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On multichannel signal detection *

Yuri Ingstert and Oleg Lepski®

Abstract

We consider n-channel signal detection system. Each ith channel could
contains (or not contains) a signal. We suppose a signal is a function
fi(t), t € (0,1) observing in the white Gaussian noise of level € > 0. Let
k be a number of channels which contain the signals. This number could
be known or unknown. The functions f; could be known or unknown as
well. If shapes of functions f; are unknown, then we consider nonparametric
case. We suppose that functions f; belong to the Sobolev ball S where the
smoothness parameter o > 0 could be known or unknown as well. The cases,
when k or ¢ are unknown, lead to the "adaptive" problems.

We are interested in the following problems:

(1) How large the signals f; should be in order to detect these signals with
vanishing errors, as the number of channels n tends to infinity?

(2) What are the structures of test procedures which provide the detection
of signals with the vanishing errors, if it is possible?

We show that there are two main type of results in the problems which,
roughly, correspond to the cases either k is "large" (this means k > n'/2 in
the problem) or k is "small" (this means k < n'/2).

1 Statement of the problem

1.1 Model

The aim of this paper is to study a general properties of the multichannel signal
detection problem for the case when a number n of channel is large. There are
a lot of applications of problems under considerations: these problems arise in
the technical and medical diagnostics, in radio engineerings, in the information
transmissions, etc.

In what follows all limits are assumed as n — oc.

*Key words: multichannel signal detection, minimax hypothesis testing, adaptive hypothesis
testing, distinguishability conditions.
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We study the hypothesis testing problem under the white Gaussian noise model.
Given n-channel system, we observe n random processes X; of the form

dX,(t) = &f,(t) + EdW,(t), t e (0, 1), i=1,...,n; f; € Fy, (1)

where W;(t) are independent Wiener processes, ¢ = ¢, > 0 is noise level, F,, C
L5(0,1) are the given signal sets and & € {0, 1}, that is, & = 1, if ith channel
contains a signal and & = 0 otherwise. Let f = (£1f1,...,&nfn) € L2(0,1) be the
collection of signals in the channels and

Fp=A{f: fieF, i=1,...,n; Y &=k} C L3(0,1). (2)
i=1
The quantity Y7 ; & is the number of channels in the system which contain signals.
Let k = k, be a given quantity, 1 < k < n (for the case when k is unknown,
the statement of "adaptive" problem will be given in Section 3.1). We want to test
the null-hypothesis Hy : f = 0 against the alternative H, : f € F.
We study the problem under asymptotic variant of the minimax setting, assum-

ing n — oo. For the test 1, we denote by

’7k,n(¢n) - ’Y(Fl?a wn) = an(wn) + _sup /Bn(wna f)

fery

the sum of the type I error probability o, (¥n) = Eo(¢n) and of the maximal type
I error probability B,(¢n, f) = Ef(1 — %n), where Ey and Ef is the expectation
over the measure corresponding to the null-hypothesis and to the alternative f.

We also set
Yen = 7n(FI?) = lqilf’yn(FI?’ wn)

Clearly, 0 < v < 1 (see [2]). We are interested in the conditions for minimax
distinguishability (i.e., for v, — 0) or for minimax nondistinguishability (i.e., for
Yen — 1). Also if v, — 0, then we want to construct a test procedure v, which
provides distinguishability (i.e., Yo (F5, ¥n) — 0).

1.2 Results for known shape of signals

Let us formulate the results for the case when the sets F,, = {f,} consists of one
known signal f, = cn¢ € L2(0,1), ¢ = ||ful] > 0, ||#]| = 1; the function ¢
determines the "shape" of a signal. Let us consider the statistics

o= ! /01 SAX:(t), i=1,....n. (3)

Clearly, they are the sufficient statistics in the problem. The statistics z; are
i.i.d. standard Gaussian N(0, 1) under the hull-hypothesis. Let b = b, = ¢, /e be
the signal-to-noise ratio. Then z; are independent Gaussian N(&;b, 1) under the

alternative f, = (&1fn, - -, &nfn). Set

W=Vl = o= (@b 6, 601 YE=R @
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By passing to the statistics (3), we obtain the equivalent hypothesis testing problem
on a mean v € R" of the n-dimensional Gaussian random vector z ~ N(v, I,),

H()I’U:O, H]_:’UEI/kH.

The quantities v, (Vi (bn), ¥n) and v, = Yn(Vi? (bs)) in the problem are defined
analogously to the above.

This hypothesis testing problem have been studied in [6] see also [3], [4] where
analogous problems were studied; the difference is that it was assumed &; € {0, +1}
in refereed papers. The results are of the following form. Suppose k£ = k, <

, 0n = 0 €[0,1].
Flrst let 8, — 6 € (1/4,1]. Set u2 = n 'k2(eb» — 1) and consider the tests

~

Ynpn = ¢n b Hy = Max(Ynp. .., @bt’”) Here the tests ¥ 3,5, = 14,, >, are based
on the statistics

tnp, = (n( bn ek Z v(Zi, b " ) V(t’ b) = (eib2/2+tb - 1)
and the tests 1! are based on the thresholding

Yt =1y X,={zeR": 1121{3J<>;m1>Tn}, T, =+/2logn (5)

Then
Y (Vi (b)) = (Vi (bn)s Bnpa) + 0(1) = 28 (—u,/2) + 0(1)

(this means that the tests @Bn,bn are asymptotically minimax).
Moreover, let §, — 6 € (1/2 1]. Consider the tests %" = 1, 54,/» based on
the linear statistics t, = n~/2 ", z; and set @i, = n"'/2k,b,. Then

Y (Vi (bn)) = (Vi (bn), ¥™) + 0(1) = 28(~1in/2) + 0(1).

Note that @, < up; @, — oo iff u, — 0o and 4, ~ u, if b, = o(1). This means
that tests " are asymptotically minimax; if k, = n, then the tests ¥!" are
minimax in the problem (nonasymptotically). Also, if § € [1/2,1] and u, — oo,
then 7 (V32 (b, #5) — 0.

These results describe the sharp asymptotics of the Gaussian type in the prob-
lem for the case §,, — § € (1/2,1]. If 6, — 0 € (0,1/4), then the sharp asymptotics
in the problem are of a special infinite-divisible type (see [3], [4]). However there are
simple conditions for distinguishability and for nondistinguishability in the prob-
lem. Namely, let 6, — & € [0,1/4]. Set b*(d) = (1 — §'/2)y/2Togn and consider the
tests (5). Then:

(a) If limsup b, /b5, (0,) < 1, then v, (V}" (b)) —

(b) If liminf b, /b5 (0,) > 1, then v, (V)" (bn), 'z/)t’") — 0. Moreover, this holds
for any 4, — d € [0,1).

These results lead to the conditions for distinguishability and nondistinguisha-
bility in the problem (i.e., to the conditions for either v, — 0 or 7y, — 1).



Corollary 1

(1) Let 6, — 6 € [1/2,1]. Set b}, = n'/>70. Then v (Vi (bn)) — 1 iff b, /6], — 0
and Y, (Vi (by), PH™) — 0 iff b, /bf, — 0.

(2) Let 6, — § € [0,1/2). Set b} = v/logn. Then there ezist constants 0 < ¢y <
c1 (which depend on § and ¢y = ¢, for 6 € [0,1/4]) such that if limsup b, /b}, < ¢y,
then Yn(Va(bn, kn)) — 1, and if limsup b, /b% > c1, then v, (Vi(bn, kn), I — 0.

