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Abstract

We consider a single genetic locus which carries two alleles, labelled P and Q.

This locus experiences selection and mutation. It is linked to a second neutral locus

with recombination rate r. If r = 0, this reduces to the study of a single selected

locus. Assuming a Moran model for the population dynamics, we pass to a di�usion

approximation and, assuming that the allele frequencies at the selected locus have

reached stationarity, establish the joint generating function for the genealogy of a

sample from the population and the frequency of the P allele. In essence this is the

joint generating function for a coalescent and the random background in which it

evolves. We use this to characterise, for the di�usion approximation, the probability

of identity in state at the neutral locus of a sample of two individuals (whose type at

the selected locus is known) as solutions to a system of ordinary di�erential equations.

The only subtlety is to �nd the boundary conditions for this system. Finally, numerical

examples are presented that illustrate the accuracy and predictions of the di�usion

approximation. In particular, a comparison is made between this approach and one in

which the frequencies at the selected locus are estimated by their value in the absence

of �uctuations and a classical structured coalescent model is used.
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1 Introduction

The coalescent process was introduced by Kingman (1982) as a simple and elegant descrip-

tion of the genealogical relationships amongst a set of neutral genes. Although the two

theories have developed largely independently, the coalescent is closely related to the clas-

sical concept of identity by descent introduced independently by Cotterman and Malécot

(see Nagylaki (1989) for a survey). The original coalescent applies to the case of a single

panmictic population of constant size, but it extends naturally to describe populations

that vary with time or to structured populations in which genes may be found in di�erent

places or embedded in di�erent genetic backgrounds. By considering the ancestral selec-

tion graph, various forms of selection can also be incorporated (Krone & Neuhauser (1997),

Donnelly & Kurtz (1999)). However, as the genetic sophistication increases, not only are

analytic results unattainable but also the approach becomes increasingly computationally

intensive. Moreover, the powerful results of Donnelly & Kurtz rest upon exchangeability of

the sample. This means that they lend themselves to describing the genealogy of a random

sample from the population. In the problem that we are concerned with here, the sample

is not random.

The particular problem that we are concerned with is the following. Suppose that selection

acts on a single locus which carries two alleles labelled P and Q. There is also a strictly

positive mutation rate between these two alleles so that neither becomes �xed in the

population. The selected locus is linked to a second neutral locus with recombination

rate r. One can then ask about the genealogy of a sample from the neutral locus. If we

know the type of each individual in the sample at the selected site, then we have a sample

from known locations in a structured population, with two demes (determined by the P or

Q allele) in which the population size �uctuates randomly. Recombination and mutation

from P to Q both contribute to migration between the demes, while mutation and selection

determine the population sizes. Setting the recombination rate r = 0 we recover the case

of a single selected locus.

For certain forms of selection (directional and balancing) one can address this problem using

the ancestral selection graphs of Krone & Neuhauser (1997). Such graphs trace the lineages

of `potential ancestors' of a sample from the selected locus. As one traces backwards in time

lineages can `branch' as well as `coalesce'. On reaching the most recent common ancestor

of all such potential lineages, one then traces back through the graph culling those that

in fact did not contribute to the sample. However, this method restricts the form of the

selection and, as observed in Przeworski et al (1999), is also computationally demanding,

especially if selection is strong, because of the proliferation of potential lineages.

In fact the most common approach to our problem is to assume that �uctuations are
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su�ciently small that we can approximate the allele frequencies at the selected locus by

their value in the absence of �uctuations and then model the genealogy at the neutral

locus by the structured coalescent with constant deme sizes (Kaplan et al (1988), Notohara

(1990), Herbots (1997), Nordborg (1997)). One might expect this procedure to give good

approximations to quantities such as the mean time to the most recent common ancestor

of the sample, which is very robust, but not to the variance of the same quantity. In fact,

in �7 we illustrate that for some parameter values even the mean time to coalescence for a

sample of size two can be ill-approximated by this procedure.

Here we adopt an alternative approach, more akin to the classical one. We retain the

stochastic �uctuations in the two deme sizes. Although we �rst establish a coalescent-like

di�usion approximation for the genealogy of the sample, we actually express the quantities

that we are interested in as solutions to a system of ordinary di�erential equations and our

numerical examples will all be obtained by numerically solving this system. In Lemma 3.1

we identify the appropriate `coalescent'. There are no surprises here, the model being

entirely analogous to a structured coalescent with two demes, but now the jump rates in

the coalescent are governed by the Wright-Fisher di�usion that determines the population

sizes in each deme. What is surprising is the range of parameter values for which the

coalescent approximation is valid. One might expect that the mutation rates between

alleles P and Q need to be large enough that the allele frequencies stay away from the

margins where the di�usion approximation should break down. As we see in Theorem 5.1,

in fact we have convergence to the di�usion approximation provided that the mutation

rates between the selected alleles are non-zero.

In order to exploit the di�usion approximation, we use it to write down a system of ordinary

di�erential equations for the probability of identity in state for a sample of size two from

the neutral site (Theorem 6.1). Predictions of this model are compared not only to those

of the Wright-Fisher model that it is approximating, but also to those of the constant

deme size model in �7. We see in particular that the �uctuations in allele frequency have

a signi�cant e�ect on the probabilities of identity.

Our approach is not entirely new. Kaplan et al (1988, 1989) essentially wrote down the

same coalescent approximation, although they did not address mathematical questions of

existence of the corresponding process or convergence to the limit. They also wrote down

the system of di�erential equations that determine the total length of the ancestral tree of

a sample under this approximation. These are of exactly the same form as the equations

for probability of identity that we obtain here. Because of the singular nature of the

coe�cients and the di�culty in assigning boundary conditions to the system, they develop

a novel numerical solution scheme. However this has not been exploited in the literature.

Here we have been able to identify the boundary conditions for the system and as a result
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our numerical techniques are based on standard software. They are described in detail in

the companion paper Barton & Etheridge (2002).

A particular strength of our approach is that it applies to very general forms of selection

with essentially no additional computational e�ort. Numerically it is considerably more

e�cient than simulations based on the ancestral selection graph and moreover, in contrast

to such simulations, the computational e�ciency does not decrease as the strength of

selection increases. Although we concentrate on the simple setting of a sample of size two

embedded in a genetic background with just two possible states, the approach is easily

extended to larger samples and more complex genetic backgrounds (albeit at the expense

of increased computational complexity), see Remark 6.2. As we see in �7, even the simplest

context provides considerable scope for investigation of important biological issues. We do

not explore it here, but we also see the ordinary di�erential equations as o�ering a valuable

analytic route to a perturbation analysis of identities in �uctuating backgrounds.

Our primary motivation is the desire to investigate the e�ects of the selection on the

coalescence times for the neutral site. However, we also regard this as an important step in

understanding more general versions of the structured coalescent in randomly �uctuating

backgrounds. This is crucial to understanding populations with complex spatial or genetic

structure where the number of individuals in each background is not su�ciently large that

�uctuations can be ignored (see Barton, Depaulis & Etheridge (2002), Barton & Navarro

(2002) and references therein).

The rest of the paper is laid out as follows. In �2 we describe our model for the (forwards in

time) evolution of the proportions of the P and Q alleles. Our starting point is a version of

theWright-Fisher model. For later comparison with the di�usion approximation, we obtain

a system of algebraic equations for the probabilities of identity in state for a sample of size

two from such a population. As we explain above De�nition 2.1, to obtain the di�usion

approximation it is convenient to work with the continuous time counterpart of the Wright-

Fisher model, the Moran model. For such a model, assuming that the frequencies of the

selected alleles, P and Q, have reached stationarity, we write down the generator of the

process f(p(1)(t); n
(1)
1 (t); n

(1)
2 (t))gt�0 that encodes the backward in time evolution of the

selected allele frequencies and the numbers of ancestors of the sample of neutral alleles

alive at time t before the present, labelled according to their background (P or Q). In

�3 we rescale the parameters in our model and establish the form of the generator of the

corresponding di�usion approximation. The existence of a stochastic process with this

generator and convergence of the rescaled processes to this limit are established in �4 and

�5 respectively. In �6 we write down a system of di�erential equations for the distribution

of coalescence times and hence for the probability of identity in state in a sample of size

two. We establish an iterative solution to the system and indicate the extension to larger
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samples and more complex genetic backgrounds. In the �nal section, �7, we illustrate, in

the case of balancing selection, the extremely good agreement with the probabilities of

identity established via the Wright-Fisher model of �2. Although in biological applications

one is typically concerned with a neutral linked locus, we concentrate on the selected locus

(r = 0) for easy comparison with alternative approaches. We conclude by comparing the

predictions of the model to those obtained by assuming that the frequency of alleles at the

selected site is deterministic for di�erent strengths of balancing selection. A full discussion

of the biological implications can be found in the companion paper Barton & Etheridge

(2002).

