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Abstract

The �eld distribution at the ports of the transmission line structure is com-

puted by applying Maxwell's equations to the structure. Assuming longitudi-

nal homogeneity an eigenvalue problem can be derived, whose solutions corre-

spond to the propagation constants of the modes. The nonsymmetric sparse

system matrix is complex in the presence of losses and Perfectly Matched

Layer. The propagation constants are found solving a sequence of eigenvalue

problems of modi�ed matrices with the aid of the invert mode of the Arnoldi

method. Using coarse and �ne grids, and a new parallel sparse linear solver,

the method, �rst developed for microwave structures, can be applied also to

high dimensional problems of optoelectronics.
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1 Introduction

The �elds of applications are mobile communications, radio links, automobile radar

systems, optical communications and material processing. The commercial appli-

cations of microwave circuits cover the frequency range between 1 GHz and about

100 GHz, special applications in radioastronomy use even higher frequencies up

to 1 THz. For optoelectronic devices frequencies about several hundred THz are

common.

Basic elements of the structures are their transmission lines, whose propagation

behavior has to be determined accurately. The propagation behavior of the trans-

mission lines can be calculated by applying Maxwellian equations to the in�nitely

long homogeneous transmission line structure and solving an eigenvalue problem [1].

Only a few modes of smallest attenuation are able to propagate and have to be taken

into consideration. Using a conformal mapping between the plane of propagation

constants and the plane of eigenvalues the task is to compute all eigen modes in a

region, bounded by two parabolas. The region is covered by a number of overlapping

circles. The eigen modes in these circles are found solving a sequence of eigenvalue

problems of modi�ed matrices [2] with the aid of the invert mode of the Arnoldi

iteration using shifts.

For numerical treatment, the computational domain has to be truncated by electric

or magnetic walls or by a so-called absorbing boundary condition simulating open

space. A very e�cient formulation for the latter case is the Perfectly Matched Layer

(PML) [3]. Introducing the complex, anisotropic material PML leads to an increased

computational time.

Due to the fact, that only small fractions of a microwave circuit can be simulated, the

pressure to larger problem sizes is evident. Especially, the application of the method

for optoelectronic devices requires new strategies to reduce the numerical e�ort and

storage requirement. The computation of large cross sections combined with an

extension of speci�c material layers in the sub �m-range yields high dimensional

problems. Additionally, due to the high wavenumber in semiconductor lasers the

region containing potential propagating modes grows substantially. That means, a

signi�cant higher number of eigenvalue problems have to be solved. To reduce the

execution times, in a �rst step the problem is solved using a coarse grid in order

to �nd approximately the locations of the interesting propagation constants. The

accurate modes are calculated in a second step for an essentially reduced region using

a �ne grid. In addition, the method is optimized reducing the storage requirement

and the computing times applying a new linear sparse solver, that can be used serial

or parallel.
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2 Boundary Value Problem

We start from a three-dimensional structure. The structure under investigation can

be described as an interconnection of in�nitely long transmission lines. The junc-

tion, the so-called discontinuity, may have an arbitrary structure. The transmission

lines have to be longitudinal homogeneous. Ports are de�ned on the transmission

lines. A three-dimensional boundary value problem can be formulated using the

integral form of Maxwell's equations in the frequency domain in order to compute

the electromagnetic �eld:I
@
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I
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|![�] ~H � d~
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([�] ~H) � d~
 = 0; (2)

~D = [�] ~E; ~B = [�] ~H; [�] = diag (�x; �y; �z) ; [�] = diag (�x; �y; �z) : (3)

The transverse electric mode �elds at the ports are the solutions of an eigenvalue

problem for the transmission lines. All other parts of the surface of the computation

domain are assumed to be an electric or a magnetic wall. The PML's are �lled with

an arti�cial material with complex anisotropic material properties. Therefore, the

quantities are diagonal complex tensors.

3 Maxwellian Grid Equations

The Maxwellian equations are discretized using staggered nonequidistant rectangu-

lar grids. Using the Finite Integration Technique (FIT) [4], [5], [6] with the lowest

order integration formulaeI
@


~f � d~s �
X

(�fisi);
Z



~f � d~
 � f
 (4)

equations (1), (2) are transformed into a set of Maxwellian grid equations

ATDs=�
~b = |!�0�0DA�

~e; BDA�
~e = 0; (5)

ADs~e = �|!DA�

~b; ~BDA�

~b = 0: (6)

The vectors ~e and ~b contain the components of the electric �eld intensity and the

magnetic �ux density of the elementary cells, respectively. The diagonal matrices

Ds=�, DA�
, Ds, and DA�

contain the information on cell dimension and material. A,

B, and ~B are sparse.