Thus, tests ¢! and " based on linear statistics and on thresholding, provide
the optimal rates for distinguishability in the problem, with loss a constant in the
rates for 6, — § € (1/4,1/2). These tests depend on the shape of the signal f,, but
not of this norm.

In the presented paper we study the case when F;, are nonparametric sets. We
extend the results of Corollary 1 to this case.

2 Nonparametric signal sets

It is well known (see [2]) that in order to obtain minimax distinguishability in
nonparametric problem one needs to remove "small enough" signals and to assume
some regularity conditions on signals under consideration. For this reason below
we consider signal sets F,, = F(ry,, o) of the form

Fn = {f € L2(0, 1) : ||f||P > T, ||f|

where || - ||5,4 is Sobolev norm; to simplify, we set B = 1. In this paper we consider
the case 0 > 0,1 < p < 2, ¢ > p. So, below we consider the sets F¥ defined by (2)
with the sets F,, defined by (6).

It is known (see [2]) that for the signal sets (6) with r, = r. the minimax
distinguishability in each ith channel is possible if and only if r./r} — oo, as
e — 0, where the rates r} are of the form

oqg < B}, B>0, (6)

7‘: — 646/(4U+1). (7)
Moreover, the minimax distinguishability in channels is provided by tests based on
x2-statistics of the following form.

Taking integer-valued family m = m, > 1, let us consider the equispaces parti-
tions of the interval (0, 1] into subintervals

Omj = (Zmj—1,2Zmjls Zmj=173/m, j=1,...,m,
and let
Tijm = 8_1m1/2(Xi(Zm,j) — Xi(zm,jfl))

be normalized increments of the observed processes in the channels on the intervals
dm,j- For each channel let us consider centered and normalized x-statistics

m

Xmi = (2m) 2 ¥ (22, — 1), i=1,...,n. (8)
j=1



Let r./rf — oo. Take m = m.(c) < (r*)7'/?. Then there exists thresholds family
T. — oo such that minimax distinguishability in 7th channel is provided by the

tests Y. = 1y, ;>T.-
Let us return to the multichannel signal detection problem.

2.1 Large &

First, let us consider the case when k = k,, is "large"; namely let d,, = nk, 2 = O(1);
in particular, this holds for k < n®, 6 € [1/2,1]. Set

b =12 Xmi, 7= (ed,)74HY, (9)

i=1
where the statistics X, ; are defined by (8).

Theorem 1 Assume r) — 0, d,, = O(1). Then

(1) If rp /7 — 0, then v, (F7) — 1. Iflimsup r, /7). < oo, then liminf ~, (F}') >
0.

(2) Let /vt — o0. Then v, (Ff) — 0. Moreover, let us take m = my(ky, o) <
(rx)~Y? and consider the tests Ymnr = i, ,.>7. There exist a family T, — oo
such that Vo (F}, Ymnr,) — 0.

Thus, in order to detect a signal in the system with "large" k = n®, § € [1/2,1],
one can take tests based on sums of test statistics in all channels. The rates in
channels should be decreased by the factor n(2*-17/(47+1) with respect to the rates
(7) . Note also that we do not assume € = ¢,, — 0; it is possible e — oo for § > 1/2.

2.2 Small &

Next, let us consider the case when k = k,, is "small"; namely let k,, = O(n®) for
some § € [0,1/2). Set

™ = max xo, e = { (€ogm)7 0T it 2(logn)2t < 1
B e+/logn, if e2(logn)? ! > 1’

i.e., ¥ = max ((54log n)?/4 ) ¢\ /log n)

Theorem 2 Assume r; — 0. Then there exist constants 0 < ¢y < ¢; < o0 such
that:

(1) Iflimsupr,/r); < co, then v, (F3) — 1.

(2) Let liminfr,/r} > c¢;. Then v,(Fy) — 0. Moreover, taking positive con-
stant C, set

(10)

m = my,(o) = [max ((64 logn) Y@t Clog n)] +1,
and [t] is the integer part of t > 0. Consider the tests

Ync = 1tT>\/CTgn’
5



where t7 is defined by (10). Then there exist positive C, c; such that
Yo (FP, Ync) = 0, as liminfr, /rk > c;.

Thus, in order to detect a signal in the system with "small" k = n®, 0 < § < 1/2,
it suffices to increase the thresholds in all channels and to combine the decisions in
all channels. If e2(logn)?°*! < 1, then the rates in the channels should be increased
by the factor (logn)°/4+1) with respect to the rates (7); if e2(logn)2°** > 1, then
this factor is v/logn with respect to the “classical” rate r* = e which corresponds
to the case when the shape of a signal is known (see point 2 in Corollary 1).

3 Adaptive problems

3.1 Adaptation on large k

Note that the tests in Theorem 2 do not depend on § € [0,1/2); moreover these
tests provide distinguishability uniformly over k,, such that 1 < k, = O(n%), §, €
[0,1/2).

The situation is different for "large" k& > n’ with § € [1/2,1], because the
"dimensions" m depend essentially on §. These lead to "adaptive" problem: to
construct tests 9, which provide distinguishability uniformly over "large" k =
k.. The study of analogous estimation problem have been started in [7]-[9]; in
hypothesis testing problem adaptive setting was proposed in [10], [11]; see also [5].
Typical results state that often it is impossible to construct adaptive procedures
without loss in efficiency; however the losses are small enough.

For our problem let us set

Kn=Kn(61,85) = {k: bn® <k <byn®}; by >0, by >0, (11)

and
F'(Kp,0) = U Fi (ra(k),0), (12)
k€K R (81,02)
where F}*(r,,0) are the sets F}* in (2) which correspond to the signal set F(r,, o)
in each channel defined by (6); we assume the quantities r, = r,(k) could depend
on k. We are interested in the asymptotics of the quantities v, = v, (F"(Kn, 0)).
Introduce the adaptive rates

T:(k) = (54nk*2 log IOg n)a/(4a-_|_1) .

Up to loglog-factor, these rates correspond to the rates r7(8) in (9) for k = n?, § >
1/2.

Theorem 3 Let 1/2 < §; < 62 < 1. There exist constants 0 < ¢y < ¢; < 00 such
that:
(1) Assume r%(n®) — 0 for some 6 € (6,,08,) and

limsup sup r,(k)/7,(k) < co.



Then v, (F™(Kpn,0)) — 1.
(2) Assume 7%(n’) — 0 and

liminf inf r,(k)/r;(k) > c1. (13)

kEKn,

Then ~v,(F™(K,,0)) — 0. Moreover, one can take an adaptive test procedure of the
following form. Take collections my = 2!, L <1< L+ M, where

my < (rEm®) Y <mpy,  mppm—r < (mE0)Y < mpw

this yields M = M,, < logn. Consider the sets X,, . defined by the inequality

max ¢ > y/clog M
L1<I<L+M 0" &M

where t, , are the statistics defined by (9), and ¢ > 2 is a constant. Set ), . =1 Xpc-
Then there exists c; > 0 in (13) such that v,(F™(Ky,0), Yne) — 0.

3.2 Adaptation on o

The tests presented above depend on o because these is the dependence on o of
the dimensions m for known k, and of the collections of dimensions for adaptation
on k. We would like to construct tests which provide good minimax properties for
all ¢ > 0. More exactly, we want to obtain the conditions for distinguishability
uniformly over o € [0y, 01| for any 0 < 0 < 07 < 0.