2 The Model

In this section we describe the underlying model. First consider the evolution of frequencies

at the selected locus. We write p and q = 1 � p for the proportions of P and Q alleles

respectively. Our starting point is a Wright-Fisher model with selection and mutation

between types. We assume a diploid population of size N . Thus each individual has type

PP , PQ, or QQ and we write P11, P12 and P22 for the corresponding proportions of each

type. Then

p = P11 +
1

2
P12; q = P22 +

1

2
P12:

During the reproductive process, each individual has a large (e�ectively in�nite) number

of germ cells (cells of the same genotype) that split into gametes (cells containing just

one chromosome from each pair). The gametes then fuse at random to form the next

generation. We assume that there is selection in favour of certain genotypes. Further there

is mutation from type P to Q and vice versa.

Suppose that immediately before the reproductive step, the proportion of type P is p. For

simplicity we assume multiplicative selection. That is, relative �tnesses of PP : PQ : QQ

can be expressed in the form u2 : uv : v2. This means that we can model selection as

acting on haploids, so that after selection the proportion of type P will be

p� =
p(1 + s)

1 + sp

for some s. In the case of directional selection, s is just a constant, but by taking s to

be frequency dependent (that is a function of p) we can approximate more complicated

selection acting on the diploid population. For example, balancing selection is modelled by

assuming that s = s0(p0 � p) for some 0 < p0 < 1 and constant s0. If the population size

is su�ciently large, this is close to a model of overdominance with relative diploid �tnesses

PP : PQ : QQ of 1� s0q0 : 1 : 1� s0p0, where q0 = 1� p0.
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We now account for mutation between P and Q. Suppose that in each generation a

mutation from P to Q has probability �1 and from Q to P has probability �2. After the

mutation step, the proportion of type P is then

p�� = (1� �1)p
� + �2(1� p�):

Finally 2N gametes are chosen at random to form the next generation. (These fuse at ran-

dom into N diploid pairs.) The resulting number of type P chromosomes in the population

will then be binomially distributed with 2N trials and success probability p��.

Now consider the neutral locus. This is on the same chromosome as the selected locus,

but we allow for the possibility of recombination or crossover events. This happens during

meiosis (the process of splitting into gametes). We assume that with probability r there

is a recombination event between the selected and neutral sites. The result is that the

two gametes exchange a portion of chromosome that includes the selected site, but not the

neutral site. Consequently, if such an event occurs, for each of the two gametes the portion

of the chromosome that includes the neutral locus and that segment including the selected

locus come from di�erent parental chromosomes. From the point of view of the neutral

locus, the two chromosomes swap types at the selected locus. By this mechanism (as well

as by mutation) an individual from the sample at the neutral locus can be in a di�erent

genetic background from her parent.

So that we can later numerically test the accuracy of the di�usion approximation, we now

use the Wright-Fisher model to calculate the probability of identity in state at the neutral

locus of a sample of two genomes whose type at the selected locus is known. (We shall refer

to `individuals' in the sample to mean the ancestors of an allele at the neutral locus, as

opposed to an individual in the diploid population. Since the transitions of the model can

be interpreted as acting on haploids, this should cause no confusion.) The probability of

identity will depend on the past history of the population. If we knew that history then we

could calculate the identities by iterating backwards in time. We can still make progress if

we assume that the population is drawn from a stationary distribution. The Wright-Fisher

model described above is just a �nite state space Markov chain. The probability of going

from i copies of P at time t to j at time t+ 1 is given by

Pij =

�
2N

j

�
(p��)j(1� p��)2N�j :

Provided that it has a nondegenerate stationary distribution f ig
2N
i=1 (which is true pro-

vided that the mutation rates �1 and �2 are strictly positive), then we can reverse the

process. The transition probabilities for the backwards in time evolution of the number of

type P genomes in the population are given by the prescription

�ji =
 i

 j
Pij :
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In following the history of the sample at the neutral locus we must decide whether each

individual was associated with a type P or a type Q at the selected locus in the previous

generation. This association can change from parent to child as a result of mutation or

of recombination. Following through the reproductive process above we see that after the

selection and mutation, the proportion of the P -population that has arisen by mutation is

mP =
�2q

�

(1� �1)p� + �2q�
;

where we have used the notation q� = 1 � p�. Similarly, the proportion of the Q-gametes

that have arisen by mutation is

mQ =
�1p

�

(1� �2)q� + �1p�
:

Recall that the probability of a recombination event between the selected and neutral sites

in one generation is r. We need to know the probability, ~mP , that a neutral locus currently

associated with a type P background was associated with a type Q background before the

e�ects of mutation and recombination. First observe that if there is a recombination event,

the chance that it is with an individual that is type Q after the mutation step and was not

type P before the mutation step is (1�mQ)(1� p��). If there is either no recombination

event, or a recombination with an individual whose type after the mutation step is P , then

we require that the type P arose by mutation. Thus, writing q�� = 1� p��,

~mP = r(1�mQ)q
�� + (1� rq��)mP :

Similarly,

~mQ = rp��(1�mP ) + (1� rp��)mQ:

We now have all the information that we require to write down recursions for the quantities

of interest at the neutral site. In particular, we are in a position to write down recursive

equations for the probability of identity in allelic state for a sample from the neutral locus.

(It is this quantity that we shall concentrate on in our numerical examples of �7.) We

assume that in each generation mutation to a novel allele at the neutral locus occurs with

probability � and also that the frequencies at the selected locus have reached stationarity.

We then write ffPP;i; fPQ;i; fQQ;ig for the probabilities of identity in state of a sample of

two gametes given that the current number of copies of the P allele is i. The subscripts PP ,

PQ and QQ designate the type at the selected locus of the two individuals in our sample.

Writing ff�PP;i; f
�

PQ;i; f
�

QQ;ig for the probability of identity after selection, mutation and
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recombination at the selected site we have, for 1 < j < 2N � 1,

f�PP;j =
P

i �ji
�
fQQ;i ~m

2
P + 2fPQ;i ~mP (1� ~mP ) + fPP;i(1� ~mP )

2
�
;

f�PQ;j =
P

i �ji
�
fQQ;i(1� ~mQ) ~mP + fPQ;i

�
~mP ~mQ + (1� ~mQ)(1� ~mP )

�
+ fPP;i ~mQ(1� ~mP )

�
;

f�QQ;j =
P

i �ji

�
fQQ;i(1� ~mQ)

2 + 2fPQ;i ~mQ(1� ~mQ) + fPP;i ~m
2
Q

�
:

(1)

After taking into account random sampling and mutation at the neutral locus, the identities

become

fPP;j = (1� �)2
�
f�PP;j +

(1�f�
PP;j

)

j

�
;

fPQ;j = (1� �)2f�PQ;j;

fQQ;j = (1� �)2
�
f�QQ;j +

(1�f�QQ;j )

2N�j

�
;

(2)

with fPP;1 = 1, fQQ;2N�1 = 1.

Armed with these equations, numerical calculation of probability of identity now amounts

to iterating matrix equations to �nd a �xed point. However, there is an obstruction to

studying this system of equations analytically. Although with strictly positive mutation

rates the Wright-Fisher model must have a stationary distribution, it is not known explic-

itly and consequently neither are the transition probabilities �ij. In our simulations of �7

these are calculated numerically. The numerical estimates show that the Wright-Fisher

model is not reversible (that is �ij does not coincide with Pij). In the next section we

write down a di�usion approximation for the Moran version of this model. The distinc-

tion between the Moran and Wright-Fisher models is that in the Moran model, we have

overlapping generations. This has the advantage that the frequency of P -alleles will then

be a generalised birth death process and consequently has a unique invariant measure and

this invariant measure is reversible. The backwards in time transition probabilities for the

proportion of type P are then known: they are just given by the forward in time transition

probabilities. From Ethier & Kurtz (1986) Chapter 10, �2, we can check that the di�usion

approximations for the Wright-Fisher model and that found here for the Moran model

are the same. Moreover, since both models are exchangeable, the genealogies of a sample

from the population predicted by the two models will coincide in the di�usion limit (see

Kingman (1982)).

