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Abstract

In several applications there is the need to compute a Cholesky decom-

position of a given symmetric matrix. The usual Cholesky decomposition

algorithm will fail if the given matrix is semi�positive, although such a decom-

position exists. To overcome this problem there exists a LDL
T
decomposition

for semi�positive matrices.

In the case that the given symmetric matrix is not semi�positive, no

Cholesky decomposition exists. In such a situation one aims to approximate

this matrix by a (semi�)positive one and computes the Cholesky decomposi-

tion of the approximation.

From the context of numerical optimization there exist algorithms by Gill,

Murray and Wright and a re�nement by Eskow and Schnabel. Both methods

basicly return a Cholesky decomposition of a positive approximation of an

inde�nite input matrix.

In this paper we extend the LDL
T
algorithm such that it coincides for a

semi�de�nite input with the LDL
T
decomposition and for inde�nite input it

gives the decomposition of a semi�positive approximation. In contrast to the

algorithms mentioned before, for inde�nite input matrices our algorithm gives

a decomposition, which has a lower rank. This gives the important oppor-

tunity to introduce a dimension reduction, if possible, and we will show that

this algorithm can save computation time in several applications in �nance,

especially for risk management.

1 Introduction

In this paper we concentrate on the decomposition of real, symmetric matrices. It

is a well known fact, that these matrices are diagonalizable with real eigenvalues.

A real symmetric matrix is called positive, if all eigenvalues are (strictly) greater

than 0. A matrix is called semi�positive, if and only if all eigenvalues are greater or

equal than zero. A matrix is called inde�nite, if it has as well positive as negative

eigenvalues.

The usual Cholesky decomposition is well known and widely used in practice. It

is a fast algorithm and is numerical stable, if the given matrix is positive. But if

the matrix is not positive, then the usual Cholesky decomposition fails. We will

introduce a non�square Cholesky decomposition, which will overcome this problem.

Furthermore, if the given matrix is inde�nite, our algorithm will give a Cholesky

decomposition of a semi�positive matrix, which is an approximation of the given
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matrix. This approximation will be done such, that the diagonal of the matrix

keeps unchanged, if the diagonal elements were non�negative.

The main object of this paper is the presentation of a non�square Cholesky algo-

rithm, which is based on the LDLT decomposition. For the convenience of the reader

we recall in section 2 the LDLT decomposition for positive matrices. We also give

a proof of the existence and uniqueness of this decomposition and make an analysis

of the computation time of this algorithm. In fact this algorithm yields to the usual

Cholesky decomposition.

In section 3 we cite the LDLT algorithm for semi�positive matrices. In this situation,

pivoting becomes necessary and we use the pivoting strategy suggested in [4]. With

this modi�cation, this algorithm (algorithm 1) is numerically very stable. We also

give a criteria which enables us to determine the rank of a matrix semi�positive

matrix.

In section 4 we give an example which shows, that in general no LDLT decomposition

for inde�nite matrices exists. This indicates in which situation the algorithm 1 fails

and brings us to the idea of the non�square Cholesky decomposition. We introduce

two new algorithms which approximate an inde�nite matrix by a semi�positive one

and which give the LDLT decomposition of this approximation. The algorithm 2 has

an additional instruction, which describes the �rst approximation technique. But the

approximation is such, that as well diagonal as o��diagonal elements of an inde�nite

input matrix will be changed. The next algorithm 3 performs a rescaling which

guarantees, that any inde�nite matrix with non�negative diagonal elements will be

approximated by changing o��diagonal elements only. This algorithm is the main

contribution of this paper and brings us to the non�square Cholesky decomposition.

Since we are approximating a matrix by a positive one, we recall in section 5 other

algorithms, which also give such approximations and we will compare the algorithm 3

with these standard techniques. We repeat two results for minimal approximations

in the Frobenius norm and the spectral norm. For completeness we also recall

some approximation techniques, which keep the diagonal elements of the inde�nite

matrix unchanged, if they are non�negative. This is often a requirement in practical

applications, for example a correlation matrix must be unit�diagonal.

In section 6 we compare our algorithms with the two other LDLT based approxi-

mation approaches by Gill,Murray and Wright [3] and the improvement of Schnabel

and Eskow [11]. The algorithm 3 is at least as good as the other approaches and has

additional two very nice features. It preserves the diagonal of a given matrix, which

is very important for several applications and in contrast to the other algorithms

our algorithm achieves a dimension reduction.

Furthermore we apply the algorithm 3 on inde�nite matrices which can be seen

as perturbed correlation matrices and aim to approximate these matrices by semi�

positive, unit�diagonal matrices. We compare the approximation error of our al-

gorithm with other standard techniques presented in section 5.2 and we point out,

that our algorithm is a right choice, if computation time is critical.
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The new algorithm can be used in several applications in �nance and we present

three examples in section 7. We underline that the dimension reduction feature

of the non�square Cholesky decomposition can help to save computing time in the

context of Monte Carlo simulations. In the second example we explain, that from

a risk managers point of view the diagonal preserving property of the non�square

Cholesky decomposition is essential for stress testing. In this context the approx-

imation feature of our algorithm is very important, since due to missing data or

to speci�c modi�cations of some correlations the given covariance matrix could be

inde�nite. Finally, for Value at Risk valuations the dimension reduction property of

this algorithm can also save a lot of computing time in the context of the so called

delta�gamma approximation.

2 The LDLT -Decomposition for Positive Matrices

We �rst recall some facts about positive symmetric matrices in the following

Lemma 1 Let S be a positive symmetric N �N matrix. Then the following state-

ments hold:

1. For all x 2 R
N
, x 6= 0 holds: x>Sx>0

2. Sii > 0

3. jSijj <
p
SiiSjj i 6= j

4. If

S =:

�
S11 s>

s ~S

�
(1)

then the (N � 1)� (N � 1) matrices ~S and ~S � 1
S11

ss> are positive.

Proof.

