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Abstract

We prove a priori estimates in L2(0,7; W2(Q)) and L>®(Qr), existence
and uniqueness of solutions to Cauchy—Dirichlet problems for elliptic—parabolic

systems
Oo(u) <~ 0 3 — v) _
ot Z oz, {p(u)bl (t71"7 T)} + a(t,z,v,u) =0,
_Zaxz[ 6$Z]+0(u):f(t’x); (tax)eQT:(O,T)XQ’
where p(u) = 33511), Systems of such form arise as mathematical models of

various applied problems, for instance, electron transport processes in semi-
conductors. Our basic assumption is that log p(u) is concave. Such assumption
is natural in view of drift—diffusion models, where o has to be specified as a
probality distribution function like a Fermi integral and u resp. v have to be
interpreted as chemical resp. electrostatic potential.

1 Introduction

We prove a priori estimates, existence and uniqueness of weak solutions to initial
boundary value problems of the form

Oo(u) zn: 0 {p(u)bi (t,x, M)} +a(t,z,v,u) =0, (t,z)€Qr, (1)

ot — ox; Oz
= o [We)ge] o = fte), (o) € Qn, @)
u(t,z) = g1(t,z), (t,z) el =(0,T) x 09, (3)
v(t,z) = got, z), (t,z) e ' =(0,T) x 092, (4)
u(0,z) = h(z), z€Q, (5)

where o(u) = [ p(s)ds, is a bounded open set in R* and Q7 = (0,7)xQ, T > 0.

Systems of the form (1), (2) arise as mathematical models of various applied prob-
lems, for instance reaction—drift—diffusion processes of electrically charged species,



phase transition processes and transport processes in porous media. The investi-
gation of nonlinear reaction—drift—diffusion systems has received much attention in
recent years [1].

The equation (1) is degenerate because the function p(u) can tend to zero. Cauchy—
Dirichlet problems for degenerate parabolic equations have been studied by many
authors (see for example [2], [3], [10]). But the structure of the equation (1) is
different from that one considered in these papers. Boundary value problems for the
equation of the structure (1) were studied by the authors in the stationary case in
[8] and in the nonstationary case in [9].

The initial-boundary value problem for systems of the form (1) — (2) was studied
in [5] under essentially stronger assumptions as in the presented paper. In [5] the
solvability was proved for the special case b;(t,z,&) = &;, uniqueness was shown
under the regularity assumption v(z,t) € L>(0,T, W'?(Q)), p > n.

We consider problem (1) — (5) under standard conditions for the functions b;(¢, z, £)
and some conditions for the function a(t, z,v, u) to be formulated in Section 2. Our
main specific assumption reads:

p) p € R — R with p(u) > 0, u € R', is continuous and has a piecewise

/
continuous derivative p' such that % is nonincreasing on R*.

For the semiconductor theory [5] relevant examples for functions p satisfying condi-
tion p) are given by o0 = F,.1, p = o' = F,, where F, denotes the Fermi integral

1 o s ds
Fo(u) = > —1. 6

+(u) F(’y—l—l)/o 1+ exp(s — u) 7 (6)
Another example comes from phase separation problems [7]|, where the Fermi func-

tion
1 1

7= e P =7 = ey

plays a role corresponding to F, ;.

We formulate our assumptions and main results in Section 2. First a priori estimates
for solutions u,v are given in Section 3. In that Section we prove also regularity
properties of the function v, important for further considerations. An L estimate
of u is given in Section 4. Section 5 is devoted to the existence proof for solutions of
problem (1) — (5). Our main result, uniqueness of solutions, is proved in Section 6.

Note that our considerations can be carried over to the case of Neumann boundary
conditions instead of the Dirichlet conditions (3), (4).

We are planning in forthcoming papers to apply our approach to more general
reaction—drift—diffusion systems, including more than one species and temperature.



2 Formulation of assumptions and main results

Let © be a bounded open set in R* and Q7 = (0,7) x Q, T > 0. We shall assume
that n > 2. For n < 2 it is necessary to make simple changes in our conditions that
are connected with Sobolev’s embedding theorem.

We assume following regularity condition on the boundary 92 of the set Q2:

0) there exist positive numbers x, Ry, such that for an arbitrary point z € 92 the
inequality meas{B(z, R) \ Q} > xR" holds, where 0 < R < R, and B(z, R) is
a ball of radius R with center z.

Let the coefficients b;, a, k from (1), (2) satisfy following assumptions:

i) a(t,z,v,u), bi(t,z,§), i = 1,...,n, are measurable functions with respect to
t,x for every u,v € R', £ € R* and continuous with respect to u,v € R,
¢ € R, for almost every (t,x) € Qr; bi(t,z,0) = 0; k(z) is measurable
function of x;

ii) there exist positive constants wvi,vs such that for arbitrary ¢',&" € R,
(t,z) € Qr, following inequalities hold
11)1 Z?Zl [bl(t’ Z, gl) - bz(t’ Z, gﬂ)] (fz’ - g;’) > V1|£, - £,|2a
i)y [bi(t, 2, €)] < wo(€] +1), i=1,....m,
ii)s 11 < K(z) < wo;

iii) there exists a monnegative function a € LP*(Qr), p1 > ”TH, such that for
arbitrary (t,z) € Qr, v,u,u’,u” € R' following inequalities hold
la(t,z,v,') — a(t,z,v,u")| (v —u") > v1|u — u"]%,

la(t, z,v,u)| < va(|v] + |u]) + a(t, z).

We note some simple consequences from condition p). Let

ar = lim p(u). (7)
u—=+o00
Then for nonconstant functions p at least one of the numbers o, ay is zero [§].
Studying the behavior of the solution to (1) — (5) we have to distinguish the cases
of zero or non—zero value of a. In order to include both cases, we assume

a_ =0, a;#0. (8)

The considerations for the case a_ = a;, = 0 are analogous. We remark only that
the assumptions for the function a(t, z, v, u) are connected with the behavior of the
function p and that the condition i) corresponds to the case (8).