To identify the appropriate Moran version of our model, consider again a diploid popula-

tion, but now evolving according to a continuous time Markov chain so that, in particular,

generations overlap. A single step of the chain corresponds to the death of one (diploid)

individual and its replacement by another. Such deaths occur at exponential rate N and
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each individual in the population is equally likely to die. The reproductive step follows the

same sequence as before. Writing, as before, p� and q� for the proportions of the two types

of gamete after the action of selection, and p��, q�� for the corresponding proportions after

both selection and mutation, we have the following table.

Type to die p� p��

PP 1 (1� �1)

PQ (1 + s)=(2 + s) (1� �1)p
� + �2q

�

QQ 0 �2

For convenience, we write (1 + s)=(2 + s) = (1 + S)=2. Since in the Wright-Fisher model

an individual chooses her parents at random, we see that the natural continuous time

analogue of our Wright-Fisher model for the evolution of allele frequencies at the selected

site is the following version of the Moran model.

De�nition 2.1 (The Moran model) The Moran model of a population of size 2N is a

continuous time Markov chain. At exponential rate N , a pair of individuals is chosen at

random from the population. One dies and the other reproduces. If the pair chosen consists

of one type P and one type Q individual, then the probability that it is the P individual

that reproduces is (1 + S)=2. A type P parent produces a type P o�spring with probability

1 � �1, otherwise her o�spring is type Q. Similarly, a type Q parent has type Q o�spring

with probability 1� �2, otherwise her o�spring is type P .

Remark 2.2 1. As before, we can take the parameter s, and consequently S, to be

frequency dependent.

2. We are assuming that the sampling at each birth/death event is with replacement.

This simpli�es the expressions for the transition probabilities of the process of allele

frequencies at the selected locus, but the price that we pay is that it will somewhat

complicate those for the transition probabilities for the sample as we trace backwards

in time. Whether we sample with or without replacement will not change the di�usion

limit.

In order to keep track of the type at the selected locus of individuals in our sample from

the neutral locus, we must also incorporate the e�ects of recombination. As before, we

suppose that at each birth/death event there is a a probability r of a recombination event.

The type at the selected locus of the o�spring of such an event is then inherited not from

her parent, but from the individual that died. By this mechanism, as well as by mutation

at the selected site, we see migration between the two genetic backgrounds.
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Suppose then that we have a sample of individuals from our population and that the type

at the selected locus of each individual in our sample is known. We write n
(1)
1 (0) for

the number of individuals in the sample in background P and n
(1)
2 (0) for the number in

background Q. We are concerned with the ancestry of the sample. (We superimpose the

e�ects of mutation to a novel type at the neutral locus later.) Thus we write n
(1)
1 (t) for

the number of ancestors associated with type P at the selected locus and n
(1)
2 (t) for the

number of ancestors associated with type Q at time t before the present. We write p(1)(t)

for the proportion of the whole population that are type P at that time.

Our �nal task in this section is to write down the generator of the (backwards in time)

process
��
p(1)(t); n

(1)
1 (t); n

(1)
2 (t)

�	
t�0

. We suppose that p(1)(0) is drawn from the stationary

distribution of fp(1)(t)gt�0 and (n
(1)
1 (0); n

(1)
2 (0)) is arbitrary. The generator will be a very

cumbersome object. Mercifully, things will be greatly simpli�ed when we pass to a di�usion

approximation.

As we remarked above, the stationary distribution for the Moran model is reversible, so

the backwards in time dynamics of the allele frequency, fp(1)(t)gt�0 are the same as the

forwards in time ones described in De�nition 2.1. We are going to need the transition

probabilities for this process.

Lemma 2.3 Consider the probabilities in the jump chain of fp(1)(t)gt�0. Suppose that the

proportion of the population of type P immediately before and after an arbitrary birth/death

event are pm, pm+1 respectively. Writing Pp;~p = P [pm+1 = ~pj pm = p] we have

Pp;p = p2(1� �1) + (1� p)2(1� �2) + 2p(1 � p)

�
1 + S

2
�1 +

1� S

2
�2

�
(3)

Pp;p� 1
2N

= p

�
p�1 + 2(1 � p)

1� S

2
(1� �2)

�
(4)

Pp;p+ 1
2N

= (1� p)

�
(1� p)�2 + 2p

1 + S

2
(1� �1)

�
: (5)

We can now write down the generator of the triple f(p(1)(t); n
(1)
1 (t); n

(1)
2 (t))gt�0. We write

p� = p�
1

2N
; p+ = p+

1

2N
; q� = (1� p�); q = (1� p); q+ = (1� p+):
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Lemma 2.4 The generator, A(1), of the process

n�
p(1)(t); n

(1)
1 (t); n

(1)
2 (t)

�o
t�0

is given by

A(1)f(p; n1; n2) = N(1� r)c�

n �
n1
2

�
�
2Np
2

�p�q�(1 + S�)(1 � �1) +
n1n2

4N2pq
q�q�2

o
� (f(p�; n1 � 1; n2)� f(p; n1; n2))

+ Nc�

nn1(2Nq � n2)

4N2pq
q�q�2 +

rn1

2Np
p�q�(1 + S�)(1 � �1)

+
n1

2Np
q�

1

2N
�2

o
(f(p�; n1 � 1; n2 + 1)� f(p; n1; n2))

+
�
NPp;p� 1

2N
�R1 �R2

�
(f(p�; n1; n2)� f(p; n1; n2))

+ N(1� r)c+

n �
n2
2

�
�
2Nq
2

�p+q+(1� S+)(1� �2) +
n1n2

4N2pq
p+p�1

o
� (f(p+; n1; n2 � 1)� f(p; n1; n2))

+ Nc+

nn2(2Np� n1)

4N2pq
p+p�1 +

rn2

2Nq
p+q+(1� S+)(1 � �2)

+
n2

2Nq
p+

1

2N
�1

o
(f(p+; n1 + 1; n2 � 1)� f(p; n1; n2))

+
�
NPp;p+ 1

2N
�R4 �R5

�
(f(p+; n1; n2)� f(p; n1; n2))

+ N(1� r)
n �

n1
2

�
�
2Np
2

�pp�(1� �1) +
n1n2

4N2pq
pq(1� S)�2

o
� (f(p; n1 � 1; n2)� f(p; n1; n2))

+ N(1� r)
n �

n2
2

�
�
2Nq
2

�qq+(1� �2) +
n1n2

4N2pq
pq(1 + S)�1

o
� (f(p; n1; n2 � 1)� f(p; n1; n2))

+ N(1� r)
n1(2Nq � n2)

4N2pq
pq(1� S)�2

� (f(p; n1 � 1; n2 + 1)� f(p; n1; n2))

+ N(1� r)
n2(2Np� n1)

4N2pq
pq(1 + S)�1

� (f(p; n1 + 1; n2 � 1)� f(p; n1; n2)) ;

where

S = S(p); S� = S(p�); S+ = S(p+);

c� =
Pp;p�
Pp�;p

=
p (p�1 + (1� p)(1� S)(1� �2))

(1� p�) ((1� p�)�2 + p�(1 + S�)(1� �1))
;

c+ =
Pp;p+
Pp+;p

=
(1� p) ((1� p)�2 + p(1 + S)(1 � �1))

p+ (p+�1 + (1� p+)(1 � S+)(1 � �2))

and Ri denotes the rate in the ith term of the above expression.

Proof
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Conditional on the changes in p, we calculate the probabilities of the possible changes in

(n1; n2). A backwards in time birth/death event corresponds to a forwards in time one.

To establish the genealogy of our sample, we need to know the rôle of individuals in the

sample in this forwards transition. Viewed backwards in time the possible transitions of

the sample are `migrations', in which the type of the parent of an individual in the sample

di�ers from that of her o�spring, and `coalescences' in which two individuals in the sample

arise from the splitting of an individual in the previous generation. Although when we

pass to the di�usion limit these processes will not happen in a single step (so that two

individuals in the sample of di�erent types will not coalesce), here we cannot exclude that

possibility.

