
Weierstraÿ-Institut

für Angewandte Analysis und Stochastik

im Forschungsverbund Berlin e.V.

Preprint ISSN 0946 � 8633

Sound and surface waves in poroelastic media

Bettina Albers, Krzysztof Wilma«ski

submitted: 24th July 2002

Weierstrass Institute

for Applied Analysis

and Stochastics

Mohrenstr. 39

D � 10117 Berlin

Germany

E-Mail: albers@wias-berlin.de

E-Mail: wilmansk@wias-berlin.de

No. 757

Berlin 2002

WIAS
2000 Mathematics Subject Classi�cation. 74J10, 74J15, 74F10.

Key words and phrases. Waves in porous media, monochromatic waves, surface waves.



Edited by

Weierstraÿ-Institut für Angewandte Analysis und Stochastik (WIAS)

Mohrenstraÿe 39

D � 10117 Berlin

Germany

Fax: + 49 30 2044975

E-Mail: preprint@wias-berlin.de

World Wide Web: http://www.wias-berlin.de/



Abstract

We consider two problems of propagation of weak discontinuity waves in porous

materials. In the �rst part we present basic properties of bulk waves in fully sat-

urated materials. These materials are modelled by a two-component immiscible

mixture. We present general propagation conditions for such a model which yield

three modes of propagation: P1-, S-, and P2-waves. Then we discuss the disper-

sion relation and we show that results are strongly dependent on the way in which

waves are excited. In the second part we present some properties of surface waves.

We begin with the classical Rayleigh and Love problems and then we extend them

on heterogeneous materials important in practical applications. Subsequently we

proceed to surface waves in two-component porous materials on the contact surface

with vacuum (impermeable boundary) and with a liquid (permeable boundary). We

show the existence of di�erent modes of surface waves in the high frequency limit as

well as the degeneration of the problem in the low frequency limit.

1 Introduction

We present two problems of weak discontinuity waves in porous materials: acoustic waves

in saturated media modelled by a two�component continuum, as well as surface waves in

such media and their asymptotic properties.

Propagation of acoustic waves in geophysical porous materials plays a particularly impor-

tant role in testing porous and granular materials because laboratory measurements on

such materials usually di�er considerably from in situ measurements required in practi-

cal applications(e.g. see: [16]). Most of the theoretical results were obtained within the

so�called Biot's model (e.g. [3]). They have contributed immensely to the understanding

of the subject but simultaneously there are many very controversial issues related to the

application of this model. We mention some of them further in this work.

A particular practical bearing have surface waves. Various theoretical and practical as-

pects of such waves have been investigated for single component continua (e.g. [17], [12],

[4]). Very little has been done for two-component materials.

During the last decade the acoustics of porous materials was also developed within a

di�erent continuous model derived on the basis of a modern continuum thermodynamics.

This model in its linear version is on the one hand side simpler than the Biot's model, in

contrast to the Biot's model it does not violate the second law of thermodynamics and

the principle of material frame indi�erence, and on the other hand it describes changes of

porosity as an additional microscopical variable. In spite of these di�erences the number
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of acoustic modes of propagation and their fundamental properties are the same in both

models (e.g. [18]).

The second section contains a review of fundamental properties of P1-, S-, and P2-waves

in porous materials. However we emphasize an aspect of such waves which seems to be

overlooked in the literature. Namely we demonstrate the dependence of acoustic proper-

ties of porous media on the way in which the dynamic disturbance is excited. This way

is immaterial for the high frequency (short waves) asymptotics determining the speeds

of signals in the medium. However it becomes essential in the limit of low frequencies

(long waves) and these are of primary practical importance in soil mechanics and other

geophysical applications. As observed by I. Edelman [5] the monochromatic P2-wave as

a solution of an initial value problem does not propagate in the case of low wave numbers

(long waves). It means that such waves do not exist after some impact excitations (chop-

ping, explosions, etc.). Consequently some surface modes of propagation cannot appear

in the range of long waves as well. We return to this problem in the third section where we

discuss the propagation of surface waves in two limits: high frequency and low frequency.

We present results for a poroelastic materials with the impermeable boundary. Results

for both impermeable and permeable boundaries in limits of short and long waves can be

found in the papers [7] and [6].

2 Bulk waves in two-component poroelastic media

2.1 Field equations for two-component poroelastic media

We rely on the model of two-component poroelastic saturated media proposed in a fully

nonlinear form in the papers [19], [20]. We consider its linear version described by the

following �elds

partial mass density of the �uid �F (x;t),

velocity of the �uid vF (x;t),

velocity of the skeleton vS (x;t),

symmetric tensor of small deformations of the skeleton eS (x;t),



eS


� 1;1

porosity n.

1the norm of the deformation tensor is usually de�ned by means of its eigenvalues �i; i = 1; 2; 3�
e
S
� �i

1

�
k
i
= 0:

Namely


e
S



= max

����1�� ; ���2�� ; ���3��	 :
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These �elds have a purely macroscopic interpretation, and it is not needed in a theoret-

ical analysis to refer to any microscopical quantities related to these macroscopic �elds.

Certainly in practical applications such a reference may be necessary. For instance it may

be useful to estimate macroscopic elastic parameters in terms of true or drained elastic

properties of real materials, partial mass densities in terms of true mass densities or a

relative velocity in terms of the �lter velocity. In order to keep this work in a reasonable

size we do not enter this problem in this work (compare: [10]).

For these �elds the following �eld equations hold in the linear model of poroelastic mate-

rials

@�
F

@t
+ �

F
0 div vF = 0; (1)

�
F
0

@vF

@t
+ � grad �F + � grad (n� n0) + p̂ = 0; p̂ :=�

�
vF � vS

�
; (2)������

F � �
F
0

�
F
0

����� � 1;

�
S
0

@vS

@t
� div

�
�
S
�
tr eS

�
1+ 2�eS + � (n� n0)1

�
� p̂ = 0; (3)

@eS

@t
= symgradvS; (4)

@n

@t
+ n0 div

�
vF � vS

�
+
n� n0

�
= 0: (5)

In these equations �F0 ; �
S
0 ; n0 denote constant reference values of partial mass densities,

and porosity, respectively, and �; �
S
; �

S
; �; �; � are constant material parameters. The

�rst one describes the macroscopic compressibility of the �uid component, the next two

are macroscopic elastic constants of the skeleton, � is the coupling constant, � is the

coe�cient of bulk permeability, and � is the relaxation time. For the purpose of this work

we assume � = 0. Then the problem of evolution of porosity described by equation (5)

can be solved separately from the rest of the problem and does not in�uence the acoustic

waves in the medium. Let us mention that the general case has been considered in earlier

papers on the subject (e.g. [21], [22], [23]) and it has been shown that coupling e�ects

through � can be neglected in linear models.