1. Let �i are the eigenvalues of S with corresponding eigenvectors si. We write

x =
P
i

�isi with at least one �i > 0. Since S is positive, �i are also positive:

x>Sx =
X
i;j

�j�is
>

j �isi =
X
i

�2i �i > 0 (2)

2. We set xk = Æki and obtain:

0 < x>Sx =
X
k;l

ÆikSklÆli = Sii (3)
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3. We �x k; l with k 6= l and choose xi = Æik + �Æil. Note that x 6= 0 and for all

� 2 R:

0 < x>Sx =
X
i;j

(Æki + �Æli)Sij(Æjk + �Æjl) = Skk + 2�Skl + �2Sll

Hence S2
kl < SkkSll.

4. First set x = (0; y)>. Then we have

0 < x>Sx = y> ~Sy (4)

For the second matrix we have to show, that for all y 2 R
N�1 holds:

y>( ~S �
1

S11
ss>)y = y> ~Sy �

1

S11
(y � s)2 > 0 (5)

We set x = (�; y)> and since S is positive we obtain for all � 2 R:

0 < x>Sx = �2S11 + 2�(y � s) + y> ~Sy (6)

So we have proven (5), since the last inequality yields:

(y � s)2 � S11 y
> ~Sy < 0 (7)

By this lemma, we are able to prove the LDLT decomposition theorem for positive

symmetric matrices.

Theorem 1 Let S be a symmetric, positive N � N matrix. Then there exists a

unique decomposition

S = L �D � L> (8)

where D is a diagonal N �N matrix and L is a N �N unit left-triangular matrix,

that is Lii = 1 for all i and Lij = 0 for j > i.

Proof. We prove this theorem by complete induction. For N = 1 the decomposition

reads

S11 = L11D11L
>

11 = D11 (9)

So the LDLT decomposition is given and obviously unique.

Assume that the theorem holds for N � 1 with N > 1. Set

S =:

�
S11 s>

s ~S

�
(10)
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From lemma 1 we know, that the (N � 1)� (N � 1) matrix ~S � 1
S11

ss> is positive

and has the unique LDLT decomposition ~L ~D~L> by the assumption of the induction.

Note that S11 > 0 and de�ne l = 1
S11

s. Then

S =

�
1 0

l ~L

��
S11 0

0 ~D

��
1 l>

0 ~L>

�
= LDL> (11)

This solution is obviously unique, because any LDLT decomposition yields to the

equations D11 = S11 and Lj1 =
1
S11

S1j with j = 2 : : : N .

If one knows the LDLT decomposition of a positive symmetric matrix, a lot of usual

problems arising in the linear algebra are solved. Let S = LDL> with the conditions

in this section, one has immediately:

� detS =
NQ
i=1

Dii

� With U := DL> this decomposition is a special LU decomposition

� With C := LD
1

2 one obtains the usual (triangular) Cholesky decomposition

S = CC>.

� S�1 = (L�1)>D�1L�1, so instead of inverting a positive symmetric matrix S

it is enough to invert the triangular matrix L.

We will now state the algorithm for this decomposition. If we evaluate equation (8)

for each component of S, we obtain the following system of equations:

Dii = Sii �

i�1X
k=1

DkkL
2
ik

Lji =
1

Dii

 
Sij �

i�1X
k=1

DkkLikLjk

!
j > i (12)

One has to compute this equations in the right order and thus obtain L and D.

Remark, that in this sequence the right hand sides of the equations (12) are known

by the computations before:

1. Set i=1.

2. Compute Dii.

3. Compute Lji for j = i+ 1; : : : ; N

4. If (i<N) set i=i+1 and go to Step 2.
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We count the number of basic operations for the LDLT decomposition algorithm. A

basic operation (op) consists of two multiplications, one subtraction with assign and

the expense for the loop management. Obviously we obtain from the algorithm:

LDLTcosts(N) �

NX
i=1

 
(i� 1) +

NX
j=i+1

(i� 1)

!
op

=

NX
i=1

((1 +N � i)(i� 1)) op =

NX
i=1

�
(N + 2)i� i2 � (N + 1)

�
op

= (N + 2)
N(N + 1)

2
op�

N(N + 1)(2N + 1)

6
op�N(N + 1) op

=
1

6
N3 op+O(N2) op (13)

So this algorithm is very fast. Recall that the asymptotic operation costs for a

usual Cholesky decomposition is also given by 1
6
N3, the basic operation there is one

multiplication, one subtraction and the loop management.

There is no pivoting used within this algorithm. In the situation where the matrix S

is strictly positive this algorithm is extremely stable, because the remaining matrices

after each step are also strictly positive. This fact is well known from the usual

Cholesky decomposition algorithm, which also makes no use of pivoting. In the case

of semi�positive matrices pivoting becomes necessary and we will present a pivoting

strategy in the next section. Of course, that pivoting can also be applied to strictly

positive matrices.

3 LDLT for Semi�positive Matrices

From the analysis of the LDLT algorithm for positive matrices, we can directly

extend this algorithm to semi�positive matrices. In the algorithm above a problem

appears, if there occurs one Dii = 0 while the algorithm runs. In the next step there

is a division by zero then. We will show, how to avoid this problem in the case of

semi�positive matrices.

We recall some basics about semi�positive matrices in the following lemma which

is a modi�cation of lemma 1 in fact. For the proof of this lemma replace each �<�

by ��� and every �>� by ��� in the proof of lemma 1. The last statement of the

fourth part is corollary of the third part:

Lemma 2 Let S be a semi�positive symmetric N � N matrix. Then the following

statements hold:

1. For all x 2 R
N

holds x>Sx � 0

2. Sii � 0
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3. jSijj �
p
SiiSjj

4. If the N �N matrix

S =

�
S11 s>

s ~S

�
(14)

is semi�positive, then the following statements are true:

� ~S is semi�positive

� If S11 > 0 then ~S � 1
S11

s s> is semi�positive

� If S11 = 0 then s = 0.

Using this lemma, we can analyze the LDLT decomposition for semi�positive ma-

trices:

Theorem 2 Let S be a symmetric, semi�positive N �N matrix.

1. Then there exists a decomposition

S = L �D � L> (15)

where D is a diagonal N � N matrix and L is a unit left-triangular N � N

matrix.