First observe that exactly three individuals are involved in the (forwards in time) birth/death

event: the individual that died, the one that split (i.e. gave birth) and her o�spring. We

write (i; j; k) with i; j; k 2 fP;Qg for the event that the types of these three individuals

are respectively i; j; k. Because we have assumed that we are sampling with replacement,

the individual that died can coincide with the one that split. In this case, we write (i; j; k)

as (i; k). Let us write p̂m; p̂m+1 for the forwards in time process immediately before and

after an arbitrary birth/death event. From Bayes' rule

P [ (i; j; k)j pm+1 = ~p; pm = p] = P [ (i; j; k)j p̂m = ~p; p̂m+1 = p]

=
P [ (i; j; k) \ fp̂m+1 = pgj p̂m = ~p]

P~p;p

=
P [ (i; j; k)j p̂m = ~p]

P~p;p
�(i;j;k);~p;p;

where �(i;j;k);~p;p is one if the event (i; j; k) results in a (forward in time) change in the

proportion of type P from ~p to p and zero otherwise.

We now use this prescription to calculate all non-zero conditional probabilities of this form.

First suppose that the gene frequency does not change.

P [ (P; P; P )j pm = p; pm+1 = p] =
p
�
p� 1

2N

�
(1� �1)

Pp;p
;

P [ (P; P )j pm = p; pm+1 = p] =
p 1
2N

(1� �1)

Pp;p
;

P [ (Q;Q;Q)j pm = p; pm+1 = p] =
(1� p)

�
1� p� 1

2N

�
(1� �2)

Pp;p
;

P [ (Q;Q)j pm = p; pm+1 = p] =
(1� p) 1

2N
(1� �2)

Pp;p
;

P [ (P;Q; P )j pm = p; pm+1 = p] =
p(1� p)(1� S)�2

Pp;p
;

P [ (Q;P;Q)j pm = p; pm+1 = p] =
p(1� p)(1 + S)�1

Pp;p
:
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When a type P individual is lost (looking backwards in time) we have

P

�
(Q;Q;P )j pm = p; pm+1 = p�

1

2N

�
=

�
1� p+ 1

2N

�
(1� p)�2

Pp� 1
2N

;p

;

P

�
(Q;P )j pm = p; pm+1 = p�

1

2N

�
=

�
1� p+ 1

2N

�
1
2N
�2

Pp� 1
2N

;p

;

P

�
(Q;P; P )j pm = p; pm+1 = p�

1

2N

�
=

�
p� 1

2N

� �
1� p+ 1

2N

�
(1 + S�)(1� �1)

Pp� 1
2N

;p

:

Finally, if a type one individual is gained (looking backwards in time) we have

P

�
(P; P;Q)j pm = p; pm+1 = 1 +

1

2N

�
=

�
p+ 1

2N

�
p�1

Pp+ 1
2N

;p

;

P

�
(P;Q)j pm = p; pm+1 = 1 +

1

2N

�
=

�
p+ 1

2N

�
1
2N
�1

Pp+ 1
2N

;p

;

P

�
(P;Q;Q)j pm = p; pm+1 = 1 +

1

2N

�
=

�
p+ 1

2N

� �
1� p� 1

2N

�
(1� S+)(1 � �2)

Pp+ 1
2N

;p

:

All that remains is to establish the probability that these birth/death events involved

individuals in the sample.

First we consider coalescence. A coalescence of two individuals associated with type P

occurs in the sample if the parent and o�spring are both associated with type P and both

form part of the sample and there was no recombination. Thus if pm = p, conditional

on (P; P; P ) or (Q;P; P ) this happens with probability (1 � r)
�
n1
2

�
=
�
2Np
2

�
. Similarly for

a coalescence of two individuals in the sample associated with type Q: For individuals

associated with type P and Q from the sample to coalesce requires an event of the form

(i;Q; P ) or (i; P;Q) (corresponding to parent and o�spring having di�erent type) and

conditional on one of these events happening, has probability (1� r) n1n2
2Np(2N�2Np)

.

Now we consider `migration'. An individual in the sample can `migrate' from one back-

ground to the other as a result of mutation or recombination. In either case she must

be the o�spring of a birth/death event. If the parent and the individual that die have

di�erent types, then a recombination combined with a mutation does not lead to a change

in background. Thus conditional on pm = p and a birth/death event that involved mu-

tation from type Q to P forward in time, an individual in our sample will migrate from

type P to Q (backwards in time) with probability (1 � r)
n1(2N�2Np�n2)

2Np(2N�2Np)
if the individual

that dies and the individual that split are di�erent types,
n1(2N�2Np�n2)

2Np(2N�2Np)
if they are the

same type but di�erent individuals and n1=(2Np) if the individual that dies is the parent.

Similarly, conditional on pm = p and a birth/death event involving a mutation from P

to Q, an individual in our sample migrates from type Q to P (backwards in time) with

probability (1 � r)
n2(2Np�n1)

2Np(2N�2Np)
if the event is (Q;P;Q), with probability

n2(2Np�n1)

2Np(2N�2Np)
if
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the event is (P; P;Q) and with probability n2=(2N � 2Np) if the event is (P;Q). If there

is no mutation, an individual in the sample can still change type due to recombination:

conditional upon (Q;P; P ) with probability rn1
2Np

a member of the sample migrates from

background P to Q and conditional on (P;Q;Q) with probability rn2
2N�2Np

an individual of

the sample migrates from background Q to background P .

Finally, recalling that events in the jump chain take place at an exponential rate N , we

obtain the claimed expression. 2

3 The generator of the di�usion approximation

In this section we identify the generator of the di�usion approximation corresponding to the

model of �2. Existence of a corresponding stochastic process and convergence to the limit

is deferred to the following sections, but our proofs will require the following assumption

on the selection coe�cient.

Assumption

The selection coe�cient, s : [0; 1] ! R is a Lipschitz continuous function.

As usual, we speed up time by a factor of diploid population size, N , and correspondingly

scale down the parameters in the model by the same factor. Thus �i 7! �i=N and r 7! r=N .

The selection coe�cient, s, is also scaled by N . Notice that

1 + s
N

2 + s
N

=
1

2
(1 +

s

2N
) + o

�
1

N

�
;

so that at the Nth stage of the rescaling S = s
2N

+ o
�
1
N

�
.

We write A(N) for the generator of Lemma 2.4 with parameters scaled in this way.

Lemma 3.1 Let E = [0; 1] � f1; : : : ; n1(0) + n2(0)g � f1; : : : ; n1(0) + n2(0)g and suppose

that f(p; n1; n2) : E ! R is twice continuously di�erentiable with respect to p. Then for

0 < p < 1,

A(N)f(p; n1; n2)! Af(p; n1; n2) as N !1;
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where

Af(p; n1; n2) =
1

2p

�
n1

2

�
(f(p; n1 � 1; n2)� f(p; n1; n2)) (6)

+
1

2q

�
n2

2

�
(f(p; n1; n2 � 1)� f(p; n1; n2)) (7)

+
p

q
�1
n2

2
(f(p; n1 + 1; n2 � 1)� f(p; n1; n2)) (8)

+
q

p
�2
n1

2
(f(p; n1 � 1; n2 + 1)� f(p; n1; n2)) (9)

+r
n2p

2
(f(p; n1 + 1; n2 � 1)� f(p; n1; n2)) (10)

+r
n1q

2
(f(p; n1 � 1; n2 + 1)� f(p; n1; n2)) (11)

+(��1p+ �2q + spq)
1

2
f 0(p; n1; n2) +

1

4
pqf 00(p; n1; n2); (12)

and
0
denotes di�erentiation with respect to p.

Proof

Fix p > 0 and consider the generator of Lemma 2.4 with the parameters scaled as above.

Notice that c+ and c� tend to one as N ! 1 and that the e�ect of speeding up time is

to multiply the whole generator by a further factor of N .

The �rst and seventh terms sum to give

1

2p

�
n1

2

�
(f(p; n1 � 1; n2)� f(p; n1; n2)) +O

�
1

N

�
:

The fourth and eighth terms sum to give

1

2q

�
n2

2

�
(f(p; n1; n2 � 1)� f(p; n1; n2)) +O

�
1

N

�
:

Ignoring the part arising from recombination, the �fth and tenth terms sum to give

p

q
�1
n2

2
(f(p; n1 + 1; n2 � 1)� f(p; n1; n2)) +O

�
1

N

�
:

Ignoring the part arising from recombination, the second and ninth terms sum to give

q

p
�2
n1

2
(f(p; n1 � 1; n2 + 1)� f(p; n1; n2)) +O

�
1

N

�
:

The contribution to the second and �fth terms from recombination sum to give

r
n2p

2
(f(p; n1 + 1; n2 � 1)� f(p; n1; n2))

+ r
n1q

2
(f(p; n1 � 1; n2 + 1)� f(p; n1; n2)) +O

�
1

N

�
:
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This leaves the third and sixth terms. First observe that NRi for i = 1; 2; 4; 5 are all

O(1), whereas N2Pp;p� 1
2N

and N2Pp;p+ 1
2N

will both be O(N2). Using smoothness of f as a

function of p, we expand f(p�; n1; n2) and f(p+; n1; n2) in a Taylor series about (p; n1; n2).