We consider problem (1) — (5) with data such that

fec ;@) Deror @), n>2 )
g € L= (Qr) N L=(0,T; WH3(Q)) n L' (0, T; WH(Q)),
391 1 . T o0 892 2 . T2 (10)
=7 € L0 T L2(Q)), == € L2(0,T; 1%()),
h e L®(9). (11)

Definition 1 A pair of functions (u,v), u,v € L*(0,T; W'2(Q)) is called solution
of problem (1) — (5) if following conditions are satisfied:

i) o(u) € C([0,T]; L2(Q)) N L2(0, T; L=¥3 (%)),

8u ov
/ / 8x 3x‘ )d:c dt < oo, (12)

the time derivative of o(u) in the sense of distributions satisfies

o (u)

S € L0, T; W) (13)

and the integral identities

/OT { < 603—(:)7 ® > +/Q [anp(u)bz (t,x, %) g;i + a(t,x,v,u)go] dx}dt =0,
n - (14)
/Q {’*(‘”) Z 38; gf@ +o(u)y - f(t, $)¢}dx =0 (15)

hold for arbitrary functions o € C* (@T) vanishing near T, € C§°(Q) and
almost every T € (0,T);

ii) u—gi € 20, T;W'(Q), v—gs € I2(0, T;W(Q)) ; (16)

iii) for functions ¢, as in (14) and satisfying additionally o(7,z) = 0 for x € Q
the equality

/0 8 >dt+// ]—d:z:dt—O (17)

holds for T € (0,T).



In order to justify this definition it is sufficient to show that
o(u) € L'(Qr), p(u) € L'(Qr). (18)

The first inclusion in (18) follows immediately from the assumption
o(u) € L*(0,T; an_JTrLZ(Q)) The second one follows from the inequality

p(u) < pl) o(u) for u>1, (19)

o(1)

which is a consequence of condition p) and

i(@> SR /0 p(s) ds > 1 — —— /Ou P0) 5y ds = 20 >,

du \ p(u) p*(u) p(u) Jo p(s) p(u)

Remark 1 Let (u,v) be a solution of problem (1)-(5). Since the set of functions
from C*=(Qy) vanishing near I' is dense in L*(0,T; W*?(Q, p(u))), the integral iden-
tity (14) holds for all p € L*(0,T; V%/IZ(Q)) such that

| Jewl5ef

Analogously the identity (15) holds for arbitrary functions ¢ € ﬁ/I’Q(Q).

Besides of (1), (2) we consider the regularized system

82—(:) — 12:1: %{pg(u)bi (t, T, w> } + a(t, z,v, u) =0, (20)
- Z aii () g;’i] +o(u) = f(t,2) (21)

with
po(w) =max {p(u), o = 5)} for FE 1], p)=p).  (22)

We understand solutions of the auxiliary problem (20), (21), (3) — (5) in the sense
of Definition 1 after replacing p(u) in (12) and (14) by ps(u).

In what follows we understand as known parameters all numbers from the condi-
tions 4i), iii), norms of functions f, g1, g2, h, & in respective spaces and numbers that
depend only on n, x, Ry, (2, p.

Theorem 1 Let the conditions i) —iii), p), (9) — (11) be satisfied. Then there exists
a constant M; depending only on known parameters and independent of § € [0,1]
such that each solution u,v of problem (20) (21), (3) - (5) satisﬁes

ov(t, x) u — )
A A L




where

Au) = /0 " s pls) ds. (24)

For proving regularity properties of the function v we need following growth condi-
tion 5
pri (W +1) <p(u) <p(uw’+1), v>0, 0<y<— (25)
n J—

with some positive constant p;. (25) implies o(u) < pl(’f;:

+ u) for u > 0 with
v+ 1 < -"5. Remark that such type condition arised in [5] for n > 2 together with
the stronger restriction v+ 1 < ﬁ

Theorem 2 Let the assumptions of Theorem 1 and condition (25) be satisfied. Then
there exists a constant Ms, depending only on known parameters and independent
of § € [0,1], such that each solution of problem (20), (21), (3) — (5) satisfies

811, 2 811 2
— — < .
/T /p,;(u){ ‘ + } dz dt Mg (26)

Theorem 3 Let the assumptions of Theorem 2 be satisfied. Then the estimates
Wll=(or) < M3, Jo(t,2") —o(t,2")| < Hlz" — 2"|" (27)

hold for arbitrary t € [0,T], 2',2" € Q with n € (0,1) and constants M3, H,n
depending only on known parameters and independent of 9.

In order to prove a priori estimates for u we need additional conditions with repect
to p and a. In view of our uniqueness result we assume stronger conditions for a
than needed if proving a priori estimates only:
a) % is nondecreasing with respect to u € R', for arbitrary (t,z) € Qr,
v € R

p') there exists a positive constant ps such that p'(u) < ps - p(u) holds for u < 0.

Theorem 4 Let the conditions i) — iii), p), '), a), (9) - (11), (25) be satisfied.
Then there exists a constant My, depending only on known parameters and inde-
pendent of ¢ € |0, M%l], such that each solution u,v of problem (20), (21), (3) — (5)
satisfies

ess sup {|u(t,z)|: (t,z) € Qr} < M,. (28)

Theorem 5 Let the conditions i) — iii), p), '), a), (9) — (11), (25) be satisfied.
Then the initial-boundary value problem (1) — (5) has at least one solution in the
sense of Definition 1.



Theorem 6 Let the conditions i) — i13), p), p'), a), (9) — (11), (25) be satisfied and
assume additionally that the functions b;(t,z,€), p'(uv), a(t,z,v,u) are locally Lip-
schitzian with respect to &, u, v respectively. Then the initial-boundary value problem
(1) - (5) has a unique solution u,v in the sense of the Definition 1.