Eliminating the components of the magnetic �ux density from the two equations of

the left-hand side of (5), (6) we get the system of linear algebraic equations

(ATDs=�D
�1

A�
ADs � k20DA�

)~e = 0; k0 = !
p
�0�0; (7)

which have to be solved using the boundary conditions. k0 is the wavenumber in

vacuum.
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4 Eigen Value Problem

The �eld distribution at the ports is computed assuming longitudinal homogeneity

for the transmission line structure. Thus, any �eld can be expanded into a sum of

so-called modal �elds which vary exponentially in the longitudinal direction

~E(x; y; z) = ~E(x; y)e�|kzz: (8)

A substitution of ansatz (8) into the system of linear algebraic equations (7) and the

elimination of the longitudinal electric �eld intensity components by means of the

electric-�eld divergence equation BDA�
~e = 0 (see (5)) gives an eigenvalue problem

C~e = ~e;  = �4 sin2(hkz): (9)

~e consists of components of the discretized eigenfunctions ~E. 2h is the length of

an elementary cell in z-direction. The sparse matrix C is in general nonsymmetric

complex. The order of C is n = 2nxny � nb. nxny is the number of elementary cells

at the port. The size nb depends on the number of cells with perfectly conducting

material. The relation between the propagation constants kz and the eigenvalues 

is nonlinear, and can be expressed as

kz =
|

2h
ln

�


2
+ 1 +

r


2

�
2
+ 2
��

= � � |�: (10)

We are interested only in a few modes with the smallest attenuation. These are the

modes with the smallest magnitude of imaginary part, but possibly with large real

part of their propagation constant. The computation of all eigenvalues in order to

�nd a few propagation constants must be avoided for the high-dimensional problem.

For numerical treatment we have to limit the search for propagation constants by

a maximum value kf of their real part. This kf value depends on the highest

permittivity [�] and permeability [�] values of the waveguide, though regions with

metallic or PML �lling are ignored, see [2]. Using the limited kf and a preset

maximum value �m of the imaginary part of the propagation constants the region

containing the interesting constants is de�ned as a rectangle F̂ bounded by the lines

� = �kf and � = �m: (11)

In an additional step all computed modes that are related to the PML boundary are

neglected, using the power part criterion given with [8]. We can use the approxima-

tion sin(x) � x in (9) if we choose h to be small enough, which is necessary anyway

to get small discretization errors:

 = �4 sin2(hkz) � �4(hkz)2 = u+ |v: (12)

With aid of the approximation (12) we get a conformal mapping between the plane

of eigenvalues (-plane) and the plane of propagation constants (kz-plane, see (10)):

u = �4h2(�2 � �2); v = 8h2��: (13)
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Using this mapping the rectangle F̂ of the kz-plane is transformed into a region F

of the -plane bounded by the two parabolas

v = �4hkf
q
u+ 4h2kf

2 and v = �4h�m

p
�u+ 4h2�m

2: (14)

That means, we have to �nd all eigenvalues of the region bounded by the parabolas.

5 Computation of Eigen Modes

We need an algorithm that computes just a few selected eigenvalues and eigenvectors

of a complex sparse matrix. A state-of-the-art algorithm for such problems is the

Arnoldi method [9], [10]. In general the Arnoldi method converges for our problem

only using the invert mode and looking for eigenvalues of largest magnitude. Thus,

a simple way to �nd the eigenvalues located in the region F would be to look for

all eigenvalues of smallest magnitude, which are located in a circle centered on the

origin and covering the region F . Caused by the high wavenumber kf , the number

of eigenvalues located in this circle is too much in general for a feasible computation

using an iterative method. We can solve this problem covering the region F with

s � 1 circles Ci; i = 1(1)s, centered on the u-axis and calculating the eigenvalues

located in these circles. That is done in the following way. s points

P̂i(�i; �m); i = 1(1)s; �1 =
kf

s
� ��; �s = kf ; with �� =

p
3�m (15)

are de�ned on the interval [0; kf ] of the line � = �m. The distance between the points

have not to be equidistant and is controlled as shown below. Even the meaning of

the distance �� is discussed below. The points P̂i are transformed into the points Pi

of the -plane. They are located on the parabola ((14), right formula). The s circles

Ci of the -plane

(u+mi)
2 + v2 = ri

2; ri =
p

(=(Pi))2 + (mi �<(Pi))2; i = 1(1)s; (16)

with

m1 = 0; mi =
(<(Pi+1))

2 � (<(Pi))
2 + (=(Pi+1))

2 � (=(Pi))
2

<(Pi+1)� <(Pi)
(17)

are centered on the u-axis, covering the region bounded by the parabolas.

