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Abstract: We develop a potential theoretic approach to the problem of metastability for
reversible diffusion processes with generators of the form —eA + VF(-)V on R? or subsets of
R?, where F is a smooth function with finitely many local minima. In analogy to previous
work in discrete Markov chains, we show that metastable exit times from the attractive
domains of the minima of F' can be related, up to mupltiplicative errors that tend to one
as € | 0, to the capacities of suitably constructed sets. We show that this capacities can be
computed, again up to mupltiplicative errors that tend to one, in terms of local characteristics
of F' at the starting minimum and the relevant saddle points. As a result, we are able to give
the first rigorous proof of the classical FEyring-Kramers formula in dimension larger than 1.
The estimates on capacities make use of their variational representation and monotonicity
properties of Dirichlet forms. The methods developed here are extensions of our earlier work

on discrete Markov chains to continuous diffusion processes.

1. Introduction.

In this paper and a follow-up paper [BGK] we investigate reversible diffusion processes

X(t), given as solutions of an It6 stochastic differential equation
dX.(t) = VF(X.(t))dt + V2edW (t) (1.1)

on a regular domain Q C R?, where the drift VF is generated by a potential function that
is sufficiently regular. We are interested in the case when the function F(z) has several local

minima. We always assume that X, is killed on Q¢ if it exists.

This problem is a special case of the more general class of small random perturbations of
dynamical systems studied since the early 1970s by Freidlin and Wentzell (see their standard
text [FW]) using large deviation methods. However, investigations into this problem can
be traced back much further in the physical and chemical literature [Ey,Kra]. One of the
earliest textbook sources is the book by Eyring et al. [GLE]. Typical questions related to

this problem are

e What are the typical times to reach the neighborhoods of minimum a starting from a

minimum b of the function F'? (average, distribution).
e What are typical paths for such a process?

e What is the nature of the low-lying spectrum of the generator of this process? What are

the eigenfunctions associated to small eigenvalues?
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It should come as no surprise that these questions are on a qualitative level well under-
stood. However, there is at present still a considerable gap between mathematically rigorous
and heuristic results. Rigorous results are mostly based on the theory of Large Deviations
developed in this context by Freidlin and Wentzell. They are very flexible and apply in a
variety of situations well beyond the setting of (1.1). However, they yield generally only
rough asymptotic estimates in the parameter e (‘logarithmic equivalence’) for exponentially
small (or large) quantities such as escape times or small eigenvalues. A second, very natu-
ral approach that was initiated very early in the physical and chemical literature is based
on what is called semi-classical analysis or WKB-theory (for a very recent review on these
methods, see e.g. [Kolo]). This methods provide formal asymptotic series expansions in €
and can be seen as an infinite dimensional version of the saddle point method. In many
cases, such expansions can today be justified by what has become to be called microlocal
analysis, which was mainly developed in view of solving quantum mechanical tunneling prob-
lems [HS1,HS2,HS3,HS4]. Unfortunately, the stochastic tunneling problem between potential
wells corresponds to a particularly intricate quantum mechanical problem, called “tunneling
through non-resonant wells”. In this situation, classical WKB theory breaks downs, since it
is not possible to find a global solution based on a single power-series ansatz. On a formal
level, these problems can be solved using matched series expansions where different ansatze
in different domains are matched in overlapping regions to determine coefficients (see in par-
ticular [MatSchl,BuMal,BuMa2,MS1]). Justifying these expansions is, however, far from
trivial and constitutes, as Kolotsolkov [Kolo|] points out “one of the main and still open
questions of the theory”, except in the case d = 1 where considerable simplifications occur
[KoMak,BuMal,BuMa2,KN]. Indeed, while it appears clear that the methods introduced in
the third paper on quantum mechanical tunneling by Helffer and Sjéstrand [HS3] should in
principle allow to solve this problem, this program has not been carried out in this context

yet.

Here we take a new look at this old problem using neither large deviations, nor semi-
classical expansions, but some rather classical ideas from potential theory. The deep connec-
tion between Markov processes and potential theory has been well-known since at least the
work of Kakutani [Kaku| and is the subject of numerous textbooks (see in particular the fun-
damental monograph by Doob [Doo]). This connection has found numerous and widespread

applications (see e.g. [DS,Szni] and references wherein).

The particular approach we present here is distinguished by the fact that it largely avoids

the attempt to solve the boundary value problems that arise in this connection by straightfor-



ward PDE methods, but that it tries to reduce most problems to that of the computation of
Newtonian capacities which then are estimated using variational principles and monotonicity
properties. In this it is in spirit close to the “electric network” approach used extensively in
the study of recurrence and transience properties of Markov chains [NS,DS]. This approach
to the metastability problem was initiated in fact in two preceding papers [BEGK1,BEGK2]
in the context of discrete Markov chains, including, in particular, (in [BEGK1]) discrete ver-
sions of (1.1). In fact, the discrete setting offers (as we shall point out in due place) several
advantages for this approach and makes it appear probabilistically much more transparent
than in the diffusion setting. We suspect that this may have been the reason why the ideas
to study the spectral problem of generators of Markov chains presented in the 1973 paper of
Wentzell [Wen] and that are somewhat similar to our approach were apparently not developed
in the direction we are going. While the diffusion case makes probabilistic interpretations
more complicated, the present paper may clarify our approach as it forces us to develop in
much more detail the fundamental potential theoretic background from a purely analytic
point of view. Let us mention that in our view the approach presented here offers two main
advantages over the micro-local approach. First, it is technically considerably simpler, as
we hope these papers will demonstrate, and second, it is more flexible and can be applied
in a broad range of discrete and continuous Markov processes. Its drawback, on the other
hand, is that it may not readily be extended to yield systematic asymptotic expansions to
all orders in €. Also, we make strongly use of the fact that we investigate a stochastic (or

sub-stochastic) operator, and our method cannot be extended to arbitrary elliptic operators.

