition follows.

It remains to justify the assumption M < oo. However, this is easy. First, ¢p is bounded

and C?(D). Thus, hii(f()y) may only diverge when hp pe(y) | 0. However, since hp pe,

is harmonic and non-negative on the boundary, it is strictly positive on D by the strong
maximum principle. Thus its explosion can occur only at the boundary of D where hp, p-(y)

tends to zero. Moreover, its normal derivative on 8D is strictly (and since D is compact,

¢b(y)

hp.pe(¥) remains

uniformly) positive (see e.g. Section 5, Proposition 2.2 of [Tay]). Therefore

bounded also when y — 8D.
Therefore the proposition is proven if D is compact.

In the non-compact case, we can obtain a similar result for the supremum over compact
subsets I' C R?, using the rapid decay of the Green’s function in regions where F(y) is getting
very large. $

Eigenfunction and their zeros. We are now ready to derive the crucial a priori estimates
on eigenfunctions of L. (possibly on some domain 2). Assume that A is an exponentially small
eigenvalue of L. and let ¢* denote a corresponding eigenfunction. Then we can decompose
) into open subsets D; such that either ¢*(y) > 0 for all y € D;, or ¢*(y) < 0 for all y € D;,
while ¢*(y) = 0, if y € 8D;.
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Obviously, the restriction of ¢* to D; is the principal eigenfunction ¢p, of D;, and X is

the principal eigenvalue of any of the sets D;. This entails that

Lemma 3.4: Assume that X\ < e~%/¢, for some a > ag, with ag > 0 independent of €. Let

D; be the corresponding sets defined above. Then, each set D; contains at least one minimum

z; of F(z) for which cap op (x,)(D5)/|IhB. (a:),pcl13 = A; for all other minima x;; of F in

D;, cap B, (z:;)(D5)/||hB. (2:;),0¢ 2 > \. In particular, dist(z;,D$) > p > 0, for some p
independent of e.

Moreover, if z;; € D; is a minimum of F such that dist(z;;, D) < 104/€, then there exists
a constant C' such that for all y € By /(x:;) N D;,

¢*y) < Ce™%cap p, (a,;)(Be(:)) (3.35)

Proof: The first two assertions follow from Lemma 2.5 and Proposition 3.2 (plus the remark
following its proof). The last assertion follows since by Proposition 3.3 and the estimate on

the equilibrium potential from Proposition 4.3 of [BEGK3],

cap B, (y)(Be(z:))
cap g, (y)(D5)

PMy) < (3.36)

But since dist(y, Df) < 154/€, and y closer than 54/€ from a local minimum, F(z*(y, D{)) —
F(y) < Ce. Thus Proposition 4.7 of [BEGK3] yields

cap p,(y)(D§) > Ced=1/2 (3.37)

Finally, cap p, (y)(Be(z:)) = cap B, (a;;)(Bc(z;)) follows e.g. from the explicit formulae ob-
tained in [BEGK3|. This proves the lemma.{

Exponentially small eigenvalues and their eigenfunctions. Let us now order all min-

ima z; of F' in such a way that
F(2"(@iy1, Mi)) — F(zit1) < F(2" (25, Mi—1)) — F(:) (3.38)

fori = 1,...,n — 1, where M; = {z1,...,z;}. We put moreover My, = Q°. We also
set B; = Be(z;) and S; = Uj-le,-. Note that considerable simplifications occur when all

inequalities in (3.38) are strict, and we will only consider this case here.
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Suppose that we want to compute eigenvalues below A(Q\Sx) = Ax. We know that if ¢*
is an eigenfunction with A < A, then it can be represented as the solution of the Dirichlet
problem

(Le =N fy) =0, ye€0\dSk

(y) =*(y), yec oS
Thus, as in the analysis of principle eigenvalues above, the condition on A will be the existence

(3.39)

of a non-trivial $* on ASy such that the surface measure

dye™ @/ (Lo = N y) = €O <(0a() FAY) + 0_n ) S (v))dos (9) (3.40)
vanishes. A necessary condition for this to happen is of course the vanishing of the total mass

on each of the surfaces B;, i <k, i.e.