The third and sixth terms then become�
N2Pp;p� 1

2N
�NR1 �NR2

��
�

1

2N
f 0(p; n1; n2) +

1

8N2
f 00(p; n1; n2)

�

+
�
N2Pp;p+ 1

2N
�NR4 �NR5

�� 1

2N
f 0(p; n1; n2) +

1

8N2
f 00(p; n1; n2)

�
+O

�
1

N

�
;

where we have again used 0 to denote di�erentiation with respect to p. Substituting from

Lemma 2.3 we obtain

N2p
�
p
�1

N
+ q

�
1�

s

2N

��
1�

�2

N

���
�

1

2N
f 0(p; n1; n2) +

1

8N2
f 00(p; n1; n2)

�

+N2q
�
q
�2

N
+ p

�
1 +

s

2N

��
1�

�1

N

��� 1

2N
f 0(p; n1; n2) +

1

8N2
f 00(p; n1; n2)

�
+O

�
1

N

�
;

which reduces to�
�p2�1 +

pqs

2
+ �2pq

� 1

2
f 0(p; n1; n2) +

�
q2�2 +

pqs

2
� �1pq

� 1

2
f 0(p; n1; n2)

+
1

4
pqf 00(p; n1; n2) +O

�
1

N

�

= (��1p+ �2q + spq)
1

2
f 0(p; n1; n2) +

1

4
pqf 00(p; n1; n2) +O

�
1

N

�
:

Letting N !1 in the above expressions completes the proof. 2

Remark 3.2 There are no surprises in the form of this generator. If we think of our

population as subdivided into two demes according to the type at the selected site, then we

should expect the genealogy of the sample to be given by a structured coalescent. Thus the

terms (6) and (7) correspond to the coalescence of individuals in the same deme, which

happens at a rate inversely proportional to the population size within that deme. The

terms (8) and (9) re�ect migration between demes as a result of mutation. The rates must

be scaled by the ratio of the population sizes in the di�erent demes, just as in the structured

coalescent. The terms (10) and (11) re�ect migration due to recombination. Evidently

these rates must be proportional to the proportion of the population that is of the opposite

type. (Recombining with an individual of one's own type has no net e�ect.) Finally the

term (12) is simply the generator of the di�usion approximation to our Moran model for

allele frequencies.

4 Existence of the di�usion approximation

It is not immediately obvious that there should be a stochastic process with generator

given by (6)�(12). The immediate problem is that the coalescence and migration rates for
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the sample become unbounded as the allele frequency p tends to zero or one. This means

that, in principle, we could see an in�nite number of jumps in �nite time. However, what

we shall see is that this does not happen because the process jumps away from the `bad

region' in a �nite number of jumps.

First let us de�ne `bad' (or rather `good' regions) for the process. Evidently we want to

keep away from regions where p is small and n1 6= 0 or where q is small and n2 6= 0. We

therefore de�ne

U (k) = [0;
1

k
]�f0g�f0; 1; : : : ; n1(0)+n2(0)g[ [1�

1

k
; 1]�f0; 1; : : : ; n1(0)+n2(0)g�f0g

[ (
1

k
; 1�

1

k
)� f1; 2; : : : ; n1(0) + n2(0)g � f1; 2; : : : ; n1(0) + n2(0)g:

Notice that the sets U (k) are open subsets of the state space E.

The �rst, straightforward, task is to show that the process exists until its exit time from

U (k) for each k. In an obvious notation, we write An for the portion of the generator

corresponding to the terms (6)�(11) and Ap for the portion corresponding to the generator

of the allele frequencies, namely (12).

Lemma 4.1 We write C2(E) for bounded functions f : E ! R which are twice continu-

ously di�erentiable with respect to p. De�ne

A(k)
p f(p; n1; n2) = �U(k) ((p; n1; n2))Apf(p; n1; n2);

A(k)
n f(p; n1; n2) = �U(k) ((p; n1; n2))Anf(p; n1; n2):

Then the closure ofn
(f;A(k)f) : f 2 C2(E)

o
�
n
(f;A(k)

p f +A(k)
n f) : f 2 C2(E)

o
generates a Feller semigroup.

Proof

This is standard. First consider A
(k)
p applied to functions f 2 C2([0; 1]). Then from, for

example, Ethier & Kurtz (1986) (Chapter 8, Theorem 2.8), the closure of f(f;Apf) : f 2

C2([0; 1])g generates a Feller semigroup on the continuous functions on [0; 1]. (It is here

that we have used that the selection coe�cient, s, is a Lipschitz continuous function.)

We also know that, for �xed p 2 [0; 1], A
(k)
n generates a Feller semigroup on continuous

functions on f0; 1; : : : ; n1(0) + n2(0)g � f0; 1; : : : ; n1(0) + n2(0)g (since the state space is

�nite and the jump rates are all bounded). Evidently both generators can be regarded as

acting on E and they are Feller generators on continuous functions on E.

Now observe that

kA(k)
n fk1 �

�
n1(0)

2 + n2(0)
2 + (2k + r)(n1(0) + n2(0))

�
kfk1
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and so A(k) is a bounded perturbation of A
(k)
p and hence also generates a strongly continu-

ous contraction semigroup (see Ethier & Kurtz (1986), Chapter 1, �7). That the resulting

semigroup is positive and conservative is an easy consequence of the Trotter product for-

mula and the proof is complete. 2

We can think of the processes constructed in Lemma 4.1 as solutions to a stopped martingale

problem. Let �k = infft � 0 : (p(t); n1(t); n2(t)) =2 U
(k)g. Then, for f in the domain of A,

f (p(t); n1(t); n2(t))�

Z t^�k

0

A(k)f (p(s); n1(s); n2(s)) ds

= f (p(t); n1(t); n2(t))�

Z t^�k

0

Af (p(s); n1(s); n2(s)) ds (13)

is a martingale. We remark that this stopped martingale problem is well-posed since it is

associated with a Feller generator (see Ethier & Kurtz (1986), Chapter 4, Theorem 4.1).

To establish existence of the process corresponding to the generator A on the whole of E,

we shall use the following result (Ethier & Kurtz (1986), Chapter 4, Theorem 6.3).

Theorem 4.2 Let (E; d) be a complete and separable metric space and let A � C(E) �

B(E). Let U1 � U2 � � � � be open subsets of E. Fix � 2 P(E), and suppose that for each

k there exists a unique solution Xk of the stopped martingale problem for (A; �; Uk) with

sample paths in DE [0;1). Setting

�k = infft : Xk(t) =2 Uk or Xk(t�) =2 Ukg;

suppose that for each t > 0,

lim
k!1

Pf�k � tg = 0: (14)

Then there exists a unique solution of the DE [0;1) martingale problem for (A; �).

Here C(E) denotes bounded continuous functions on E, B(E) denotes bounded Borel

measurable functions on E, DE[0;1) is càdlàg paths inE and P(E) is probability measures

on E. The generator A is to be thought of as f(f;Af)g for f in a suitable class. (In our

case A should be thought of as the closure of f(f;Af) : f 2 C2(E)g.) The probability

measure � speci�es the initial distribution of our process.

Our task then is to show that if we take Uk = U (k), then the condition (14) is satis�ed.

Proposition 4.3 With �k as above, for any �xed t > 0,

lim
k!1

Pf�k � tg = 0:
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Of course, if the boundaries are inaccessible for the process fp(t)gt�0, which, as we show

as part of Lemma 4.4, is true provided �i � 1=2 for i = 1; 2, then there is no problem.

The di�culty is to check that this is still true under the much weaker (and biologically

more realistic) condition that we are assuming here, that �i > 0 for i = 1; 2. The key is

the following lemma.

