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Abstract

We understand an image as binary grey ’alloy’ of a black and a white
component and use a nonlocal phase separation model to describe image seg-
mentation. The model consists in a degenerate nonlinear parabolic equation
with a nonlocal drift term additionally to the familiar Perona-Malik model.
We formulate conditions for the model parameters to guarantee global exis-
tence of a unique solution that tends exponentially in time to a unique steady
state. This steady state is solution of a nonlocal nonlinear elliptic boundary
value problem and allows a variational characterization. Numerical examples
demonstrate the properties of the model.

1. Introduction

Image segmentation means recovering homogeneous image regions and contours or
edges. Perona and Malik [16] (comp. also [13, 17] and the literature quoted therein)
proposed the initial value problem
ou

5 = Vo LA(IVu)) V], u(0,) = g(), (1.1)
as a model of segmentation of an image represented by the initial value g. Here f is
a smooth nonincreasing function with f(0) =1, f(s) > 0, s > 0, and f(s) — 0 as
s — oo. The idea is that the smoothing process generated by (1.1) is conditional:
If Vu(z) is large, then the diffusion will be low and the localized edges will be kept;
if Vu(z) is small, then diffusion tends to smooth still more around z.

In this paper we extend (1.1) by

ou Vw

)] =0, U’(O’ ) = g(')a (1'2)

where
v=¢'(u)+w, wtz)= /QIC(|:E — ) - 2u(t,y)) dy. (1.3)

Here ¢ is a convex function, the kernel K represents nonlocal attracting forces and
v may be interpreted as chemical potential. Evidently, for ¢ = 4?/2 and K = 0 the
system (1.2), (1.3) coincides with the Perona-Malik model (1.1).

The system (1.2), (1.3) has been studied recently in [11] and, for the special case
f = const., it was rigorously derived in [9] as a model of isothermal phase segrega-
tion. As to the non-isothermal case, we refer to [4].
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This phase segregation model can be seen as a nonlocal variant of the Cahn-Hilliard
[2] equation which is associated with the local Ginzburg-Landau free energy

Fu(u) = /Q {(b(u) + rku(l— u)+ % ‘Vu|2} dz. (1.4)

It turns out that (1.2), (1.3) has the Lyapunov functional

P = [ {6 +u [ (2~ y)(1 - uly)) dy} da. (15)

This free energy may be written in a form more similar to (1.4):

F(u) = [ {8(u)+ sl —20)+ 3 [ K(z —yl)lu(z) - u(w)Pdy} dz, (1.6
where
= [ K(z—y) d

Since F'(u(t)) decreases along solutions (u,v) of (1.2), (1.3), it becomes clear that
the nonlocal term tends to smooth u outside the edges which have to be enhanced
by the function f.

In view of the standard Mumford-Shah [14] variational model of image segmentation
it seems reasonably to incorporate a third term forcing u to remain close to g. So
Nordstroem [15] supplemented Perona-Maliks model with the term u — g. Following
this approach we arrive at our final evolution model of image segmentation:

% v [f(Vel)( Vu+

ot +Bu—9g)=0, u(0,)=g(), (1.7)

o)

v=¢/()+w, wt,e)= [ K(z—y)1-2u(t,y))dy. (1.8)

In terms of v, w (1.7) reads

WO g o)Vl + B0 - w) ) =0, (19
& 0(0,) ~ w(0,9) = 90,
where 1
uo,w) = olo = w) SV, 0= (¢ = e (1L0)

Remark 1.1. The system (1.7)-(1.8) may be thermodynamically explained as fol-
lows: The segmentation process v minimizes the free energy F' under the constraint
of mass conservation [,(g — u) dz = 0, or, accordingly to Lagrange’s method, the
augmented functional F'(u)+ [ v (9—u) dz. The associated Euler-Lagrange equation
v = 0, F coincides with (1.8). Thus the Lagrange multiplier v can be interpreted as
chemical potential. Consequently, —Vv and u — g should be assumed to be driving
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forces for the evolution of u towards the desired segmentation of g. That leads to
(1.7) and closes the explanation.