In order to �nd all eigenvalues, located in the circle Ci, l points Qj are de�ned on

the periphery of Ci. The matrix C is extended by the diagonal matrix Q. The

diagonal elements of Q are the l complex elements Qj:

�C =

�
Q

C

�
; Q = diag(Q1; :::; Ql): (18)

The s eigenvalue problems

( �C �miI)~e = ( �mi)~e; i = 1(1)s; (19)
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are solved with the aid of the implicitly restarted Arnoldi method using the invert

mode. The eigenvalue problems can be solved separably.

The number m of eigenvalues to be computed for this circle must be l on the �rst

call to the Arnoldi procedure. The main idea is to raise m by l for so long until

at least one value Qj was found. But, since m � �n (�n order of matrix �C) for a

feasible computation, one has to restrict the number m of required eigenvalues by

mmax. If m exceeds mmax, we insert a point P̂i+ 1

2

between P̂i and P̂i+1 and restart

with m = l. The same procedure is used if a given number �max of iterations in the

Arnoldi method is exceeded. If the condition

�P̂ = <(P̂i+ 1

2

)� <(P̂i) �
�m

2
(20)

cannot be ful�lled, we have to restart with new parameters mmax, �max and possibly

�m.

If all eigenvalues Qj are found in case of m > l, we look for the eigenvalue max of

largest magnitude. If
p
jmaxj > ri, a new circle ~Ci of radius

p
jmaxj with the same

center as Ci is de�ned. The left intersection point of this circle with the parabola

((14), right formula) is used as new point Pi+1, and�P̂ = <(P̂i+1)�<(P̂i) as distance

for the next step. m is reduced by the number of eigenvalues with
p
jj > ri for the

next circle.

Separating the new values on each eigenvalue problem i, we are sure to have found all

eigenvalues which are located in the corresponding circles Ci. Applying the mapping

(13) the circles Ci (see (16)) are transformed into Cassinian curves Ĉi

(�2 + �2)2 �
mi

2h2
(�2 � �2) =

ri
2

16h4
�

mi
2

16h4
; (21)

which cover the rectangle F̂ containing all desired propagation constants. Propaga-

tion constants outside of F̂ and PML-Modes are eliminated. The Cassinian curves

Ĉi; i = 2(1)s, consist of two separated ovals, if ri < mi. Using �� as minimum

distance between two points P̂i and P̂i+1 (see (15)) other shapes of Cassinian curves

(e.g. waisted ovals), which would lead to higher execution times, are avoided.

6 Optoelectronic Devices

The maximum cell size of discretization should be less than �
10
, where � denotes the

wavelength in the material with the highest <(�). Essentially �ner grids have to be
used for regions of the circuit with highly variable electric �elds. That means, the

problems become high dimensional, and only small fractions of a circuit can be sim-

ulated. Especially the application of the method to optoelectronic devices requires

new strategies. The dimension of the eigenvalue problem to be solved increases es-

sentially in this case caused by the short wavelength. In addition, due to the high
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wavenumber in optoelectronic devices the length of the rectangle F̂ containing po-

tential propagation constants grows substantially. That means, we have to calculate

a signi�cant higher number of eigenvalue problems. Due to electric and magnetic

walls behind the PML undesired modes are generated inside the computation do-

main. The non physical modes can be eliminated by examining the eigenfunctions.

Anyway, the number of eigen modes to be calculated increases caused by the shifted

modes. Due to the signi�cant di�erence between the magnitude of the real and

imaginary part of the propagation constant a high computational accuracy has to

be required. To overcome these problems two strategies have been realized.

(1) To reduce the execution times, in a �rst step the problem is solved using a coarse

grid with lower accuracy requirements in order to �nd approximately the locations of

the interesting propagation constants. Finally the modes are calculated in a second

step for an essentially reduced region using a �ne grid, that ful�lls higher accuracy

requirements.