Proofs of theorems 1, 2, 3 are given in Section 3, proofs of theorems 4, 5, 6 are given
in Sections 4, 5, 6 respectively.

3 Regularity of the function v

We start this section proving firstly the priori estimate (23). Next we shall prove
boundedness and Hélder continuity of the function v.

Proof of Theorem 1. Denote by wy(z) the solution of problem (21), (4) for
t = 0 with u(0, z) defined by (5) and let (u(t, ), v(¢,z)) be the solution of problem
(20), (21), (3) — (5). We extend functions u(t,z), v(t,z) by setting u(t,z) = h(zx),
v(t,z) = vo(z) for t < 0,z € Q. In an analogous way we extend the functions
f(t,z), go(t, z). Denote

u(t,z) =u(t,z) — g1(t,z), v(t,z) =v(t,z) — g2(t, x).

Testing (15) with ¢(z) = v(t+s,z) —v(t, x), we obtain for 7 € (0,7), s € (0,7 —7)

/8/{ Zax, o(t + s), )—l—v(tx)]aa

lo(u(t + 5,2)) + o(u(t,z)) — f(t+s,2) — f(t,z)] [Vt +s),z) — V(t, z)] } dedt = 0.

[o(t + s),z) — v(t,z)|+

Hence we get by simple calculations

/ / t—s/m()%if’ dz dt—
// [v(t+s), )+v(t,x)]8%i[g2(t+s),x) — go(t, )] da di+

/ / u(t — 5,2)) + o(ult +5,2)) — f(t — 5,2) + f(t +5,2)|3(t, 2) dz di+
/ / u(t—s,z)) +oult,z) — f(t—s,z) — f(t,2)|v(t, z) de di—

/_ /Q [o(u(t,z)) — f(t,z) + o(u(t + s,2)) — f(t+ 5,2)]0(¢, z) dzdt = 0.
(29)



Dividing this equality by s and passing to the limit s — 0, we obtain for almost
every 7 € (0,7)

/{zﬁ(x)%rdx—/gﬁ()
2 [ @ G gron o < 5 G b

2 /Q {[a(u(T, 1)) — f(r,2)]5(r,z) dz — [o(h) — £(0,2)] [vo(z) — gg(O,x)]}dx —0.
(30)

81}0 ( )
or

Using (15) with ¢(z) = (7, z), we can rewrite the fifth term in (30) as

/Q [o(u(r, 2)) — f(r,2)]5(r, z) dz = / Z g;a”” dr.  (31)

T;

Remarking that it is simple to estimate the norm of vy(z) in W12(Q) and using the
conditions (9), (10) and Cauchy’s inequality we infer from (30), (31)

/Qﬁ(x)‘m‘ dz +/0T<82—(t“),5> dt<c1{1+/0T/Q6”((923”)2@01?}.)
32

Here and in what follows ¢; denote constants depending only on known parameters.
The conditions (10), (12) and Remark 1 allow us to substitute ¢ = @ — ¥ in the
identity

/OT{ < 808—(:), o> —l—/ﬁ[i ps(u) bi<t,x, w> g;i +a(t,x,v,u)g0]dx}dt = 0.

(33)
By (32) this gives
/0T< 8aa(tu)’ u—g; >dt —i—%/ﬁke(x)‘m‘ dz +
[ LS mn (e L) L)
la(t,z,v,u) — a(t, z,v,v)] (u — v)} dz dt < (34)
< [ Lm0 ) HEZE) el o

—aft, x,v,v)(u—v)}dmdt—l—cl 1—|—/ /‘&th‘ dz dt}



We write the first integral from (34) in the form

T Oo(u) T 9o(u)
_ dt = mo— dt
/0 < g 0 UL > /0 < TR [w]™ — g1 > dt +

T Oo(u)
— lu|™ dt
—I—/O <5 o [u]™ >

(35)

with m > ||g1]|1~(@r), [#]™n = max{min[u,m],—m}. Then we can evaluate the
first and the second integral of the right hand side of (35) by using Lemmas 2, 1
respectively [9]. So we obtain

r 5 T u(z,) h(z)
/ < U(U), u— g >dt = / {/ sp(s) ds — / sp(s) ds}dx +
0 ot 0 0 0

(36)
—I—/O /Q [o(u) — o(h)] % dz dt — /Q [o(u(r,2)) — o(h(z))] o1 (7, z) dz.
Immediately from the definition of A(u) we deduce
o(u) <eA(u)+c¢ for u>0 (37)

with arbitrary positive number ¢ and a constant c. depending only on € and the
function p. Using the conditions i), (10), (11) and the inequalities (19), (37), we
obtain with arbitrary positive number ¢ and some function u(t) € L*(0,T):

‘/UT/Qp,g(u) bi(t,x, 8(“8; ”)) 6(918;_ %) 4 dt‘
//p(; ‘ de di + 2 // t) dz dt,
// 6gldxdt<02 1+// dxdt}

/QO’(’U,(T, z))g1 (7, z) de < 02{5/QA(u(7', z))dr + cg}.

We estimate terms in (34) involving the function a in standard way by using (10)
and the condition 7). Now from (34), (36), (38) and evident estimates for another
terms in (36), we obtain

/A u(7, 7) dz+/‘8””‘d +// ‘dmdt<
§c3{1+/0T/Q[1+u(t)] [A(u)—l—‘%ﬂ dz dt}.

Now the last inequality and Gronwall’s lemma complete the proof of Theorem 1. [

(39)

In order to prove Theorem 2 we need auxiliary estimates.