Taking a sequence of functions r, = r,(k, o), we set

FI:L(O'OaUl) = U Fk"(’l“n(k,O'),O'),

o€[o0,01]

where F}(rn,0) are the sets F} in (2) which correspond to the signal set F(r,, o)
in each channel defined by (6); we assume the quantities r,, = r,,(k, o) in (6) could
depend on k,n,o. Analogously, taking 0 < §; < d2 < 1, we set

Fn(}CnaUOaal) = U F:(Uﬂaal)a
k€Kn(d1,02)

where the sets I, = K, (01,02) are defined by (11). We are interested in the
conditions for 7, — 0 and for v, — 1 for the quantities v, = vn(F} (00, 01)) with
given sequence ky,, and for vy, = y,(F"(K,, 09, 01)) with given sets IC,.

First, let us consider the case of "large" k. Namely, let the sets K,, = K,,(d1, d2)
correspond to 1/2 < 6; < d2 < 1. Introduce adaptive rates. Set

pu(k) = e'nk™2,  wn(k) = pa(k)log ;' (k), 7k, 0) = (wn(k))”/ o+,

Theorem 4

(1) Let ky, € K,(61,062) and

pn(kn) =0, d,=nk, ?logw,*(k,) — 0 (14)

7



(the first relation in (14) yields w,(k,) — 0 and r%(k,0) — 0 Yo > 0). Set

g:: sup Tn(knao)/r:(knaa)'

o€[o0,01]

If gt = o(1), then vn = Yu(Fi (00,01)) = 1. If gf = O(1), then liminf~, > 0.
(2) Assume
3 6 < 61 : pa(n®) =e'nt 20 50 (15)
(the assumption (15) yields supyex, (s,,5,) Tn(k, o) — 0) and let

= 3 f n k’ * k, _) .
In ae[a'o,lol:i],kelcnr ( U)/Tn( U) o0

Then v (F™(Ky,00,01)) = 0. Moreover, one can take an adaptive test procedure
of the following form. Set

G, = max (log n, log(p;l(n‘s"))).

Letmy=21=1,2,..., and a,; = c; }/22-U=1)/Gn yhere

C, = i 2—2(1—1)/Gn — (1 _ 2—2/G’n)—1 = G'rn
=1

that s, we take a,; in order to obtain

Qnyg < G P27 (NG N2 =1 (16)
=1
Consider the statistics -
t, = Zan,ltm,,na (17)
=1

where t,,, are the statistics defined by (9). Set Yn,r = 1i,>r. Then there exist
T =T, — oo such that

You(F™ (K0 (81, 02), 00, 01), Y1) — 0.
Remark 3.1 Under the assumption (15) we get
log(r;,(k, o))" < (log o, (k) < G- (18)
Therefore, uniformly over k € K,,(61,02), o € (09,01), one has
ri(k, o) < (e*nk~2@G,)7/o+1)

Next, let us consider the case of "small" k. Namely, let the sets KC,, = K,,(d1, d2)
correspond to 0 < §; < 2 < 1/2. Introduce adaptive rates

rito) = {
these rates are asymptotically the same as

rr(o) ~ max (64 log(nloge 1))/t ¢, /log n)

(e*log(nloge™1))7/(e+1) if 2(logn)? 1 < 1

e+/logn, if e2(logn)? ™ > 1’ (19)



Theorem 5 Assume
sup 7(o) — 0.
o€[oo,01]
Then there exist 0 < ¢y < ¢; < 00 such that:
(1) Let k,n=% = O(1) for some 0 < § < 1/2. Set
gn = SUp Tn(kn,0)/r(0).

o€lo0,01]

If limsup,, o g7 < co, then v, (F} (00,01)) — 1.
(2) Let
g, = inf Ta(k,0)/T(0), lim inf g, >c. (20)

o€[00,01],k€EKR

Then ~,(F™(K,, 00,01)) — 0. Moreover, one can use an adaptive test procedure of
the following form. Taking a constant C > 0, set

L, = 2log, C +logylogn, m;=2', 1=1,2,...,

Tnl:

I

{022—’/2 logn, if 1<1<L,,

Cy/log(nl),  if 1> Ly,.

Let the set X, c be defined by the relation sup;s, t7" /Ty > 1, where 17 are the
statistics defined by (10). Introduce the tests Ync = 1x, . Then there exist con-
stants C > 1, ¢; > 0 such that under (20) one has v,(F"(Ky,00,01),%nc) — 0.

Note that if
loglogn = o(loge™), logloge™ = O(logn), (21)

then adaptive rates (19) are of the same order that nonadaptive rates in (10).
Therefore, under the assumptions (21) the test procedure from Theorem 5 provides
(up to a constant factor in the rates) the best distinguishability for all o > 0.

4 Proofs of Theorems 1, 2

The proofs are based on combinations of the methods developed in [2], [4], [6].

4.1 Lower bounds

First, let us consider Theorem 2, the case £2(logn)?°*! > 1 and r} = ey/logn — 0.
Let us take o-smooth function ¢(t) supported on (0,1), ||@|ls = 1 and let f;(t) =
rad(t), 1 =1,...,n, r, < corx. Clearly, fi(t) € F(r,, o), and the lower bounds
for the problem follows from Corollary 1. Therefore below we consider the lower
bounds of Theorem 2 for the case

e2(logn)®**t <1, rk = (e'log n)”/(1+4”). (22)



_ Let us pass to finite-dimensional problems. Let us take orthonormal collections
®m = Pm1;--->Pmm in Ly(0,1) which have disjoint support. Namely, by taking
regular enough function

¢(t), teRY ollz=1, ¢()=0, t¢(0,1),

we set @mj; = /mo(mt —j+1), j=1,...,m. We consider the functions of the
form .
ft,0)=¢) 0;¢n;t), 0= (61,...,0n) € R™ (23)
j=1

It is easily seen (compare with [2], Sect. 4.2) that the relation f(-,0) € F(r,,o)
follows from the relation 8 € ©,, ,,, where the set O, n, = Oy m(rn, o) is determined
by the inequalities

m1/2—1/p|0|p > clrn/e, ma+1/2—1/f1|0|q < c2/5; (24)

here |6], = (X7, |6;]°)"/%, ¢1 = ||¢]|,* and ¢z > 0 depend on ¢ and on the norms
of derivatives of ¢.
Analogously to (3), let us consider random variables

1
x,-,-:a—lf bmidXi, i=1,....m, j=1,...,m. (25)
0

Note that these variables are independent Gaussian with the unit variances and
with the means &0;; = e (& fi, dm,;), where & fi is a signal in sth channel. For the
functions f;(t) = f(t,0;), i =1,...,n of the form (23) the model (1) is equivalent
to the mn-dimensional Gaussian model for the observations

X=(X1,...,X,) € R"™, X;=(Tir,-..,Tim) € R™

of the form (25) with the Gaussian measure P, on R™™ with the mean vector 0
and unit covariation matrix. Recall that the likelihood ratio is of the form

dPy/dPy = exp(—|0]?/2 + (6, %)).

Therefore it suffices to obtain the lower bounds for the hypothesis testing prob-

lem
Hy: 8 =0 against H : 8 € O (26)

n,m,k?

where the sets O, C R"™ are defined analogously to (2),
ez,m,k = {é = (5101, cee ,gnen); 0, € (_)n,m; g'i € {0’ 1}1 Zgl = k} (27)
i=1

Let ©} . ;. be the set defined analogously to (27) but the equality >7_; & = k is
replaced to the inequality Y7 , & > k.

Proposition 1 y(©} ;) = ¥(O} ;. ¢+ )-

10



Proof of Proposition is based on the symmetry and the convexity of admissible
set of the minimax test for the problem (26) and on the Anderson lemma. We omit
details here.