We will from now on assume that F' is at least three times continuously differentiable and
has a finite set of local minima!, which we denote by M = {z1,...,z,}. We will also assume
F(y)>a exp(—F(z)/€)dz < Ce=?/¢, where

C = C(a) < oo is uniform in € < 1. Our main interest are the distribution of stopping times

that F' has exponentially tight level sets, i.e. that fy

Ta = inf {t > 0|X(t) € A} (1.2)

for the process starting in one minimum, say z € M, of F, when A = B,(y) is a small
ball around another minimum, y € M. It will actually become apparent that the precise
choice of the hitting set is often not important, and that the problem is virtually equivalent to
considering the escape from a suitably chosen neighborhood of z, provided this neighborhood

contains the relevant saddle points connecting z and y.

1For many of the results of this paper, these conditions can be relaxed greatly. In particular, one may
consider functions F' = F, depending on €, and one may also consider cases with infinitely many minima.
This may, however, lead to different questions and different results, and we prefer to explain our methods in
a simple and well-confined setting.



In this paper we will study the mean values of such stopping times. Our approach will

consist of two distinct steps:
(i) Using variational principles, we will give very sharp estimates on some relevant capacities.

(ii) We will then show that expected times of interest can be expressed in terms of these

capacities and equilibrium potentials.

In the follow-up paper [BGK] we will consider the associated spectral problems. A corollary

will then show that metastable exit have an asymptotically exponential distribution.

To be able to state our results, we need to recall a number of key concepts from potential

theory which will allow us to establish some notation.

Acknowledgements: A. Bovier thanks the EPFL and V. Gayrard the WIAS for hospitality

and financial support that made this collaboration possible.

2. Some basic background on potential theory.

In this section we collect notations and formulas from potential theory that will be used
throughout the paper. All of these results are standard and can be found in the classical

textbooks on potential theory, e.g. [BluGet,Doo,Szni].

The generator of our diffusion processes are linear elliptic operators L. of the form
Le = —ee"O/eve=FO/eg — _eA + (VF(-),V) (2.1)

defined (a priori) on C2%(Q), where Q C R?, and F € C2%(Q). Q, and in fact all subsets of R?
that we will consider in this paper will be regular (A set ACR? is called regular if and only if
its complement is a region with continuously differentiable boundary). By construction, L.

is symmetric on L?(Q, e~ F(#)/¢dz) with Dirichlet boundary conditions on Q°.

Green’s function. Consider for A € C the Dirichlet problem

(Le = A)f(z) = g(z), z€Q

flz)=0, zeQ° (22)

The associated Dirichlet Green’s function Gg(z,y) is the kernel of the inverse of the operator
(Le — A), i.e. for any g € Cp(9),

/() = /Q GA\(z,v)9(y)dy (2.3)



Note that the Green’s function is symmetric with respect to the measure e~F(®)/<dz, i.e.
Ga(z,y) = e "W/ Gy, z)e" )/ (2.4)

Recall that the spectrum of L. (more precisely the Dirichlet spectrum of the restriction of
L. to 2, which we will sometimes denote by L{!), is the complement of the set of values A
for which G defines a bounded operator.
Poisson kernel. Consider for A € C the boundary value problem
(Le = A)f(z) =0, z€Q
f(z) = ¢(z), zeQF

We denote by HJ the associated solution operator which can be represented in the form

(2.5)

f(z) = (H3o)(z) = —€ /a . e FW=F @I/ ()8, ) Gy, T)doar (1) (2.6)

where dog denotes the Euclidean surface measure on 052, and 8,(,) denotes the derivative in
the direction of the ezterior normal vector on 02 at y, acting on the first argument of the

function G (y, z).

The relation between the operator HY and the Green function (2.6) is a consequence of

the two Green’s identities that here take the form

[ do e T (g(a) - V(a) ~ p(@)(Le)@)) =¢ [ T G(2)000)0(z) doa(a)
Q o9

(2.7)
(first Green’s identity) and

/ e—F@)/e gy (¢(I)(Le — N(z) — Y(z)(Le — )\)c]ﬁ(w))
) (2.8)
- 6/69 e—F(m)/€(¢(w)3n(m)¢(w) — (@) O (2) () doga ()

(second Green’s identity), where ¢, % € C%(Q).

Equilibrium potential and equilibrium measure. Let A,D C R? be regular and such

that (AU D)® C dom(F'). Then the equilibrium potential (of the capacitor (A4, D)), hﬁy Dy 18
defined as the solution of the Dirichlet problem

(Le = Nhiy p(z)

hﬁ,D(x)

hﬁ,p(x)

0, z€(AUD)°
1, z€A (2.9)
0, z€D
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Note that (2.9) has a unique solution provided A is not in the spectrum of LAYE),

The equilibrium measure, ez’ p» is defined as the unique measure on 0A, such that

h,p(z) = . GDe(z,y)eh, p(dy) (2.10)

If we consider L. as a map from H™(2) to H"2(Q), (2.10) may also be written as

ex,p(dy) = (Le = N)h3 p(y) (2.11)

where of course both sides are to be interpreted as measures equipped with the weak topology.
A simple computation using the second Green’s identity and the Poisson kernel representation
(2.6) allows to compute the right hand side of (2.11) as

(Le — A)h) p(x) = €dp(ayhh p(z)do aup(z) — ALadz (2.12)

Capacity. Given a capacitor, (4, D), and A € R, the A-capacity of the capacitor is defined

as
capﬁ(D) = /6A e_F(y)/Eez’D(dy) (2.13)
Using (2.12) and the Green’s second identity, one obtains from (2.13) that

cap)(D) =< [

(AuD)e

2

dz e F(@)/e [”Vhﬁ’D(IIJ)”z - % (hﬁ,D(m)) AUD)C (l& p) (214)

®} is called the Dirichlet form (or energy) for the operator L. — A on Q.

A fundamental consequence of (2.14) is the variational representation of the capacity if
R > A <0, namely

cap(D) =, inf sy (h) (2.15)

where H 4,p denotes the set of function
Hap={heW"Q):h(z) =0,z € D,h(z) =1,z € A} (2.16)

where W¥*:"((2) denotes the space of k-times weakly differentiable functions whose derivatives
of order < k are in L™(2).