9



Lemma 1 Assume that the conditions of Theorem 1 are satisfied and following
inequality
ess sup / ol(u(t,z)) de < K (40)
€(0,7) °¢

is fulfilled with some numbers q € ( ) K, depending only on known param-

120 2
eters. Then the estimate

2
ess sup /| (t,z)|"2 dz +/| )2 ét,:z:)‘ da:} < K, (41)
T

holds with a numberp > 2 defined by the equality
q

n
=(p—1)—— 42
p— =P )q_1 (42)
and with a constant Ky depending only on known parameters.
Proof. Denote
mo = |[91]|L=(@r) + [|92l|zo(@r) + |[Pl|zo@) +1 (43)

and use following notations for k € R! and arbitrary function w defined on Qr
wi(t, 2) = [w(t,2)], = minfw(t, o), k},
w(t,z) = [w(t,x)Lr = max{w(t,z),0}.

We test the integral identity

> [ w@gm ot do + [ ot - i de =0 )

with ¢ = sign v - [Jv]x — mo]p_l with k& > my. Using the conditions i), (9), (40),
and Hélder’s inequality we obtain
qg—1

p—2 -1 KB
— dz < — =1 d . 45
/Q[|v|k m0]+ r < 64{/Q [v]& m0]+ x} (45)

From this inequality and the embedding theorem we have

8’1)k 2

ozr

n2 \ g-1
{/ [[v]e —mo] 2 dﬂ?} i SC5{/ [|U|k—m0]$fl)qf1 d-’”} i (46)
Q Q

Taking into account the restriction on g and the choice of p we deduce (41) from
(45), (46), (23) and the proof is completed. [

Proof of Theorem 2. We assume firstly that 2+7 < 4. It is simple to check ([8],
inequality (8)) that the conditions p) and (8) 1mply

lo(u)] <ecg for u<0. (47)

10



From this and (25) we find

) 2+
© < e [A(u) +1 th == 48
|o(u)|® < er[A(u) +1]  with g Ty (48)

Using (48), (23) and Lemma 1, we obtain (41) with py defined by the equality

n
n—2

Do = (po — 1)(2+ ).

This py satisfies the inequality po — 2 > =5 > v. Consequently, (41), (25) imply
Ir ‘ dz dt < cs. (49)
8:1:‘
{lul < 2|v|}

Here {|u| < 2[v|} = {(t,z) € Qr : |u(t,z)| < 2|v(t,z)|} and analogous notations we
shall use further.

We want to establish a estimate analogous to (49) with respect to set {|u| > 2|v|}.
Taking into account that ps(u) < 14 p(0) for u < 0, we can restrict ourselves to the
set {u > 2|v|}. We substitute the test function

¥ = (Jolk — g2){[[w — [vlel+Je + [vle + mo}Tsign v

with k& > mg, ¥ > 0, in (44). After standard calculations we obtain

L= I Al lolldot ol +mo) |50 dodi < eo(lo+ 1), (50)
{lv] <k}
where
5—1 |Ou||Ov
I, = I [ (Jv]k +mo){[u — |v]e]e + [v]x + Mo} - dr dt
{|'U|k<U}, 8x‘~8x
Iy = [ [ s+ 1)+ f02) (vl + D] [ut)or + [v]e + 1} dz dt.

Qr
The integral I will be estimated in different ways for ¥ < 1 and for v > 1. For
v <1 we have

L< [ (|v|k+m0ﬁ[8“ Ov |* ]dwdt <
Oz oz
{|v]x < u} (51)
~10(u —v) 2 5 2
<3 [ A@rm) [P g (ol 4 me)| 2 ) dedt < e
oz
{u > 0}
Here we used (41) and the inequality
— )2
€ss sup / 2+7(t z) dz + ff (14 u)? M (52)
€ (0,T) Jo {u > 0} Oz

that follows from (23), (25).

11



For 7 > 1 we estimate I by using the evident inequality
[[[u - |U|k]+]k] + o]k + mo < 2| + my

on the set {|v] > k}. Then we have

u — v) 12

[2 S 8[1+012 ff {(u+m0)7 (’U,a U)
{u >0} v
where the last integral can be estimated analogously to (51).

~| Ov
+ (|v|—|—m0)7 Oz

}dx dt

er—1

Using Holder’s inequality and the embedding theorem we obtain for § > 0

/ /Hu+]k—91,+‘(2+7)%+2+(s dr dt <

Qr

</T{/Hu] —g ‘2+7d:1:}%{/(‘[u] —g ‘Hg)%d:p}%zdt
= ; k= 91,4 o e — 91,4

2
2 n
Scls{ 633 sup /‘u+k_gl+‘ o df} :

2
/ /‘u+k—91+“8 k—91,+)

Choosing § = 0, the inequalities (23), (52), and condition (10) imply

/ /ufﬂ)"Jr2 dz dt < ciy .
T

We estimate I3 by Young’s unequality and condition (9) and obtain

I; < 5 1+/ / T2 dg dt +/ /|v|7+7’+2 dz dt}.
Qr Qr

dz dt.

(53)

(54)

(55)

(56)

The integral with v can be estimated by a constant in virtue of the inequality (41)

in the case that 7 € [0,~]. If v is such that

2
27+2§(2+7);+2,

the integral with u, and 7 = -y in (56) can be also estimated by a constant because
of the inequality (55). In the opposite case we choose 7 satisfying the condition

~ 2
'y+'y+2§(2+7)ﬁ+2.