We complete (1.7) (resp. (1.9)) by homogeneous Neumann boundary conditions.
Double degenerated nonlinear parabolic equations like (1.9) with w = 0 under
Dirichlet conditions have been studied in [8].

In the next section we formulate our assumptions with respect to the image g and the
parameter functions f, ¢, K. Section 3 contains a precise formulation of the problem
and a global existence and uniqueness result. The main result, exponential decay
in time ¢ of the transient solution (u(t),v(t),w(t)) of (1.7), (1.8) to a unique steady
state (u*,v*,w*), is proved in Section 4. Section 5 contains a model specification. A
discrete version of (1.7),(1.8) is introduced in Section 6. In the final Section 7 some
numerical examples are given.

2. Assumptions

Let be @ C R" a bounded Lipschitzian domain. Denote by: LP = L[?(Q), H'? =
H'?(Q), 1 < p< oo, the usual function spaceson Q, H' = HY2(Q) , ||l = |||
the norm in L? and (-,-) the pairing between H' and its dual (H')* ([12],[6]).
For a time interval (0,7) , T > 0, and a Banach space X we denote by
LP(0,T; X) the usual spaces (|12, 6]) of Bochner integrable functions with values
in X . We set ]Rl+ = (0,00) and @ = (0,7) x Q . "Generic” positive constants
are denoted by C'.

We formulate two groups (A) and (B) of assumptions. Assumptions (A) hold glob-
ally throughout the paper, whereas assumptions (B) will be actualized locally.
(A1) gelL™ 0<g<1, ¢'(g9) €L
(A2) f € (R} — R}) is continuous such that for constants 0<é < M
(f(s1)s1 — f(82)80) (81— 82) > 6(s1 — 82)%, f(s) < M, Vs, s1,80 € RL;
(A3 ¢(U) € C[O: 1] N 03(0, 1)1 = ¢,_1 € (IR‘l — [Oa 1]) ) VS, 81,82 € (Oa 1) :
7) ¢"(s) > o = const. > 0,
2 1 1 \

LI ? < — — < oq(s1 — s2)7,
¢"(81) ¢//(32) ¢//(81-582) ¢//(31) ¢//(82)
i17) ¥1(s) = s¢'(s) and ¥(s) = (s — 1)¢'(s) satisfy
Yi(s1) + ¥(s2) — 2 ;((s1+ 82)/2) > n(s1 — $2)%, m = const. > 0;

(4) Ke(RL—RL), k:= sup | K(lz —yl)dy < oo,
zE

ZZ) a2|

ur— Pu= /QIC(|:E —y|)u(y) dy satisfies

1Pull ., < hellull , 1<p< 0.

HLP
Remark 2.1. Assumption (A3) implies that log p is concave, i. e., that % is nonde-

creasing, where p = That is the main structural assumption made in |7, 8]

1
¢110¢171 .
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for analyzing equations like (1.9) in the case w = 0.

(B1) s — (s —r)¢'(s) is nondecreasing with respect to s € [0,1] Vr € [0, 1];
M k2
B =0n— —(21k% +-2) >0;
(B2)  v=pn 4a( aloo+a2) ;
(Bs) F from (1.5) is strongly convex such that Vu,us € L?
F(uy) + Fuy) — 272142

) > alluy — us|?, a = const. > 0.

Remark 2.2. Assumption (Bj;) follows from (1.6) and (As¢) provided a = oo — 8ky > 0.