2. We de�ne the head of a column i in a matrix A by

hA(i) := minfjjAji 6= 0g: (16)

If M is the rank of S 6= 0, then there exists a unique decomposition

S = LDL> (17)

where D is positive diagonal M �M matrix and L is a N �M matrix with

the properties:

� The head in each column is 1, i.e. LhL(i)i = 1.

� The head of the ith column stands below the head of the i� 1 th column,

i.e. hL(i) > hL(i� 1).

3. Furthermore, if M is the rank of S with S 6= 0, then there exists a permutation

P such that

PSP> =: U = LDL> (18)

with a positive diagonal M � M matrix D and L is a N � M matrix with

Lii = 1 and the decomposition of U is unique.
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Proof. We prove all statements simultaneously by complete induction. For N = 1

a LDLT decomposition is given by

S = (1)(S11)(1); (19)

hence D11 = S11. For S 6= 0 this decomposition is obviously unique, hence 1,2,3

hold.

Let us assume, that all statements hold for dimensionN . Then for the decomposition

of a semi�positive (N + 1)� (N + 1) matrix

S =

�
S11 s>

s ~S

�
(20)

we distinguish three cases:

1. Case: S11 6= 0 and ~S 6= ss>

S11

Statement 1: By the induction assumption there exists a LDLT decomposi-

tion

~S �
ss>

S11
= ~L ~D~L> (21)

and so a LDLT decomposition is given by

�
S11 s>

s ~S

�
=

�
1 0
s

S11
~L

��
S11 0

0 ~D

� 
1 s>

S11

0 ~L>

!
(22)

Statement 2: Since rank(S) � 2, any decomposition has to satisfy the equa-

tion: �
S11 s>

s ~S

�
=

�
L11 0

l ~L

��
D11 0

0 ~D

��
1 l>

0 ~L>

�
(23)

=

�
L2
11D11 L11D11l

>

L11D11l D11ll
> + ~L ~D~L>

�
(24)

Since L11 is either 0 or 1, we �nd the necessary conditions L11 = 1, D11 = S11
and l = 1

S11
s. The remaining equation

~S �
ss>

S11
= ~L ~D~L> (25)

has a unique solution under the structure conditions on L by induction as-

sumption and the matrix

L =

�
1 0

l ~L

�
(26)
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also ful�lls the structure conditions.

Statement 3: By induction assumption there exists a permutation ~P such

that

~P ( ~S �
ss>

S11
) ~P> = ~L ~D~L> (27)

We further de�ne P :=

�
1 0

0 ~P

�
. Then, any decomposition must satisfy

PSP> =

�
S11 s> ~P>

~Ps ~P ~S ~P>

�
=

�
1 0

l ~L

��
D11 0

0 ~D

��
1 l>

0 ~L>

�
(28)

=

�
D11 D11l

>

D11l D11ll
> + ~L ~D~L>

�
(29)

Since we have the necessary conditions D11 = S11 and ~Ps = D11l the given

decomposition is unique for a given ~P .

2. Case: S11 6= 0 and ~S = ss>

S11

Statement 1: The proof of the �rst case also holds in this case.

Statement 2: The rank of S is 1 and any decomposition has to satisfy the

equation �
S11 s>

s ss>

S11

�
=

�
L11

l

�
(D11)(L11 l

>) (30)

which has under the condition L11 2 f0; 1g the unique solution

D11 = S11 L11 = 1 l =
1

S11
s (31)

and the structure condition is also ful�lled.

Statement 3: Since the rank of S is 1, we choose P = 1 and any decompo-

sition has to satisfy�
S11 s>

s ss>

S11

�
=

�
1

l

�
(D11)(1 l

>) =

�
D11 D11l

>

D11l D11ll>

�
(32)

with the unique solution D11 = S11 and l = s=S11.

3. Case: S11 = 0

Statement 1: We decompose the semi�positive N � N matrix ~S = ~L ~D~L>.

By lemma 2 we know, that s = 0 and a LDLT decomposition is given by�
0 0

0 ~S

�
=

�
1 0

l ~L

��
0 0

0 ~D

��
1 l>

0 ~L>

�
(33)
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In this situation the decomposition is not unique, since any l 2 R
N �ts.

Statement 2: In this situation the rank of S is equal to the rank of ~S and

therefore any decomposition of type 2 must have the structure�
0 0

0 ~S

�
=

�
l>

~L

�
~D
�
l ~L>

�
(34)

The condition of the (1,1) element yields 0 = l ~Dl>. Since ~D is positive and

diagonal we obtain l = 0. The remaining condition is ~S = ~L ~D~L> which has a

unique solution under the structure conditions by induction assumption and

the matrix L also ful�lls these conditions.

Statement 3: Since S 6= 0 there is a j such that Sjj 6= 0. Let P be the

permutation matrix which permutes 1 with j. Then there is a unique decom-

position of the matrix U = PSP>, because U belongs to either of the cases

studied above.

So we are able to give an algorithm for the LDLT decomposition of semi�positive

matrices. The following recursive algorithm performs the permutations as in the

third part of the theorem, but to keep the algorithm more simple, we only deal

with quadratic matrices. In order to obtain the decomposition as in part 3 of the

theorem, de�ne M as the number of non�zero diagonal elements of D and cut the

last M �N columns of L and the last M �N columns and rows of D.

Algorithm 1 (LDLT for semi�positive matrices)

1. If the dimension of S is 1, de�ne P = (1), L = (1) and D = S. Stop.

2. Choose P̂ as the permutation between 1 and j, where j is such, that Sjj � Sii
holds for all i = 1; : : : ; N . De�ne the N �N matrix U by

P̂SP̂> =: U =

�
U11 u>

u ~U

�
(35)

3a. If U11 > 0 compute the LDL
T
decomposition of the (N � 1)� (N � 1) matrix

~U �
1

U11

uu>:

~P ( ~U �
1

U11

uu>) ~P> = ~L ~D ~L> (36)

De�ne

L :=

�
1 0
1

U11

~Pu ~L

�
D :=

�
U11 0

0 ~D

�
P :=

�
1 0

0 ~P

�
P̂ (37)

Stop.
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3b. If U11 = 0, then de�ne P = P̂ , L = diag(1; : : : ; 1) and D = 0. Stop.