Probabilistic interpretation: equilibrium potential. Note that L. generates a Markov
diffusion process X,(t) on Q (killed on 89). If A = 0, the equilibrium potential has a natural
probabilistic interpretation in terms of hitting probabilities of this process, namely,

hap(z) = h(;?(m) — P,[ra < D] (2.17)



The equilibrium measure also has an interpretation, namely
eA,D(dy) = ]ti%lt_lEyPXE(t) [TD < TA]dy (2.18)

(see e.g. [Szni], Section 2.3.). While this gives in principle a probabilistic interpretation of
the capacity as well, this is much less useful than in the discrete space, discrete time setting
(see [BEGKZ2]).

If A < 0, the equilibrium potential still has a probabilistic interpretation in term of the
sub-stochastic process X2 (t) obtained by killing the process X.(t) with rate —\ (and on 99).

If 7 denotes the time when X2 is killed, we have that

h) p(a) =P[ta < Tp AT (2.19)
More importantly, we have for general A, that

Wyp(@) = B, L <y (2.20)

for € (AU D)°, whenever the right-hand side exists. so that h* can be seen as the Laplace

transform of the hitting time 74 of the process starting in x and killed in D.
Note that (2.20) implies that

d  s_
ﬁhg,—,g(x) =Eomal,, crp (2.21)

Differentiating the defining equation of h; p then implies that the function

EETA]ITA<TD, S (AUD)C

(2.22)
0, zre AuUuD

wA,D(x):{

solves the inhomogeneous Dirichlet problem (to simplify notation, we set from now on hy,p =

h?‘l;D7 etc.)
Lewa,p(z) = hap(x), z€(AUD)® (2.23)
2.23
wa,p(z) =0, z€ AUD

Therefore, the mean hitting time in A of the process killed in D can be represented in terms

of the Green’s function as

EeTalls <rp =/ dyG (aup)-(z,y)ha,p(y) (2.24)
(AUD)®



8
Note that in the particular case when D = (), we get the familiar Dirichlet problem

Lawy(z) =1, ze€ A°
(2.25)

wa(z) =0, z€A

and the representation

EETA:/ dyG a<(z,y) (2.26)

The full beauty of all this comes out when combining (2.10) with (2.24), resp. (2.26).
Namely, let B,(z) be the ball of radius p centered at z. Then, using Fubini’s theorem,

e PR, 1hep (o) a(dz) = dye FW)/e Ga<(y, 2)eB, (z),4(d2)
(), o(z),
8B, (z) Ac 0B, (=) (2.27)

=/ dye_F(y)/Eth(m),A(y)

and

/aB,,(m) e PO/, 141, , crpep, (2),aun(dz) = /(AUD)C dye™ ")/ *hp, (2, 40D (Y)ha,0(y)

(2.28)
Notice that in the case of discrete Markov processes, we can replace the ball B,(z) by the
single point z. In that case (2.27) and (2.28) yield directly formulae for mean hitting times
in terms of capacities and equilibrium potentials. In this context they provided the basis for
connecting in a precise way capacities and mean exit times, and, ultimately, eigenvalues of
L. [BEGK2]. In the diffusion case, the usefulness of these equations will become apparent
only when we have some a priori regularity estimates for the mean times as functions of the

starting point.

3. Results.

We are now ready to state the main results of this paper. One key notion we will need is
that of the saddle between two sets A, B C R?. We say that z* = z*(4, B) is a saddle point
between A and B, if

F(A,B) = F(z*(A,B)) = F(w(t)) (3.1)

inf sup
wiw(0)€A,w(1)EB ¢e[0,1]

where the infimum is over all continuous paths going from A to B. Note that z*(A, B) may

not be uniquely defined; we call S(A, B) the set of all possible solutions.
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To avoid complications that are not our main concern here, we will make the general

assumption that all saddle points we will deal with are non-degenerate in the sense that
Assumption (ND):

(i) The Hessian matrix of F' at all saddle points z* is non-degenerate (i.e. has non zero-

eigenvalues).
(ii) Along any optimal path w contributing in (3.1), F(w(t)) has as unique maximum.

The basis for the success of our approach is the fact that capacities can be estimated very

sharply.

Theorem 3.1: Assume that A,B C R? are closed and
(i) dist(S(A,B),AUB)>§ >0 for some ¢ independent of €
(ii) both A and B contain a closed ball of radius at least e.

Then, if S(A,B) = {z],...,2:}, and Assumption (ND) holds for these saddle points,
then

can(B) — o~ P @an/e @2 S~ () .
pa(B) = o 2 JrdvrrGy T OWAlReD) 32

where Ai(z}) denotes the negative eigenvalue of the Hessian at z}.

Remark: In cases when some saddle point are degenerate, one can also obtain precise, but

somewhat less explicit expressions, as will be clear from the proof.
Our next result concerns the mean metastable exit times from a minimum z;.
Theorem 3.2: Let z; be a minimum of F and let D be any closed subset of R such that:

(i) If M; = {y1,...,yx} C M enumerates all those minima of F such that F(y;) < F(z;),
then UleBe(yj) C D, and

(ii) dist (S(z;, M;), D) > >0 for some § independent of e.

If Assumption (ND) holds for the saddles S(z;, D) and if the Hessian of F at x; is

non-degenerate, then
el F(z")—F(z;)]/e

= k |1 (2))]
det(V2F(z;)) D054 Tdet(V2F(z* )]

E., ™D (1+ O(Ve|lnel)) (3.3)
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Remark: In the case when there is a single saddle point z*, this reduces to the classical
Eyring formula [GLE,MS1]

2 /[ det(V2F(2*)] (r(a®)=F(a;)]/e 1/2
) = i 1+0 1 3.4
a0 = o e (SR © (1+0(?md))  (34)

Note that the coefficient 27 differs from the « that is found in [MS1] by a factor 2 since we

consider the transition through, and not just the arrival at the saddle point.
4. Some useful tools and a-priori estimates

This section collects a number of tools and a-priori estimates that extend the simple

probabilistic instruments used in the discrete context of [BEGK2] to the diffusion setting.

Regularity estimates. To be able to pass from the discrete setting of [BEGK1, BEGK2]
to the setting of diffusion processes, we will need some a priory control on the regularity
properties of solutions of the Dirichlet problems introduced before. Fortunately, this theory
is well developed in the general setting of second order linear elliptic differential equations,

and we can draw on standard results.