For example we can take ¥ = 7; = % For such choice of 7 we get from (50), (52),

(563), (56) I; < c16, which implies

I w=l)
{u> v]}

2
dr dt S Ci7

12



and consequently

[u(t, z)]
{u>2|v[}
From (23), (49), (57) we obtain

2
/ /|u|7 dx dt < ¢y, / /|u|7 _u‘
Qr Qr Oz

and this ends the proof of Theorem 2 in the case that ﬁz <5 7=

5| 0v |2
7 %‘ dr dt Sclg . (57)

dr dt S C19 (58)

If ¥ = 4 < v, we can iterate our discussions with respect to 5. Using (58), we

obtain from (54)
/ /ufﬂ)rz”’“% dr dt < cy,
T

that allows us to choose 7, = min {7, 4} Repeating this argument, if necessary, we
can choose y3 = v and we proved the Theorem if 2+7 <3

If ﬁ—:’y = 5 we can use Lemma 1 with ¢’ < ¢ instead of g. We can choose such ¢’
that the corresponding p' satisfies p' — 2 > « and then we keep all discussions of the
previous proof. If 2+7 > 2, then the boundedness of solutions of the equation (21)
under the cond1t1ons (9), (10), (40) and the assumption formulated above is well
known [10]. In this case we can keep the previous discussions with corresponding

simplification. The proof of Theorem 2 is completed. []

Lemma 2 Assume that the conditions of Theorem 2 are satisfied and

Ou 12
ess sup / ol(uy(t,z)) dz + [ p?(u)aq‘Q(u)‘—u‘ de dt < K3 (59)
€ (0,T) Ja {u>1} Oz
holds with numbers q € [ﬁ—z, g), K3, depending only on known parameters. Then

there exist positive constants 3, K4 depending only on known parameters such that

ov 12
I pymarﬂﬁwh% dz dt < K, . (60)

{u > 1}

Proof. By Theorem 2 follows that (59) holds for ¢ = ¢y = ﬁ—” We shall prove

(60) for this value of q. The proof of the lemma for 2+7 < g < % is the same as for
— 24
1= 7

From Lemma 1 with ¢ = fi—z we obtain analogously to (49)

2
pg(u)aq°_2+ﬂ1(u)‘g—v‘ de dt <co1, By =
T

2—(n—2)y
{lul < 2Jv|} (1+7)(n—2)

For the proof of (60) it is sufficient to check that the integral I; in (50) can be
estimated by a constant for ¥ = v + (1 + 7)82 with positive 85 depending only on

(61)
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v,n. This estimation of I; runs analogously to the corresponding estimation in the
proof of Theorem 2. Hence we make only some remarks.

We change the inequality (51) for ¥ < 1, ¥ <y+1(po—2—7), po = qfl("qu) > 24 -2,

in the following way

Ou — v) 12 v 12

L<3 [[ {(u+m0)7 M\ + (Jo] +m0)m—2\_”‘ } dz dt < ¢y (62)
{u > 0} Oz oz

after using Theorem 2 and Lemma 1. Analogously we change (53) for 7 > 1.

In order to estimate I3 we remark that (54) and Theorem 2 imply

2
/ /ufﬂ)(H”) dz dt < co3. (63)
Qr

From (56), (63), (41), we see that the integral I3 can be estimated by a constant,

provided
Pom

~ 2
7+7+2§(2+7)<1+ﬁ>’ —
But both of these restrictions can be satisfied with ¥ = v + (1 4+ 7)8; and some
positive 33 depending only on n,~y. Therefore we can choose positive 3 such that
the integral I; with ¥ = v+ (14 )0 is estimated by a constant depending only on

known parameters. From this estimate and (61) we obtain the inequality (60). O

Lemma 3 Assume that the conditions of Theorem 2 are satisfied. Then there exist
numbers q, K5, depending only on known parameters, such that g > % and

_ _ 2
ess sup /aq(u+(t, ) de + [ p3(u)o?*(u) ?‘ dr dt < K5. (64)
€ (0,T) /¢ {u> 1} T
Proof. We substitute the function
” 2
p = [o(ur) — a(mo)]” {1+ [o(u) — a(mo)]*}", r € (—3 %), (65)

in the integral identity

/UT{ < 608(t ’ / [Zpé ( w> g;oiJra(t,x,v,u)go] dx}dt =0.

(66)
Then, using Lemma 1 from [9], we can evaluate the first summand of (66) to obtain

/T < 808—(;0,@ > dt = / AV (u(T, z)) de (67)

where

A () = /0 o(s)[o(s8) — U(mg)]i{% +lo(se) — o(mo)]*} ds

» (68)
> ;{1 + [o(ux) — a(mg)]3}T for u > my.
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Here s;, = min[s, k] and the value of u;, is analogous.

We write the derivative of ¢ in the form

op = Ou—v) = v
U 8.’171 +(I) (Uk) 6$z

where x(my < u < k) is the characteristic function of the set {mo < u < k} and the
function ®"(u) satisfies for 7 > —2 the estimate

x(my < u < k) (69)

Caak(r) B (W) p(u) < BT (u) < co5(r + 1)) (u)p(w) (70)
with k(r) = min(1,2 + 3r),
) (u) = [o(u) — a(mo)h{% + [o(u) — O'(mo)]3}’"_ (71)

Using (67) — (70) and conditions i), iii) we obtain from (66) with the function ¢
defined by (65)

1

/Q {5 + [O'(Uk(T, r)) — a(mo)}i}rﬂ e

" 2 (r) Ou |2
+ P2 (1) D) () x (mo < u < k)‘—‘ dr dt <
0 Jo Oz
(72)

rtle [T L o Ov)?
Sc%{[ﬁz(r)] /0 /Qp(;(U)CI) (uk)x(mg<u<k)‘ax‘ dx dt +

rel ' u v|)|o(ug) — o(m ™) (us) dx
+/<a(r)/0/9(1+| |+ [vl) [o(us) (mo)] @) (us) d dt}.

Let us assume now that for some ¢ € [fi—z, g) the inequality (59) is fulfilled. Then
we obtain from Lemma 2 that the first integral of the right hand side of (72) can be

estimated by a constant independent on k for r = 3[g — 3+ ).