In step 3 the algorithmmakes a case distinction whether U11 is zero or not. Under the

additional setting uu>

U11

= 0 and 1
U11

~Pu = 0 in the case U11 = 0 the part 3b is equiva-

lent to 3a. You will not often �nd an equation of the form �Division by 0 = 0�, but

in the context of Singular Value Decomposition (SVD), one also gets such �equality�

[7]. This is a remarkable connection between the SVD and the LDLT decomposition.

In order to obtain a numerical stable algorithm, one must take care of some points.

First of all, it is very critical to decide, whether a value is zero or not. So one

de�nes an � > 0 and every number smaller than � is assumed to be zero. For the

choice of � one can take the machine precision for example. If one works with the

IEEE representation of �oating point numbers, the machine precision is a relative

precision; for a 8 byte double the relative precision is about 1e-15 and for a 4 byte

�oat number it is 1e-8. On the other hand we need several (at most N) computations

for Dii and therefore one must also consider the roundo�s for this number. So we

suggest to take

� = relative precision � max
i

Sii �N (38)

Unlike in the positive case, the elements Dii are not bounded from below by a

positive number and therefore we have to use a pivoting procedure, which will be

performed by symmetric permutations on the matrix S. The permutation is chosen

such, that the largest diagonal element gets at the leading position. If the pivot is

less then �, the corresponding column of L (the arbitrary l) is set to zero.

We will now show, that this algorithm works very well and that it is in fact able

to determine the rank of a semi�positive matrix, which is for general matrices an

ill�posed problem. Recall that the rank of S is given by the number of non�zero

diagonal elements of D.

We take M < N and de�ne a N �M matrix B which is �lled with random numbers

in the range of [-10.0,10.0]. Then we de�ne S = B �B>. By this de�nition, the rank

of S is at mostM . We show the determined rank and the relative error of the LDLT

decomposition for several choices of M;N and we de�ne the relative error by

rel. error =
jjPSP> � LDL>jjF

jjSjjF
(39)

and we recall the Frobenius norm:

jjAjjF :=

sX
ij

A2
ij (40)

The following table shows, that this algorithm is in fact able to determine the rank
of a matrix and that the algorithm is backward stable, since the relative error is of
the same size as the accuracy of the �oating point operations, since we used a 8 byte
double.
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M = 8; N = 15 M = 40; N = 50 M = 10; N = 100

detected Rank rel. Error det. Rank rel. Error det. Rank rel. Error

8 1.44e-16 40 4.04e-16 10 2.55e-16

8 9.82e-17 40 2.90e-16 10 2.14e-16

8 1.24e-16 40 2.79e-16 10 2.67e-16

8 1.57e-16 40 2.77e-16 10 2.30e-16

8 1.13e-16 40 3.24e-16 10 2.22e-16

8 1.39e-16 40 2.01e-16 10 2.42e-16

8 1.05e-16 40 3.44e-16 10 2.54e-16

8 1.09e-16 40 2.89e-16 10 2.95e-16

8 1.02e-16 40 3.18e-16 10 2.22e-16

8 1.74e-16 40 4.27e-16 10 2.28e-16

8 1.39e-16 40 4.48e-16 10 2.81e-16

8 1.53e-16 40 2.48e-16 10 2.25e-16

8 9.44e-17 40 2.90e-16 10 2.02e-16

8 1.46e-16 40 2.81e-16 10 2.02e-16

8 1.15e-16 40 3.50e-16 10 2.54e-16

8 1.02e-16 40 2.95e-16 10 2.44e-16

8 1.05e-16 40 4.24e-16 10 2.41e-16

8 1.16e-16 40 2.48e-16 10 2.06e-16

8 1.05e-16 40 2.78e-16 10 2.73e-16

8 1.42e-16 40 4.41e-16 10 2.72e-16

The LDLT decomposition for semi�positive matrices is a very e�cient algorithm

which can be used for several jobs which occur in the linear algebra. Besides the

features of the LDLT decomposition for positive matrices we also have:

� This algorithm can be used to determine the rank of a semi�positive matrix.

� This algorithm provides a non�squared Cholesky decomposition. We de�ne

C = L̂D̂
1

2 and then holds S = C �C>. We remark that it is as fast as the usual

Cholesky decomposition and that it can be used for dimension reduction.

� If S is invertible, one can obtain S�1 = (L�1)> �D�1 �L�1. If S is not invertible

one can determine a pseudo inverse S+ by S+ = (L�1)> � ~D � L�1 where ~D is

diagonal with ~Dii =
1
Dii

if Dii 6= 0 and ~Dii = 0 if Dii = 0.

4 Generalized LDLT �Decomposition for Inde�nite

Symmetric Matrices

In the previous sections we showed, that there exists a LDLT decomposition for pos-

itive and semi�positive matrices. But in general, there is no LDLT decomposition:

Proposition 1 In general, there is no LDL
T
decomposition for symmetric matrices.

Proof. Consider the following example:�
0 1

1 0

�
?
=

�
1 0

l 1

�
�

�
d1 0

0 d2

�
�

�
1 l

0 1

�
(41)
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The �rst column of this matrix equation lead to the following two equations:

0 = d1 (42)

1 = d1l (43)

Obviously, this system has no solution for d1.

To understand, what can happen in the case of general symmetric matrices, we again

analyze one step of the algorithm for the matrix

S =

�
S11 s>

s ~S

�
(44)

If S11 6= 0 we can perform the LDLT algorithm at this step. Even if S11 is negative,

that does not matter, we have a negative D11 then. So the problems arise, if S11 = 0.

Recall that this case can not occur, if S is positive. If S is semi�positive then we

know that S11 implies s = 0 and there is again no problem. In the general case it

could happen, that S11 = 0 and s 6= 0. Then the LDLT algorithm does not work.

But of course, this situation may happen for general symmetric matrices and our

example is exactly of this kind.