The following two key lemmata are taken from [GT], more precisely Corollaries 9.24 and
9.25. They concern second order elliptic operators L = a;;(z)D;; + bi(z)D; + c(x). where
a;; € C°(Q),b;,c € L*=(Q2). Assume that

A(§,€) > (§,a(2)) > A(E,€) >0 VEER? (4.1)

2
let moreover v = &, and choose v such that (”,\L”) < v, and % < v. Let W2™(Q) denote
the Banach space of two-times (weakly) differentiable functions whose derivatives of order
< 2 are in L™ ().

Lemma 4.1: (Corollary 9.25 in [GT])If u € W2™(Q) is positive and satisfies Lu = 0 in
Q, then for any ball Bagp(y) C Q,

sup u(z) <C inf wu(z) (4.2)
z€Br(y) z€Br(y)

where the constant C = C(n,~,vR?) < oo depends only on vy and vR?

Lemma 4.2: (Corollary 9.24 in [GT))If u € W2™(Q) is positive and satisfies Lu = f in
a ball Bg,(z), then for any ball Br(z), R < Ry,

R a
05CBL(x)u < C (R_o) (oscBRO(I)u + Rol|f — cul n,BRO(m)) (4.3)
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where 0scau = sup 4 u — infa u and the constants a = a(n,vy,vR2) > 0 and

C = C(n,~v,vR%) < 0o depend only on v and vR2.

The way we will use these lemmata is to consider domains depending on e chosen in such
a way that the numerical constants C and a are independent of €. Since for the operator L.

A=X=¢ v=1, and we can choose v = € 2sup,cq, || VF(y)|%..

An analytic renewal estimate. In this section we consider only the case A = 0 and we
omit the superscript 0. One of the most useful formulas used in our analysis of discrete
Markov chains was the renewal equation

P, [74 < TDU]
P [Taup < Ta]

obtained from decomposing the event {T4 < 7p} according to whether the process visits

]P’,;[TA < TD] = (4'4)

before going to A or not and using the Markov property. While this formula is still true
in the diffusion case (if d > 1), it is useless, since the denominator equals one and the
numerator equals the left-hand side. A natural idea in this situation would be to decompose
not according to whether the starting point z is revisited, but whether a suitably chosen
small neighborhood of z is revisited after a suitably chosen short time, or not (in analogy to
the probabilistic representation of capacity). However, any such procedure runs quickly into

problems, as it is impossible to obtain an exact renewal argument.

Fortunately, it is rather easy to obtain a useful analogue of (4.4) by purely analytic con-

siderations. In fact we will prove the following proposition:

Proposition 4.3: Let A,D be disjoint closed sets whose complement is reqular, and let
z € (AU D), such that dist(z, AU D) > ce. Let B,(x) denote the ball of radius p centered
at z. Then for any p < ce, ¢ < oo, there ezists a finite positive constant (depending only on
¢ and on the value of |VF(z)||o), such that

cap B, (z)(4)
h ) <(C—2— = 4.5
4p(@) < cap g, (z)(D) (5)
Proof: We begin by proving the following lemma.
Lemma 4.4: With the notation of the proposition,
ha,p(z) < sup G(AuD)c(Z;iB)eF(m)/E/ e_F(y)/EeDUBP(m),A(dy)
z€0B,(x) 8B, () (4 6)

ha,p(z) > inf G(AUD)C(Zax)eF(m)/E/ e FW/%enup, (2),a(dy)
zEaBr(m) aBP(m) 4
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where eaup, B, («) 15 the equilibrium measure defined in (2.10).

Proof: Let Q be a regular domain, and let f be a function defined on 9€2. Recall that the
operator Hg = H}™ defined in (2.6) can be seen as mapping a function f defined on 69
to a harmonic function (with respect to the operator L.) on Q. We call Hqf the harmonic

ertension of f.

Choosing = (AUD)®, we see that the equilibrium potential h 4, p satisfies the mean-value
property
ha,p(z) = H(aup)-ha,p(z), (4.7)

Now let CC(A U D)® be a regular neighborhood of z. Now since h4 puc and ha,p coincide
on 8(A U D), it is obvious that

ha,p = Hiaupy-ha,nuc (4.8)

holds on (A U D U C)°. Using the first Green’s identity (2.7) for @ =T = (AU D U C)¢,

¢ = Gaup)-(x,-) and ¥ = ha, puc, we get

Haupy-ha,puc(z) = — 6/( )e(F(m)_F(y))/ehA,DUC(y)an(y)G(AUD)C(y:‘E)dO'AUD(y)
0(AUD

=— 6/60 eF@=FW/EG 40upye (Y, )y ha,puc(y)doc(y)

—/ P @)= FWNIeG 44 pye (y, ®)ea,puc(dy)

e (4.9)
where n(y) is the inner unit normal at y € (A U D U C). Here we have used that ha puc
vanishes on 9C and that the Green’s function vanishes when ¢ € (AU D). The last equality
follows from (2.12) together with (2.11).

We now choose C' = B,(z). If we could replace G(aup)-(y,z) by a constant value on
0B,(z), we could extract this value from the integral; the remaining integral then would be
some partial capacity. In fact, in the discrete case we could choose instead of the ball B,(z)
just the point x, and then this problem was absent, and we would readily get (4.4). In the

present situation we still get two bounds, namely

hap(z) > — sup G(AUD)C(Za-T)eF(m)/a/ e "W e, puB,()(dy)
2€0B,(a) 9B, (=) (4.10)

ha,p(z) < — inf G(AUD)C(zam)eF(m)/s/ e FW/ee, pup () (dy)
z€EOB,(x) 8B, (z) s
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But,trivially, haup,c = 1 — hc,auB, and hence, by (2.11) with A = 0, —eauB,c = ec,auB;
which implies (4.6). $