2.2 Propagation of acoustic fronts in two-component media

We investigate the propagation of the front carrying weak discontinuities. It is assumed

that the front �t is given by the relation

f (x; t) = 0; x 2 �t � Bt; t 2 T ; (6)
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where the function f is assumed to be at least continuously di�erentiable with respect

to both variables. Bt, T denote the current con�guration of the medium, and the time

interval, respectively. The surface de�ned by (6) moves with the normal speed c and

possesses a unit normal vector n given by the relations

c := �
@f

@t

j grad f j ; n :=
grad f

j grad f j : (7)

Weak discontinuities of �elds introduced in the previous subsection are de�ned by the

following conditions on the surface �t oriented by the �eld n (x; t) ;x 2 �t; t 2 T ,
hh
�
F
ii

= 0;
hh
vF
ii

= 0;
hh
vS
ii

= 0;
hh
eS
ii

= 0; (8)

where

[[: : :]] := lim
�
+

t

(: : :)� lim
�
�

t

(: : :) : (9)

Then according to the Hadamard lemma the following kinematic compatibility conditions

hold

hh
grad �F

ii
= �1

c
R
Fn;

hh
grad eS

ii
=

1

2c2

�
AS 
 n+ n
AS

�

 n; (10)

hh
gradvF

ii
= �1

c
AF 
 n;

hh
gradvS

ii
= �1

c
AS 
 n;

where

R
F :=

""
@�

F

@t

##
; AF :=

""
@vF

@t

##
; AS :=

""
@vS

@t

##
; (11)

are the so�called amplitudes of discontinuity.

Substitution in �eld equations evaluated on both sides of the front �t yields the conditions

R
F =

�
F
0

c
AF � n; (12)

and

 
c
21� �

S + �
S

�
S
0

n
 n��
S

�
S
0

1

!
AS = 0; (13)

�
c
21��n
 n

�
AF = 0:
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Certainly this is an eigenvalue problem which yields three nontrivial solutions:

cP1 : =

s
�S + 2�S

�
S
0

; AS � n 6= 0; AS
?
:= AS �

�
AS � n

�
n = 0; AF = 0;

cP2 : =
p
�; AF � n 6= 0; AS = 0; AF

?
:= AF �

�
AF � n

�
n = 0; (14)

cS : =

s
�S

�
S
0

; AS
?
6= 0; AS � n = 0; AF = 0:

The �rst two solutions describe longitudinal P1-, and P2-modes of propagation while the

third one is the transversal S�mode in the skeleton. There exists no transversal mode in

the �uid: AF
?
� 0.

The P2-mode is often called Biot's wave. Its theoretical existence is quite natural in

the frame of any two�component continuous model even if both components are �uids

(a miscible mixture). However there are problems with the practical observation of its

propagation if one of the components is solid. It has been observed for the �rst time in

an arti�cial porous material made of sintered glass beads by T. J. Plona [11], and in an

arti�cial rock of cemented sand grains by T. Klimentos and C. McCann [8] but in situ

measurements are extremally di�cult to perform. The main reason for those di�culties

is a very strong attenuation of P2-waves. We discuss this point in some details further in

this section.

Let us mention in passing that the partial stresses TS
;TF in the skeleton and in the �uid,

respectively, which lead to the above used �eld equations are not coupled if the constant

� is equal to zero. Such a coupling, even though of a di�erent � static � nature, is required

in the Biot's model commonly used in the wave analysis for porous saturated materials.

In the notation of this work such a coupling has the form

TS = �
S
�
tr eS

�
1+ 2�SeS �Q

�
F � �

F
0

�
F
0

1; (15)

TF = �
�
�

�
�
F � �

F
0

�
�Q tr eS

�
1;

where Q is the Biot's coupling constant. Such a model is thermodynamically admissible

solely in the case of an additional contribution of the gradient of porosity to the momentum

balance equations (2), (3)(see: [10])

p̂ = �

�
vF � vS

�
�Q gradn: (16)

In such a case it can be easily shown that the coe�cient Q which would give rise to the

o��diagonal terms in the eigenvalue problem (13) has an order of magnitude of the pore

pressure, i.e. 105 Pa in soils and rocks. This must be compared with elastic constants

�
S
; �

S
; ��

F
0 which are at least of the order 108 Pa. Hence, similarly to the assumption

that � = 0, we can leave out this correction in the wave analysis.

The above results do not reveal the attenuation of waves because the behaviour of ampli-

tudes cannot be determined from the properties of �eld equations on the wave front alone.
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In order to see such e�ects we have to construct solutions of �eld equations. Relying on

the results presented in [24] we proceed to do so for monochromatic waves in in�nite

domains.

2.3 Monochromatic waves in two-component media

2.3.1 General relations

We seek solutions of the set of equations (1)�(4) in the form of bulk monochromatic waves

de�ned by the following ansatz for harmonic waves

�
F � �

F
0 = R

F
e
i(kn�x�!t)

; eS = ES
e
i(kn�x�!t)

; (17)

vF = VF
e
i(kn�x�!t)

; vS = VS
e
i(kn�x�!t)

;

where RF
;ES

;VF
;VS are constant, possibly complex, amplitudes of the disturbance, n

denotes the unit vector in the direction of propagation, k is the wave number, and ! the

frequency of the wave. Both k and ! may be complex.

Straightforward calculations lead to the following compatibility relations with �eld equa-

tions

R
F =

k�
F
0

!
VF � n; ES = � k

2!

�
VS 
 n+ n
VS

�
; (18)

 
!
21��

S + �
S

�
S
0

k
2n
 n��

S

�
S
0

k
21+i

�!

�
S
0

1

!
VS � i

�!

�
S
0

VF = 0; (19)

�i�!
�
F
0

VS +

 
!
21��k2n
 n+i

�!

�
F
0

1

!
VF = 0:

Equations (19) form, of course, an eigenvalue problem with a six�dimensional eigenvec-

tor
�
VS

;VF
�T
, and !

2 are the eigenvalues if k is given. We consider further also a

modi�cation of this problem with a given !.

We can easily separate the components in the direction of the vector n, and in the di-

rection perpendicular to this vector. We consider these problems in the subsequent two

subsections.

2.3.2 Longitudinal modes of propagation

Scalar multiplication of equations (19) by the vector n yields

0
BB@ !

2 � �
S + 2�S

�
S
0

k
2 + i

�!

�
S
0

�i�!
�
S
0

�i�!
�
F
0

!
2 � �k

2 + i
�!

�
F
0

1
CCA
 
VS � n
VF � n

!
= 0: (20)
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This two�dimensional eigenvalue problem yields immediately the following dispersion re-

lation

 
!
2 � cP1k

2 + i
�!

�
S
0

! 
!
2 � c

2
P2k

2 + i
�!

�
F
0

!
+
�
2
!
2

�
S
0 �

F
0

= 0: (21)

We consider two cases.

1. The frequency ! is real and given. This corresponds to the problem of a harmonic

excitation with a given frequency (�boundary value problem�).

2. The wave number k is real and given. This corresponds to an external impact

(�initial value problem�, chopping, explosion).