We now extend the LDLT decomposition algorithm in such a way, that it will give the

usual LDLT decomposition in the case of an semi�positive input. For an inde�nite

input, we want to obtain the LDLT decomposition as a semi�positive approximation.

4.1 A �rst Approximation Algorithm

Let S be a symmetric matrix. The idea is to obtain a semi�positive approximation

of S by performing the LDLT algorithm with some slight modi�cations. We use the

pivoting strategy which we introduced in section 3. So P is a permutation matrix

such that S11 is the largest diagonal element of the matrix PSP>.

PSP> =:

�
S11 s>

s ~S

�
�

�
1 0

l ~L

��
D11 0

0 ~D

��
1 l

0 ~L>

�
(45)

Algorithm 2 If S11 > 0 then one makes a usual LDL
T
decomposition step,

D11 = S11 and l = s=S11. Then the next LDL
T
step will be made on the matrix

~S � ss>

S11
. If S11 � 0 we set D11 = 0, l = 0 and the next LDL

T
step will be performed

on ~S.

If S is semi�positive, algorithm 2 obviously performs the usual LDLT decomposition

on a semi�positive matrix and the result is exact. On the other hand if S is inde�nite,

LDL> is a semi�positive matrix, which can be viewed as an approximation of S.

The disadvantage of this algorithm is, that in general as well the diagonal elements as

the o��diagonal elements of the approximation will di�er from the original matrix,
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if some approximation steps have been made. We will therefore introduce an other

modi�cation, which yields to a diagonal preserving approximation, if possible, i.e.

if all diagonal elements are non�negative.

4.2 A diagonal preserving LDLT based Approximation Algo-

rithm

In general, the algorithm 2 modi�es as well the diagonal elements as the o��diagonal

ones. Sometimes however, it may be favorably, to keep the diagonal elements in the

semi�positive approximation. Of course this is only possible, if all diagonal elements

are non�negative (see lemma 2) and if diagonal elements are negative they will be

set to zero. Therefore we now assume, that the diagonal elements are non�negative.

From lemma 2 we know a boundary for the absolute value of an o��diagonal element.

Therefore at each step we check the elements of the �rst column at the cost of O(N)

computations and each element which exceeds the boundary will be set to the nearest

value in the range. The total computational e�ort of this rescaling technique is of

order O(N2), so that it does not e�ect the asymptotic computation time.

If the given matrix is semi�positive, one would never detect a violation of the bound-

ary and therefore this diagonal preserving algorithm would yield to the exact LDLT

decomposition. So we summarize the diagonal preserving algorithm of S with non�

negative diagonal elements:

Algorithm 3

1. If the dimension of S is 1, de�ne P = (1), L = (1) and D = S. Stop.

2. Choose P̂ as the permutation between 1 and j, where j is such that Sjj � Sii
holds for all i = 1; : : : ; N . De�ne the N �N matrix U by

P̂SP̂> =: U =

�
U11 u>

u ~U

�
(46)

3. Rescale the vector u, that is de�ne the vector û:

ûj := sgn(uj)min
�
jujj;

p
U11Ujj

�
(47)

4a. If U11 > 0 compute the LDL
T
decomposition of the (N � 1)� (N � 1) matrix

~U �
1

U11

ûû>:

~P ( ~U �
1

U11
ûû>) ~P> = ~L ~D ~L (48)

De�ne

L :=

�
1 0
1

U11
~P û ~L

�
D :=

�
U11 0

0 ~D

�
P :=

�
1 0

0 ~P

�
P̂ (49)

Stop.
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4b. If U11 = 0, then de�ne P = P̂ , L = diag(1; : : : ; 1) and D = 0.

Remark that the rescaling procedure guarantees that the diagonal elements of the

remaining matrix are always non�negative. For a number of applications the diag-

onal preserving feature of algorithm 3 is very important. Of course, this algorithm

will give the usual LDLT decomposition if the input matrix is semi�positive.

4.3 A generalized non�square Cholesky decomposition

The algorithms 2 and 3 can also be used for dimension reduction in several appli-

cations. For a possibly inde�nite symmetric N �N matrix S these algorithms yield

to a decomposition

PSP> �= LDL> (50)

where D is diagonal, L is lower triangular and P is a permutation matrix. In (50)
�= denotes equality if S � 0 and an approximation if S has negative eigenvalues.

De�neM as the number of non�zero diagonal elements of D. Cancel the last N�M

columns of L and the last N �M rows and columns of D to obtain the matrices ~L

and ~D. Since we have only eliminated zeros we still have:

PSP> �= ~L ~D~L> (51)

From this equation we conclude:

S �=
�
P>~L

p
~D
��

P>~L
p

~D
�>

(52)

So we found a Cholesky type decomposition of S with full rank factors. Due to

the column elimination ~L is not square in general and hence we obtain a non�

square Cholesky decomposition. If this generalized Cholesky decomposition is an

approximation of the matrix S, then the diagonal elements of S will be preserved

unless they are non�negative.

Whichever one uses algorithm 2 or 3, the cost of computation amounts approxi-

mately to N3=6 operations consisting of one multiplication, one addition and the

loop management. So this algorithm is asymptotical as fast as the usual Cholesky

decomposition algorithm.

In fact, this is only a Cholesky type decomposition, since the matrix C := ~L
p

~D

is lower triangular, but due to the row permutations, the matrix PC is not lower

triangular in general. Therefore it is useful to store the permutation separately

in order to have a control about the zeros, what can help to save time in further

processing.
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5 Known Approximation of inde�nite symmetric Ma-

trices

In practice, one often knows, that a given matrix must be semi�positive by theory,

but due to numerical roundo�s or estimation errors one gets an inde�nite, symmetric

matrix. In this section we recall some known standard techniques for (semi�) positive

approximations of symmetric matrices and compare these methods with algorithm

3 in section 6.2.

in order to compare these methods with the algorithm 3 later in section 6.2.