It follows from [2] that on order to prove the lower bounds of Theorem 1, it
suffices choose a sequence m = m, and to construct a sequence of probability
measures (priors) 7™ on the space R™™ such that

E()(dP,rn/dP()—l)2:O(].), if 7'":0(7'*),

n

™ (Gn,m,k—F) - 1’ {Eo(dp-,r"/dPO — 1)2 = 0(1), if Tn = O(T*)' (28)

n

Here
Prn(A) = [ Po(A)7"(dB)

is the mixture of the Gaussian measures Py on R"™.
For Theorem 2 we need to change the second relation in (28) into the following

Eo(dPpn/dPy — 1)* = o(1) if limsupr,/r < co (29)

Let us take the prior 7™ in the form

W"(dé) = H llfm,h,z(doi); MHm bz = (1 - h)é(_) + hﬂ—m,za (30)
i=1
Tm(d0) = [[ .(d9;), 7, = (6 +6..)/2, (31)
Jj=1

where 5 is the mass at the point 0 € R™ and 4§, is the mass at the point z € R!.
The prior (30) corresponds to the random vector

6 = (€101, ..., &:0,), 0;=(z ilyy ooy Zﬁim,),
where the random vectors {¢;}, {&;;} and their components are independent,
P =1)=h, P(=0)=1-h; P(&=1)=P(;=-1)=1/2
Clearly |6;], = zm!/?, |6;|, = zm'/%, and in order to satisfy (24) it suffices
e2m2® > 22, 2m't?72 < . (32)

One can take an integer-valued sequences m = m,, and a positive sequence z = z,
such that (32) hold. These yield the measure 7, , is concentrated on the set ©,, ,,
i.e., Tm - (Onm) =1, and

—1/o

m=<r;7, g < eyt (33)

It follows from (33) that
mzt < g iritile, (34)

11



Under the assumptions of the theorems we have r, — 0 which yields m,, = oco. Un-
der the assumptions of Theorem 1 we have d,, = nk;;2 = O(1), ¢, = (r,/r:)*/7 =
O(1). By (34) these yield

mz* < dyc, = O(1), 2z, — 0. (35)

Under the assumptions of Theorem 2 it suffices to assume ¢, <1, § > 0, k, — oo.
For Theorem 2 also we have

2y X (sz(log n)2”+1)1/(sa+2) =0(1)
by the assumption (22). Using (34) we see that
mz* < ¢, logn — oo. (36)

To take the quantities h,, in (30) for Theorems 1, 2, given a positive sequence
7. — 0 such that n2k, — oo, we set

h = h, = min{1, k,(1 + n,)/n}. (37)
Since the integers &3, .. .,&, are i.i.d. Bernoulli random variables, we have
T (OF mknt) Z & > kn) (38)

In fact, if h, = 1, then the relation (38) is evident. If h, < 1, then it easily follows
from the Chebyshev inequality that

n

P(Y & <ky) = P(nh, — Y & > muk,) < nha/n2k2 ~ (n2ka)™" — 0.
=1

i=1

To complicate the proof it suffices to obtain the second relations in (28) or (29).
Using some simple calculations and the inequality 1 4+ x < e”, we have

Eo(dP,,,. [dPy = 1)? = Ey(dPy,,. [dPy): — 1 = (Bo(dPr. [dR)?)" =1 =
(1 + 2sinh?(22/2))™ — 1 < exp (2msinh?(2%/2)) — 1;
dP,,.,./dPy =1+ h(dPy,  /dP)— 1);

Tm,z

here we use the same notation P, for the standard Gaussian measure on the spaces
R"™ R™, R! and E, stands for expectation with respect to this measure. Using
these relations analogously to the above, we get

Ey(dPrn /dPy — 1)? = Eg(dPpr /dPy)? — 1 = (Ey(dP,,, . /dP)?)" — 1 =
(1+ Eo(dP,,,./dPy —1)?)" — 1= (1+ h?Eo(dPy,, . /dP — 1)?)" =1 <
(1+ A2(exp (2msinh?(22/2)) - 1))" —1 <
exp (nhz(exp (2msinh?(22/2)) — 1)) —1=-exp(u?) — 1, (39)

12



where we set
u? = nh?(exp (2msinh?(2%/2)) — 1).

Under the assumptions of Theorem 1 we have mz* =< d,c, = O(1). Since
z = 0, m — oo, using the asymptotics sinh?(22/2) =< z* and e® — 1 < z for
z = O(1), we get u2 < d_ 'mz* < c,, and the second relations (28) follows from
(35), (39).

Let us turn to Theorem 2 where nh? ~ n~1k2 = O(n?!) — 0. It suffices to
verify that if r,/r} is small enough (it is the same that ¢, is small enough), then
u, — 0. Since z = O(1) and 2sinh?(22/2) < 2*, we have, for some B; > 0, By >
0, B3 >0,

u? < n k2 exp(Bimz*) < Bsn® ! exp(Bac, logn) = Bn? 1B

if Bylimsupe, <1—24. O

4.2 Upper bounds

First, let us consider the distributions of statistics (8) and (9).

Under the null-hypothesis the statistics z;;, are i.i.d. standard Gaussian
N(0,1), the statistics y;; = (2%, — 1)/v2 are iid. and Eoy; = 0, Eo? =
1, Eyy;; = 15. Therefore,

EOXm,i = EOtm,n =0, E0X2m,i = Eotgn,n =1,

these statistics are asymptotically standard Gaussian N(0,1), as m — oo or mn —

o0. Moreover, observe the large deviation inequality for the statistics of the form
(8) and (9).

Lemma 4.1 Let ny,...,Nn be i.i.d. standard Gaussian random variables and
Xm = (2m)™2 Y (n? —1).
i=1

Then there ezist functions by = bx(a) > 0, k = 1,2, which are continuous in a > 0
and such that

exp(—by(a)T?), if 0<T?<am,

Pl >T) < { G, o 155 am

Moreover, bi(a) = 1/2 as a — 0, and by(a) — 272 as a — co.

Proof. For n ~ N(0,1) set y = n*> — 1. Simple calculation yields
Eexp(by) = e7®(1 —2b)"Y2,  for 2b < 1,
which implies the equality

Eexp(bxm) =€ (1 —b/d)"*, for b<d=(m/2)">

13



Using this relation and the Markov inequality, for any 0 < b < d, T > 0, we get,

P(Xm > T) < P(exp(bxm) > exp(T'b)) < exp(—Tb)E exp(bxm) =
exp(=U(b,T)); Ub,T) =b(d+T)+ d?log(l —b/d).

By maximizing the concave function U(b,T) over b, we obtain the inequality
P(xm >T) < exp(—L(d,T)); L(d,T)=Td+ d?log(d/(T + d)). (40)

Setting ¢ = T/d, note that if T?> < am or T? > am, then t? < 2a, > > 2a
respectively. We can write

L(d,T) = Td — d?log(1 + T/d) = T?p:(t) = Tdys(t),
where
o1(t) =t72(t —log(1+1)), 2(t) =1—1t""log(1l+1t)).
We have
o1(t) ~1/2, as t—0; bi(a)= inf o(t) >0,
t€(0,(2a)1/2]

~ . = _1/2 1
wa(t) ~ 1, as t — 00; by(a) =2 te[(zi?l%’oo) wa(t) > 0.

These yield the statement of Lemma. O

Corollary 2 There ezists a function b(a) > 0 which is continuous in a > 0 and
such that

exp(=b(a)T?),  if T < am,
Folxmi > T) < {exp(—b(a)T\/m)a if T* > am,

exp(—b(a)T?), if T? < anm,
Po(tmn >T) < {exp(_b(a)gpm), if T? > anm.