We give relevant examples for functions f, ¢, K satisfying these assumptions :

144s .
f(s) = I+ s fulfills (Ap) with M =1,
#(s) = slogs+(L—s)log(1—3s), ¢'(s)=log 1 i , fulfills (A3) and (B;) with
" 1 —1 1 1
= . S d
¢'(s) s(1—3s)’ ¢ () 1+e’ o(r) 2(1 4 coshr) an
R S SR
o = ) a1_2a a2_18a 7)—16

(A4) holds for Newton potentials
K(s) = k,8°™, n#2; K(s)=—kologs, n=2; k,= const. >0,

Functions like K(s) = ¢ e %, 1< q< oo and usual mollifiers

)\2

IC(S) = ¢ exp (—m), if s < A, IC(S) =0, ifs>A C, A>0.

3. Existence and uniqueness of transient solutions

In this section we prove existence and uniqueness of solutions in the sense of

Definition 3.1. A triple (u,v,w) is called (weak) solution of (1.7)—(1.8) (com-
pleted by homogeneous Neuman boundary conditions) if:

ue C0,T; L®)NL*0,T; HY) , w, € L*(0,T;(HY)*), u(0)=g,
/OT/Q,u(v,w)|Vv|2 dedt <oo , we C(0,T; H"™),
v=¢'(u)+w, wtz)= /Q’C(Iw —yl)(1 —2u(t, y)) dy, (3.1)
| {un h) + [ 14(0,0)V0 - i+ 5(u— g) K] datde =0 Vh € L2(0,T; HY). (32)
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We define by
f(IVv])
¢"(¢ (v — w))

(A(v,w),h) = / p(v,w) Vv-Vhdzr, Vhe H', plv,w)=
Q
an operator A € (D(A) — (H"')*), where
D(A) = {(v,w) : /Qu(v,w)|Vv|2 dz < oo, w € HY.

The following monotonicity property of A (comp. [3]) is the main tool for proving
uniqueness and asymptotic results.

Lemma 3.2. Let
('Ui:wi) € D(A), U; = ¢I_1(wi - Uz‘), 1=1,2, Uy =
Then

Uy + Ug _w1+w2
2 ) m — .

() dy: = Z (A(vi, w;), vi — @' (Um) — Win)

i=1,2

M 1

> —4—(2041k2 lur — ual” + —||V(w1 —ws)|?),
(67)

(i) d2: = Y (ui— 9,0 — ¢ (Um) — wm) > nlus — uy*.

i=1,2

Proof. Set ¢ = ¢'(u;), ¢ = ¢"(wi), 0;i = ﬁ, fi= f(Vuil]), pi = 0ifi, i=1,2,m,
K =20m — 01 — 02-

(1) we have
dl = / Z /J’zV'lh Vi ¢m—wm) dz
i=1,2
B TR -
i=1,2 i1
- /Z HiVi - [Voi = ¢ Z(ijvj_(gj_gm)ij)]}d.’c
i=1,2 j=1.2
= /9(152 {K Z wi| Vi ? + o102(f1 VoL — foVug) - V(vy — v3)

1=1,2

/!
+ Z(gl—gm YWVuw; - Z ,u,Vvl} dez > /¢ K Z ,u1|Vv,|2

i=1,2 i=1,2 1=1,2

+ —[(91 — 02)V(wy — wa) + KV (w1 + ws)] - Y 11V }dz

i=1,2
QSII
- / 2 {K Z .U1|V’Uz|2_ Py Z piloz |01 —92| |Vv,|2+—|V(w1 )|2]
Q@ i=1,2 i=1,2
wy + w
b B wvu —' e
i=1,2

M
> —5(2041]“2 |y — ua® + —2||V(w1 - w2)||2)-
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ii) Denoting by z;, = 1(|z| + z) the positive part of a function z, we get
g + 2

da = [, 3 [bs(as) = v1(um) = 9(6; ) d
> [ { 2l ) — 1 ()] — gldh + ¢ — 200,) } dz
> {3 o) — v — 85+ 6y =260 } o
> /rgg{ () — i(um)]} do > nlluy — w|?. O

The key for proving existence is the Lyapunov property (decreasing in time) of the
functional

t
F(t,u) = F(u)+8 [ (u—g,v) ds,
0
where F'(u) is the free energy functional given by (1.5).