We want to �nd an approximation S of the matrix S 0, such that S is positive or semi�

positive and that jjS � S 0jj = small. If S 0 is positive, S = S 0 must hold. Of course,

the condition �jjS � S 0jj = small� is ambiguous, since there are several matrix norms

and small is also not very clear. It could be perhaps replaced by minimal, but we

will see, that this cost much more computational time than a relaxed condition,

something like �quick and dirty�. We �rst recall some facts about the approximation

of inde�nite symmetric matrices by semi�positive symmetric matrices.

5.1 Minimal Approximations

5.1.1 Best Approximation in the Frobenius Norm

The most familiar approach to get a semi�de�nite approximation of an inde�nite

symmetric matrix S 0 is given by a spectral decomposition. Let

S 0 = Q>�0Q (53)

with Q orthogonal and �0 diagonal. De�ne � and S by

� := diag (max(0;�011); : : : ;max(0;�0NN)) (54)

S := Q>�Q (55)

then the following statement holds:

Theorem 3 S is the unique best semi�positive approximant of S 0 with respect to the

Frobenius norm, i.e. for all positive symmetric ~S 6= S holds:

jjS 0 � SjjF < jjS 0 � ~SjjF (56)

For the proof see N.J. Higham [6], theorem 2.1. The computation of this approxi-

mant costs approximately 5N3 computations, where one computation consists of one

multiplication, one addition and the loop management. Recall that in this respect

the multiplication of two square N �N matrices cost 1 �N3 computations.
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5.1.2 Best Approximation in the spectral norm

The spectral norm of a matrix A is de�ned by

jjAjj2 :=
p
largest eigenvalue of A>A (57)

Properties of an optimal semi�positive approximation with respect to this norm can

be found in Halmos [5], Higham [6].

Theorem 4 Let S 0 be a symmetric matrix, 1 = diag(1; : : : ; 1) and de�ne

Æ2(S
0) := minfr � 0 j S 0 + r1 � 0g (58)

Furthermore, let �i denote the eigenvalues of S 0.

Then Æ2(S
0) = max(0; f��iji = 1; : : : ; Ng) and the matrix

S := S 0 + Æ2(S
0)1 (59)

is a best semi�positive approximation of S 0 with respect to the spectral norm with

jjS 0 � Sjj2 = Æ2(S
0) (60)

A straight forward algorithm to detect Æ2(S
0) is an eigenvalue decomposition. On

the other hand, one could also use some bisection algorithm to detect Æ2(S
0). For

each steps one must decide, whether S 0 + r1 is semi�positive or not and the LDLT

algorithm can be used for this task. For the details see again the paper of Higham,

where also an upper bound for Æ2(S
0) is given, which may be used to start the

bisection approach.

The optimal approximation S with respect to the spectral norm is not unique, e.g.

by the following example. Let

S 0 =

�
�1 0

0 �2

�
S1 =

�
1 0

0 0

�
S2 =

�
0 0

0 0

�
(61)

then S1 is the approximant from the theorem. On the other hand we have

jjS1 � S 0jj2 = jjS2 � S 0jj2 = 2 (62)

5.2 Unit�diagonal Approximations

If the symmetric matrix S 0 is such, that S 0ii = 1 (e.g. a perturbed correlation matrix)

one likes to get a semi�positive approximation S with Sii = 1. There are also some

algorithms to get such approximations, which we recall for completeness, since we

will compare our algorithm 3 with these methods.
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5.2.1 Linear Shrinking Method

This method and some generalisations can be found in [2]. For a unit�diagonal

symmetric matrix S 0 one de�nes

� = maxfm 2 [0; 1] j mS 0 + (1�m)1 is semi�positiveg (63)

with 1 = diag(1; : : : ; 1) and the semi�positive approximation is given by

S := �S 0 + (1� �)1 (64)

There are two techniques to determine �. One possibility is to perform a bisection

and for each bisection step one has to decide, whether the corresponding matrix is

semi�positive or not. The latter test can be performed by a LDLT algorithm for

example.

Another way to determine � is to determine the eigenvalues. Let � be the smallest

eigenvalue. If � is less than 0, the matrix S 0 is inde�nite and � is given by

� =
1

1 + j�j
(65)

5.2.2 Hypersphere Decomposition

Again we assume, that the given N �N matrix S 0 is unit diagonal. We know that

any unit diagonal, semi�positive approximation S can be decomposed by an lower

triangular matrix B, such that S = BB>. Since Sii = 1, the rows of B contain

unit vectors. An elegant method by Rousseeuw and Molenberghs [10] to describe

the matrix B is to use angular coordinates �i;j:

Bij =

8>>>>>>>><
>>>>>>>>:

0 if i < j

1 if i = j = 1

cos�i;1 if i = j > 1�
i�jQ
l=1

sin�i;l

�
cos �i;i�j+1 if i > j > 1

i�jQ
l=1

sin�i;l if i > 1 and j = 1

(66)

So for the ith row one needs i�1 angles to describe this row and the whole matrix B

is described by
(N�1)N

2
angles. Using this parametrization it is convenient to de�ne

an error measure, for example by the Frobenius norm:

f(�) :=

NX
i;j=1

(S 0ij � (S>)ij)
2 (67)

In order to �nd the best approximation S with respect to the error measure (67) one

can perform an unconstrained minimum search using the steepest descend method
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or even more sophisticated methods like conjugate gradients. In our example we

suggested to de�ne the error by the Frobenius norm. For this norm we know, that

the best approximation is unique and therefore the minimum search will be stable.

The advantage of the hypersphere decomposition approach is that one may use dif-

ferent error measures. However, one has to calibrate
(N�1)N

2
parameters and for

each iteration of the minimizing routine one has to evaluate a matrix product. So

one minimizes in a O(N2) dimensional space and the evaluation of the function

costs about O(N3). Therefore the computation time of the hypersphere decompo-

sition algorithm is of O(N5) in general, so it is a rather costly procedure for larger

dimensions.

5.2.3 Rescaling of a positive Approximation

For a given semi�positive approximation S of S 0, with positive diagonal elements,

e.g. obtained by spectral decomposition (see 5.1.1), we may de�ne:

~Sij =
Sijp
SiiSjj

(68)

and thus obtain an approximation ~S with unit diagonal elements.