Under the alternative f = (&1 f1,.-.,&fa) the statistics z;;, are independent
and Gaussian N (Vjjm, 1), with

vym = € ps(F), () =m'2 [ et

Om,j

the statistics y;; = (22, — 1)/v/2 are independent and
Ef(yij) = v2m/V2, Var, j(y;) = 1+ 20,,.

Since Xm,i = m~1/2 251 Yij, We get

Ef(Xm) = (2m)™? Y03, = &l Pro(f:)|3/€°V2m, (41)
i=1
Var,, j(Xm,i) = 1+ (2/m) i vfjm =1+ 0(Ef(Xm;:)), asm — oo. (42)
i=1

14



Here Pr,,(f) is the projection of the function f into m-dimensional space which
consists of the step functions corresponding to the partition of the interval (0, 1]
into m subintervals 4y, ;:

Pro(f) =m'2 Y pi(Nlsn;; 1Prm(HIE = D 03(F)-
j=1 j=1
Analogously,
Ei(tmn) = s_2(2mn)_1/2 i E|Pro(£)I3, Var(tmn) =1+ o(Eftmmn). (43)

i=1

To prove the upper bounds of Theorems it suffices to consider the case ¢ = p,
since ¢ > p and the case p = g corresponds to the “widest” alternative.

Note the inequality (see [2], the relation (5.16)) which is of importance for
below: there exist constants C; > 0, C5 > 0 such that for all f € Lo, ||fllop <1
one has

1Praf)llp > Cull fllp — Cam . (44)

Let us turn to Theorem 1. It suffices to show that for all @ € (0,1) one can
take a nonrandom sequence 7T}, , such that

Py(tmm > Tha) <a+o0(1), sup Pi(tmn < Tna) = o(1). (45)
feFk

In fact, if (45) holds true for all & € (0, 1), then one can take a sequence & = o, — 0
such that (45) holds true as well. Then one can take T, = T}, 4.

Let us take T, , = T,, this yields T,, = T, ,, — oo for any o, — 0. Then
the first relation follows from asymptotic normality of the statistics ¢, under the
null-hypothesis. To obtain the second relation in (45) it suffices to verify that

inf Ef(tmn) — 0o. 46
Jnf, Bf(tmn) = 00 (46)

In fact, using the Chebyshev inequality and the second relation in (43), we get

Pltman < To) = Py(E () — b > Eyltma) = To) <
Vari(tmn)/(Ef(tmn) — Ta)? = 0, as Ef(tmn) — 00. (47)

By the first relation (43), relation (46) is equivalent to

e2(2mn) ™ inf 376 Pra(f)|lf — oo (48)
c k

w i=1
Using inequality (44) and by m 7 < r} = o(r,), p < 2, we get

|Prm(f)ll2 > |Prm(f)|lp > Cirn(1 4+ 0(1)) uniformly over f € F,. (49)
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By the definition of set F* this yields

inf Y&l Pra(R)I > Clkri(1+ o(1)).
€l =1

The last relation yields (48) because
kr2 [e2/nm < (1, /15)? — oo.

Let us turn to Theorem 2. Take C' > 1/b, C' > 1, where b = b(1) > 0 is from
Corollary 2. By the choice T, m we have T2 = Clogn < m. Therefore Corollary
2 yields

An(Yn,c) = Po(max Xmi > T) < nexp(=bT?) = n'* — 0.

Let us verify the relation

;;1})}6 Pf(f?%’% Xmi <T) — 0.

Let f € F¥. To specify, suppose that the first channel contains a signal f € Fy,,
i.e., & = 1. Then, analogously to above, we have

Pf(maxlgign Xmi < T) < Pf(Xm,1 <T)=
Pf(Ef(Xm,l) — Xm,1 > Ef(Xm,l) - T) < Va‘rf(Xm,l)/(Ef(Xm,l) - T)2 (50)

Taking into account relation (42) it suffices to verify that

liminf sup Ef(Xma1)/T > 1. (51)
ferk

First, let us consider the case

e2(logn)> ™ <1, r* = (etlogn)”/! 1) > 5\/@. (52)
Since m~? < r¥, analogously to above using (44), uniformly over f € F*, we have
[Prm(f)ll2 = [|Prm(f)llp = Cirn — Carp > Csrn (53)
where C3 = C; — Cy/c¢; > 0 for large enough ¢;. Under (52) we have
(elogn) /) > 1ogn,
Therefore m < C(r%)~'/? 4+ 1 and using relations (41) and (53) we get
Ef(Xma)/T > Cir2/e*\/2Cmlogn > Cy(r,/ri)?(1 + o(1)) > C5 > 1 (54)
for large enough c;; here Cy = C2/+/2C, Cs = Cyc2.
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Next, let

e2(logn)**! > 1, r* =¢y/logn > (e*logn)”/ ). (55)
Under (55) we have
(e'logn) /) < logn.

This yields C'logn < m < C'logn + 1. Setting Cs = C 7, we have

m™° < (Clogn)™® < Cee/logn = Cery,

which yields (53) with C3 = C1 — CsCy /e1 > 0 for large enough ¢;. Analogously to
(54), uniformly over f € F¥ we get

Ef(Xm,1)/T > C3r2/e*\/2Cmlogn > Cy(ra/r%)*(1 4 0(1)) > Cs > 1. 0

5 Proof of Theorems 3 - 5

5.1 Lower bounds

Fix oy > 0 and take oy-regular orthonormal wavelet basis v;;, [ > lp > 0, j € J,
where
Jo={1,...,k}, J={1,...,2%, for I>1,

such that, for any fo = 3751, > jes, @1%5 and any 0 < 0 < 09, 1 < h,q < 00, one
has the inequality

Bo|Blsqn < [ follogp < B1[Olsqn, s=0+1/2—1/q, (56)

where @ = {0;;, | > lo, 5 € Ji}, || - |lo,q,n is Besov norm in the functional space
L5(0,1), and | - |sqn is Besov norm in the sequence space: if 1 < h, g < oo, then

k h/ AN
Bl = (S 100)"" + 3 2 ( S l0)™) (57)
j=1 1>l J

with the natural extension for h,q = oo, (see [1]) where By, B; are positive con-
stants. Recall the relations between Sobolev and Besov norms:

B2||f||0,q,oo < ||f| o < B3||f
For | > Iy we denote m; =2', J = {(j1) : 1 > 1, j € J;}. Set

l?7 = {ejla (]l) € \7’ Z 0]21 < OO},
(e

|a',q,1; By > 0, B3 > 0. (58)

and let .
Ll = {f(t, 01) = 82 ijjl(t), 01 € le}

i=1
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be the linear subspace of dimension m; generated by the [th resolution. It follows
from (56), (58) that, for any f(-, ;) € L;, one has

Coem 7190y, < |1 £ (-1 01)||og < Cremf ™27 6y,;
Coemy* 104, < [|£ (-, 8)lp < Cremy* V716,

Therefore, the relation 8; € Oy, ,,(,, o) is sufficient for the function f(-,6;) € L,
belongs to the set F'(ry,o); here the set ©,, m, (rn, o) is determined by the constraint
analogous to (24),

my >V \0y, > corafe, miTPTV6,, < cqfe, (59)

with some different positive constants c3, ¢s. Analogously to Section 4, we can pass
to random variables and parameters

Tijg=e " /01 V() dX;(t)

which are independent in %, 5,/ and are Gaussian N(0;;1,1) with 0;;; = 7 (f;, i)
Setting

0:1= (Oirty - - -y Oimat); 01 = (101, ..., &Ony), & € {0,1}, 0={6;, | > I},
we can identify the vectors 6;;, 6;, 6 with the sequences either in % or in (1%)"
or in (I2)". Analogously to (27), introduce the sets

n

z,mhk(rnaa) = {él : e'i,l € ®n,ml (’I"n,O'); Zgz = k} C (1‘27)", (60)

i=1
enk Tny, O U enmlk Tn, 0 )" (61)
>l
Set analogously (12)
02y 0) = | O 4(ra(k), o), (62
ke,
05 (ko0,01) = J  O74(ra(k), 0),, (63)
o€[o0,01]

where the set K, = K, (1, 02) is defined by (11). It follows from the constructions,
that f(-,0) = (& f(-,01),...,&f(-,0,)) € F"(K,,0) when 8 € ©7(K,,0) analogous
relations hold true for the sets OF(k; 0g,01) and F7(oy, 01).