In the �rst case the equation (21) can be easily solved for k and we obtain

k
2 =

1

2

"
1

c
2
P1

 
!
2 + i

�!

�
S
0

!
+

1

c
2
P2

 
!
2 + i

�!

�
F
0

!
�
p
D

#
; (22)

D :=

"
1

c
2
P1

 
!
2 + i

�!

�
S
0

!
� 1

c
2
P2

 
!
2 + i

�!

�
F
0

!#2
� 4

c
2
P1c

2
P2

�
2
!
2

�
S
0 �

F
0

:

The solution with the plus sign corresponds to the longitudinal P1-wave. Correspondingly,

the minus sign yields the relation for P2-wave. In the limit of low and high frequencies

one obtains easily

P1 : lim
!!0

!

Re k
=

vuut�S + 2�S + ��
F
0

�
S
0 + �

F
0

=: coP1; lim
!!1

!

Re k
=

s
�S + 2�S

�
S
0

� cP1; (23)

P2 : lim
!!0

!

Re k
= 0; lim

!!1

!

Re k
=
p
� � cP2:

These limits were obtained also for the Biot's model. Obviously the additional coupling

appearing in this model does not in�uence the result.

In the next two Figures we illustrate these results for the following numerical data

cP1 = 2500
m

s
; cP2 = 1000

m

s
; �

S
0 = 2500

kg

m3
; �

F
0 = 250

kg

m3
: (24)

In Figure 1 we plot the phase velocity cph =
!

Rek
of both longitudinal modes, and in

Figure 2 the attenuation 
 = Imk:
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Figure 1: Phase speed of P1- (left), and P2-waves (right) as functions of frequency !.

The curves correspond to the permeabilities � (from top to bottom):

106; 5 � 106; 107; 5 � 107; 108 [ kg

m3s
]:

Inspection of Figure 1 shows that both modes of propagation exist for any frequency of

the excitation. The phase speed of P1-waves grows a little from its initial value to the

asymptotic speed cP1 for ! !1. On the other hand the phase speed of P2-waves is equal

to zero for ! = 0 and grows asymptotically to the limit cP2 for ! !1. For both modes

the growth becomes slower for larger permeability coe�cients � which we demonstrate

for practically reasonable values of this coe�cient.

Figure 2: Attenuation of P1- (left), and P2-waves (right) as functions of frequency !.

The same values of permeability � as in Fig. 1 growing from the bottom to the top.

It is clear from Figure 2 that the attenuation of P2-waves is much stronger than this of

P1-waves. This observation justi�es the remark made in the Introduction that the strong

attenuation of P2-waves causes di�culties in their in situ measurements.
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The above described properties of monochromatic waves have been discussed in details in

earlier works on this model of poroelastic materials (e.g. [19], [20], [21], [22], [23]).

We proceed to present properties of the second case � external impact (initial value prob-

lem, chopping). In this case the wave number k is given and real, and the frequency ! is

complex. It follows as the solution of the dispersion relation (21). This solution cannot

be obtained analytically. Asymptotic analysis for high and low wave numbers has been

performed by I. Edelman [5]. We present here a few typical numerical examples. We use

the data (24).

In contrast to the above discussed boundary value problem P2-waves may not exist in

the case of the initial value problem. For any chosen real wave number k solutions of

the dispersion relation (21) consist of four complex ! symmetric with respect to zero.

Consequently there are two essential real parts of ! which determine the P1-, and P2-

mode. In Figure 3 we show the real part of ! corresponding to the P2-mode for di�erent

values of the permeability coe�cient �.

It is seen that for su�ciently low wave numbers k (i.e. long waves) the real part of !

is constant and equal to zero. Consequently in these ranges the P2-modes contain only

damping and they cannot propagate as waves. The extent of the plateau of the constant

real part of frequency changes approximately in linear way with � and, for instance, for

� = 109[ kg

m3s
] (the right �gure) it reaches the value k � 2050[ 1

m
], which corresponds to

the wave length 0:05cm. Obviously from the physical point of view the P2-wave does not

exist any more because the wave length would have to be smaller than the characteristic

dimension of the microstructure. However the minimum length of the wave for smaller

permeabilities lies in the physically reasonable range. For instance for � = 107[ kg

m3s
] it is

app. 5 cm (see the left �gure).

Figure 3: Real part of the frequency as a function of the wave number for P2-waves.

The left hand side is the magni�cation of the �gure on the right hand side for the

following values of permeability �: 106; 5 � 106; 107; 5 � 107; 108 [ kg

m3s
] growing from the left

to the right: On the right �gure the curves for � = 5 � 108 and 109 [ kg

m3s
] are shown in

addition.
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The problem of existence of propagation does not concern the P1-mode. These waves

behave in a way similar to these of the boundary value problem. In Figure 4 we show

their phase speeds for the data (24). The speed grows a little and reaches the limit value

cP1 for k !1.

Figure 4: Phase velocity of P1-waves for permeabilities � (from the left to the right):

106; 5 � 106; 107; 5 � 107; 108 [ kg

m3s
]

As indicated above the P2-waves do not propagate below a critical value of k which

changes with �. We show this behaviour in Figure 5. In the range of large values of k the

P2-modes propagate and reach the limit value cP2 for k !1.

Figure 5: Phase velocity of P2-waves for permeabilities � (from the left to the right):

106; 5 � 106; 107; 5 � 107; 108 [ kg

m3s
]

Imaginary parts of the frequency ! determine the damping of waves. This attenuation

in time behaves di�erently from the attenuation in space discussed in the �rst case. In

the case of P1-waves (Figure 6) it grows with the growth of the wave number k (i.e. with

the decay of the wave length). However in the range of long waves the damping in media
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with a larger permeability � is smaller than this for media with a smaller permeability.

Most likely this is related to the fact that the energy of the wave created by the impact

remains longer in the vicinity of the impact if the value of � is larger which, as seen in

Figure 4 yields a lower speed of propagation.

Figure 6: Attenuation of P1-waves for permeabilities �: 106 (the smallest attenuation),

5 � 106; 107; 5 � 107; 108 (the largest attenuation) [ kg

m3s
]:

The behaviour of the P2-modes is entirely di�erent due to the existence of plateaus. The

ranges of these plateaus are visible also in Figure 7 which illustrates the attenuation of

P2-modes. For any value of permeability � the range of small values of k contains solely

damping � the frequency ! is imaginary. For larger values of k we see the attenuation of

P2-waves. As in the case of the boundary value problem it is much stronger than in the

case of P1-waves.

Figure 7: Attenuation of P2-waves for permeabilities �: 106 (the smallest attenuation),

5 � 106; 107; 5 � 107; 108 (the largest attenuation) [ kg

m3s
]
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The above described properties of initial value problems have an important in�uence on

the construction of asymptotic solutions in the range of low frequencies. For instance,

they lead to an entirely di�erent structure of surface waves than this for high frequencies

[7]. Asymptotic analysis of this problem has been performed by I. Edelman [6]. We shall

discuss some aspects of this problem in the next section of this work.