At this point it is clear that we will need to be able to control the Green’s function near
the diagonal. Before turning to these estimates, we bring (4.10) in a slightly more suitable

form. Namely we will show that

Lemma 4.5: Within the situation of the previous lemma

ha,p(z) < ;lép( )G(AUD)C (z,z)ef @)/ ecap B, (z)(4) (4.11)
zE plz

Proof: By (2.18), it is obvious that epup, (s),4(dy) < €B,(z),a(dy). But then
Ly € e < [ e, i) = ap(4) (@12
8B, (=) 8B, (=)
Thus the upper bound in (4.6) implies (4.11).$

At this point we want to express the Green’s function in the bounds of Lemma 4.4 in terms

of capacities, too. We proceed as in (2.27), to get this time

GF(E)/G/ ( )e_F(Z)/EG(AuD)c(w,Z)eBp(m),AUD(dZ) = / G(aup):(2,2)eB, (z),aup(dz)
OB, (x

p(z

= hB,(z),aun(T) =1

(4.13)
This implies that
1> ef@/e inf G(AUD)C(:B:Z)/ dze_F(Z)/eeBp(m),AUD(dz)
2zEB,(x) B,(z) (414)
—eF@)/e inf G (aup)-(z, z)cap B, (s)(A U D)
2€B,(x) ’
l.e.
1
F(z)/e inf @ . < 4.15
€ ceBo(z) ~ AUD) (:2) < cap B, (s)(AU D) (419

It is clear at this point that we cannot continue unless we can compare the infimum and the
supremum of G (4up)-(2,z) with z € B,(x). But such a result is provided by the Harnack

inequalities.

Lemma 4.6: If p = ce, for some ¢ < oo, then there ezists a constant C depending only

on ¢, such that

Ciavpre(z,8) <C inf Goaupe(z, 4.16
seppey D) (z,2) <O o Glav):-(z2) (4.16)
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Proof: We will apply Lemma 4.1. If we choose R < ¢, we can use (4.2) with a constant that

does not depend on €2.

Note that u(z) = G(aup)(2, ) is harmonic in (A U D)®\z. Thus if p > 2R, u is har-
monic in Byg(z), for any z € 0B,(z). Now let a,b € dB,(z). Assume that a is such that
SUP,csB,(z) U(2) = u(a), and inf.cpp,(z) u(2) = u(b). Then we can find k < mp/R points
z1,...,2x € 0B,(z) such that £; = a, b € Br(z), and Br(z;) N Br(zit1) # 0.

Clearly then

u(a) <C inf <C inf u(z) <C sup u(z) <C? inf w(z)<...
z€BR(a) z€EBR(a)NBgr(z2) zEBR(z2) 2€BR(z2)
o< CPl osup w(z) <CF O oinf u(z) = u(b)
z€BR(zk) 2€Br(zk)
(4.17)

Thus u(a) < CP/Bu(b) Therefore, if p = ce, for some finite constant ¢, and R = €, sup and

inf are related by at most a finite e-independent constant. This proves the lemma.{

Combining now Lemma 4.6 with Lemma 4.5 and equation (4.14), we arrive at the assertion

of the proposition.{

A-priori bounds on capacities. To make use of the renewal estimate (4.4) we need of
course some bounds on the copacities. The next proposition provides a first set of rough
bounds, that provide the necessary estimates in the equilibrium potential that will later be

used to get sharp bounds on capacities.

Proposition 4.7: Let D be a closed set, and x € D°. Denote by z* = z*(x, D) a point

21f z is a (quadratic) critical point of F', then we can even choose R = €l/2,
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such that

F(z") = sup [FN('Y(t))]) (4.18)

inf
7:"/(0)237"/(1)€D tE[O,l]

where the infimum is over all continuous paths leading from x to D. Let p < ce/||VF(z*)|oc-

Then there is a constant C > 0 such that

(1)
cap B, (z)(D) = C(IVF(2")|loo + v/e)p? e FE/ (4.19)

(ii)
cap g, (a) (D) < eCp?~2e~F(=")/e (4.20)

Proof: To prove the lower bound we use the variational representation of capacities (2.15)
and some obvious monotonicity properties. We begin by choosing a smooth path w going
from z to D in such a way that it remains in the level set F(z) < F(z*), with equality
holding only when passing z*. In fact, the canonical path can be constructed using pieces
of the deterministic trajectory of the unperturbed equation dX.(t) = VF(X(t))dt in rather
obvious manner, but this is not important at the moment. Given this path, we parametrize

it by arc-length, so that ||w(¢)||2 = 1 for all time.

Given w(t), we construct the tube of width p around w(t),
wP=A{z¢€ ]Rd|5|te[0,|w|]||w(t) —z||2 < p} (4.21)

Let us denote the d — 1-dimensional disk of radius p centered at the origin by D,. The

important point to notice is that

d 2
IVhG(t) + 20)|3 > [@h(w(w T zl)] (4.22)
Therefore we may bound the Dirichlet form
] d 2
Ba(h) > ¢ / iz / dreF@z/e [Eh(w(t) +m] (4.23)
D, 0

The minimization problem is now trivial, i.e. it decomposes for each fixed z, into a one-

dimensional problem whose solution is well known. In fact, the minimizer h,, (t) is the
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solution of the 1-dimensional Dirichlet problem

h, (0) =1 (4.24)
th_ (|w|) =0
whose solution is readily found to be
j;|“’| dseF(w(s)-‘rZJ_)/E
[T dseFr=0)/e

h., (t) = (4.25)

Inserting this solution into the lower bound (4.23) yields

lw]
dzy [ / dtef (@t +z1)/ ] (4.26)
b 0

From here the stated lower bounds results follow from simple saddle point evaluations of the

o)z [
D

integral in the denominator.

To prove the upper bound, just note that in the case when z* = z, we can always choose
a function h that is equal to one on B,(z) and that decays to zero over a distance p. Then
IVA||2 < 1/p on a set of volume Cp?, and zero elsewhere. The upper bound (4.20) follows im-
mediately. If z* # x, we choose a trial function that changes from 0 to 1 in a p-neighborhood
of the saddle z*; away from z* the change takes place in a set where F(y) > F(z*), so that
the resulting additional contribution to the Dirichlet form is exponentially suppressed. This
also yields (4.20). ¢

Remark: This estimate is in general quite poor, in particular when z* # . We will prove
sharp results in that case in Section 6. The crude bounds serve two purposes: 1) to yield an
a priori bound on the equilibrium potential (in conjunction with Proposition 4.3) that will
then be used to prove a sharp estimate on capacities, and 2) to get an a priori estimate on

the spectrum of certain Dirichlet operators.