5.1.1 Lower bounds for Theorem 3

Let us consider hypothesis testing problem analogous to (26): using the observation
% = {zii; (§l) € J, i = 1,...,n} which correspond to the Gaussian measure
P, 0 € (I2)" to test

Hy: =0 against H;: 0 € O%(K,,0)
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To obtain the lower bounds of Theorem it suffices to verify that
YO8 (Kp,0)) — 1.

Let O . i (rn(k),0) be the set defined analogously to (60), but the equal-
ity >;& = k is changed to the inequality Y ;& > k, and the sets
O k1 (Tn,0), O4,(Ky,0) are defined analogously to (61), (62) with the change
of the sets O, . +(mn,0) to O 1, (rm,0). Analogously to Proposition 1 we have

(€7 (Kn; 0)) = 7(07,4.(Kn, 0)).

It suffices to consider the case r,(k) = cr(k) for small enough ¢ € (0,1). Let
us take a collection

m=2,1=L L+1,...,L+M, L =00, M — oo, (64)

and corresponding collections k;, z; such that k; are integers, n’ < k < byn’%
where § € (01,02), § < 83 < 0y is the parameter form Theorem, and the relations
analogous to (33)—(35) are fulfilled uniformly on I,

my ~ dy(ra(k1)) V7 = 00, 21 ~ dye ™ (rn (k1)) Y, (65)
mizp ~ Dg*‘*(rn(kl))“l/” ~ ¢y Dnk; ?loglogn — 0; (66)

the last relation holds since § > 1/2, and nk, 2 = O(n'~?®) = o(loglogn), where
d; > 0,ds > 0 are constants such that inequalities (59) holds for r, = r,(k;), | =
L+1,...,L+M;c; =c**'/% and D = D(d,,ds, o) does not depends on c, I, n.
Relations (65), (66) yield z; — 0 uniformly on I. Under assumptions of Theorem 3
we can take L and M in such way that

L~ logy(r; () fo > 00, M ~ 20

m 10g2 nx 10g2 n.

For each ¢, let us construct the collections of product priors 7, ,,(d6;;) according
to (31) with m = my, z = 2 which are concentrated on the set O, m, (r(ki), o),
and set .
7 (d8r) = [T (1 = Ant)d0 + o gy, (40:7)),
i=1

where h,; ~ k;/n are taken according to (37). Analogously to (38), we have

7' (O gty (T (k) 0)) = 1. (67)
At last, set
m™(d0) = M~ Y wp(d6,).
I=L+1
It follows from (67) that
(01, (K, 0)) — 1, (68)
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and to obtain the lower bounds of Theorem it suffices to control that the relation
analogous to (29) holds true. Since the priors 7", [ = L+1,..., L+ M correspond
to different resolutions, the likelihood ratios dFPr» /dPy are independent statistics
and, analogously to (39), we get

dPﬂ-n 2 _9 LiM dPﬂ-l" 2
_ — _ <
Eo(dpo 1) =M ,:;H(dPo 1) <
L+M
M= 3 (exp (nh,(exp(2m;sinh®(]/2)) — 1)) — 1) =
I=L+1
L+M
M2 Z (exp(uiyl)—l); uiyl:nhiyl(exp(2mlsinhz(zlz/2))—1).
I=L+1

To obtain (29) it suffices to verify that

- 2
limsup 1B u,,/log M < 1. (69)

It was noted above that z; — 0. Jointly with (66), this yields

mysinh?(27/2) ~ myz} /4 — 0; ug ; ~ nhl mz /2 ~ c;D(loglogn) /2 (70)
and since log M ~ loglogn, these yield that one can take r,(k) = cr* (k) with small
enough ¢ > 0 such that (69) is fulfilled. O
5.1.2 Lower bounds for Theorem 4

Let the wavelet basis be o*-regular with ¢* > o;. Assume without loss of generality
that k, = n’, 1/2 < 6, <6, <y <1, and

Tn(kn,0) = g 77 (kn,0), g =0(1), log(gl)™" = o(log(wn(kn)™").

Analogously to Section 5.1.1 it suffices to obtain the lower bounds in the hypothesis
testing problem

Hy: 0 =0 against H;: 0 € 0" (k,,00,01).
Introduce the sets O (kn, 00, 01) and note, analogously to Proposition 1, that

7(05(kn, 90, 01)) = 7(Or1.(kn, 00, 01))-

Denote
Gn= sup (rn(kn,0)/r}(kn, o))"/, (71)

o€[oo,01]

clearly G,, = O(1) by g/ = O(1) and G,, — 0 iff g7 — 0.
Take the collections m; of the form (64) and corresponding collections o; €
(00,01), 21>0, l=L+1,..., M such that

my ~ dy(rn(kn, 00)) Y7 — 00, 2 ~ doe” (1 (kn, 1)), (72)
mizt < e A (rp(kn, 1)) = O(Gpnk, 2 log w, ' (k,)) = O(Gpd,) — 0, (73)
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where d; > 0,d2 > 0 are constants such that inequalities (59) holds for r, =
Tn(kn,01), | = L+1,...,L + M. These yield that the priors my, , of the form
(31) are concentrated on the sets ©y, m,(7n, 07). Under assumptions of Theorem 4
we can take

L > o7 logy(r, H(kn, 1)) + O(1) — o0,

4(01 — 00) logy(wy, ' (kn)) - . _
M ~ (dog + (4o, + 1) logw; ! (kn); max z = o(1), (74)

where the last relation in (74) follows from (72), (73). Set

M n
TM = ]\471 Z Tmy,z;s BMp = (1—h)5()+hﬂ'M; Tr?ﬁ(de) - H ’u’M’h(doi)’ (75)

I=L+1 i=1

where h = h,, ~ k,/n is taking according to (37).
Analogously to (38), (39) we get, 73(05, (kn,00,01)) =1,