~/8B- e_F(y)/E(an(y)f)\(y) + a—n(y)fA(y))do'Sk (y) =0 (3'41)

Now if we knew a priori that all minima x;, 7 < k lie well within the interior of the sets D;
on which ¢* has constant sign, we could use Lemma 3.1 as before in the analysis of principle
eigenvalues to show that f* is close to the solution of the problem (3.40) where the boundary
conditions are replaced by constant values ¢;. Unfortunately we do not know this. We know,
however, that each connected component D; contains at least one such minimum, while at

those minima that lie close to the boundary of D;, ¢* is very small (by Lemma, 3.4).

In fact we have the following dichotomy: Let ¢; = infyep, *(y). Then either

(i) [supyep, *(y)/ci — 1] < Ce?/?, or
(i) there exists 1 < j < k such that sup,¢p. |¢*(y)|/|c;| < Ce~%cap p,(B;).

We now consider all possible cases: Let J C {1,...,k} be the set of indices where (i) holds,
and let J; be the subset of indices j where (ii) holds with j. Given such a partition, we set
1= (R, sm, +92) (3.42)
j€eJ
where the h} = hgj’ si\B, are the A-equilibrium potentials (see BEGK3], Section 2), i.e.
solutions of (L — A)h; = O with boundary conditions 1 on 8B; and 0 on 8(S\B;).

Then 1/);-‘ satisfies, for j € J
(Le = )95 (y)

¥; ()

()

()

0, ye€N\dSy

¢*(y)/e; —1, y€OB;

¢ (y)/c;, y€ OB, lE J;
0, y€oBii¢J;

(3.43)
5 (y

A
J
A
j
A
j
A
j

<

Y
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We now proceed as in the analysis of principle eigenvalues, i.e. we write as necessary condition

for A to be an eigenvalue that for alli =1,...,k,

0= / e O hi(y) (Bn(y) S (y) + 0-n(y) F(Y)) doos, (y)
OB;
= /as e P08, ,yhi(y)f (y)doss, (y)
-2 [aye T ) w)

=2_¢ [/{,B P80 hi(y) (L + 93 () doos, (y) (3.44)

JjE€J

430 [ TN )8 (4)doos, 1)
icJ, /OB

2 ( [ v b)) + 3 w) + Y dve O o) g <y>)]

€
leJ;

Note that by the bounds (i) and (ii),

/aB- e FWIeg, hi(y)¥} (y)doos, (y) + Z/a e FW/eg, ) hi(y)$* (y)doss, (v)

leJ; By
) (3.45)

At this point it is convenient to realize that Green’s first identity and the fact that the h; are

<

/ e~ FW/eg,  hi(y)doss, (v)
oB;

faB F(y)/éa n(y )h (y)dUask (y)
fa e—F( y)/€an( )h (y)doss, (v)

X (Cea/2 + Z Ce “cap g, (B;

leJ;

harmonic, implies that

= e_l

/6 O b)) ) do, 3

[y (9hy(0), (y))‘
ext S (3.46)

< ey feap 5,(S\BJ)cap 5, (51\B))

where the last inequality uses the Cauchy-Schwartz inequality. Noting further that, since

cap B, (Bj) = cap B, (Bi) < cap B, (S \Bj) (3.47)
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we can bound (3.45) from above by

/ e_F(y)/fan(y)hi(y)dO'ask (y)
OB;

(3.48)
_ ,(Sk\Bi)cap p,(Sk\B1)
x | cex/? + Ce %cap p.(Sk\B;) veap s, :
IGZJj ’ ! faB]- e_F(y)/Ea"(y)hi(y)daask (¥)
In particular, in the case when ¢ = j, this simplifies to
cap B, (Sk\B;) Ce*/? 4 Z Ce=?/cap ,(Sk\B;)cap B, (Sk\B1) (3.49)

l1€J;

For the terms in the last line of (3.44) we obtain in complete analogy to the derivation of
the bounds (3.20) and (3.21) that

[ tve T )} w) - i) + ) + Y [ dge T i) w)

lGJj

= 0()(1+0(e™%)) [ dye™ "DV hi(w)hs (o) (3.50)

+0 (03 cap(By) [ dve™ Ol mi(uhs )1 + e—‘i/f)\
leJ;

But note that

CaPBz(Bj)/dye_F(y)/Ehi(y)hj(y) < cap g, (Bj)l|hill2l[h1]|2
< ([l

l|Ajll2

< €77 by l2| Byl

3.51
cap g, (B;)||sl2]h;]2 (3.51)