2.3.3 Transversal modes of propagation

Let us introduce the following quantities

VF
?
:= VF �

�
VF � n

�
VF

; VS
?
:= VS �

�
VS � n

�
VS

: (25)

Then from (19) for arbitrary components of the above vectors V F
?

:= VF
?
�t; V S

?
:= VS

?
�t;

with t being any unit vector perpendicular to n we obtain

0
BB@ !

2 � �
S

�
S
0

k
2 + i

�!

�
S
0

�i�!
�
S
0

�i�!
�
F
0

!
2 + i

�!

�
F
0

1
CCA
 
V

S
?

V
F
?

!
= 0: (26)

This is again an eigenvalue problem which yields the dispersion relation

!
3 + i�

 
1

�
S
0

+
1

�
F
0

!
!
2 � c

2
Sk

2
! � ic

2
Sk

2 �

�
F
0

= 0: (27)

As before we calculate limit speeds for high and low frequencies. We obtain

lim
!!0

!

Re k
=

s
�S

�
S
0 + �

F
0

=: coS; lim
!!1

!

Re k
=

s
�S

�
S
0

� cS: (28)

These are relations commonly used in geophysical applications.

We illustrate the solutions of the relation (26) in Figures 8 and 9 for the data

cS = 1500
m

s
; �

S
0 = 2500

kg

m3
; �

F
0 = 250

kg

m3
: (29)

We obtain for the phase speed a behaviour quite similar to this of P1-waves. After the

initial growth the phase speed goes to the limit value cS for k !1.

The behaviour of the attenuation is also similar to this of P1-waves. This is shown in

Figure 9.
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Figure 8: Phase speed of S�waves for the permeabilities � :

106; 5 � 106; 107; 5 � 107; 108 [ kg

m3s
]:

The left diagram corresponds to the initial value problem while the right diagram to the

boundary vibrations. The upper curve corresponds to the lowest permeability.

Figure 9: Attenuation of S�waves for the permeabilities �:

106; 5 � 106; 107; 5 � 107; 108 [ kg

m3s
]:

The left diagram corresponds to the initial value problem while the right diagram to the

boundary vibrations.

The upper curve corresponds to the lowest permeability.

2.3.4 Group velocities

Propagation of waves with dispersion leads to the e�ect of propagation of packages of

waves of frequencies from a certain interval in the form of an envelope of harmonic waves
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whose speed is di�erent from a phase speed of any of the waves belonging to such a

package. The speed of a package is called the group velocity and it is locally de�ned as the

derivative of the frequency with respect to the wave number. It is well known (e.g. [15])

that measurements of speeds may give either a phase speed or a group speed depending

on the way of excitation. Therefore it is essential to know the di�erence between both

speeds for an arbitrary frequency.

In the case considered in this work the group velocity for the boundary value problem (a

source vibrating with a given frequency !) follows by the di�erentiation of the relation

(22) with respect to !

cgr =

 
dk

d!

!�1
: (30)

The group velocity for the initial value problem (chopping) follows from the dispersion

relation by di�erentiation with respect to k. One obtains easily

cgr :=
d!

dk
= 2

!

k

c
2
P1G2 + c

2
P2G1�

!2

k2
+ c

2
P1

�
G2 +

�
!2

k2
+ c

2
P2

�
G1

; (31)

where

G1 : =
!
2

k2
� c

2
P1 + i

�

�
S
0

!

k
; (32)

G1 : =
!
2

k2
� c

2
P2 + i

�

�
F
0

!

k
;

and the frequency ! is the function of the wave number k determined by the dispersion

relation (21). In the present notation this relation has the form

G1G2 +
�
2

�
S
0 �

F
0 k

2

!
2

k2
= 0: (33)

In Figure 10 we show in juxtaposition the behaviour of group velocities for the boundary

value problem (left), and for the initial value problem (right). We have used the data

(24), and made the calculation for a single but representative value of the permeability

coe�cient � = 107 kg

m3s
.

The behaviour of the group velocity for the boundary value problem is, as expected,

smooth and it goes to the limit of cP1, and cP2 respectively as ! !1. It exceeds a little

the limit values for medium frequencies because the dispersion curves are in this range

convex functions of the frequency.

The situation changes dramatically for the group velocity of P2-waves initiated by the

initial impact in the range of wave numbers higher than a critical value (app. 20:556 1
m
in

the numerical example). After the plateau of the zero velocity (right diagram of Figure
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10) the group velocity decays from the in�nite value to the cP2 limit. This ini�nite critical

value is related to the fact that the corresponding dispersion relation (Figure 3) possesses

a vertical tangent in this point. This is a behaviour which is characteristic for parabolic

problems. Our model is fully hyperbolic but its limit behaviour for P2-waves reminds this

of the Darcy's parabolic model of di�usion in which one neglects inertial e�ects in the

�uid component. In this sense the Darcy's model may be considered to be a low frequency

approximation of the hyperbolic two-component model.

Figure 10: Group velocities of P1-, and P2-waves for � = 107 kg

m3s
.

The left �gure corresponds to the boundary value problem while the right one to the

initial value problem. The critical value of the wave number: k = 20:556 1
m
.

The above described properties of P2-waves for initial impact have important conse-

quences for the existence of surface waves. We discuss this problem in the next section.

2.3.5 Conclusions for bulk waves in two-component media

Results presented in the above section show that the simplest possible model of saturated

poroelastic materials yields qualitatively the same properties of wave motion as the more

sophisticated Biot's model. However in contrast to the latter the model used in this work

does not contradict any principal rules of modern continuum thermodynamics. In addition

the notions such as tortuosity, anisotropic permeability, etc. which may be essential in

some practical applications, are not needed in the construction of all important bulk

modes of propagation in spite of claims in the literature on the Biot's model.

As the analysis of monochromatic waves shows the asymptotic behaviour for high fre-

quencies checks with the expectation following from the analysis of singularities of �elds.

This is independent of the fact if one controls the propagation by harmonic excitations

on the boundary (a given real frequency !) or if one controls an initial condition in which

a wave of a particular length (a real wave number k) is excited.
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However the situation changes if we consider the low frequency limit. This limit is smooth

independently of the external control for the classical two modes of propagation � P1-

waves and S-waves. Both these waves have �nite phase speeds for ! ! 0 and these are

a bit smaller than the speeds of propagation of the corresponding fronts. This is not the

case for the P2-mode. This mode behaves like a wave for harmonic excitations on the

boundary. The phase speed of this wave goes to zero as ! ! 0. In the vicinity of the zero

frequency it has approximately a parabolic character. The behaviour changes entirely

in the case of initial conditions. In the vicinity of the zero point of the wave number k

(in�nitely long waves) the P2-mode has the zero phase velocity and it is solely damped.

After a plateau of the zero velocity whose length depends on the value of the permeability

coe�cient � this mode behaves again as a wave and in the limit of high frequencies (short

waves) this behaviour is the same as this of the P2-waves excited by harmonic vibrations.