We shall check now that the second integral of the right hand site of (72) for r =
:[g — 3+ '] and some positive §' depending only on v can be also estimated by a
constant independent on k. Analogously to inequalities (54), (55) we obtain from

(59)
2
/ /u‘fr(1+7)(1+") dz dt < cor. (73)
Qr

From (59) and Lemma 1 we have

ess sup / v (¢, :z:)‘"%q dz < cog. (74)
te(0,T) /O
(73), (74) imply the needed estimate for the last integral in (72) provided

1 2 1 qn
< tat e () #at e o g j-o
B_1+7 qA+(1+ )+ -4 B_1+7 el

15



For that purpose it is sufficient to choose ' = ﬁ

We proved that for 8 = min(8, 3') the left hand side of (72) is estimated by constant
depending only on known parameters if r = %(q -3+ ﬁ). This estimate implies
that the inequality (59) is fulfilled with q + 3 instead of g. We can guarantee also

by small change of 3 that the number %[g — ﬁ—z] is not integer, and denote by N
its integer part. Recalling that the estimate (59) is fulfilled with ¢ = go = ﬁ—z and

choosing the sequence ¢; = gy + i3. We obtain after N + 1 iterations our previous
discussions that the inequality (59) is fulfilled with ¢ = qy41 > §. Consequently the
inequality (64) is satisfied with § = gy1 and this ends the proof of Lemma 3. [

Proof of Theorem 3. The result of Theorem 3 follows immediately from the
estimates (47), (64), the conditions i), (9), (10) and the assumption on the set (.
It is necessary to apply only well known results on regularity of solutions of elliptic
equations to equation (21) (see, for example, [10]). O

4 Boundedness of the function u

We assume in this section that the conditions of Theorem 4 are satisfied. We shall
prove estimates for u separately for the sets {u > 0} and {u < 0}. These estimates
will be given in Lemmas 4, 6.

Lemma 4 Let the conditions of Theorem / be satisfied. Then there exists a constant
My depending only on known parameters such that

ess sup {u(t,z) : (t,z) € Qr} < Ms. (75)

Proof. We shall use the inequality (72). We start estimating the first integral of
the right hand side of (72).

Let {¢3(z)}, j=1,...,J, be a partition of unity such that
J
Op; Ky

<5 for =€,

(76)
Ky
Rn’
where B(z;, R) is a ball of radius R with centre z; € Q, K, is a number depending
only on n. The number R will be choosen later on.

pi(z) € C*(R"), supp p; C B(z;,R), J < R <1,

We test the integral identity (44) with the function

J

=Y p3(ur) @) (ur) v — 0]l (z), v;(t) = v(z;,t) . (77)

i=1
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Integration with respect to t yields

ov |2
/ / () p2 () @ (g %‘ de dt = Jy + Jo+ Js , (78)

where @, = {(t,z): 0 <t < 1,z € Q},

=S [ [ sl i

j=1 i=1

:—222// ) p2 (ug) @ (up)[v v]]%g% aav T dt, (79)

j=1 =1

Z / / 1168 ()@ (i) [ — v;)} () da dt

and @ (u;) is defined by

1

o () = pw)p(ua){ 5

r—1

+ [o(ux) — a(mo)]s}

- {% + (3r + 1) [o(ur) — a(mo)]s}x(mo <u < k) +2ps(up)p (ur) @7 (ug) x(u < k).
(80)
Denote ug = o' [o(myg) + 3]. Analogously to (19) we obtain
P (u)o(u) < p*(u) for u>0,
p(u) < 2p(uo)[o(u) — a(me)] for u > up. (81)

Hence we getfor r > —%, k > ug
@gr)(uk) < cog(r + 1){p§(uk)¢(r)(uk)x(u0 <u<k)+x(mo<u< uo}. (82)

We assume further that r > —1 and we choose the number R from (76) according
to 1
€
R = < - 83
(r+1)%’ cS (83)

where € will be specified later on. Using (27), (76), (82), (83), we obtain

7l < e /Q [ r@pime0 )

+c 30 r 1) / / 2) P2 (ur) DT (ug) x (wo < u < k) ‘—‘ dz dt + (84)

=il

2
+ C30

8—:; 2]x(u > my) dz dt}.

17



By (76) and Cauchy’s inequality we have

< [ [ s@eitue woe|5;

From (78), (79), (83) — (85) we infer

// ) p2 (u) B (u )%zdxdtg

< 632{ﬁ /QT/ﬁ(x)pg(uk)q)(r)(uk)x(uo <u<k) ‘83:‘ dz dt +
* rj—l /QT/< %
[ [ awer o i+ T e a

Applying the last estimate to the first integral of the right hand side of (72) and
choosing e small enough, we get from (72), (26), (27), (19), (81)

ov

2 1 C31

g Rn+2

} dz dt . (85)

, (86)

2
52 )X(u>m0) dz dt +

ess sup /Q {% + [o(uk(r, 2)) — a(mo)]i}rH dr +

/ //0(s uk x(my < u < k) ‘—‘ dr dt < (87)
Qr

< eyplr + 1)A1{/Q /cpm(uk) o) — o(mo))*[o(w) + | ] do dt +1}

with Ay =2(n+2) + 2.

We want to apply Moser iteration with respect to the integral

_ /Q / O (uy) [o(uy) — o(mo)]*[o(w) + | ]] de dt (88)

To this end we use the embedding inequality

T . 1
/ {/ (e, )0 de )7t <
0 Q
142
gC(n,p){ ess sup /UZ(t / /‘
te(0,T) /¢ T

which is fulfilled for 1 < p < "5 with a constant C(n, p) depending only on n,p and

with an arbitrary function v € L>(0, T; L*(Q2)) N L?(0, T} I/(ID/IZ(Q)) From condition
(9) and inequality (64) we have o(u) + |f| € L*(0, T, L* (Q)) for some p’ > 2.

(89)
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Applying Holder’s inequality to (88) we obtain

Ii(r) < ¢34 ' &) (uy) [o(uk) — a’(mo)}2 " do ' dt <
IRA

(90)
L1z 90"
§c35{ €8s sup / [@gr)(uk / /‘ () ‘ dz dt ,
t e (0, T) Q Qr
where ,
o (wy) = [0 (we) [o(w) — o (mo)]*| 2. (91)
Simple calculations give
) 2 1 3 08 p
00w < {5+ [ow) - o(u)]’ | = rm <l
(92)

‘ 8_(I)g«) (ur) |2
oz

For r > —1 we get from (90), (92) and (87)

< c3(r + 1)2{p§(uk)¢(9T+9_1)(uk) + 1}x(m0 <u<k).