Let us define the classical capacity matrix! C with elements
Ci=C = e [ e T/ hi(y)0nhily)don, (1)
8B;

and its normalized version
w__ Gy
K = K% = *J 3.52
R W (3.52)

1The matrix C is a classical object in electrostatics, the diagonal elements being called capacities, and the
off-diagonal ones coefficients of induction [Jack]. The off-diagonal coefficients represent the charge induced in
the i-th ball when the j-th has potential one and all others are at potential zero.
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Note that this matrix is symmetric?. If we introduce the matrices

EfaB,- e_F(y)/Ean(y)h'i (y)zb;‘(y)daask (y) + Zler EfaB, C_F(y)/ean(y)hi (y)gb)‘(y)daagk (v)

[[i|2]|Fj |2
(3.53)
B.— 1 J dye PO i (y) (R} (y) + 93) + Yie s, dye™ T hi(y)e} (y) (3.54)
v IRE |
and
J dye "W R () (h} (y) — hi(y) +93) + Xiey, dye T h;(y) g} (y)
Dj; = ! (3.55)
1B13
Then the conditions (3.44) for A can be written as
0= Z éj (IC” — )\(51] + Aij — A(DJ']' + B’U)) (356)
j€J
where é; = ||hj||2¢j. To show that all the off-diagonal terms in B;; are small, we still need
to show that the normalized functions h; and h; are almost orthogonal.
Lemma 3.5: There is a constant C < oo such that
—F €
max fdye W/ hj(y)hi(y) < Ce(@+1)/2 11 oe o—F (2" (2:,8k\Bi)) = F (1)) /¢
i#] [[ill2lh]l2 i (3.57)
S e—O/e
for some 6 > 0.
Proof: Note first that the terms in the denominator in (3.57) are bounded via
/ dye FW/p2(y) > / dye FW)/e (1 — 06—1/26—[F(z*(mj,sk\Bj))]/e)2
B (e;) (3.58)

_ Ced/Ze—F(zj)/e
On the other hand, for ¢ # j,

[ v b)) - dye™ @y (y)hi(y)

/_q:F(y)Smax(F(z* (2i,Sk\Bi)),F(z*(z;,Sk\Bj)))

+ / dye ¥/ (y)hi(y)
y:F(y)>max(F(z* (2:,55\B:)), F(2* (27,5\ B;)))
(3.59)

20ne could also introduce a matrix I/C\ij = ng/”hz”; which then would be a stochastic matrix (resp.
sub-stochastic, if Dirichlet boundary conditions are imposed on Q¢).
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In the second integral we just use that h;(y) < 1; by our general assumptions on F', this gives
a bound Ce~ max(F(z"(2:,5k\B:)),F (2" (25,5x\B;)))/¢_ In the first integral we use the bounds on
the equilibrium potential from Corollary 4.8 of [BEGK3]. Note that for any y, at most one of

the factors h;(y) or h;(y) can be close to one. Thus even the roughest estimate yields that®

/ dye=F®/h; (y)hi(y)
y:F(y)<max(F (z*(zi,Sk\Bi)),F(z*(2;,Sx\Bj)))
/ dye=FW)/e
y:F(y)<max(F(z*(2i,Sx\B:)),F(z*(2;,Sk\ Bj))) (3.60)
x Ce /2= [max(F(z"(2:,5:\B:)), F (2" (2;,5:\B;)))—F (y)]/

<

< Ce 2|{y : F(y) < max(F(2* (i, Se\Bi)), F(2* (25, Sk \B;)) }

x g~ max(F(z"(2:,5k\Bi)),F (2" (2;,5k\B;)))/ €

Combining this upper bound with the lower bound we arrive at the assertion of the lemma.

We can now collect the estimates on these matrix elements:

|Bij| <e /¢ (3.61)
|Dj;| < Ce/? (3.62)

and for all ¢, j,
|4i] < |’Cz'j|C€a/2 +e % VKiK;; (3.63)

where the last bound uses (3.45) together with (3.46) and (3.47) and the fact that
\/cap B, (Sk\Bj)cap B, (Sk\Bi) < e~%/¢ for some & > 0.