Bounds on the equilibrium potential. Combining the renewal bound on the equilibrium
obtained in Proposition 4.5 with the bound on capacities from proposition 4.7 yields very
sharp estimates on the equilibrium potential in the level set of the saddle between the sets A
and D.

Corollary 4.8: Let A and D be closed sets and assume that z*(A, D) ¢ AUD. Then there
is a finite positive constant C such that, for x ¢ AU D, and z*(z, D) # x,

hap(z) < e 2 FG @A) ~F(=* (z.D)/e (4.27)
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Remark: This bound is useful only when F(z*(z, D)) > F(z). If this is not the case one
may use that hs p(y) =1 — hp a(y) and apply (4.27) on hp a(y). This yields good control
whenever z is below the level set of the saddle z*(A4, D).

Proof: The proof is straightforward. We just insert the bounds on capacities of Proposition

4.7 into the renewal bound on the equilibrium potential of Proposition 4.5, choosing p = Ce.

¢
5. Sharp estimates on capacities.

In this section we show how to get coinciding upper and lower bound on the relative
Newtonian capacity of two balls of radius p centered at the local minima x,y of the function
F. We assume that p is so small that z*(z,y) is not contained in these balls, and that the

radii are at least €3. Let us denote these sets by B, and B,, respectively.

We denote by S, the set of points that realize the minimax in the definition F(z,y) (c.f.
(3.1)). We will assume that S, , is a (finite) union of points.

Theorem 5.1: Let s3,...,s; denote the saddle points connecting x to y, and suppose that
Assumption (ND) holds for S(zy). Let Ai(s}) denote the unique negative eigenvalue of the
Hessian of F' at s}. Then, under the above hypothesis on the function F,

27re d

capp,(By) =e ~F(a) /6

/2 |)\* *|
Z < \/[det(V2E(s]))] (1+0(Weel))  (5.1)

Proof: The capacity cap g, (By) verifies the Dirichlet principle (2.15)
B,) = inf ®(h 5.2
cap g, (By) op (h) (5.2)
(where we abbreviate for simplicity ® = ®p,up,)<) Where the space Hj is the function space

He = {h € WH(R?,Q(dz)) : h(z) € [0,1],h)5, =1,hp, =0} (5.3)

For simplicity we consider the case of a single saddle point, s*, first. Without restriction

of generality we can choose co-ordinates such that s* = 0 and that

F(z) = F(0) 'A* +Z Ziz2 4+ 0(213) (5.4)

31t will become clear from the proof that the precise form of these sets is irrelevant for the result.
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for small ||z||2. Define a neighborhood of zero

d

s = |~o1/Inl, o/l | @ [ 26/ VA5 28/ v/3] (5.5

1=2

Since we have assumed that there is a single saddle point at the communication height
between z and y, it is possible to choose § > 0 so small that there exists a strip S5 of width
26/+/|Af| containing 0 and separating z and y in the sense that any path connecting these
points must cross Ss, and that for all z € S5\Cs, F(z) > 6. Let D, and D, be the connected

components of R?\Ss containing x and vy, respectively.

The upper bound. To prove an upper bound on the capacity we just choose a function h*

to our convenience. We will make the choice
ht(z)=1,z€ D,, h™(2)=0,z€ D,
h* on S;\C; arbitrary, except | VAT||2 < cy/|N7]/6 (5.6)
for z € Cs,h"(2) = f(21)

where f is the solution of the one-dimensional Dirichlet problem

d d d
—€e—+ —F(2;0,...,0) ) — =0
( edZ]_ + dzl (Z]_, Y 7 )) dzlf(zl)

F(=8/1/1x) =1 (5.7)

f(+6/4/IMD) =0
The solution of this problem is obviously

fJ/ M1 gF(£,0)/e gt
flz) = = (5.8)

3/4/1A%1 eF(t’O)/Edt

s/ yma

Inserting this function into (5.2), we see that

26/,/3% 26/ /%5 8/4/ i1
cap g, (By) < e/ sz---/ dzgq /
—25/4/7; —28/4/X% =8/4/1211

+ eed? / dze-FG)/e
55\05

dzle—F(z)/e ||fl(zl)||2)
(5.9)

The second term is bounded by ecd~2e=%"/<const. by assumption on F.
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The first term is given by
f dze—F(z)/ee2F(z1,0)/e
Cs

B, (W) = € _ (5.10)
f‘s/ [A7] eF(t,0)/edt
—8/4/1A%1
Now on Cjs we have that
—| AT |21 + A 22 4+ A522
F(z) = () + AN X o) (5.11)
and thus Ny N
F(z) — 2F(1,0) = —F(0) + AL TN 40320 1) (5.12)

2
But on Cy, ||z||2 < C'4 and if we choose § = K+/¢|In¢| for some constant K, the numerator
in (5.10) satisfies the bound

/dze—F(z)/ee2F(z1,0)/e < e—F(O)/eeCEI/2|lne|3/2/
c

ELLE
R4

o+ A522 ) s
2¢

5.13)
d/2 (
_ __F(0)/e_(2me) 1 1/2 3/2
=e —a—— (1+0(e""|In¢|
T, v 0+ ()
Similarly, the integral in the denominator is bounded from below by
§/4/1A11 1/2 oo ,
/ F(E0)/e gy > g=Ce/2 ne? (+F(0)/e ((27r€) / _2/ gt e M1t /e)
—8/y/ ] VA 5/7/ ]
O e yF()/e (2T e/ (5.14)
. NCERT
_ e+F(o)/e_V27r*€ (1 10 (61/2| ln€|3/2))
VI
Combining the estimates (5.13), (5.14), and (5.9), we arrive at the upper bound
A%
B, (h1) < e~ FO/e(27¢)/? A 140 (€/?|Ine)?/? 5.15
i) < MO (an 2 s (140 (¢ meP))  (19)

Since this results coincides with the heuristic results, we may expect to get a corresponding

lower bound.