Lemma 3.3. Let (u,v,w) be a solution to (1.7)—(1.8). Then

] dF(t,u)_ 0
() == /Q u(v, w) [Vof* dz < 0,

7 8||Vul? < ! Vol? dz < C(T
()  adl|Vullzzg) < | Qu(v,w)l v|* dz < C(T).

Proof. (i) Using (3.1), (3.2) we obtain

dF(t,u)
dt

(73) We have

= (u, ¢'(u) + w) + Blu— g,v) = —/Q,u(v,w) Vol? da.

w2 [[u(l- )+ (1 - w1~ )] de =]

and by the monotonicity of ¢’

u

[w=gv)ds = [(w-0,6)-8()+(e)+w)ds
> [ g.8(0)+w) ds > ~(|$ @)l +kal2)
Hence, using assumption (4;), we get
ad||Vullbg < / /¢" F(IVo)) [Vaul? dz dt = / / v, w) |Vof? dz dt =

~[TaF = —F(@uD) + F(g) < 19/0 + 5Tk + STI$ () + Flg).



Proposition 3.4. The problem (1.7), (1.8) has a unique solution (u,v,w).

Proof. 1In [11] existence and uniqueness of a solution to problem (1.7), (1.8) was
proved for the case that ¢(s) = slogs+ (1 — s)log (1 — s) and the term B(u — g) is
cancelled. But Lemma 3.2 and Lemma 3.4 allow us to carry over that proof to our
situation. O

To end this section we prove a regularity result for the v component of the solution
to (1.7), (1.8).

Proposition 3.5. Let assumption (By) be satisfied and let
¢'(9) € L=, 1d(s)] < 0olo"(s)], s € R (3.3)
Then v € C(0; T; L®) N L*(0,T; H').
Proof. Note that by (3.1), (44) and (3.3)
< ko, v(0)=¢'(g)+ w(0) e L. (3.4)

So, by Remark 2.1, we can choose a m > 0 such that ¢o'(v — w) < 0if v > m. We
test (3.2) with

h=¢"(u)p", r>1, ¢=[v—m],=max(0,v—m).
Then, proceeding as in [11], we get the estimate

1 r+1

d , 20r
(T—I—l)a/uzw(p +1d$ S - (T+1)ZL|V(¢ 2 )|2d.’L'

Migo /Q{27”<PT_1+Qogor}d$+ﬂ/9¢"(u)(g—u)gord:c.

+

By (B;) we have
¢"(u)(g—u) = ¢"(¢" (v —w)) (g — ¢ (v —w)) < ¢"(¢'7(0)) (9 —¢'7(0)) < C.
and therefore by Young’s inequality

d v

—/ "t + 5/ |V(ga%1)|2dm < C’r(l +7"/ <,0T+1d:0). (3.5)

dt Jo Q Q
Hence for r = 2 we conclude by (3.3) and Gronwall’s lemma

1l e, < C(T).

Using this and (3.5) we can apply Alikakos’ technique (comp. [1]) to prove that
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which gives an upper bound for v. Analogously, from (3.2) with the test function
h=¢"(uw)y", »>1, ¥ =—min(0,v —m), m such that ¢'(v —w) >0 if v <m,

and (3.4) we get a lower bound for v . Now the assertion follows from (1.8) and
Lemma 3.2. O

Remark 3.1. For the reference convex function ¢(s) = slogs + (1 — s)log (1 — s)
the second part of condition (3.3) holds with gy = 1.

4. Global behaviour in time

In this section we study the asymptotic behavior of the solution (u(t),v(t), w(t)) to
(1.7), (1.8) as t — oo.

Definition 4.1. A triple (u*,v*,w*) is called steady state (of (1.7)—(1.8)) if:

u',v* € H'N L™, w*e HY™, (4.1)
vt =¢'(un) ', wie) = /Q’C(|$ —y[) (1 —2u*(y)) dy, (4.2)
/Q {,u(v*, w*)Vv* - Vh + B(u* — g) hl d:c}dt =0 Vhe H'. (4.3)

Proposition 4.2. Suppose (B, Bs). Then a unique steady state exists.