Eo(dPyy, /APy —1)" < exp (nh?Ey(dPy,, /dPy —1)°) — 1, (76)

and it suffices to verify that

nh2Ey(dP,, /dPy —1)° = {00((11)) ” g: - 00((11)) . (77)
We get
Eo(dPyy /dPy —1) = M~ % Eo(dPy,,,,/dPy — 1)’ <
M2 _Z (exp (2ml sinhz(zlz/2)) — 1) M2 Z (exp 1), (78)

where u2 ; = 2m;sinh®(27/2). 1t follows from (73), (74) that, for some B > 0,

2
exp(u;) — 1~ ul; ~mz' /2 —0; EO(dP,rM/dPO - 1) <

n,

M
2 0(1)) < BM'nk2logw;(k,)Gn < BG,M™'d,.
=L+

Since d,, = nk,, % logw, ' (k,), nh®> ~ n 'k2, it follows from (74) and the last relation
that
nh*Ey(dPy,, /dPy —1)° < BGun kM 'du(1 + o(1)) < G,

which yields (77). O

21



5.1.3 Lower bounds for Theorem 5

It suffices to assume r,(k,, o) = cri(o) for small enough ¢ € (0,1). First, let there
exist o € (09, 01) such that €2(logn)?**! > 1, ie., r%(0) ~ ey/logn — 0. Since
Fp = Ff (rn(kn,0),0) C F{ (09, 01), the lower bounds of Theorem 5 follow from
Theorem 2 in this case. Therefore below we assume

e2(logn)?*1 <1, 7i(0) = (e*log(nloge 1))7/(o+1), (79)

We repeat the constructions of Section 5.1.2. We take the collections m; of the
form (64) and corresponding collections o; € (09, 01), 2z such that (72) holds and
relation (73) is changed by

mz) < e *(rn(kn, al))4+1/"’ ~ Cylog(nloge ') — oo, max z; = 0(1), (80)

where C; = ¢**1/t < ¢*, and the last relation follows from relation (79). Also
under (79) we have

2loge™" > (201 + 1+ o(1)) loglog(nloge™) > loglog(nloge™),

which yields
M ~ B(4loge™' — loglogn(loge™)) < loge™.

Taking priors (75), we repeat estimations (76), (78). However it follows from (74),
(80) that, for some B > 0,

2
exp(ul ) — 1 < ul; < mz — o0; Ey (dPﬂM/dPo - 1) <

M
Z exp(ul ;) < M~"exp (Bc4 log(n loga_l)) = M Y(nloge™)B,
=L+

and to obtain the relation E, (dP,rnM /dPy — 1) — 0 it suffices
n tk2M (nloge )P — 0.

Since n7'k2 = O(n**"1), § < 1/2, the last relation holds for Be* <1 —26. O

5.2 Upper bounds

Recall that to prove the upper bounds of Theorems we can assume p = ¢ which
corresponds to the widest alternative.

5.2.1 Upper bounds for Theorem 3

We need to verify the following relations: for every ¢ > 2,

Oln('(/)n,c) = PO(L+1ISI}2}I(/+M by n > y/clog M) — 0, (81)
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and there exists ¢; > 0 such that if r,(k)/r*(k) > ¢;, then

Brn(¥ne) =  sup Pf(L+12aX tmyn < y/clog M) — 0. (82)

FEF™(Kn,0) sL+M

By the choose m;, M, we have log M ~ loglogn = o(m;n), and using Lemma
4.1 for all ¢ > 2 we have (81), since

L+M

0 (Yne) < > Poltmyn > y/elog M) = O(MF—0eM)/2) g,

I=L+1

Let f = (&ifi,...,6nfn) € F*(kn,0), kn € K,. Clearly,

Pf(L+1I§r}2)IS+M tmyn < yfclogM) < L+12§IE+M Pi(tm, < y/clogM).

Using relation (43) and estimation analogous to (47) we see that relation (82)
follows from the inequality (compare with (48)): for all k,, € K,,, large enough n
and some B > 1 one has

e? max (2mn) Y? inf Y &|Prm,(fi)||3 > y/Bclog M. (83)

L+1§l§)IS+M feF™ (kn,0) ;5
To verify (83), let us take the integer [, L+ 1 <1 < L+ M such that
my_y = 270 < (r (k)T < my = 2, (84)

(this is possible under the choice L and M in Theorem). It follows from (44) that
one can take ¢; in relation 7, (k,) > ¢17(kn), and d > 0 in such way that, uniformly
over f € F,,,

1P7m, (F)ll2 = 1 Prm, (Fllp > dra(kn),
compare with (49); the set F,, is defined by (6) with r, = r,(k,). Therefore,

n

inf &l P, (fi)ll5 = knd®rr (kn),
1

fan(kTHG-) 1=

and the left-hand side of (83) is not smaller than d2e~2(2myn)~'/2k,r2(k,). By the
choice 7} (k) and m;, this quantity is not smaller than (dec;)?y/loglogn/2 which
yields (83) for (dc;)* > 4Bc. 0.

5.2.2 Upper bounds for Theorem 4
It suffices to show that, for any « € (0,1), one can take H, such that

Py(t, > Ha) < o sup  Pf(t, < Ha) = o(1), (85)
fan()C"700adl)

where the statistics ¢, are defined by (16), (17), (9).
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To evaluate the first relation in (85), note that Fyt, = 0. Let us evaluate the
variance of the statistics ¢,, in Py-probability. We have

oo
2 .
Vargl, = Y ay Varotnm, +2 Y GnkGnm CoVolnmytnm;
=1 1<k<I<oo

n

—1 .

Vargtnm, =n ZVaroxml,,- =1;
i=1

n
COVOtn,mktn,ml = nil Z COVOka,iXml,i-
i=1
Since the items in the last sum do not depend on %, omitting index ¢, we have, for
mr=2F m=21<k<lI,

2k 9l
COVoXmy Xmy = 2~ UTH)/21 Z Z Covoazgmk :cfml

s=1t=1

ok
S2 Y S Covalad,

s=1 t: Jml,tclsmk,s

the last equality holds since items z,n,, and z,, are independent, if the interval
Om,,s does not contain the interval 4y, ;. Since #{t : Omt C Om, s} = 27, by
making a renumbering, we have the equality

2l—k

k—1)/2
Lo, = 207V > Loy,
y=1

Since the items ., are i.i.d. standard Gaussian, we have the equality
2l7k 9
Covoz2, T, = 2°'Covy (( > :cA,ml) :cfml) = gk-i+1,
r=1
Since 3% a2; = 1 and 32 @nklnprs < 1 for all s > 1, these yield the equality

CovoXm Xm; = 2(k=0/2 and the inequality

Vart, = Z aflyl +2 Z 2(k_l)/2an7kanyl =142 Z 9-8/2 Z U kOnjts < C
=1 1<k<I<0 s=1 k=1

with C = 3 + 2v/2. Therefore, setting H, = {/C/a and using the Chebyshev
inequality, we obtain the first relation in (85)

Py(tn > Ha) < Vargt,/Hy < C/H; = a.
To verify the second relation in (85), let us evaluate means and variances of

the statistics ¢, in Pp-probability, f, = (&1f1,-..,&1/1). Using the notations from
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Section 4.2 and the relations (41), (42), we get

Bt =13 03 s = 1 1/22amzzz gy

i—=1s=1
=g 2p 12 Z & Z a2~V Pr, £ill?; VariXm,: =1+ 27| Pry, fil2-
-1 =1

By repeating the scheme of calculations above, we get

=1 =1 1<k<I<00

Varftn =n! Z (Z ai’lVarfxmm- + 2 Z an,kan,mlCov]szk,ixm“i) ;

2k
—(l+k)/2—-1 2
COVmek,iXml,i =2 (+ )/ Z Z Covfmzsmkxztml

s=1 t:5ml,tC5mk s

(we suppose k < [ in the last relation). For ¢ such that 0, ¢ C 6m, s, we have the
equality

ol—k

Tismy = 2(k—l)/2 Z(vitml + nt)a Titm; = Vitmy, +
v=1

in Pj-probability, where 7, ~ N(0,1) are i.i.d. This yields

ol—k

Cov fmlsmk x12tml — o(k= l)/2Cov— (( Z Vitm, + nt) (v,—tm, + nt) 2)

y=1
_ ok-ly; 7( _ 2 k-4l
- arf( Vitm, + nt) =2 (1+ 2Uztm,)