D=

Li(r) < esr(r+ 1) {L(0r + 0 — 1)}, Ay =2+ 25, L(r) = L(r) + 1.  (93)
We choose r; =307 — 1, j =0,1,..., and obtain from (93)
~ 2t 07 n—jrob=I [T gi—1
{Lu(r))} <56 {Li(ri-)}
Iterating this estimate yields for arbitrary j

1

{Br)} < e i(—3) - (94)
Now (90), (92) and (64) imply
~ 1 30 2421
I(—=) < c3991+ | ess sup [o'(u_i_(t’x))] D ol I
<onfie [ oran | e
[T Awlo@)?2| 2 do de} < ca.

{u>1}
where the constant ¢4y is independent of k. Recall that we consider the case n > 2,
i. e, % < % < @, where g is the number from Lemma 2. Hence the desired estimate
(75) follows from (94), (95). O

We shall use the notations

w1, 2) = [w(t, )] = max{w(t, ), k}, w_(t,2) = [w(t, )] = min{w(t,z), 0}
(96)
for k € R! and arbitrary functions w defined on Qr.
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Lemma 5 Let the conditions of Theorem / be satisfied. Then there exists a constant
Mg depending only on known parameters such that

Hu k)
ess sup /‘u(k)(t,:z:)‘ dz +/ /‘ ;
te(0,T) 7/ Qr T

Proof. We test the integral identity (33) with

2 1
dz dt < Mg, fork>—g. (97)

1 r
Y= p(u(k)) [U(u(k)) - U(_mo)]i‘u(k) + mo] ) k< —mgy— 1,7>0,
to obtain
T 80’(71:) 1 & . .
/0 Y " p(u®) [o(u®) = a(=mp)]_[u® +mo|" > di +
n Ou —v)\0(u —v)
+;/T /PJ(U)bi (t,x, o ) oz P (u)x(k < u < —myg) dz dt +
(98
1 X . .
+ /T /a(t,x,v,u)p(u(k)) |:0'(’u,( )) — J(—mo)]i‘u( ) + mo‘ dx dt 4
n 8(u — ’U) ov (r)
+ ;/T /p5(u)bi (t,:L', T) 3x,~¢ (u)x(k <u<—mgy)dedt =0,
where
! —mo
(r) = |1 pu) / d r_ 1 o r—1
P (u) [ + 2@ ), p(s) s] |u 4+ my| T [o(u) — o(—mq)] [u + my|
(99)
We evaluate the first integral in (98) by Lemma 1 in [9] and find
T Oo(u) 1 . . .
/0 < ot p(u®) [a(u( )) — g(—mo)]_‘u( ) 4+ mo‘ S di =
(100)
= | AVt de
Q
where
u 1 ]
A(j)(u) = /0 P(S)m [0(3("’)) — a—(—mo)]_‘s(k) + mo‘ ds k) — rnax{s, k}
By simple calculations we obtain for u > —my
A(_T)(u) > = ‘u(k) + my T C42 . (101)

—r+1

For u < —mT condition p) implies

P [ L) pem)
a0z g [ S e =ELEE 1 o

20
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and hence

0 (u) > p(p_(g“) P (103)

Condition p') and inequality (47) yield a corresponding estimate from above

" (w) §c43T+1Hu+m0‘r+r]. (104)

p(u)

Further, condition a), Theorem 3 and (47) imply the following estimate for the term
involving a in (98):

a(t,z,v,0)  p(u) (10%)
p(0)  p(u®)

Using the inequalities (101), (103) — (105) we get from (98)

T+1/\ )+ mg] d+/

9 r|Ov |2
< cg5 {(T—i—l) ‘u—l—mo‘ ‘8—‘ x(k <u < —myp)
Q- z

[a(u(k)) — a(—mo)]i > —Cyy.

Xk <u<—mp)dedt <

ou |2
oz

ov |2

+r(r+D)(|52] + |5

) (k <u< —myg) + |[u® +mg|_ \}dzdt.
(106)

Finally, inequality (97) follows immediately from (106) with » = 0 and Theorem 1.
U

Lemma 6 Let the conditions of Theorem 4 be satisfied. Then
ess inf{u(t,z): (t,z) € Qr} > — My (107)

holds for 6 € [0, MLJ with a positive constant M; depending only on known parame-
ters.

Proof. We shall use inequality (106). To this end we start estimating the first
integral of the right hand side of (106). We assume further that k£ > —%.

Let {(pf(x)}, j=1,...J, be a partition of unity satisfying (76) with a number R to
be fixed later on. We test the integral identity (44) with

J

P = Z[v — ’U]” [ )+ mo] ‘ g0] ), 7> 2,v(t) = v(t, z;). (108)

i=1
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After integration wit respect to ¢ we get

[ Jrreren.

r| OV |2 _ _ _
5‘ de dt = J7 + Jy + J; (109)

Op; Ov
Jy :—QZZ/ / z)[v — v,] u+mo],|r(p]~8§" 5z, 4z dt, (110)
Jr = Z/ / A — 0)|u® + mo]_["? d dt.