The lower bound. For the lower bound we will consider a different domain

655[—26/ A1), 26/ |)\*] [5/\/ —1)Ar 5/\/ —1)\*] 516

= [—26/ 7,26/ |A:|] ® 63
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Let h* denote the minimizer of the variational problem (5.2), i.e. the equilibrium potential

of the capacitor (B, By). Then

nf @(h) = &(") = g (") (5.17)

Obviously,

_ _ oh(z)\?
®5 (h)>d4 (h) = F)/e [ 2221
(h) > &, (h) =€ . dze 52

28/+/IN] 2
:e/A dz, / dz e F()/e (5.18)
CH ~26/4/IX]

26/ /] \
> ¢ /A dz, inf / dene™ PO | ()|
G Fi£(£8//TNT)=h (£6//Ix71) J —28/4 /1]

The minimization problem for fixed values of z, is of course the solution of the Dirichlet

Bh(zl, Z_]_)
62’1

problem

d d d
(—ed—zl + d—ZIF(Zl;ZJ_)> d—zlf(zl) =0
f (—26/ |)\*1‘|) =h* (—26/ |)\*1‘|,2L) (5.19)

1 (w20t = (207/ixth )

The solution of this Dirichlet problem is readily obtained: let us set a = h*(—2d/+/|A}],2.)
and b = h*(20/+/|A;|,2L), and g(z1) = F(z1;2.). The general solution of the differential

equation in (5.19) is

f(z1) = c/s eI®/e gt (5.20)
where the constants ¢ and s are determined by 1the boundary conditions, i.e.
c/s eI/ edt = g
~20//I] (5.21)

c/s eI/ edt = p

26/4/1211
from which we get that
a
c= (5.22)
8 g(t)/e
sy €2 cdt
while s is determined through the equation
Jasy vz /Ot b
GAvALt - (5.23)

25/v/INT 0y /e ] e @
S \/Weg( Vedt + [y rer®/edt
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or
26/4/TX;]
/ es®/egy — 0 eI/ gy (5.24)
28/+/ ] a—bJ a5/ /3]
and thus

s 28/4/127 |
/ eI/ gt (5.25)

eI/ eqp —
26/4/12%] a— b —28/+/|A%]

Inserting this solution into (5.18) yields

2
25/,/|>\* e~ Flz1:21)/e (h*(—25/ /|X{|;ZJ_)) e2F(z1,21)/¢
h*) > 6/ dZJ_/
CL

21

2
26/+/1A11 (fj(z?})\/m eF(t,zJ_)/edt>
2
J5: dzs (h* (—25/,/|,\*| 21) = (26/3/INil 21 )
€

28/ |)‘ F(t,z €
I 25\// et edt

But using again (5.4), we see that

25/,/|,\* Arz2 26/+/11 | 11e2
/ F(t ZJ_)/fdt = (€+ E;i:z T2 0(53/6)) / dte_%

—25/,/|A* —25/+/1A11 (5.27)
e T 40/

% \/ 6|AI| d A:Z,Lz 3
b~ (h > — LA
75( ) ,_2 €XPp iE - %€ (6 /6)

2
x/A dz1 (h* (—25/ |)\*1‘|,zJ_>—h* (25/ |,\;|,ZL))
Cy

Now we use the fact that h*(z) = P.[r, < 7B,] = hB,,B,(2). Then Corollary 4.8 implies

(5.26)

<

and so

(5.28)

Lemma 5.2: Uniformly in 2z, € Cy,

1—h* (—25/ |X{|,zJ_) < Ce1/2¢=%/(9)
(5.29)
h* (25/ |A’{|,ZJ_> < Ce/2e78"/(49)

As an immediate consequence, we see that

2 2 d/2 * _ 2
B (h*) > (1 _ Ce1/2p8 /(46)) e—0(8%/¢) (2me) ) |1)\1| 1_ e(d 1)6—2(ka
s 2m [[izs VA
(5.30)



22

Choosing as before §2 = Ce|In €|, we see that to leading order (5.30) coincides with the upper
bound (5.15), which proves the theorem in the case k£ = 1.

The generalization of this estimate to the case when several saddle points exist on the
communication height is completely straightforward and will be left to the reader. The result

is the formula stated in the theorem. <

6. Metastable exit times and capacities.

In this section we compute the mean value of certain metastable exit times in terms of
capacities. This will be largely analogous to the results on mean transition times obtained
in [BEGK1,BEGK?2]. The only new ingredient needed is the following sharpening of (2.27),

resp. (2.28) when a process starts in a local minimum of F.

Proposition 6.1:Let z be a (non-degenerate quadratic) critical point of F' and let A, D be
closed sets. Then there erists a > 0 such that
 Jpedye F@/ehp (4 p(y)

D = €/? .

and
o _ Jiaunye dye~ ")/ hp, (o) pua(y)hp,A(y)
a TDWrp<ry = CapBE(m)(AUD)

(1 + O(e"‘/z)) (6.2)

Proof: The proofs of (6.1) and (6.2) are completely analogous, and we will only consider the
former. Let us write wp(y) = E,7p, y € D°. Recall that wp(y) solves the inhomogeneous
Dirichlet problem (2.25) (with A = (). We will consider this function on a ball Bg,(z), where
x is a critical point of F'. This implies that for some constant K, sup,cp,, (x) IVF(y)|loo <
KRy (if Ry is small). Thus the Holder and Harnack inequalities Lemmata (4.23) and (4.22)

have uniform constants if Ry < y/e.

Now note first that due to (2.26), wp(y) inherits from Lemma 4.6 the uniform Harnack
bound

sup wp(y) <C inf wp(y) (6.3)
yEB\/g(m) yGB\/E(m)

Now use Lemma (4.22) with R = ¢, since wp solves L.wp = 1. This yields that

0SCB, (z)Wp < Ce*/? sup wp(y)+ Ry (6.4)
yEBR, (z)
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This implies immediately that

sup wp(y) <wp(z)+ C2ea/2wp(:c) 1+ Cel/2tal?
yEB.(z)

inf ’wD(y) > 'u)D(x) — C2ea/2wD(a:) _ 061/2+a/2
yEB(z)

(6.5)

Using these estimates in (2.27) with p = € resp. (2.28) proves the proposition.{

By the preceding proposition, all we need to know in order to compute the mean arrival
times are the capacities and the equilibrium potential. The latter is quite well controlled by
Proposition 4.3 and the rough estimates on capacities Proposition 4.7, and this will allow us

to get already quite remarkable formulae.