Proof. (Uniqueness:) Let (u},v},w}), i = 1,2, be steady states. Then, using
(4.3) and Lemma 3.2, we get

ui + us w{—i—w;)_o

Mt —wl? < 3 (AW w) +uf = g,9] = ¢(F52) = =

i=1,2

Thus (Bs) implies uj = uj. By (4.2) this means w} = wj and vi = v;.
(Existence:) Let u € L™ be given, set w = w(u) = P (1 — 2u) € H"*® (comp.
Ay). Let further v(u) € H' N L™ be the solution of the equation

A(v,w)+ ¢ v —w)=g.

(Existence and uniqueness of v(u) can be proved analogously as in [7], where the
case w = 0 has been considered. The key is a counterpart to the ||v||, estimate
given by Theorem 2 in [7], which can be deduced via Moser iteration (comp. [10])
by using the test functions

_7[v_m]r+ o S s, T
o = AR



where m > 0 is chosen such that ¢'(v — w) < 0 if v > m.)
Now we define the operator u +— S u = ¢! (v(u) — w). Then for u; € L*®, i = 1,2,
Lemma 3.2 implies

0 = > {A(Uz', w;) + Su; — g,vi — Cb’(w))}

i=1,2 2
M

>
o

1
(2012 || Sur — Sus|” + o |V (w1 — w2)||”) + Bnl|Sur — Sual|.
2

Hence, using (A4), we get

Ma1 kgo
20

MK

_ 2
4ao&”“l upl|%,

IS — Sus|* <

(Bn —

and by (B2)

B k2M
" 205(2a8n — May)k2,

||SU1 — S’U,2||2 < k||u1 — U2||2, k < 1. (44)

So S € (L? — L?) is strictly contractive and has by Banach’s theorem a fixed point
u*, which can be completed by w* and v* according to (4.2) to a steady state. DO

Remark 4.1. Since operator S is contractive by (4.4), the sequence (u;,v;, w;)
defined by
w; = P (1—211,,',1),
/{Q(Uz' —w;) (Vi) Vi - Vh+ (¢~ (v; —w;) — g)h} dz = 0 Vh € H', (4.5)
Q

u; = ¢I_1(vi_wi)7 i:1,2,..., Uy = g,

converges to the steady state (u*, v*, w*).

The steady state allows a variational characterization:

Proposition 4.3. (u*,v*,w*) with (4.1) is steady state if and only if u* is mini-
mizer of

min [ {o(w) +u [ K(o—y))(1—u(y) dy+(g—uw) v’} do,  (46)

u

and, simultaneously, v* is minimizer of

1 |Vv\2
min/ {—¢"(u*)/ f(Vs) ds+ B(u* — g) v} dz. (4.7)
v o Ja '2 0

Proof. Tt is easy to check, that (4.2), (4.3) is the Euler-Lagrange system to (4.6),
(4.7). Hence the assertion follows from the monotonicity of the functions ¢’ and
s — f(s)s (comp. (A42),(Asi)). O



Remark 4.2. Proposition 4.3 suggests the following iteration procedure for approx-
imating the steady state:

/Q (8" (wie) (Vi) Vs - VR4 (uiey — g) h} do =0 VA€ H',  (48)

A(ui)+P (1—2w)=wv;, 1=1,2,..., up=g. (4.9)

Note that the steps (4.8), (4.9) correspond to the minimum problems (4.7), (4.6),
respectively. This procedure can be seen as natural alternative to (4.5). But, unfor-
tunately, we cannot prove its convergence to (u*,v*, w*).

Now we are ready to prove our main result, convergence of an ’evolutionary’ proce-
dure for constructing the steady state.