Lemma 4.4 1. Suppose that �2 �
1
2
(resp. �1 �

1
2
). Then 0 (resp. 1) is an inaccessible

boundary for the process fp(t)gt�0. If �2 2 (0; 1
2
) (resp. �1 2 (0; 1

2
)) then it is

accessible.

2. Suppose that �2 <
1
2
(resp. �1 <

1
2
). Then for any �xed value of p(0) 2 (0; 1) and

any K > 0, writing �x(a) for the �rst hitting time of a by the process fp(t)gt�0 given

that p(0) = x, we have

lim
k!1

P

"Z �p(0)(1=k)

0

1

p(s)
ds > K

#
= 1: (15)

(resp.

lim
k!1

P

"Z �p(0)(1�1=k)

0

1

1� p(s)
ds > K

#
= 1:)

Remark 4.5 Equation (15) is not the strongest statement that we could make about the

divergence of the integral, but it is the form that we require in the proof of Proposition 4.3.

Proof

Recall that for a one-dimensional di�usion process on the interval [0; 1] with generator

L =
1

2
a(x)

d2

dx2
+ b(x)

d

dx

the scale, n(x), and speed, m(x), are de�ned for x 2 [0; 1] by

n(x) =

Z x

c

exp

�
�

Z y

c

2b(z)

a(z)
dz

�
dy;

m(x) =

Z x

c

2

a(y)
exp

�Z y

c

2b(z)

a(z)
dz

�
dy;

where c 2 (0; 1) is �xed arbitrarily. According to Feller's boundary classi�cation, a bound-

ary point e is accessible or inaccessible according as

u(e) ,

Z e

c

m(x)dn(x)

is �nite or in�nite.
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For the process of allele frequencies, fp(t)gt�0, we have

a(x) =
1

2
x(1� x)

b(x) =
1

2
(s(x)x(1� x)� �1x+ �2(1� x)) :

Substituting gives

n(x) =

Z x

c

exp

�
�

Z y

c

2s(z)dz

�
y�2�2(1� y)�2�1dy;

m(x) =

Z x

c

4

y(1� y)
exp

�Z y

c

2s(z)dz

�
y2�2(1� y)2�1dy:

Since s(x) is bounded and continuous and �i > 0 for i = 1; 2 we have u(x) �
R
x+
y�2�2dy

as x # 0 which is bounded or unbounded according as �2 <
1
2
or �2 �

1
2
. The symmetrical

argument applied to the boundary point 1 completes the proof of Part 1 of the Lemma.

Now suppose that �2 <
1
2
. Since p(0) is arbitrary, for the remainder of this proof we shall

suppress it in our notation and write �(x) for the �rst hitting time of x.

First we convert the process p(t) to natural scale. That is, we study the process Y (t) ,

n(p(t)). Now

Y (t) = Y (0) +

Z t

0

�(Y (s))dWs

where fWtgt�0 is a standard Brownian motion started from n(p(0)) and (using 0 to denote

di�erentiation)

�(y) = n0
�
n�1(y)

�r1

2
n�1(y)(1 � n�1(y)):

Without loss of generality, since scale is de�ned only up to translation we may assume that

n(0) = 0 and then as x # 0 our calculations above show that n(x) � x1�2�2 . The quantity

that we are interested in is Z �(1=k)

0

1

n�1(Y (s))
ds:

Writing Y (t) =W ((t)) where  is de�ned by

Z (t)

0

1

�(Ws)
ds = t;

and substituting r = (s) in the integral, we obtain

Z �(1=k)

0

1

p(s)
ds =

Z (�(1=k))

0

1

n�1(Wr)

1

�(Wr)
dr;

Now observe that

n�1(x) � x1=(1�2�2)

�(x) � x�2�2=(1�2�2)x1=(2(1�2�2))

�
as x # 0;
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and so the behaviour of (15) is determined by

Z (�(1=k))

0

1

W�
r

dr (16)

where

� =
1

1� 2�2
�

2�2

1� 2�2
+

1

2(1 � 2�2)
= 1 +

1

2(1 � 2�2)
:

Notice that W ((�(1=k)) = n(1=k) implies that (�(1=k)) � �W (k�(1�2�2)) where �W (x)

is the �rst hitting time of x by the Brownian motion fWtgt�0. Finally, since �2 <
1
2
, � > 1

and limk!1 (�(1=k)) = �W (0), and so we deduce (15). 2

Proof of Proposition 4.3

For a 2 [0; 1], we retain the notation �x(a) for the �rst hitting time of a by the process

fp(t)gt�0 given that p(0) = x.

Suppose that 0 is an inaccessible boundary for the process fp(t)gt�0. Then we have

P
�
�1=k(0) � t

�
! 0 as k ! 1. A fortiori, the probability that f(p(t); n1(t); n2(t))gt�0

hits f 1
k
g � fig � fn1g for i 6= 0 before time t tends to zero as k tends to in�nity. Sim-

ilarly if 1 is inaccessible for the process of allele frequencies, the probability of hitting

f1� 1
k
g � fn1g � fig for non-zero i tends to zero as k !1.

We concentrate on the case when 0 is an accessible boundary for the process fp(t)gt�0,

that is �2 < 1=2.

The idea of the proof is simple. If p approaches zero, then (15) implies that the the

probability of jumping from type P to type Q for individuals in our sample tends to one.

On the other hand the jump rate from type Q to type P tends to zero. Therefore, with

very high probability (tending to one), if the allele frequency is less than 1=k, we do not

see a type P individual in (the ancestors of) our sample. Combined, if 1 is also accessible,

with the symmetric argument as the allele frequency increases to one, we see that the

probability of hitting the boundary of U (k) in �nite time converges to zero as k !1.

We now make this argument more precise. Suppose that t � 0 is �xed. We use the

abbreviation n(0) = n1(0) + n2(0). This is an upper bound on the number of individuals

in the sample at all times. Now �x Æ > 0. For each p 2 (0; 1), de�ne

�1(p) = n(0)

�
p�1

2(1� p)
+
rp

2

�

and

�2(p) =
1� p

p

�2

2
:
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Notice that �2 provides a lower bound for the rate at which individuals in the sample jump

away from state P (provided that n1 6= 0), whereas �1 provides an upper bound for the

rate at which they arrive.

Let T� be an exponentially distributed random variable with rate �1(�).

Recall that for 0 � a < x < b � 1,

P [�x(a) < �x(b)] =
n(b)� n(x)

n(b)� n(a)
;

where the scale function, n(x) was de�ned in Lemma 4.4. Substituting, we see that by

choosing N large enough, we can arrange that

P [��(0) < ��(N�)] > 1�
Æ

8
; uniformly in � <

1

N
: (17)

By choosing � to be still smaller if necessary, we arrange that

P [TN� > t] > 1�
Æ

8
: (18)

Now let X be a Poisson random variable with mean K. Choose K large enough that

P [X > n(0)] > 1�
Æ

8
: (19)

Finally suppose that p(0) � � and (with � �xed) using Lemma 4.4 choose k0 large enough

that for k > k0

P

"Z �p(0)(1=k)

�p(0)(�)

�2(p(s))ds > K

#
> 1�

Æ

8
: (20)

Now consider the �rst time �p(0)(1=k) that the process of allele frequencies hits 1
k
. We

want to estimate the probability that n1(�p(0)(1=k)) = 0. We combine the above estimates

as follows. We use equation (17) to restrict our attention to the event that between �rst

hitting � and �rst hitting 1
k
we always have p < N�. Equation (18) then allows us to

ignore the possibility that there are any jumps of individuals in the sample into state P

in this time interval. Equation (20) ensures that the rate of jumps out of state P is at

least K (provided there are any individuals to jump) and �nally equation (19) ensures

that all individuals do indeed jump out of state P before the process hits 1=k. Thus, with

probability at least 1� Æ
2
when the p process hits 1=k, n1 = 0.

Started from p = 1=k and n1 = 0, we now let the process run until the �rst time T that

n1 6= 0. Evidently this is smallest if when p = 1=k, n2 = n(0). Moreover, since the rate at

which individuals jump into state P increases as p increases, provided that � < 1
2
, this time

is stochastically greater than T 0, the �rst time started from (1
2
; 0; n(0)) that n1 6= 0. The

distribution of T 0 is independent of � and Æ. We want to apply the above argument once

again to see that the next time the allele frequency hits 1=k the probability that n1 = 0 is
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at least 1� Æ
2
. The only twist is that we may need to choose � smaller still to ensure that

the probability that at the time T the process p is greater than � is at least 1� Æ
2
. Notice

that this last estimate can be obtained uniformly in k > 1=� by choosing � so that if we

start from (0; 0; n(0)) then p(T ) > � with probability 1� Æ
2
.