(2) Because in general the Arnoldi method does not converge using the regular mode

for our eigenvalue problem the invert mode with shifting (see (19)) is applied. A

time and memory consuming system of linear algebraic equations has to be solved

on each iteration step in this case. The storage requirement and the computing

times could be reduced substantially applying the new linear sparse solver PAR-

DISO [11], [12] rather than the formerly used UMFPACK [13]. The �ll in is reduced

approximately by a factor of 4:75. Moreover, the dynamic memory allocation of

PARDISO allows to diminish the memory requirements. The computing times for

the numerical factorization and forward and backward solve are reduced on the av-

erage by a factor of 15 and 4 for our problem, respectively. The algorithm is split

into three phases: symbolic factorization, numerical factorization, and forward and

backward solve. The symbolic factorization can be used for all modi�ed matrices of

our problem. The numerical factorization has to be repeated for every new shift.

The typical ratio of factorization time to solution time on a single CPU can be used

to de�ne �max in the subinterval control process (see section 5). This ratio amounts

on the average 20. That means, the costs using �max = 60 Arnoldi iterations for

the computation of m eigen modes in a circle Ci de�ned by the points Pi; Pi+1 are

comparable with the costs, de�ned by the costs for two circles de�ned by the points

Pi; Pi+ 1

2

and Pi+ 1

2

; Pi+1 using �max = 20 iterations. On the other hand the time is

lost, interrupting the computation of m eigen modes after �max = 60 iterations and

starting a new iteration process for two reduced circles. Thus, we use a greater �max.

Moreover, due to the signi�cant di�erence between the length and the height of the

rectangular region F̂ in the kz-plane we have to solve a large number s of eigenvalue

problems (see section 7). In order to diminish this number we use Cassinian curves

with relatively large diameters. That means, a number of non desired eigenvalues

outside of the area F̂ has to be calculated. In general the computation of a large

number m of eigenvalues in one circle needs more iterations than a small number.

The s eigenvalue problems (19) could be solved independently and in parallel using

s processors and single CPU mode of PARDISO. But that means, the amount of

memory increases nearly by a factor of s, and the maximum problem size which
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could be managed is reduced. Contrary to that the parallel CPU mode of PARDISO

provides an additional possibility to reduce the computing times for high dimensional

problems on shared memory multiprocessors without essential additional memory

requirements.

7 Laser Application

As an example we have calculated the guided mode of an optoelectronic device. A so

called self aligned stripe (SAS) laser is investigated, see Figure 1. This laser structure

contains an additional, so called antiguided layer (marked with �x = 12� i � 0:1 in

Figure 1) outside the emitting stripe (marked with �x = 11:3 + i � 0:05 in Figure

1). This high power laser diode excites only the fundamental mode, the active

region is useful for wavelengths shorter than 800 nm. The frequency is �xed to

299:7925 � 1012Hz.

In our eigen mode computation of the laser structure a graded mesh of 283 times

345 elementary cells, including 10-cell PML regions, is used as a �ne grid. The

maximum cell size amounts �
12

= 25nm, where � denotes the wavelength in the

material with the highest <(�). The minimum cell size is 1nm. Maximum cell size

is scaled down exponentially in the vertical direction near the 100nm zones and

in the horizontal direction near the material cut 118 and 119 (see Figure 1). The

dimension of the eigenvalue problem is 192 423. The eigenvalues and eigenvectors

have been solved with the relative accuracy tol = 10�10, and with mmax = 16; l = 5

(see section 5). 84 Cassinian curves have been used to cover the long small region

of the complex plane (�m = 2500m�1, kf = 21 765 592m�1, see (11)) containing

potential guided modes. A maximum number �max = 120 of Arnoldi iteration has

been used. The total computational time amounts approximately 3h and 23 minutes

using a Compaq Professional Workstation with processor XP1000 alpha 667 MHz.

One guided mode according to the lasers fundamental mode, was found. The com-

puted complex propagation constant is given by kz = 20 817 578 + j 1 488.

A graded mesh of 121 times 127 elementary cells is used as a coarse grid. The maxi-

mum cell size amounts 80nm, and the minimum cell size 4nm. The dimension of the

eigenvalue problem is 29 625. The total computational time amounts approximately

19 minutes using the relative accuracy tol = 10�7. The circle that contains the

guided mode is known after this step. The time to �nd the accurate value kz using

the �ne grid amounts only 142 s. Thus, the computational time is reduced by a

factor of 1/9 for the given structure.
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Figure 1: Laser (ampli�er)
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