We collect the results obtained so far as

Theorem 3.6: Let S, = UX_ B.(x;) and let A\, denote the principal eigenvalue of the
operator L. with Dirichlet conditions on Sk (and possibly an additional set ). Then a
number A < A may be an eigenvalue of the operator L., if there exists a nonempty set
J CA{1,...,k} such that, if G(\) denotes the |J| x |J| matriz with elements

Gij(A) = Kij + Aij — A8 + Dii + Bij) (3.64)

i,jE€J,
det (G(A)) =0 (3.65)

3See the proof of (3.79) for more details.
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Remark: Note that the matrix G depends on the constants ¢;; however, this will not bother
us: in fact, we will only use Theorem 3.6 to derive conditions on A uniformly in all symmetric
matrices A, B, D satisfying the bounds(3.61), (3.62) and (3.63).

The usefulness of this theorem arises from the fact that we can control the eigenvalues to

a very good precision in terms of the capacity matriz.

Theorem 3.7: Under the same hypothesis as in the preceding theorem, if A < Ay is an
eigenvalue of Le, then for some nonempty set J C {1,...,k} there exists exists an eigenvalue
p of the |J| x |J|-matriz K’ + A7 (where by A’ we understand the matriz made of the indices
Aij, i, € J, etc.) such that A = p (1 + 0 (e_D/E,)\/(Xk - )\)))

Proof: The proof will rely on Theorem 7.1 that we prove in the appendix. Since
G(\) = K7+ A7 — X1 + (B + D7)) (3.66))

to apply Theorem 7.1 requires us to bound the norm of B/ + D’. As a consequence of
estimates (3.54) and (3.66), the preceding Lemmata, we see that the matrix BY + DY is

indeed bounded in norm by
|B? + DY|| < Ce/? 4 e7%/¢ (3.67)
for some § > 0. The theorem follows now from Theorem 7.1 of the appendix.{

It remains to estimate the eigenvalues of the matrix K7 4+ .A7. We will do this only in the
non-degenerate situation when all “depths” of the valleys z; are distinct, i.e. when for all

i < k the inequalities (3.38) are strict.
Let us first consider the case J = {1,...,n}.

Lemma 3.8: Let K;; be the normalized capacity matriz and assume that

mag(/cii < e Ky (3.68)
1<

Then the largest eigenvalue, ug, of K + A satisfies
pr = Kri(1 + O(e=%/%, e2/?)) (3.69)

while all other eigenvalues are smaller than Ce~%/€)\,. Moreover, the eigenvector, v =
(v1,-.-,vg), corresponding to the largest eigenvalues normalized s.t. vy = 1 satisfies v; <
Ce=%/¢, fori < k.
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Proof: This is a simple perturbation argument. Note that we can write

K=K+K (3.70)
where l@,-j = Kkrdjrdir. In the same way we decompose A = A + A. Now we estimate the
norm of K as in the proof of Lemma 3.5.

Now recall that
Kjil < Kiikjj (3.71)

Whence by assumption (3.68),

IK|| < KirV/ 0k + 62k2 (3.72)
By the estimate (3.63), we also get that
|Aij| < O(e™%) K, (3.73)

for (i,7) # (k, k), and |Agk| < Ce®*/2Kpr. Since obviously K+ A has one eigenvalue K+ Ak
with the obvious eigenvector and all other eigenvalues are zero, the announced result follows

from standard perturbation theory. <

cap By (Sk—l)
I H

a smaller set J, then, if k € J, we will simply find that the largest eigenvalue of K7 + A7 is

Since Krr = ~ Ak_1, this is precisely the value we expect. Now if we consider

the same as before, while if k£ ¢ J, we would only get a smaller candidate for an eigenvalue; in
fact, we would produce all diagonal elements of K as candidates for approximate eigenvectors,

but only Ky is larger than Ak_1, SO we are not interested in these at present.