6 Analysis of the new LDLT based Algorithms in

practice

6.1 Comparison of known LDLT based Approximation Algo-

rithms

We discuss two known approaches of approximating a symmetric inde�nite matrix

by a positive symmetric matrix. The �rst method (GMW) is the algorithm by Gill,

Murray and Wright (1981), which comes from the context of numerical optimization.

The idea is to choose a � > 0 and perform the usual LDLT decomposition step until

a diagonal element is smaller than �. Once a diagonal element less than � occurs, it

is set to � and then the LDLT algorithm proceeds. The value of � has to be chosen

carefully to keep the algorithm numerical stable.

In [11] Schnabel and Eskow (ES) give an improvement of the GMW algorithm.

They also gave an error bound for the approximation jjS�S 0jj using the Gerschgorin

circle theorem (e.g. see [1]).

Both algorithms have the basic idea to approximate with respect to the spectral

norm and therefore to change (increase) the diagonal elements if necessary and

they are based on the LDLT decomposition. But both algorithms also increase the

diagonal elements, if the given matrix is only semi�positive but not strict positive,
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so they are not able to handle rank de�cient semi�positive matrices. To compare

the di�erent algorithms we consider the same example which has been analyzed in

[3] and [11]:

S 0 =

0
@ 1 1 2

1 1 3

2 3 1

1
A (69)

S 0 is inde�nite since the eigenvalues of S 0 are given by (5.113, 0.089, -2.202). We

apply the new algorithms 2 and 3 and compare the results with the results from the

algorithms GMW and ES. One obtains the following approximations:

SGMW =

0
@ 3:771 1:000 2:000

1:000 6:015 3:000

2:000 3:000 3:242

1
A SES =

0
@ 3:000 1:000 2:000

1:000 3:220 3:000

2:000 3:000 3:220

1
A

S2 =

0
@ 1:000 1:000 2:000

1:000 1:000 2:000

2:000 2:000 4:000

1
A S3 =

0
@ 1:000 1:000 1:000

1:000 1:000 1:000

1:000 1:000 1:000

1
A

We compare the approximation error with respect to several matrix norms1:

Norm SGMW SES S2 S3

jjS � S 0jj2 5.105 2.220 3.303 2.236

jjS � S 0jj1;1 5.105 2.220 4.000 3.000

jjS � S 0jjF 6.153 3.722 3.317 3.162

This table shows, that in this example, the algorithm GMW is the worst one with

respect to all three norms. The algorithm 3 dominates the algorithm 2, with respect

to the di�erent norms. The algorithm ES outperforms 2 and 3 with respect to the

1-norm, but one the other hand our new algorithms are better with respect to the

Frobenius norm. Note that the algorithm 3 gives a similar spectral norm error

like the algorithm ES, which is designed to minimize the approximation error with

respect to the spectral norm.

From this comparison of the approximation errors, we conclude, that the algorithms

ES and 2 are comparable and that 3 is the best algorithm in this example, because

algorithm 3 minimizes the error with respect to both the Frobenius norm and the

spectral norm in the best way.

Another great bene�t from the algorithms 2 and 3 is, that the corresponding LDLT

decompositions give a dimension reduction. So from the algorithm 2 respectively 3

1The de�nition of the 1,1 norm are given by jjSjj1 := maxj

P

i

jSij j and jjSjj1 := maxi

P

j

jSij j.

Since S is symmetric in our case, we obviously have jjSjj1 = jjSjj1 what explains the notation

jjSjj1;1 in the table.
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one obtains:

L2 =

0
@ 1

1

2

1
A ; D2 = (1) L3 =

0
@ 1

1

1

1
A ; D3 = (1) (70)

Though S3 in the example is degenerate, it is the best possible approximation with

respect to the Frobenius norm under the condition, that the diagonal elements are

preserved.

6.2 Comparison of unit�diagonal Approximation Algorithms

Let S be a symmetric, unit�diagonal N � N matrix. Then we can obtain a semi�

positive approximation of S by applying algorithm 3:

PSP> �= LDL> (71)

where �= denotes equality if S is semi�positive and if S is inde�nite we obtain an

approximation. Hence we obtain a semi�positive approximation by algorithm 3 by:

S3 := P>LDL>P (72)

In this section we study the approximation error involved by a semi�positive ap-

proximation of perturbed correlation matrices, which in fact are unit�diagonal semi�

positive matrices.

We will focus on matrices with rank M < N , since only such matrices can become

inde�nite if small perturbations occur. So we �rst generate a M � N matrix B

where Bij is iid. U(-1,1) distributed. Then each row of B is rescaled to unit length

such that
P

j B
2
ij = 1 and so a correlation matrix S is obtained by S = BB>. Now,

a�-perturbation of S is given by S� = S + �Z where Z is a symmetric matrix with

diagonal elements 0 and o��diagonal elements �1, each with probability 1
2
.

For such a constructed perturbed correlation matrix S� we want to determine a semi�

positive approximant. We observe such an approximant Sapprox by four algorithms:

� The linear shrinking method described in 5.2.1 yields to the approximation

SLS.

� The optimal correlation approximation Sopt by using the hypersphere decom-

position algorithm described in 5.2.2.

� The scaled correlation approximation Sscaled by a rescaling described in (5.2.3)

of the best approximation with respect to the Frobenius norm, which one

determines by a spectral decomposition (5.1.1).

� The approximation S3 by using our new algorithm 3.
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In the following picture we have diced 50 perturbed correlation matrices with per-

turbation � = 0:05, dimension N = 10 and the original correlation matrix has rank

M = 5. Then for each matrix we plotted the distance jjS��SapproxjjF . The distance

between S and S� is given by

jjS � S�
jjF =

p
N(N � 1) � (73)

and this perturbation distance is indicated by the horizontal lines.

One can see, that the method of rescaling after spectral decomposition attains

nearly optimal results. For both methods the approximation error is round about
1
2
jjS � S�jjF . The approximation errors one gets from the linear shrinking method

and from the algorithm 3 lie round about 1�2 times jjS � S�jjF .