Such a behaviour has a very important practical bearing. First of all the lack of positive

results for the P2-waves in in situ measurements may be related not only to the high

attenuation of P2-waves but also to the nonexistence of these waves for low frequency

initial excitations. It is also very important in the analysis of surface waves in the range

of low frequencies commonly used in geophysical applications. We will return to this

question in the next section of this work.

Let us mention �nally that the attenuation properties of all modes are caused by the

relative motion of components re�ected by the permeability coe�cient �. As the examples

presented above clearly show these properties check well with the expectations.

3 Surface waves

3.1 Surface waves in single component media

3.1.1 Introduction

In contrast to bulk waves surface waves propagate along surfaces and their penetration in

the direction perpendicular to the surface decays so fast that amplitudes of disturbances

can be assumed to be zero in the depth of a few wave lengths. Consequently, their

geometrical dispersion is determined in a two dimensional space rather than the three

dimensional space of bulk waves. Hence for the point source the amplitude of surface

waves decays as r2 and not as r3 for the bulk waves, where r is the distance from the

source. This property is the main reason for destructive actions of surface waves in

earthquakes and, simultaneously, it is the reason for their importance in nondestructive

testing of soils. The latter means that one can investigate properties of soils to the depth

of app. twice the wave length without the necessity to make boreholes and to investigate

laboratory samples distorted by boring and transport.

In the following subsections we present some properties of surface waves for single com-

ponent heterogeneous elastic media as well as surface waves in two-component porous

materials.
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Single component models apply to processes in porous materials in which a relative motion

of components is not essential. Such are many quasistatic geophysical processes as well as

far-�eld properties of waves in which an in�uence of P2-waves does not appear anymore.

An extensive presentation of wave properties under such conditions can be found in books

on seismology of the earth (e.g. [1], [2], [14]).

In the case of surface waves in two-component materials we consider separately two types

of boundary conditions for a far-�eld approximation of a harmonic boundary source.

Finally we review some properties of surface waves in two-component porous materials

initiated by an impact.

3.1.2 Rayleigh waves in a homogeneous elastic materials

We begin with a brief reminder of the classical Rayleigh problem. It is a two-dimensional

dynamical solution of the boundary value problem for a semi-in�nite elastic body de-

scribed by the equations

�
@
2u

@t2
= divT; T = � ( tr e)1 + 2�e; e := symgradu; (34)

where � is a constant mass density, and �; � denote Lamé constants.

It is known that the decomposition of the displacement vector u into a potential and

solenoidal parts: u = uL + uT yields the equivalent set of equations

@
2uL

@t2
= c

2
L4uL; rotuL = 0; cL :=

s
�+ 2�

�
; (35)

@
2uT

@t2
= c

2
T4uT ; divuT = 0; cT :=

s
�

�
:

Each of these equations describes a bulk wave in the in�nite medium � the �rst one a

longitudinal wave (called a P-wave in geophysics), and the second one a transversal wave

(called S-wave in geophysics).

We seek the solution of the following boundary value problem:

Tnjz=0 = 0; n � �e3; ujz!1 = 0: (36)

The direction n coincides with the negative direction of the z-axis.

We make the following ansatz

uL = ALe
�
z

e
i(kx�!t)e1 +BLe

�
z
e
i(kx�!t)e3; (37)

uT = AT e
��z

e
i(kx�!t)e1 +BT e

��z
e
i(kx�!t)e3;

where AL; BL; AT ; BT ; 
; �; k; ! are constants.
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Substitution of these relations in conditions (35)2;4 yields the compatibility conditions



2

k2
= 1� c

2
R

c
2
L

;
�
2

k2
= 1� c

2
R

c
2
T

; cR :=
!

k
: (38)

Simultaneously the substitution in equations (35)1;3 leads to the following form of the

solution

BL = i



k
AL ) uL =

�
e1 + i




k
e3

�
ALe

�
z
e
i(kx�!t)

; (39)

BT = i
k

�
AT ) uT =

 
e1 + i

k

�
e3

!
AT e

��z
e
i(kx�!t)

:

It remains to exploit the boundary conditions (36)1. The second condition is identically

satis�ed provided the constants 
; � are chosen to be positive. According to (34)2 the

boundary conditions for stresses can be written in the following form

�
c
2
L � 2c2T

� @u � e1
@x

+ c
2
L

@u � e3
@z

�����
z=0

= 0; (40)

@u � e1
@z

+
@u � e3
@x

�����
z=0

= 0:

Finally the substitution of relations (39) in the above conditions leads to the homogeneous

set of equations for the constants AL; AT . Consequently the determinant of this set should

be zero, and this gives rise to the following equation

PR :=

 
2� c

2
R

c
2
T

!2

� 4

vuut1� c
2
R

c
2
T

vuut1� c
2
R

c
2
L

= 0: (41)

This equation determines the phase speed cR = !

k
of the wave described by the solution

(39). It is clear that this solution is independent of the choice of the frequency !. Hence

these waves are nondispersive. Their amplitudes decay with the depth z in an exponential

way. For this reason they are called surface waves. They have been discovered by Rayleigh.

It can be shown that the equation (41) possesses a single real positive solution cR < cT .

The above solution is not the only surface wave solution of the classical elasticity. In the

next subsection we show another one discovered by Love.

3.1.3 Waves in a layer of an ideal �uid and Love waves

In order to appreciate the in�uence of heterogeneities on the propagation of surface waves

we investigate �rst a simple example of a layer of ideal �uid �1 < x < 1; 0 � z � H:

The upper surface z = H is free of loading and the lower surface z = 0 is in contact
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with a rigid body. The problem is described by the equations of mass and momentum

conservation

@�

@t
+ �0 div v = 0; �0

@v

@t
= � grad p; p = p0 + � (�� �0) ; (42)

where �0; p0 are reference constant values of the mass density and pressure, respectively,

and � denotes a constant compressibility coe�cient of the �uid.

Simple manipulations lead to the following wave equation for the pressure p

@
2
p

@t2
= �4p; (x; z) 2 (�1;1)� (0; H) ; (43)

and 4 is the Laplace operator. The solution of this equation must satisfy the following

boundary conditions

p (x; z = H; t) = 0; vz (x; z = 0; t) = 0: (44)

We seek the solution in the form of a monochromatic wave of the frequency !

p =
�
Ae

irkz +Be
�irkz

�
e
i(kx�!t)

: (45)

Then the second boundary condition can be replaced by the following one

@p

@z
(x; z = 0; t) = 0: (46)

Substitution of (45) in the equation (43) yields the compatibility relation

r
2 =

c
2
ph

c2
� 1; cph :=

!

k
; c :=

p
�: (47)

Simultaneously the evaluation of boundary conditions with the ansatz (45) yields the set

of homogeneous algebraic relations for the constants A and B

Ae
irkH +Be

�irkH = 0; (48)

A�B = 0:

Consequently the determinant of this set must be equal to zero and we obtain

cos (rkH) = 0: (49)

In order to obtain nontrivial solutions we have to require that r is real. This means,

however, that the phase velocities cph are bigger than the speed of propagation c appearing

in the wave equation for the pressure (43)(� � c
2). If we require that waves of the form
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(45) do exist then this seems to violate the basic property of the hyperbolic problem. This

result follows from the assumption that the foundation of the �uid is a rigid body in which

all disturbances propagate with an in�nite speed. As we see further a modi�cation of the

boundary condition (44)2 for the case of contact with an elastic body which we make for

the so-called Love waves eliminates this paradox.