Corollary 3.9: If there exists an eigenvalue Ay of L. in the interval (A, Ax_1], then

(i)
A = cap 5, (Sk_1)/ |12 (1 n 0(60/2,e—5/6)) (3.74)

(ii) The eigenvalue A is simple and the corresponding eigenfunction f,f‘ can be written as

aoy_ he(y) a/2) h(y)
Pele) = i, O+ OC ”Zd ksl (-79)

where |d;(y)| < e~ %/¢ for some § > 0 (uniformly on compact subsets if Q is unbounded) .
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Proof: 1t is easy to see that if £ € J, then Lemma 3.8 together with the bounds on B and
D implies that a solution of (3.56) with &, = 1 must satisfy |¢;| < e~%/¢ for all j # k. By
(3.42), this implies that

(3.76)

) = BW ARG | 5 o B W)

halle 2, Tl

Using the same arguments as in the proof of Proposition 3.3, and the bounds on ¢* — ¢ on

the boundaries 0B;, we get that for j € J

|67 () — i (y)l < Ceol? hj(y) £y cap g, (Bj)||hl2 hi(y) < Ceal? hi( +Y e hi(y
1|2 [ |2 [P |2 Al | .7”2 |h,||2

(3.77)

Combining these estimates we arrive at (3.75). Note that this final estimate does not actually

leJ; leJ;

depend on the choice of J. Since it is impossible that two functions satisfying (3.75) are

orthogonal, it follows that A is a simple eigenvalue. <

Now we can further explore the eigenvalues below Aj_1, etc., with the same results. Thus
at the end of the procedure we arrive at the conclusion that L. can have at most the n simple
eigenvalues given by the values of the preceding corollary below the values Ce?~1. But since
we know that there must be n such eigenvalues, we conclude that all these candidates are in

fact eigenvalues. This yields the following proposition:

Proposition 3.10: Assume that all inequalities (3.38) are strict for alli =1,...,n. Then

d—1

the spectrum of L. below € consists of n simple eigenvalues that satisfy:

cap B, (Sk—1)

e = S (1+O0(e*? +e7%) Jk=1,...,n
1o [3
\/det(V2F
— cap , (Sk_l) e (2 d(xk)) eF(a:k)/e (1 +0 (61/2| 1n€|,€a/2,e—5/6)) (378)
mE
1

= (1+0(? +e %
EkaSk_l( ( )

The corresponding eigenfunctions satisfy (3.75).

Proof: We have seen in fact that A\x = ICEJZ) (1+ O(e=%/¢,¢2/2)), which provides the first
assertion of Proposition 3.10. It remains to identify the eigenvalues with the inverse mean

times. This follows from Proposition 6.1 in [BEGK3], provided we can show that

/dye_F(y)/eh2 /dye F@)/ep, (y) (3.79)
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In fact, we will show more, namely that both sides of (3.79) are asymptotically equal to

d
e~ Flat)/e ame (3.80)
det(V2F (zr))

We must show that the main contribution of the integrals comes from a small neighborhood
of zj, which yields the contribution (3.80). It is clear that all contributions from the set
y : F(y) > F(zk) + €|In¢€| give only sub-leading corrections. To treat the complement of
this set, we use the bounds on the equilibrium potential of Eq. (4.27) in [BEGK3]. Up to
polynomial factors in ¢, it implies that the integrand on the right-hand side of (3.79) (and
a fortiori on the left-hand side) in the connected components of this level set that do not

contain xj is smaller than
e~ [FW)+F(z"(y,Br)) - F(z" (y,5x-1))]/€ (3.81)

If y is in the component of the level set that contains the minimum z;, and j < k, we see

that this is equal to
e~ F(z"(z,Bk))/e (3.82)

which is exponentially smaller than exp(—F(zr)/¢), independent of y. If j > k, we still get
the same result if F(y) > F(z*(z;,Sk—1)). Otherwise, we can write (3.81) as

e [F(W)—F(z;)l/€o—[F(2x)+(F(2" (25,Bx))— F(2x))— (F (2" (2,5k-1)) — F(z;))]/ € (3.83)
We will argue that
F(z*(zj,Br)) — F(zr) > F(2*(zj,Sk-1)) — F(z;) (3.84)
Assume the contrary. Note that trivially
F(z"(zj,Sk-1)) = F(2"(z5,Sj-1)) (3.85)

while
F(2"(z;, Br)) = F(2"(zx, B;)) < F(2"(zx, S;\Bk)) (3.86)

Therefore, our assumption implies that
F(z*(xj,8;-1)) — F(x;) < F(2*(zx, S;\Br)) — F(z) (3.87)

which a moments reflection shows to be in contradiction with the conditions (3.38) at stage
j- In other words, if our assumption was true, then the set By would have had to yields the

largest eigenvalue at stage 7, i.e. it would have had to be labelled B;. Thus (3.84) must hold.
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Since by assumption the inequalities are strict (which is more than we need), it follows
that indeed

d
2me
due~FW)/ep, — e~ Flzx)/e 14+ 0 (/21 3.88
/ Y k(y) det(V2F(:vk))( (e |n€|>) (3.88)

and of course the same bound holds when hy is replaced by hZ. This concludes the proof of

the theorem.