Let us consider the complexity of the di�erent methods. The hypersphere decom-

position method returns the optimal results, but the computation time of this algo-

rithm is of order O(N5), while the other three methods are of order O(N3). Clearly,

the spectral decomposition methods gives clearly good results but of the costs of

round about 5N3 operations. The linear shrinking method can be performed by

an bisection algorithm where for each iteration one has to decide, whether a given

symmetric matrix is positive or not. In order to check a matrix, one could perform

a Cholesky based algorithm and the total costs of the linear shrinking method is

round about 2N3 operations, depending on the desired accuracy of � in equation

(64). The algorithm 3 is with a computation time of 1
6
N3 operations the fastest

algorithm. Depending on the priority of accuracy and computation time one can

choose one of these approximation algorithms. If the restriction on the computation

time has high priority, our algorithm, which yields comparable approximation errors

with the linear shrinking method, seems to be the best choice.
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7 Applications to Finance

A typical issue in computational �nancial mathematics is a Cholesky decomposition

of a given usually rank de�cient covariance or correlation matrix. In this respect our

proposed algorithm 3 provides a useful tool, in particular when the size of the matrix

under consideration is large or when the matrix has small negative eigenvalues due

to noisy observations. For instance, an estimated covariance or correlation matrix

may have negative eigenvalues when the available time series of data is not long

enough. Indeed, 3 returns a semi�positive decomposition of a semi�positive matrix

and a semi�positive approximation in the case, that the matrix is inde�nite. Also

the diagonal preserving property of the algorithm is desirable in practice, in partic-

ular for the decomposition of correlation matrices and the computation e�ciency is

comparably with the usual Cholesky decomposition.

7.1 Monte Carlo Evaluations

There are several applications of Monte Carlo methods in �nance, such as risk

management and option pricing of complex �nancial products. In risk management

one typically needs to simulate a multivariate N dimensional vector X with mean

vector m and covariance matrix C. This can be done by a non�square Cholesky

decomposition of C

P � C � P> = B �B> (74)

and one obtains the permutation P and the N�M matrix B whereM is the rank of

C. For one sample of X one needs to generate M � N iid N(0,1) random numbers,

which are the components of the vector Z. and X is given by:

X = m+ P>B � Z (75)

The property of our new non�square Cholesky decomposition to detect possible

linear dependencies can improve the e�ciency of Monte Carlo Methods, since one

does not need to generate N but only M � N normal distributed random numbers

per sample. Of course, the decomposition has to be made once at the beginning of

the Monte Carlo simulation only.

7.2 Stress Testing in Risk Management

An in practice widely-used risk measure is the Value at Risk (VaR), which is equal

to the amount of money, such that the loss of the portfolio will not exceed the VaR

within a certain time horizon with a given probability. A simple and well known

approach to determine the VaR is the delta-normal-approximation:

VaR = k�>S� (76)
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where � is the vector of portfolio sensitivities, S is a covariance matrix and k is a

constant, which depends on the given probability and time horizon. By rescaling

Cij :=
Sijp
SiiSjj

di := �i

p
Sii (77)

we obtain

VaR = k d> � C � d (78)

where C denotes the correlation matrix of the di�erent risk factors.

In order to evaluate the VaR by this approach, it is not necessary to decompose the

correlation matrix and to check, whether it is semi�positive or not. But if such a

check will not be made, the risk manager would not have the guaranty, that the VaR

is positive. Even if the resulting VaR is positive, there is of course the question, how

reliable such a result would be.

In practice, a risk manager will change certain correlations in order to see how the

risk will change, if some correlations change (stress testing). Further, it may happen

that some entries in the correlation matrix cannot be determined from time series

and so they have to be guessed, for example the entries concerning the stock of a

�rm just after an acquisition or an initial public o�ering. In such situations the

risk manager wants to see, how the VaR depends on a certain correlation. So it

is necessary to perform several computations of the VaR, and each computation

requires a semi�positive approximation of the perturbed correlation matrix which

can be obtained by algorithm 3. If BB> is the non�square Cholesky decomposition

of PCP>, the VaR can be calculated by:

VaR = k(PB>d)> � (PB>d) (79)

This VaR is always based on a semi�positive correlation matrix and is therefore

much more reliable than a simple calculation based on (78).

7.3 Delta�Gamma�Normal Approach to Value at Risk

Another application of the algorithm 3 is the computation of the VaR by the delta�

gamma�approach. In this delta�gamma approximation one assumes, that the value

V of the portfolio at some future time T is given by

VT = V0 +�>X +X>�X (80)

where X is multivariate normal distributed with mean 0 and covariance C. Again,

we decompose C �= P>BB>P , where P is a permutation matrix and B is a N �M

matrix. Then if Z is a M�dimensional vector of iid N(0,1) random variables, we

have X = P>BZ and the portfolio value can be written as:

VT = V0 +
�
B>P�

�>
Z + Z>

�
B>P�P>B

�
Z (81)

=: V0 + ~�>Z + Z>~�Z (82)
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Note that ~� and ~� areM�dimensional, so the dimension of this problem is reduced.

In applications a typical value for N is 1000 and the covariances are estimated from

a one year time series and so the rank M of the covariance matrix can not exceed

the length of this series of typical 250 days.

This aspect is very important in this situation, since for the next step in the cal-

culation one needs to perform an eigenvalue decomposition. If the dimension will

be reduced by a non�square Cholesky decomposition, this saves a lot of computa-

tion time, since this part is quite expensive for the delta�gamma�normal method to

determine the VaR. After the eigenvalue decomposition the characteristic function

of the portfolio is known and the pro�t and loss distribution (hence also the VaR)

can be obtained by Fourier inversion. A detailed description of this algorithm goes

beyond the scope of this paper and can be found in [9].

We want to emphasize that the dimension reduction feature of the non�square

Cholesky decomposition gives a great reduction of the computation time for the

delta�gamma VaR�algorithm. Of course, the idea of stress testing can also be ap-

plied in this context and demands again a fast decomposition algorithm.
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