Solution of the equation (49) yields immediately the following relation between the phase

speed and the frequency

cph =
cq

1� !2cr
!2

; !cr :=
�
n+

1

2

�
�
c

H
; n = 1; 2; : : : (50)

This relation is illustrated in Figure 11.

Figure 11: Phase velocity for a layer of ideal �uid. Numerical data:

c = 1500m
s
; H = 1m.

Modes: n = 1; 2; 3; 4 are shown in the Figure.

The paradox of in�nite phase speeds does not appear anymore in the case of surface waves

which propagate in an elastic layer over an elastic half-space. Transversal waves in such a

system have been described in 1911 by Love. We proceed to present brie�y these results.

They form the simplest illustration of the problem of surface waves in heterogeneous

materials.

We consider the propagation of a wave whose amplitude has solely an e2-component

u2 � u � e2 (perpendicular to the (x; z)-plane). The body consists of a layer of thickness

H in the z-direction in which the mass density is �0 and the speed of shear waves is c0T .

This layer is connected to the elastic half-space z � 0 whose mass density is � and the

speed of shear waves cT . We seek the solution of wave equations

@
2
u
0

2

@t2
= c

02
T4u02; 0 < z < H; (51)

@
2
u2

@t2
= c

2
T4u2; z < 0;
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in the form

u
0

2 =
�
A
0
e
iks0z +B

0
e
�iks0z

�
e
i(kx�!t)

; (52)

u2 = Be
ksz
e
i(kx�!t)

;

i.e. in a form of a monochromatic wave which propagates in the direction of the x-axis

with the frequency !, wave number k in this direction, and with the phase speed c := !

k
.

The wave should decay in the z-direction, i.e. s must be positive. We check now if the

ansatz (52) can ful�l equations (51), and the following boundary conditions

1) shear stress on the plane z = H is equal to zero, i.e.

@u
0

2

@z
(x; z = H; t) = 0; (53)

2) shear stress and the displacement must be continuous on the interface z = 0

�
0
c
0

T

@u
0

2

@z
(x; z = 0; t) = �cT

@u2

@z
(x; z = 0; t) ; (54)

u
0

2 (x; z = 0; t) = u2 (x; z = 0; t) :

Substitution of the ansatz (52) in equations (51) yields

s
02 =

c
2

c
02
T

� 1; s
2 = 1� c

2

c
2
T

; c � !

k
: (55)

Boundary conditions (54) lead to a homogeneous set of three algebraic relations for the

constants A0; B0
; B. Consequently its determinant must be zero and this condition yields

! =
c

Hs0

"
arctan

 
�c

2
T s

�0c
02
T s

0

!
+ n�

#
; n = 1; 2; 3; : : : ; (56)

and both s, and s0 must be real, i.e.

c
0

T � c � cT : (57)

This is the condition for the existence of Love waves. Hence the Love waves can propagate

solely in layers which are softer than the foundation. In addition there exist in�nitely

many modes of propagation whose existence is limited from below by a corresponding

critical frequency. All these modes are dispersive because the phase speeds depend on the

frequency given by the inverse relation to (56).
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Figure 12: Fundamental mode and three higher modes (n = 1; 2; 3) of the Love wave

In Figure 12 we show an example of the solution of relation (56) for the following data:

cT = 2000
m

s
; c

0

T = 1800
m

s
;

�
0

�
= 0:8; H = 1m: (58)

3.1.4 Surface waves in elastic heterogeneous materials

Surface waves observed in geotechnics propagate always over a heterogeneous soil and

in such a case not only Love waves but also Rayleigh waves possess multiple modes of

propagation. They are described by equations following from the momentum conservation

law in which one has to substitute Hooke's law with coe�cients dependent on the depth

z. Instead of equations (34) we have then

�
@
2u

@t2
= �4u+ (�+ �) grad divu+ e3

d�

dz
divu+

d�

dz

 
e3 � rotu+ 2

@u

@z

!
; (59)

where �; �; � are function of z and e3 is the unit vector perpendicular to the boundary

(in the direction of z-axis). A solution for harmonic waves is sought in the form

u = (u1 (z; k; !) e1 + u3 (z; k; !) e3) e
i(kx�!t)

: (60)

Substitution of this ansatz in (59) yields the following set of ordinary di�erential equations

df

dz
= A (z) f ; f 2<4

; A 2<4 �<4
; (61)

where the vector f and the matrix A are de�ned as follows

f := (u1; u3; f3; f4)
T
; f3 := �

 
du1

dz
+ ku3

!
; f4 := (�+ 2�)

du3

dz
� k�u1; (62)
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A :=

0
BBBB@

0 �k �
�1 0

k� (�+ 2�)�1 0 0 (�+ 2�)�1

k
2
� � !

2
� 0 0 �k� (� + 2�)�1

0 �!2
� k 0

1
CCCCA ; � := 4�

�+ �

�+ 2�
: (63)

With this notation the shear stress, �xz, and the stress component normal to the boundary,

�z, can be written in the form

�xz = f3e
i(kx�!t)

; �z = f4e
i(kx�!t)

: (64)

The set of equations (61) de�nes a linear di�erential eigenvalue problem with eigenfunc-

tions f . Boundary conditions associated to this problem follow from the requirement that

the stress components (64) vanish for z = 0, and the eigenvector f vanishes as z !1.

Nontrivial solutions of this eigenvalue problem for a given frequency ! exist only for some

values of the wave number, k, say kj, j = 1; : : : ;M which are called eigenvalues of the

problem. The relation between the frequency, and eigenvalues is known solely in implicit

form

DR (� (z) ; � (z) ; � (z) ; kj; !) = 0; (65)

called Rayleigh dispersion relation. Solutions of this relation are complex which means

that Rayleigh waves in heterogeneous materials are attenuated in contrast to Rayleigh

waves in homogeneous materials. In addition they depend on the frequency which means

that Rayleigh waves in heterogeneous materials are dispersive.

Several numerical techniques have been developed to solve the above eigenvalue problem.

The most popular and successful is most likely the method of discretizing the problem in

z-direction (multilayer system) introduced by Eduardo Kausel. We shall not present here

any details of those techniques refering to the work of C. Lai [9] for their presentation

with corresponding references.