Theorem 6.2: Let z;, j = 1,...,n be the local minima of F. Let Sy = UX_B,(z;) be
a collection of balls B,(x;) where p > € and no ball contains any other minimum or saddle

point of F'. Assume moreover that for a given j, all i > k, i # j, either

F(z*(xi,x;)) — F(x;) > F (2" (xi, Sk)) — F(x:) (6.6)
or
F(z*(zi,z;)) < F(z*(xi, Sk)) (6.7)
Then, for j > k,
E;,7s, =
- > OnOT__o-reore(y 4+ 0(/*|nel, /%)

cap B, (z,)(Sk) | det(V2F(z;))

iF (2% (24,52))>F (2% (z4,25))
(6.8)
Note that the sum always includes the term i = j. In particular, if for all i > k, F(z;) >

F(z;), then

1 (2me) /2
€ap B, (z;)(Sk) \/det(VZF (z;))

E.,Ts, = e F@)/e(1 4 O(e*/?|Ine,e/?))  (6.9)

Remark: A transition to a set D for which (6.9) holds will be called a metastable ezxit and

the formula (6.9) is the mean metastable exit time from the minimum j.

Proof: Let us consider the set I'; = {y : F(y) > F(z*(zj, M)) + 6} for some sufficiently

small § > 0. Let I'j(¢) denote the connected component of I'; that contains x;. Note that
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some of these sets may be empty, and some may coincide. Let {I';(7)}; be an enumeration

of the distinct non-empty members of this collection. Let us write

/S _dye™" W/ehp, (2;),5.(y) = /F dye FW/hp (o 5. (1)
: :
g (6.10)
— dye—F(y)/ehBE ), (y)
z;:/rjm\sk (23):5

The first integral is bounded by Cexp(—[F(z*(z;, M)) + d]/¢) and will be negligible. The
remaining contributions will be split into those for which F(z*(z;, Sk)) > F(z*(z;,z;)) and
those for which the contrary is true. The point is that for the former hp,(,).s,(y) is close
to one, while for the latter, it is typically very small. Here we make use of the fact that
if y € T';(), and F(2*(x;,Sk)) > F(z*(x:,2;)), then 2*(y,Sk) = 2*(x:, Sk) and 2*(y,z;) =

z*(xz, ;). Then

2 /r @\S dye™" " hp, 2,5, (9)
©:F(z*(z;,S F(z*(zz,x; AN k
(z*(27,Sk))>F(2*( ) 6.1
- 2 / dyem O (1= by e (9)
(2% (21,5%))> F(2* (z1,2;)) Y L1 (O\Sk
Now by Corollary 4.8,
0 S hsk,BE(z])(y) S 06_1/26_[F(z*(Iivsk))_F(Z*(mz,Ej))]/E (6_12)

which by assumption is exponentially small. On the other hand, if x; is the absolute minimum

of F within T';¢), and if the Hessian, V?F(z;), at this minimum is non-degenerate,

T, (0)\Sk det(V2F(z;))

e F@)/e(1 + O(e'/?| In€])) (6.13)

by standard Laplace asymptotics. Thus

Z / dye="®/hp (o y.5.(¥)
L;(D)\Sk

UF(z*(2:,Sk))>F(2* (z1,25))
- (6.14)

- E : e
2 -
ZF(Z*(EZ,SI‘:))>F(Z*(m;,m])) det(v F(xL))

The remaining terms cannot be computed as precisely; however, often the upper bound will

~FED (14 O('/?| In€]))

show that they are totally negligible (but this is not always the case). Using again Corollary
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4.8, when F(z*(zz, S)) < F(2"(zi, z;)),

/ dye~ T/ by o s, (y) < O / dye~FW)/e =[P 0,e)=F (" 0,50/
T; (2)\Sk " T; (D)\Sk
_ 06—1/2/ dye—F(z*(ﬂimﬂj))/6
T (0\Sk:2*(y,Sk)=y
4 Qe /2 Flai)e / dye—F@)=F(@)l/egIF (" (a2,2,))~F(2;)=F(z" (a2, Se)+ F(z0)) e
T (0)\Sk:2* (y,Sk)#y

— Ce V2~ F (=" (zr,25)) /e |{1“j([)\5k : 2*(y, Sk) = v}

d/2
e V2 () e IF(" (2,20~ Fla)~ F(=* (2,800 + F(a)] /e ___(2T€) / (1+O(¢'|In€]))
det(V2F(z;))
(6.15)

The first summand is always exponentially negligible compared to the principle terms, since
of course F(z*(z;,z;)) > F(z;). The second summand is negligible only when (6.6) holds,
which will be the case in the main applications. This implies (6.8). (6.9) is an immediate

consequence.

Proof of Theorem 3.2: The proof of Theorem 3.2 is immediate by inserting the formula
for the Capacity of Theorem 3.1 into (6.8), except for the error terms of order €*/2 which
we will now show can be removed easily. Namely, note that nothing changes in the proof of
Theorem 6.2 if we replace the starting point z; by some point z € B \/g(y) Also, inspecting
the proof of Theorem 5.1 one sees that the difference between cap p,.,(Sk) and cap . (Sk)

for z € B /(y) is in fact much smaller than the error terms. Thus we get that in fact

0SC2eB /. (2;)Ea T, < C’(e"‘/2 + 61/2| Ine|)Ey, 7s, (6.16)

which improves the input in the Holder estimate by a factor €*/2

af2

, which in turm allows to
improve the error estimates in Theorem 6.2 from €*/* to €*. Iterating this proceedure, we
can reduce this errors until they are of the same order as the €!/?|Ine¢| terms. This proves

Theorem 3.2.
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