Theorem 4.4. Suppose (B; — Bs). Let be (u,v,w) the solution to (1.7), (1.8) and
let be (u*,v*, w*) the steady state. Then

at
a

lu(®) - | < <= (F(g) + Pu) - 20(2 1)), (4.10)
Proof. Lemma 3.2 with u; = u(t) and us = u* yields
d(F(u) + F(u*) — 2F (22 x x
PO+ P2 (g - o5 - 5

_ ,, U+ ut w+ w*
= (Avw+u—g,v—¢( 5 ) — 5 )
_ ,,u+ut w+ w*
= (Avw-l—u—g,v—qb( 5 ) — 5 )
u+ u* w4 w*
—(A(v — —¢ —

M * * * *
< Emalnu— Wl + 1V (w — w)?) ~ Bl — ' < —llu— ]
2

Thus by (B3) we get

g+u*
2

allu) |+ [ u(s) — | ds < Fg) + () - 2F(P),

This implies (4.10). O
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5. Specification of the nonlocal operator P and iden-
tification of its parameters

In the following we use

&(s) = slog s+ (1 — s)log(1l — s),

1+ds/s0 || Vwl|;
S) = —_— Snp = y
f(s) f01+s/30 0 Q
and specify the operator P as
0— Pop=w, (5.1)

where w is the solution of the boundary value problem

Fi(u,w) = —03V - Vw +w = mpp, v-Vw=0 on 0. (5.2)

Remark 5.1. In the case that dim €2 = 1 the operator P is related to the kernel

ma _ lz—yl
Kl —yl) = e %"

Thus my > 0 can be interpreted as an attractive force with a range of interaction
aggp.

For segmentation we choose 3 = 0. For image reconstruction we fix 8 accordingly
to the estimate (By) and Remark 2.2 as

M k2
8= En(mlki’ + a—2)
where in case of Remark 5.1 ky = ko, = mg/(209) holds.
A proper choice of the parameters mg, o¢ should detect the amount of noise in
g and ensure desirable properties of u as smoothness, low entropy (—¢(u)) and
small distance to g. We try to meet these requirements by chosing (my, 0y) to be
minimizers of the functional

A [u—gl]?
F(m,o) = foR(u) + —. (5.3)
° R(g) [|u — gl|?
Here ||V ||2
U 1
R =0, = -1 — = —,
I A
w solves

—o*Aw+w=m(l—-2¢g) in Q, v-Vw=0 on 99,

and the constant v is determined such that @ = g. Finally ) is the first (nontrivial)
eigenvalue of
—Az=MXzin Q, Z=0, v-Vz=0 on 0f.
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Remark 5.2. For the special choice m = 2, 0 = 0 the function v = u(m,o) =
u(2,0) is near to g in the sense that

1
[u(z) —g(2)| < &, z € (5.4)
Indeed, since the Fermi-function ¢(s) = 5 +t,s satisfies
! / 1
0<¢'(s) = ¢(s)(1—0(s)) < ¥ (0) =7,

¢"(s) = p(1—9p)(1-2¢), ¢"(0)=0,

—2 =¢"(0) < ¢"(s) = (1 —p)(1—6p(1—¢)) < 90"'(901(% +/3/20)) = %

its Taylor expansion yields for a suitable 8 € [0, 1]

_ 1 1 1 m 3
o(s) = 5 + 4s+ 6% (0s)s°.

Setting s =v —w, v =0, w = m(1 — 2g) = 2(1 — 2g), we find

1
u=p(-w) =g— =" (Os)w’.

6
Because of 0 < g < 1 this implies (5.4).
Moreover, in the special case § = % we have
_ 1 4 ,, 9 2 1 _ 2 _
u=g=(9-3)(1+50" %) 2 59— 3) =5(9-9)
and hence
F2,00 = —[fllo(l - ) Vul* + 2 [u— g|P]
||u—g|| R,
1 1|9 3 A1]Q|
< ———|follVgl|* + < ~|foR(9) + == |-
Tz g PV + 56pgy] < 3l0R0) + 5ig

In view of (5.4) the minimization process can be considered as an image preprocess-
ing step.