3.2 Surface waves in two-component poroelastic materials

The theory of surface waves in two-component systems di�ers qualitatively from such

a theory for one-component continua. Such waves are produced in linear models by a

combination of bulk waves. In the case of a one-component continuum there are two bulk

modes of propagation which yield the single Rayleigh wave. For two-component systems

we have three bulk modes: P1-waves, P2-waves and S-waves which produce two surface

modes in the case of impermeable boundary. For the permeable boundary, i.e. for the

case of an additional system � a �uid in the exterior, there may exists three surface modes,

etc.

In this section we consider surface waves in two-component homogeneous poroelastic ma-

terials with the impermeable boundary. However we indicate as well some properties
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related to the permeable boundary condition. This condition has been proposed by Dere-

siewicz and Skalak in the 60ies. However a recent work on problems in which this condition

is incorporated indicate some �aws which has not been successfully removed as yet.

3.2.1 Compatibility conditions and dispersion relation

As discussed in [25] we seek a solution of the set (1)�(5) in which we introduce the

displacement vector uS for the skeleton, and formally the displacement vector uF for the

�uid. The latter is introduced solely for the technical symmetry of considerations and it

does not have any physical bearing. Then

uS = grad'S + rot S
; vS =

@uS

@t
; eS = symgraduS; (66)

uF = grad'F + rot F
; vF =

@uF

@t
:

As the problem is assumed to be two-dimensional we make the following ansatz for solu-

tions harmonic in the x-direction

'
S = A

S (z) exp [i (kx� !t)] ; '
F = A

F (z) exp [i (kx� !t)] ; (67)

 
S
z = B

S (z) exp [i (kx� !t)] ;  
F
z = B

F (z) exp [i (kx� !t)] ;

 
S
x =  

S
y =  

F
x =  

F
y = 0;

and

�
S � �

S
0 = A

S
� (z) exp [i (kx� !t)] ; �

F � �
F
0 = A

F
� (z) exp [i (kx� !t)] ; (68)

n� n0 = A
� exp [i (kx� !t)] :

Substitution in �eld equations leads after straightforward calculations to the following

compatibility conditions

B
F =

i�

�
F
0 ! + i�

B
S
; A

� = � n0!�

i + !�

 
d
2

dz2
� k

2

!�
A
F � A

S
�
; (69)

A
S
� = ��S0

 
d
2

dz2
� k

2

!
A
S
; A

F
� = ��F0

 
d
2

dz2
� k

2

!
A
F
;

as well as

"
�

 
d
2

dz2
� k

2

!
+ !

2

#
A
F +

"
n0�!�

�
F
0 (i+ !�)

 
d
2

dz2
� k

2

!
+
i�

�
F
0

!

# �
A
F � A

S
�
= 0; (70)

"
�
S + 2�S

�
S
0

 
d
2

dz2
� k

2

!
+ !

2

#
A
S �

"
n0�!�

�
S
0 (i + !�)

 
d
2

dz2
� k

2

!
+
i�

�
S
0

!

# �
A
F � A

S
�
= 0; (71)
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"
�
S

�
S
0

 
d
2

dz2
� k

2

!
+ !

2

#
B

S +
i��

F
0

�
S
0 (�

F
0 ! + i�)

!
2
B

S = 0: (72)

It is convenient to introduce a dimensionless notation. In order to do so we de�ne the

following auxiliary quantities

cs :=
cS

cP1

< 1; cf :=
cP2

cP1

; �
0 :=

��

�
S
0

> 0; �
0 :=

n0�

�
S
0 c

2
P1

> 0; (73)

r :=
�
F
0

�
S
0

< 1; z
0 :=

z

cP1�
; k

0 := kcP1�; !
0 := !�;

where the speeds cP1; cS; cP2 are de�ned by the relations (14). Further we omit the prime

for typographical reasons. Substitution of (73) in equations (70), (71), (72) yields

"
c
2
f

 
d
2

dz2
� k

2

!
+ !

2

#
A
F +

"
�!

r (i+ !)

 
d
2

dz2
� k

2

!
+ i

�

r
!

# �
A
F � A

S
�

= 0; (74)

" 
d
2

dz2
� k

2

!
+ !

2

#
A
S �

"
�!

i + !

 
d
2

dz2
� k

2

!
+ i�!

# �
A
F � A

S
�

= 0;

"
c
2
s

 
d
2

dz2
� k

2

!
+ !

2 +
i�!

! + i
�

r

#
B

S = 0:

This di�erential eigenvalue problem can be easily solved because the matrix of coe�cients

for homogeneous materials is independent of z. Consequently we seek solutions in the form

A
F = A

1
fe


1z + A
2
fe


2z
; A

S = A
1
se


1z + A
2
se


2z
; B

S = Bse
�z
; (75)

where the exponents 
1; 
2; � must possess negative real parts. Substitution in (74) yields

them in the form

 
�

k

!2

= 1� 1

c2s

 
1 +

i�

! + i
�

r

!�
!

k

�2
; (76)

and

"
c
2
f +

�
c
2
f +

1

r

�
�!

i + !

# "�



k

�2
� 1

#2
+
�
1 +

�
1 +

1

r

�
i�

!

� �
!

k

�4

+

"
1 + c

2
f +

�
1 +

1

r

�
�!

i + !
+
�
c
2
f +

1

r

�
i�

!

# "�



k

�2
� 1

# �
!

k

�2
= 0: (77)

Simultaneously we obtain the following relations for eigenvectors

R1 =
�
Bs; A

1
s; A

1
f

�T
; R2 =

�
Bs; A

2
s; A

2
f

�T
; (78)
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where

A
1
f = ÆfA

1
s; A

2
s = ÆsA

2
f ; (79)

Æf :=
1

r

�!

i+!

��

1
k

�2 � 1
�
+ i�

!

!2

k2�
c
2
f +

1
r

�!

i+!

� ��

1
k

�2 � 1
�
+
�
!

k

�2
+ i�

!r

!2

k2

; (80)

Æs :=

�!

i+!

��

2
k

�2 � 1
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The above solution for the exponents still leaves three unknown constants Bs; A
2
f ; A

1
s which

must be speci�ed from boundary conditions. This is the subject of the next subsection.

However for technical reasons we solve the problem under a simplifying assumption � = 0.
We have already mentioned in the section on bulk waves that this simpli�cation does not

change qualitative properties of acoustic waves and the quantitative in�uence is small for

practically relevant values of �. In addition we solve solely the limit problems in the range

of high and low frequencies.