Improved error estimates. To conclude the proofs of Theorems 1.1 and 1.2 we only need
to improve the error estimates. In the proofs of this section we have produced error terms
from two sources: the exponentially small errors resulting from the perturbation around
A = 0 and the not perfect orthogonality of the functions h;, and the much larger errors

of order ¢*/2

that resulted from the a priori control on the regularity of the eigenfunctions
obtained from the Holder estimate of Lemma 3.1. In the light of the estimates obtained on
the eigenfunctions these can now be improved successively (as in the proof of Theorem 3.1
of [BEGK3]). Notice first that the eigenfunction corresponding to the minimum zj, is small
enough at all the minima z;, [ < k that we can actually take J = {k} and J, = {1,...,k—1}
in (3.43), (3.44). Then we know from Corollary 3.9 that

0SCyeB, (o) Pk (y) < Ce*>  sup  ¢i(y) (3.89)

YEB, se(zk)

which improves the a priori estimate (3.5). Then the Holder estimate Lemma 4.1 in [BEGK3]
gives the improvement

0SCye B, (o) Pk (y) < Ce/? (06“/2+/\k6("+1)/2) sup  ¢k(y) < Ce*  sup  di(y)
y€EB, se(zk) yEB, se(zx)

(3.90)

@/2 by errors of order €*.

over the estimate (3.3). This allows to replace all errors of order €

ma/2

This procedure can be iterated m times to get errors of order € until these are as small

as the exponentially small errors.

Finally we would like to improve the precision with which we relate the eigenvalues to the

inverse mean exit times. This precision is so far limited by the precision with which

cap B, (Sk-1)
(172
holds. From Proposition 6.1 of [BEGK3] we know that this precision is limited only by the

EEkTSk_l ~ (3.91)

variation of E,7s,_, on Bi. To improve this, we need to control the

cap B, (Sk-1)  €aP B, (x)(Sk-1)

3.92
Tl ool (3.92)
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Now it is very simple so see that if z € B ;(z), then

|hB. (2),50_1 () — he(y)] < e/ hi(y) (3.93)
Namely,

|hB.(2),5c_1 (¥) — hr(y)]

< Py [{TBk < TSk—l} N {Tsk—l < TBE(:E)}] + ]Py [{TBE(E) < TSk—1} N {Tsk—l < TBkTBs(m)}}

(3.94)
But by the Markov property
I[Dy [{TBk < Tsk—l} N {TSk—l < TBE(Z)}] ( )
s 3.95
<P, [7']3,c < Tsk_l] HEI%XIP’ ['rgk_1 < TBE(E)] < e 9/ P, [7’13,c < Tsk_l]
2zE€EDBy
The second summand in (3.94) is bounded in the same way.
This implies of course that
1B, ()51 ll2 = 1 Bklla < €| hi]l2 (3.96)

We only need a similar estimate for capacities. While this may appear more difficult at first
sight, we can take advantage of the fact that as long as A((Be(z) U Sk_1)¢) > Ax, we can
replace By in the proof of Proposition 3.10 without further changes by B.(z). Thus

cap Bé(m)(sk—l) —5/e cap B, (Sk—l) —58/e
Ak = 1+ 0O(e = ——F——(1+0(e%/*) (3.97)
F= Ty (L OET) = ( )
which implies together with (3.96) that
|cap B, (z) (Sk—1) — cap B, (Sk—1)| < e™*/“cap p, (Sk-1) (3.98)

Based on (3.98) and (3.95), one can improve Proposition 6.1 of [BEGK3] iteratively as above

to yield
Sk—
E, 75, = Cap B, Ok—1 (1+0(6_5/6)) (3.99)
1P 2
which implies the first equality in Theorem 1.1. Thus all error terms of order ¢*/2? can be

removed in (3.78) and (3.75), completing the proofs of Theorems 1.1 and Theorem 1.2. $§