Now we are essentially done. The process hits the boundary p = 1
k
with n1 6= 0 only after

a geometric number of hits of p on 1=k. The success probability for this geometric random

variable is at most Æ. Each `failure' accrues an additional waiting time bounded below by

an independent copy of T 0. Since Æ was arbitrary, the proof is complete. 2

5 Convergence

Having established existence of our candidate di�usion approximation, we now turn to

proving that the rescaled processes of �3 actually converge to this limit. That is, we prove

the following theorem.

Theorem 5.1 The processes f(p(N)(t); n
(N)
1 (t); n

(N)
2 (t))gt�0 corresponding to the genera-

tors A(N) of Lemma 3.1 converge weakly inDE [0;1) as N !1 to the process f(p(t); n1(t); n2(t))gt�0

generated by A.

The main tool in the proof will be the following result which is a special case of Ethier &

Kurtz (1986), Chapter 4, Corollary 8.7.

Theorem 5.2 Suppose that (E; d) is a complete separable metric space. Let A be a Feller

generator on E corresponding to the Markov process X. For each N � 1, let X(N)
be

progressively measurable E-valued processes with full generators Â(N)
and such that X(N)(0)

converges weakly to X(0) as N !1. Suppose that D(A) separates points. Suppose further

that the compact containment condition holds for fX(N)gN�1. That is, for every � > 0 and

every T > 0 there exists a compact set ��;T � E for which

inf
N
P

h
X(N)(t) 2 ��;T for 0 � t � T

i
� 1� �:

Suppose that for each (f; g) 2 A and T > 0 there exist (f (N); g(N)) 2 Â(N)
and G(N) � E

such that

lim
N!1

P

h
X(N)(t) 2 G(N); 0 � t � T

i
= 1; (21)

supN kf
(N)k <1 and

lim
N!1

sup
x2G(N)

jf(x)� f (N)(x)j = 0 = lim
N!1

sup
x2G(N)

jg(x) � g(N)(x)j: (22)

Then X(N)
converges weakly to X as N !1.
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In fact this result would be su�cient to allow us to prove the result in one fell swoop,

but in view of the work of �4, it is convenient to proceed in two stages. First, taking

the sets G(N) = E we prove convergence of the stopped processes, X(N;k), generated by

A(N;k) � �U(k)A(N), to the process Xk for each k. The following Lemma, which is a

straightforward adaptation of Lemma 11.1.1 of Stroock & Varadhan (1979) then completes

the proof.

Lemma 5.3 Let fP(N)gN�1 be a sequence of probability measures on the space DE [0;1)

and suppose that T (k)
is a non-decreasing sequence of stopping times (with respect to the

natural �ltration) increasing to in�nity almost surely. For each k � 1, let fP(N;k)gN�1 be

a relatively compact sequence of probability measures such that P
(N;k)

is equal to P
(N)

on

FT (k) .

If the probability measure P has the property that, for any k � 1, any limit point of

fP(N;k)gN�1 agrees with P on FT (k) , then P
(N)

converges to P as N !1.

Proof of Theorem 5.1

First we �x k � 1 and consider the sequence of stopped processes fX(N;k)gN�1. The com-

pact containment condition of Theorem 5.2 is automatically satis�ed since E is compact.

We take the sets Gn = E in condition (21). From �3 we see that we can take f (N) = f in

condition (22) and convergence of the stopped processes is proved.

Combining Proposition 4.3 with Lemma 5.3, the proof is complete. 2

6 Di�erential equations for the identities

We now return to the problem of calculating the probability of identity in allelic state at

the neutral locus for a sample whose types at the selected locus are known. For simplicity,

we consider the case of a sample of size two, but see Remark 6.2.

Our approach is to use the di�usion approximation to write down a coupled system of

ordinary di�erential equations for the probability of identity, indexed by the state at the

selected locus of the sample, that is PP , PQ and QQ. Thus fPP will denote the probability

of identity given that the two individuals in our sample are both of type P . These quantities

will be compared to the predictions of equations (1) and (2) in �7.

If the current allele frequency at the selected locus is p (assumed as always to have reached

stationarity), then write FPP (t; p) for the probability that at time t the (backwards in

time) process f(p(t); n1(t); n2(t))gt�0 is in [0; 1]� f0g � f1g [ [0; 1]�f1g � f0g given that

at time zero n1(0) = 2, n2(0) = 0. Similarly de�ne FPQ(t; p) and FQQ(t; p). We assume,

as always, that fp(0)gt�0 is drawn from the (reversible) stationary distribution for the
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process fp(t)gt�0.

Since, by our work of �4 there will be no point of accumulation of epochs of jump times

for the process, following Feller (1966), �X.3, we see (by �rst conditioning on fp(t)gt�0)

that fFPP (t; p); FPQ(t; p); FQQ(t; p)g can be characterised as the unique minimal solution

to the following system of di�erential equations: (we use _F to denote the derivative of F

with respect to t)

_FPP = 1�FPP
2p

+
�
�2q
p

+ rq
�
(FPQ � FPP )

+ 1
2
(��1p+ �2q + spq)F 0PP + 1

4
pqF 00PP

_FPQ = 1
2

�
p�1
q

+ rp
�
(FPP � FPQ) +

1
2

�
q�2
p

+ rq
�
(FQQ � FPQ)

+ 1
2
(��1p+ �2q + spq)F 0PQ + 1

4
pqF 00PQ

_FQQ =
1�FQQ

2q
+
�
�1p
q

+ rp
�
(FPQ � FQQ)

+ 1
2
(��1p+ �2q + spq)F 0QQ + 1

4
pqF 00QQ:

(23)

Suppose that the mutation rate to a novel allele at the neutral site is �, corresponding

to the rescaling � 7! �=N of the model of �2, then conditional on the individuals having

coalesced at time t, the probability that they are identical in state, that is that there has

been no mutation since time t along either of their lines of descent, is e�2�t. Conditioning

on the time to coalescence then gives

fPP (p) =

Z
1

0

e�2�t
dFPP (t; p)

dt
dt

with similar expressions for fPQ(p) and fQQ(p). Integration by parts then shows that,

under the di�usion approximation, the probabilities of identity satisfy

0 = �2�fPP + 1�fPP
2p

+
�
�2q
p

+ rq
�
(fPQ � fPP )

+ 1
2
(��1p+ �2q + spq) f 0PP + 1

4
pqf 00PP

0 = �2�fPQ + 1
2

�
p�1
q

+ rp
�
(fPP � fPQ) +

1
2

�
q�2
p

+ rq
�
(fQQ � fPQ)

+ 1
2
(��1p+ �2q + spq) f 0PQ + 1

4
pqf 00PQ

0 = �2�fQQ +
1�fQQ

2q
+
�
�1p
q

+ rp
�
(fPQ � fQQ)

+ 1
2
(��1p+ �2q + spq) f 0QQ + 1

4
pqf 00QQ:

(24)

We now identify the probabilities of identity in state as the minimal solution to this system.

Again following Feller (1969), � X.3, fFPP (t; p); FPQ(t; p); FQQ(t; p)g, the minimal solution

to (23), is most easily constructed via an iterative procedure. At the nth stage of the

iteration, the functions fF
(n)

PP
(t; p); F

(n)

PQ
(t; p); F

(n)

QQ
(t; p)g are obtained by conditioning the

number of jumps that the process can make by time t to be at most n. Since (by our
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work of �4) the total number of jumps that the process can make by time t is �nite, as

n!1 this sequence of functions really does converge to the distribution function of the

coalescence times. If we now de�ne

f
(n)

PP =

Z
1

0

e�2�t
dF (n)(t; p)

dt
dt;

with parallel de�nitions for f
(n)
PQ and f

(n)
QQ, then as n ! 1, ff

(n)
PP (p); f

(n)
PQ(p); f

(n)
QQ(p)g

converges to the minimal solution to the system of equations (24).

Combining the above yields the following.

Theorem 6.1 Under the di�usion approximation, if the process of allele frequencies is

assumed to have reached stationarity, then the probabilities of identity in state for a sample

of size two whose types at the selected site are known, denoted ffPP (p); fPQ(p); fQQ(p)g,

are given by the minimal solution to the system of equations (24).