Therefore,

2l
COV FXmp iXomn i = o(k=1)/2 (1 4o Z Uiztml) — 9(k-1)/2 (1 + 22| Prya, fi||2)-

t=1

Using these relations we get

Vargt, =n"'y (E ai,z(l + 2_l+1§i€_2||P7“mlfi||2)

i=1  1=1
+2 > anplnm 252 ((1+ 27 e 72| P, £il) )
1<k<I<0o0
= Vargt, +n le 2 Z& Z An 2 B Pro, fil|2 (anl +2 Z an, k)
i=1 =1

which yields, uniformly over f, Varst, < C + o(Eft,).
It follows from evaluations above and from the Chebyshev inequality, that, to
obtain the second relation (85), it suffices to verify the relation

inf Eft, =€ *n'/? inf i) an 2 Y2 Pry, fi]]2 — oo
feF™(Kn,00,01) f FEFn(Kn,00,01) ;g ; ! ” lf”
(86)
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Let us consider sequences o, € (09,01), kn € Ky and fr, = (&1finy---:E1f1n) €
F™(Ky,09,01) such that

[ finllp > rn(kn,0n), [finllowg <1, i=1,...,m; Y & = ko > bin®™, 6 > 1/2,
i=1

and 7, (kn, 0,) /7% (kn, 0n) > g, — o0o. Let us take an integer [ = [,, such that (84)
holds for o = o, 7 (kn) = 7}, (kn, 0n). Using (16), (18) we have

ln < 10g(r5(kny 00)) ™! X Gy any, < G2
Using (44), for any d € (0,1) and large enough n one has
1Prm, (fin)llz 2 1Prm (fin)llp = dra(kn, 00); i=1,...,n

(compare with (49)). Using these relations and Remark 3.1 we get, as g, — oo,

6727171/2 Z & Z an,l27(l+1)/2||PT'mz fi,n
i=1 =1

> de_zn_l/zknan,ln2_(1"“)/27",21(kn, on) X (rnkn,on) /7 (kn, an))2 — 00,

|2

uniformly over f € F™(K,, 0q,01). These yield (86). O

5.2.3 Upper bounds for Theorem 5

By construction of T,,; we have
T2, >m forl<L,, T2, <m(l+o(1)) forl> L.

Take constants C > 1/2 such that A = C?b > 1, where b = b(1) is from Corollary
2. Using Corollary 2 we get, for some A; € (1, A) and large enough n,

o n

an(Pn,c) < Z Z Po(Xmyi > Thy)

=1 1i=1
<n Y exp(—Alogn)+n > exp(—A;log(nl))

1<I< Ly Ln<l

< Lon'™ 4+ nl™4 3 74 0,
Ln<l

Let us consider sequences o, € (09,01), kn € Ky, and fr, = (&1fin,---,E1f1n) €
F™(K,,09,01) such that

n

lp > Talkn,00),  finllone <1, t=1,...,m; > &=kn>1,
=1

||fz,n

and 7, (kn,0,)/75(0n) > g, > ci1. Next evaluations are uniform over k,,o,. To
simplify, suppose that the first cannel contains a signal, i.e., &, = 1. Clearly,

/Bn(d)n,Ca f) S Pf(sup Xml,l > Tn,l) S ll'lf Pf_(Xml,l > Tn,l)-
I>L I>L
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Using the relation (43) and estimation analogous to (50), we see that it suffices to
verify the inequality: for large enough n and some B > 1, one has

e max(2my) T | Pro, (F)I; > B, (87)

compare with (48), (51). Let us take an integer [ = [, such that
my, 1 =271 < (rh(0n)) TV <my, = 2™,
compare with (84). Using (44) one can take d > 0 such that

1PTm,, (f)ll2 2 [|PPmy, (F1)llp = dra(Kn, on) (88)

for large enough n, compare with (49).
First, suppose

r*(0,) = ey/logn, €*(logn)®*»*! > 1. (89)
It follows from (89) that
logn > (rX(0,)) Y > my/2 (90)

which yields I, < L,, Ty, = szl—l/Z logn. Since e %(r (kn, 0n))? = logn, using
(88) we get

e~ (2m, ) P 1P, (F)113
> d2e2(r} (kn, 0n))2(log n) 7127 Y2 (rp(kn, 0n) /75 (kny 00)C)? > (dey /C)?27Y/2,

which yields (87) for (dc;)? > C2B27'/2,
Next, let

ri(om) = £*(log(nloge ™))™/ Uen D), 2(logn)ntt < 1,
which yields
e2(log(nloge 1))t <1+ 0(1), logn < (ri(o,)) Yo" < 2t
We have
1

ln> Lpy —2log, C, 1, < log(rk(0,)) " <loge™* —loglog(nloge™) < 4loge™,

which yields
T2, < Bylog(nl,) < B log(nloge ') (91)

for some By > 0, B; > 0 and large enough n. Using (88) we get
e 2(2my,) VT, | Pro,, (F)II3 > d®e2(2mu, O log(ndn) "V 27E (kny00).  (92)

By the choice of 7%(k) and m;, and taking into account (91), we see that the
right-hand side of (92) is not smaller then (dc;)?/C(2B;)'/2. This yields (87) for
(de))? > (2By)Y?BC. 0.

27



References

[1] Donoho, D.L, Johnstone, .M., Kerkyacharian, G. and Picard, D. (1995).
Wavelet shrinkage: asymptopia ? (with discussion) J. Royal Statist. Soc., Ser.
B, 57, No 2, 301 — 369.

[2] Ingster, Yu. I. (1993). Asymptotically minimax hypothesis testing for nonpara-
metric alternatives. I, II, III. Mathematical Methods of Statistics, v. 2, No 2,
85-114, No 3, 171 — 189, No 4, 249 — 268.

[3] Ingster, Yu.l. (1997). Some problems of hypothesis testing leading to infinitely
divisible distributions. Mathematical Methods of Statistics, v. 6 , No 1, 47 —
69.

[4] Ingster, Yu. L. (1998). Minimax detection of a signal for {"-balls. Mathematical
Methods of Statistics, v.7, No 4, 401 — 428.

[5] Ingster, Yu. I. (2001). Adaptive detection of a signal of growing dimension. I,
II. Mathematical Methods of Statistics, v.10, No 4, 395 — 421; v.11, to appear.

[6] Ingster, Yu. I., Suslina I.A. (2002). On a detection of a signal of known shape
in multichannel system. Zapiski Nauchn. Sem. POMI, to appear.

[7] Lepski, O. V. (1990). One problem of adaptive estimation in Gaussian white
noise. Theory Probab. Appl., v. 35, 459 — 470.

[8] Lepski, O. V. (1991). Asymptotic minimax adaptive estimation. 1. Upper
bounds. Theory Probab. Appl., v. 36, 654 — 659.

[9] Lepski, O. V. (1992). Asymptotic minimax adaptive estimation. 2. Statistical
model without optimal adaptation. Adaptive estimators. Theory Probab. Appl.,
v. 37, 468 — 48]1.

[10] Spokoiny, V.G. (1996). Adaptive hypothesis testing using wavelets. Ann. Stat.,
v. 24, No 6, 2477 — 2498.

[11] Spokoiny, V.G. (1998). Adaptive and spatially adaptive testing of nonpara-
metric hypothesis. Mathematical Methods of Statistics, v.7, No 3, 245 — 273.

28