Accordingly we replace g by

. F(my, 09)
g = Ag+ (1 — Nu(mg,09), A= min (1, fORio(g)O)’

where u = u(my, 0p) corresponds to a minimizer of (5.3).
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6. Discretization

With the specification (5.1) the original system (1.7), (1.8) reads
Fi(u,w) = —02V - Vw+w+me(2u —1) =0, v-Vw on 09, (6.1)

Fy(u, w, 1) = 58—;‘ V- f(V)(Vu+ u(l — u)Vu)+ Bu—g) = 0. (6.2)

For time discretization Euler’s backward scheme is adequate. Regarding space, F}
is discretized in standard way (finite volume scheme, for notations see [5]) but in F
both f(s) and the term u(1 — u) degenerate. These singularities must be preserved
during any averaging procedure (i.e. the symmetry with respect to zero and one)
applied in the discretization process. For instance the following three options are
seen:

a) Scharfetter-Gummel discretization (constant total current along an edge, yields
a Ricatti equation per edge);

b) u(l—u)|y = W) | a e (nlm—uw))Hn(u (=) = (y4,(1 — u;)u; (1 — u;))? =
d;jp, here 1 (u)|;; denotes an intermediate value of ¢ with respect to u(z;) and u(z;);
c) inverse averaging wu(l — wu) (analogously to any diffusion coefficient)

dij,c = 2dzd]/(d1 + dj), d1 = u,(l — ’Ll,i).

-V -V = GTG,

G = [O'A]GA,
~ 0 -1 1
Ga = 1 0 -1
-1 1 0

Here [-] denotes a diagonal matrix, especially [oa]? is the diagonal matrix of Voronoi
surfaces divided by the edge lengthes of the simplex. G maps vertices to edges. d;;
denotes the edge (k) averaged (accordingly to b), ¢)) function

Ci"_ d.ij if ul(l—ul)>0,l=i and [ = j,
10 if w(l-w)<0,l=1% or =3

The part of interest for the discretization of Fy (F3) reads on a simplex in discrete
form:

Fy = GT f(s)(Gu + [d|Gw).
f(s) is a scalar function on each simplex (defined above, but with 1/(u(1 — u))

replaced by [d]™", dy := di + €):

s [d] 7 Gu + Gw)T([d]'Gu + Gw),

2 — i(
Va

where V, is the simplex volume.

Let denote in the sequel ||z, := (X; Vi |z;|)"/? the discrete Voronoi volume weighted
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p-norm and || - || = || - ||2, x* the quantity x at time step ¢, > A the sum over all
elements, [V] the diagonal matrix of the Voronoi cell volumes, x| the restriction of
x on the element A, and Y, GTG the global coefficient matrix. The discrete version
of (6.2) reads with the initial value u® = g, and 7 = ¢**! — ¢

4

(u — u) + 3 GT () (Gut 4 [ Gw ) + AV](ut — u®) = 0. (6.3)

Remark 6.1. (6.3) and the spatially discretized version of (1.8) preserve the mass
VTut = VTu® = ¢%V).

Proposition 6.1. Let be u* a discrete solution at time step t, such that ||w|| < oo.
Let u) € [0,1]. Than the a priori bounds 0 < u} <1 hold.

Proof. By induction (the initial value fulfills the assumption).
Suppose u} > 1, j =1,...,1, h; = max(0,u} — 1) > 0 Vi € Q. Testing (6.3) by h”

yields (because h” 5 (G f!d"]G)w* = A (hT[aGT f![d]Gw'|) and on each edge
either hT|AG7 or [d'] is zero)

h" 3" GT fGut = T [V](u® — u?) + 1hT[V](lﬁ—1 —u).
> =

Since h”|AGT and Gu!|s are either zero or have the same sign on each edge, we
have 3o (hT[aGT fGu?[p) > 0. On the other hand hold h”[V](u® — u?) < 0, and
h7[V](u*™! — u?) < 0, hence a contradiction, thus requires 0 < u} < 1 (what is true
for models without the term u® — u?’, too). u} > 0 follows analogously. O