In the case of high frequency approximation we immediately obtain from relations (76)

and (77)
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and

Æf = Æs = 0 ) R1 =
�
Bs; A

1
s; 0
�T
; R2 =

�
Bs; 0; A

2
f

�T
: (83)

For the case of low frequency approximation the equation (77) becomes singular. It can

be written in the following form
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Making the following substitution

W := !
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#
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�
!

k
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2
f

2c2f
; (85)

we obtain the quadratic equation for W
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which for small ! can be solved by the regular perturbation method
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After easy calculations we obtain
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Bearing the relation (85) in mind we arive at the following results for the exponents

! � 1 :

 
�

k

!2

= 1� r + 1

c2s

�
!

k

�2
;

�

1

k

�2
= 1� r + 1

rc
2
f + 1

�
!

k

�2
;

�

2

k

�2
= 1� rc

4
f + 1

c
2
f

�
rc

2
f + 1

� �!
k

�2
� i�

!

rc
2
f + 1

rc
2
f

�
!

k

�2
;

(89)

and for the coe�cients of amplitudes
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2
f
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Obviously due to the singular character of the equation (84) the last contribution to

2

k
becomes singular for ! ! 0.
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3.2.2 Boundary value problems for surface waves

In order to determine surface waves in saturated poroelastic medium we need conditions

for z = 0. We discuss in details the problem in which this boundary is impermeable, i.e. a

poroelastic medium is in contact with vacuum. Boundary conditions have then the form

T13jz=0 � T
S
13

���
z=0

= �
S
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S
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@z
+
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@x

!�����
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= 0; (91)
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3

������
z=0

= 0; (93)

where the �rst two conditions mean that the surface z = 0 is stress-free (far-�eld approx-

imation), and the last condition means that there is no transport of �uid mass through

this surface (impermeable boundary). uS1 ; u
S
3 denote the components of the displacement

uS in the direction of x-axis and z-axis, respectively, while uF3 is the z-component of the

displacement uF .

In the case of permeable boundary the last condition would not hold. Instead the mass

transport through the surface must be speci�ed by a relation to a driving force. According

to the proposition of Deresiewicz and Skalak such a driving force is proportional to the

di�erence of pore pressures on both sides of the boundary. In the earlier paper on surface

waves on such boundaries [7] we have used the following condition

�
F
0

@

@t

�
u
F
3 � u

S
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�
� �

�
p
F � n0pext

������
z=0

= 0; (94)

where � denotes a surface permeability coe�cient and pext is an external pressure. This

condition relies on the assumption that the pore pressure p and the partial pressure pF

satisfy the relation pF � n0p at least in a small vicinity of the surface. In some cases it

may be a good approximation and the results presented in [7] check qualitatively very well

with observations. However the condition seems to be violated on boundaries of granular

materials with a relatively small porosity. We leave this issue unclari�ed in this work and

refer to a future research.

Substitution of results of subsection 3.2.1. in the boundary conditions (91)-(93) yields

the following equations for three unknown constants Bs; A
2
f ; A

1
s

AX = 0; (95)
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where

A :=

0
BBBBBBBBBBBB@

�
�

k

�2
+ 1 2i
2

k
Æs 2i
1

k

�2ic2s �k

��

2
k

�2 � 1 + 2c2s

�
Æs+

+rc2f

��

2
k

�2 � 1
�

�

1
k

�2 � 1 + 2c2s+

+rc2f

��

1
k

�2 � 1
�
Æf

i
r!

r!+i�
� (Æs � 1) 
2

k
(Æf � 1) 
1

k

1
CCCCCCCCCCCCA
; (96)

X :=
�
Bs; A

2
f ; A

1
s

�T
:

This homogeneous set yields the dispersion relation: detA = 0 determining the ! � k

relation. We investigate separately solutions of this equations for high and low frequencies.

3.2.3 High frequency approximation

In the case of high frequencies 1
!
� 1 we have Æs = Æf = 0 and the dispersion relation

follows in the form
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where
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: (98)

Hence for r = 0 the relation (97) reduces to PR = 0 which is the Rayleigh dispersion

relation for single component continua. Otherwise we obtain the relation identical with

this analysed by I. Edelman and K. Wilmanski [7] in the limit of short waves (i.e. 1
k
� 1).

Consequently the conclusions for this case are the same as well. As shown in the paper

[7] the equation (97) possesses two roots de�ning two surface waves: a true Stoneley wave

which propagates almost without attenuation with the speed a bit smaller than cf as well

as a generalized Rayleigh wave which is leaky (i.e. it radiates the energy to the P2-wave)

and propagates with the speed cR: cf < cR < cs.

3.2.4 Low frequency approximation

A limit of long waves has been recently analysed by I. Edelman [6]. She has shown that

the existence of a critical value kcr of the wave number k for initial value problems as

described in Section 2 for bulk waves yields the nonexistence of Stoneley surface waves
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in the range 0 � k � kcr. This is not the case for boundary value problems in which we

consider the limit of small frequencies ! rather than the limit of long waves. In this limit

surface waves do exist and we proceed to investigate this problem in some details.

If we account for the relations (89) and (90) in the condition detA =0 then we obtain

the dispersion relation re�ecting a dependence of !

k
on !. The expansion with respect top

! yields the identity in the zeroths order and the following relation for the higher order
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+O
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!

�
= 0:

Clearly we obtain two soultions:

1. Rayleigh wave whose speed is di�erent from zero in the limit ! ! 0 and whose

attenuation is of the order O (
p
!). The relation for the speed reminds the relation

(41) with the speeds of bulk waves replaced by the low frequency limits. Namely

we have
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and these relations follow from the de�nitions (23), (28). Consequently
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2. Stoneley wave has the speed of propagation of the order O (
p
!). Hence it goes to

zero in the same way as the speed of propagation of P2-wave.

4 Final remarks

The results for a two-component model of porous solid-�uid mixtures presented in this

work should be compared with those obtained by means of the Biot's model and with

experimental observations. We shall not go into details of such a comparison in this work.

However it can be easily checked that there is a very good qualitative agreement of both

models as far as propagation of acoustic waves is concerned and these check well with

experimental observations. One should mention the following features following from the

above considerations.

1. The analysis of acoustic waves based on the model proposed by K. Wilmanski does

not contain the �aws of the Biot's model: the violation of the second law in the case
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of the simple model (without contributions of higher gradients) and the violation of

the material objectivity principle by the contribution of relative acceleration in the

Biot's model.

2. There exist three bulk modes of propagation: P1-waves, S-waves and P2-waves.

3. Speeds of propagation of these waves check with experimental observations in both

limits of high and low frequencies.

4. There exist two modes of surface waves for impermeable boundaries: Rayleigh wave

and Stoneley wave and these check again with the observations.

In contrast to the high frequency and short wave limits which coincide, the low frequency

limit is di�erent from that obtained earlier for the long waves. Such a limit exists for ! ! 0
while the long wave limit contains the zone 0 � k � kcr forbidden for the propagation.

Let us mention �nally that the motivation for a wave analysis with a real wave number

k rather than with a real frequency !, used in the papers [5], [6], [7] was primarily based

on the observation that this corresponds better with the way in which acoustic waves are

initiated in engineering applications. In contrast to the far �eld approximation of seismic

waves which is usually based on the frequency analysis, engineering applications were

primarily concerned with waves initiated by chopping or explosions which led to initial

value problems. This is not the case any more. Numerous experiments and measurements

are made nowadays by divices producing harmonic vibrations (e.g. [13]) and this leads

to a boundary value problem in which the real frequency ! is the proper choice of the

control variable.
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