Exponential distribution of exit times. We conclude this chapter with a result that will
imply Theorem 1.3 on the exponential distribution of exit times. Let L? denote the Dirichlet

operator with Dirichlet conditions in D. To avoid confusion, we assume that D = S;_1. Note
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that Proposition 3.10 (and its impovement) also applies to the operator LP, and if we denote

by A¢ the i — th eigenvalue of LY, we see that within our usual errors,

PYIND VI (3.100)
fori=1,...,n — k, and the corresponding eigenfunction ¢ satisfies
() = 5 0) (4 o659y 4 S )by () s 3.101
oi(y) = ||hk+'||2(1+ € ) + > di(@)h;()llksll2 (3.101)
i =k

with |d;(y)| < e~%/¢. Let us denote henceforth by ¢ the corresponding normalized eigenfunc-
tions (e.g. ||¢i|l2 = 1). Note that @i = ¢i(1 + O(e=%/¢)), so in fact they can be represented

in the same way as (3.101) with redefined d; satisfying the same bounds.

Denote by P_; the projector on the subspace generated by ¢};_1 and by P, the projector
to the subspace orthogonal to span(¢}_,,..., _Z:f). Note that

P,, [rp > T] = (5mk,e_TL? ][Dc)

n—k

_ -TL? e -TL? .

= - ((L,k,e Pk—z]ID ) + (5;,;,9,6 PJ_]ID ) (3102)
n—k . B

=S NaTg (an) [ dye O/ (y) + O (e7T)
i=1 De

Given the precise control on the eigenfunctions, it is not difficult to obtain that
-TLP
P,, [rp >T] = (5mk,e : IDC)

n—k (3.103)

= e TG ) [ dye TG )+ 0 ()
1 c

2

Now using (3.79), (3.80), we get

Bro_1(zk) . dy e_F(y)/ECI_%—l(y)

fDC dy e_F(y)/Ehj, (y)

djdj hj(zr)

Ldye FW/ep, ..
th—1+i($k)fD e k-14i(0) + Z

12 . .

= hiri(e)(1+ O(e™9)) + D didyhy(mi)e et TE
(4,3")#(k—1+4i,k—1+4i)
(3.104)
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Now if j = k, the term in the last sum is

dedyicn e IF(E)-FEl/2e < o=/ (3.105)
since F(zj) > F(xy) for 7/ > k; in all other cases,

hj(zy) =~ e~ [F(z7 (25, Miti\ej)=F(ex))l/e o o=[F(2;)—F(zk)]/e (3.106)

so that

hj(wk)e—[1”’(E;-)—1-"'(mg')]/26 < e~ F (@)= F(ax)]/2¢ o~ [F(2})—F(2x)]/2¢ o /¢ (3.107)

This shows that

n—k o
Py, [rp > T] = e T(1+0(e™/%)) + Y e *-10(e7%/€) + O(1)e™ e~

=2

k
1

(3.108)

This proves Theorem 1.3. $&

A. Appendix

In this appendix we prove a general perturbation estimate that is needed in Section 5.

This should be well-known, but we have not been able to find a precise references.

Theorem 7.1: Let A be a self-adjoint operator in some (finite-dimensional) Hilbert space
L?(Q,p). Let B()\) a continous family of bounded operators on the same space that satisfies
the bound | B(A)|| <6+ AC for0<§ < 1, and 0 < C < 0o. Assume that A has k eigenvalues
AL,y .-, Ak in an interval [0,a] with a < 1/C. Then the equatation

det(A — XTI+ B(A))) =0 (7.1)
has at most k solutions X\, ..., X} and each solution satisfies |X; — X;| < 4dA;.

Proof: If (7.1) holds, then there exist a non-zero vector ¢ such that
(A= Xe=AB(\)c (7.2)

or

A
Thus

llellz < XlI(A =X HHIIBAell2 (7.4)
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Since c is non-zero, this means that

(A =XN~HIBMI = 1 (7.5)

Now since A is symmetric, we have that

1

and so

1
A=\ < )
¢ A) ”_n?xur—MAa—A (7.6)
k
Q?Mr—MSAWﬂMHSA®+CM (7.7)

which implies the claimed result.
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