The discrete equation related to (6.1) and (6.3) are solved by Newtons and direct
sparse methods (with LU = Ay used as preconditioner for a CGS iteration with A,
[l > 0 as long as the iteration time at step k& + [ is smaller than the factorization
time). The Newton linearization of F, can be easily obtained by using the above
given formulas on elements:

Fybw = (FGT[d]G + GT[d.]Gw f'sy, T )ow, (6.4)

Fybu = (fGTG + fGT[Gw][d ], + GT(Gu + [d]Gw) f's, T )ou. (6.5)

With 561
2y Jo —
P = AT sjsoy”
and the transposed vectors
1 -
wl = —(d]'G aw)'a
s SVA([ |7"Gu+ Gw) G,

s.T = i([de]—lau +Gw)T([d)7'G — [Gul[d.)%d.).),
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B 0 d23,u2 d23,us
[de]u = d31,u1 0 d31,us )
d12,u1 d12,u2 0

and

ur(1—ui)*(1—2u;) if k=1,
Qg = 2(wi(1 — w;) + (1 —u;)) 72 S wf(l—w)?(1—2u;) if k=3,
0 else

in case c). Hence the contributions to the Jacobian on the simplex have either the
same structure as the discrete Laplace operator or constitute tensor products of
vectors defined on edges, mapped back to vertices by G*.

7. Examples

We demonstrate our approach on three examples based on the well known ’Lena’
image. At first the image segmentation is illustrated (Figure 7.1) using the param-
eters (given in natural length units of the problem, the edge length of one (square)

pixel [pxl])
mo = 128, of = 32px1®, s, =0.51711/pxl, A=1, B=0, fo=32pxI*/T,

The remaining two examples are selected to illustrate the possibility to interpret

image segmentation with respect to noise reduction and contrast enhancement. We
fixed § = 107%, fy = 10~*px12/T, and oy, My, are determined by the procedure stated
above. Because the discretization cases b) and c) introduce only minor technical
differences both have been tested and resulted in slightly different solutions. A
simple arithmetic averaging of u(1 — u) does not allow to prove 0 < u} < 1 and
violated the restriction pretty soon in a practical test.
To illustrate the influence of the minimization process, the second example (Figure
7.2) shows a 157 by 124 pixel section of 'Lena’ perturbed with 20 added sequences of
random numbers in the interval (—0.5,0.5). The values of the parameters are given
by

mo = 44.6883, oo = 4.0388px], s, = 0.40367, A = 0.26208, (8 = 8.61528-10731/T.

The last example (Figure 7.3) uses the same initial picture but the perturbation
procedure is applied only once and the amplitude of the random numbers is reduced
by 10~7: The values of the parameters are

mo = 2.4055, 0o = 0.15093px], s, = 0.24242, A= 1.0, B =1.7876-10721/T.

These parameters suppress diffusion effectively — hence the image remains es-
sentially unchanged and the presented identification procedure seems to determine
reasonable initial values for the parameters.
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Figure 7.1: Segmentation of the 'Lena’ grey scale image (512 by 512 pixel), t = 0
(u.l.); dark areas are moved towards black, small granules start to form, ¢ = 0.05s
(u.r.); grey areas surrounded by mainly black ones show deficits of black particles
in ’central’ positions, ¢t = 0.1s (1.1.); most small features are removed resulting in a
'xylography’, t = 1.0s (L.r.).
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Figure 7.2: noisy picture (u.l.), first optimization step (u.r.), intermediate optimiza-
tion step (m.l.), final optimization result (m.r.), initial convex combination (1.1.),
steady state (L.r.).
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Figure 7.3: noisy picture (u.l.), first optimization step (u.r.), intermediate optimiza-
tion step (m.l.), final optimization result (m.r.), initial convex combination (1.1.),
steady state (L.r.).
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