Before exploring the equations numerically, we make precise the iteration that we used

above to construct the minimal solution. The sequence of functions ff
(n)

PP ; f
(n)

PQ; f
(n)

QQgn�0 is

obtained as follows. First set (f
(0)

PP (p); f
(0)

PQ(p); f
(0)

QQ(p)) � (0; 0; 0) for p 2 [0; 1]. Then for

n � 1,

0 = �2�f
(n)
PP +

1� f
(n)
PP

2p
+

�
�2q

p
+ rq

��
f
(n�1)
PQ � f

(n)
PP

�

+
1

2
(��1p+ �2q + spq)

d

dp
f
(n)
PP +

1

4
pq

d2

dp2
f
(n)
PP

0 = �2�f
(n)

PQ +
1

2

�
p�1

q
+ rp

��
f
(n�1)

PP � f
(n)

PQ

�
+

1

2

�
q�2

p
+ rq

��
f
(n�1)

QQ � f
(n)

PQ

�

+
1

2
(��1p+ �2q + spq)

d

dp
f
(n)

PQ +
1

4
pq

d2

dp2
f
(n)

PQ

0 = �2�f
(n)

QQ
+

1� f
(n)

QQ

2q
+

�
�1p

q
+ rp

��
f
(n�1)

PQ
� f

(n)

QQ

�

+
1

2
(��1p+ �2q + spq)

d

dp
f
(n)

QQ
+

1

4
pq

d2

dp2
f
(n)

QQ
:

As n ! 1, the functions f
(n)
PP , f

(n)
PQ and f

(n)
QQ converge (monotonically) to the minimal

solution of (24).

Since the system (24) arose by integrating the Kolmogorov backward equations (23) the

boundary conditions are implicitly prescribed. However, in order to solve the equations
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numerically, we require explicit expressions. The �rst thing that we must check is that

p
df

(n)
PP

dp
; p

df
(n)
PQ

dp
; p

d2f
(n)
PP

dp2
; p

d2f
(n)
PQ

dp2

all tend to zero as p tends to zero and similarly

(1� p)
df

(n)
PQ

dp
; (1� p)

df
(n)
QQ

dp
; (1� p)

d2f
(n)
PQ

dp2
; (1� p)

d2f
(n)
QQ

dp2

all tend to zero as p tends to one. The method is lengthy, but completely standard. For

each equation, �rst use the Frobenius method of solution in series to �nd two linearly

independent solutions to the corresponding homogeneous equation. (One solution will be

singular at p = 0 and the other will not.) Then use the method of variation of parameters to

write down the corresponding Green's function and �nally integrate to obtain the solution

to the original (inhomogeneous) equation. We omit the details. They can be found in any

standard text on ordinary di�erential equations, for example, Simmons (1974).

Granted the above, we can now read o� the boundary conditions from the equations.

Letting p tend to zero in the �rst equation and to one in the last equation of (24) gives

f
(n)
PP (0) =

1 + 2�2f
(n�1)
PQ (0)

1 + 2�2
;

f
(n)
QQ(1) =

1 + 2�1f
(n�1)
PQ (1)

1 + 2�1
:

Letting p tend to one in the �rst equation and to zero in the last equation of (24) we see

that we must have

(1 + 4�) f
(n)

PP (1) + �1
df

(n)

PP

dp
(1) = 1;

(1 + 4�) f
(n)

QQ(0)� �2
df

(n)

QQ

dp
(0) = 1:

The second equation yields

f
(n)

PQ(0) = f
(n�1)

PP (0); f
(n)

PQ(1) = f
(n�1)

QQ (1):

Remark 6.2 Our system of di�erential equations is for a sample of size two from a pop-

ulation that can be in just two possible states. Clearly this is a very special situation.

Of course it is readily extended to larger systems. However, to characterise the transi-

tion probabilities for a sample of size N from a population with m possible states requiresPN
n=1

Pm
k=1

�
m
k

��
n�1
k�1

�
equations. The distribution of the time to the most recent common

ancestor of the sample requires
PN

n=2

Pm
k=1

�
m
k

��
n�1
k�1

�
equations. The probability of identity

in state for a sample of size two from a population distributed amongst m genetic back-

grounds requires
1
2
m(m + 3) equations. Evidently for large samples or complex genetic

backgrounds the approach will become intractable.
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7 Numerical examples

In this section we illustrate the accuracy of the equations (24) when compared to a direct

solution of the matrix equations (1) and (2) that gave us the exact probabilities of identity

for the Wright-Fisher model. We then use the equations to illustrate the potentially im-

portant in�uence of the �uctuations on the probabilities of identity in allelic state at the

neutral locus. We concentrate exclusively on the case of balancing selection s = s0(p0� p)

with p0 = 1
2
. We also set the recombination rate r = 0.

These results could all be obtained for low selection rates using the ancestral selection

graph methods in which lineages branch into three potential ancestors at rate s0. Here

we used Mathematica to solve the di�erential equations numerically (a process that takes

only seconds of computer time irrespective of the strength of selection). In all the �gures

we have included a plot of the stationary distribution for the allele frequencies for the

parameter values used. The unique stationary distribution for the process has density

m(p) = �p2�2�1(1� p)2�1�1 exp

�
�
1

2
s0
�
p2 + (1� p)2

��
; p 2 (0; 1);

where the constant � is chosen so that
R 1

0
m(p)dp = 1. Note that when the selection is

very strong, rounding errors mean that the explosion of the density at the margins is not

visible on the plot.

Figure 1 compares the solution to the matrix equations (1), (2) to the di�usion approx-

imation obtained by solving the system (24). Even for the modest population size (�fty

diploid individuals), the accuracy of the di�usion approximation is striking. We obtained

similar results with other parameter values. In this example, the mutation rate between

selected loci was chosen to be very small as this is the case when one expects the di�usion

approximation to be most likely to break down.

In Figures 2 and 3, the probabilities of identity are plotted for the case of strong balancing

selection. In both cases the mean value of the allele frequencies at the selected locus when

the population has reached stationarity is 1
2
. The probability f = p2fPP +2pqfPQ+q2fQQ

of identity for two individuals selected at random is also plotted. This function should

be compared to the constant value 0:43 that one obtains by setting p � 1
2
and using the

standard structured coalescent model. Even when the strength of selection is rather strong,

this is a poor approximation. In Figure 4 we plot the result of integrating the function

f against the stationary distribution of the allele frequencies for di�erent strengths of

selection (all other parameters being as in Figure 2 and 3). As we see, the strength of

selection has to be very strong indeed before the value predicted by the standard structured

coalescent can be regarded as a good approximation. Finally, in Figure 5 we compare the

mean time to coalescence for a sample of size two as a function of the strength of selection.
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1
p

1
f

Figure 1: Comparison of solutions to the matrix equations for identity in state obtained

from the Wright-Fisher model to those of the di�erential equations obtained from the

di�usion approximation. The three thin lines are (in descending order at p = 0) fPP , fQQ
and fPQ. The dotted lines are the solutions to the matrix equations and the bold line is

the stationary distribution of p. The parameter values are N = 50, s0 = 0:16, p0 = 0:5,

�1 = 0:0005 = �2, � = 0:002.

We refer to the companion paper, Barton & Etheridge (2002) for a more detailed investi-

gation and discussion of the biological issues raised.

0 1
p0

1
f

Figure 2: From top to bottom at p = 0 the plotted functions correspond to fPP , fQQ, f

and fPQ. The thick line is the stationary distribution. The parameter values are � = 0:1,

�1 = 0:025 = �2, p0 = 0:5, s0 = 0:16.
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0 1
p0

1
f

Figure 3: The same as Figure 2 except that now s0 = 0:32.

2 5 10 20 50
Ns00

0.5

1
f
�

Figure 4: Prediction of the di�usion approximation for the integral of f against the sta-

tionary distribution for the allele frequencies at the selected locus as a function of the

strength of selection. All other parameters are chosen as in Figures 2 and 3.

2 5 10 20 50
Ns00

1

5

mean
coalescence
time

Figure 5: Predictions of the di�usion approximation for mean coalescence time scaled

relative to the neutral expectation (2N) for a sample of size two. The parameters are as in

Figure 4. The thick line on the upper right is the prediction from the structured coalescent

(6N).
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