Repeating arguments used for estimating J; in Lemma 4 and choosing the R from
(83), we get

|J|<s // ® +mg)_|"

r| OV |2
—| dzxdt
oz ‘ T at +

(111)
8u(k) 2
+c 46 / / —I—mo] ‘ ‘—‘ dx dt —I—c45}.
Ox
We apply Cauchy’s inequality to J, , J; , use (111) and obtain from (109)
100 |2
/ / B 4 mo] || e=| dzdt <
-1 Oul®) |2
< c47 I / / ®) +my] (112)

+[1+1<7‘+1 n+2//‘ ) mg] }

Now (23), (97), (106) and the last estimate taken with sufficiently small ¢ imply

e s /\ (r,2) +mo] |+ da +/ /\ 9 4 my] [ 24
Qr
< es(r + 1)*3 / / |[u® +mg] |"dzdt + 1} , A3 =2(n+3).
’ (113)
From this and Gronwall’s Lemma we infer
/Q / [u® + mo] | de dt < o(r) (114)
.
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for an arbitrary r > 2 and a constant ¢(r) depending only on r and known parameters
and independent of k. Using Moser’s iteration process and inequality (114) we obtain

ess sup {H )(t,z) +mo| |1 (t,2) € Qr} < cu (115)
for £ > —% with a constant c49 depending only on known parameters. Inequal-
ity (115) means that the desired inequality (107) holds with M; = mgy + ¢4 + 1,
0 <6 < 5. [OProof of Theorem 4. The assertion of Theorem 4 follows imme-

diately frorn Lemmas 4 and 6. [

5 Proof of existence of solutions

We modify the functions p and a in the following way
p*(u) = p(minfu, My)), a*(t,z,v,u) = a(t,z,v, minfu, My]), (116)
where M, is the constant from Theorem 4.

These new functions p*, a* satisfy the conditions p), o), i), ii%), (25), a) with the
t

same parameters as the functions p,a. Now we consider for § = ML he initial
boundary value problem for the system
0o*(u) = 9 [, O(u —v)
5t —Za—%{pa(u)bi(t,x,7>}+a (t,z,v,u) =0, (117)

1=

n

B SEATEL BT s

1=

completed by the conditions (3) — (5). By Theorem 4 arbitrary solutions (u,v) of
problem (117), (118) satisfy the a priori estimate

ess sup{|u(t,z)|: (t,z) € Qr} < My (119)

with the constant M, from Theorem 4.

From (116) and

ps(u) = max{p"(u), p"(=Ma)} = max{p(u), p(— M)}

we see that a solution of problem (117), (118), (3) — (5) with § = M%; is automatically
a solution of problem (1) — (5).

We don’t want to go into details of proving solvability of the problem (117), (118),
(3) — (5) with 6 = =~. That could be done via Euler’s backward time discretization.
Such approach was used in [2], [5]. We remark only that solvability of the arising
elliptic problem can be proved by using degree theory for operators of class (S.)
[12].
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6 Proof of Uniqueness

For proving the uniqueness of the solution for problem (1) — (5) we assume that
there exist two solutions (uq,v1), (ug,vs) in the sense of the Definition 1 and show
that uy; = us,v; = vy. By Theorems 2, 3, we have for j = 1,2

6’(1,]'

lllz=tr) + l23llz=(ar) + || 52

2 .
H% <M  (120)

+
L?(Qr) Oz 1112(Qr)
with some constant M depending only on known parameters.

The proof of Theorem 6 will be given in four steps corresponding to four different
choices of test functions in the integral identities (14), (15).

First step. We test (14) for u = uy, v = v; with

1
Syl — ofus)]

and for u = us, v = vy with ¢y = u; — us. Taking the difference of the obtained
equalities we find

/OT{ < aa(m), 1 [0(uy) — o(ug)] > — < 80(@@)’ (41— u3) > } i+

Y1 =

ot P(ul) ot
+;/T/{bi<t’“’w>[(mul)—’;,((;‘11)) / pls) ds) 21;:_
- G2 = ot 252 K2 o

+/ / {a(t,x,vl,ul) = [o(u1) — o(us)] — al(t, z,va, u2) (w1 — u2)} dz dt = 0.
' (121)

We shall evaluate the left hand side of (121) term by term. We start with the first
integral applying Lemma 2 from [9] with respect to the function

o~ (z1)

F(z1,29) = Fi(21,20) = / [07 (1) — s]p(s) ds.

o 1(z2)

We obtain by (120)
/OT{ < do(w) _1 [o(u1) —o(ug)] > — < 8U(u2),u1 —ug > } dt =

ot

_ /Q Fy (0(us(r, 7)), o (us(r, ) do = (122)
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We shall estimate the second integral in (121) by using the inequalities

plu) 20 [0y ds = ptu) — ["EE o) s =ptur), (129)

p(u1) Ju, w  P(8)

< es1|ur — us)?, (124)

() ~ pluz) - % / o(s) ds

that follow from condition p) and the local Lipschitz condition for p’ respectively.

From i), (123), (124) and the local Lipschitz condition for the function b; we get

S [ e 2 (o) — 5 [ ot )

(Al gg) - p(u2>g‘;j] - ol (1,0, 2ty A=)} g

o3 [ ot on 25) - on 2]

8(U1 — Uos — V1 + ’U2) 2 8(u1 — ’Ul)
. oz, dr dt —csg/QT/{|u1—u2| HT

v
or

+

+1]

* ‘a(m — = Ha(vla; = }dodt> ca /Q, / ‘W‘Z de di=
]

(ug — v
_cs4//|u1—u2| 1+‘ L )

The last integral in (121) we estimate by using condition a), iii), the local Lipschitz
condition for a and the inequality

1
‘@ [o(ur) — o(uz)] — (w1 — us)

that follows from local boundedness of p’. We obtain

/T / {a(t,x,vl,m)p(il) [o(w1) — o(us2)] — al(t, z,va, ug)(ug — uz)} dz dt >

> /T / {a(t,x,vl,uz)[ 1 (a(ul) — a(ug)) — (uy — uz)]—F

81}1

8(1}1 — ’Ug)
Oz + ‘

oz

} dz dt .
(125)

< esslu — ug?,

p(us)
+ [a(t, z, v, us) — a(t, z, vs, u2)] (ug — u2)} dz dt >
> —055/ / {[1 +alt, )] (ug — up)? + (vy — 02)2} dz dt.
' (126)
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Now the (121) and (122), (125), (126) and Poincaré’s inequality imply

O(u; — ug) |2
/|u17x 2(T,x)|2 dz —i—/QT/‘%
<C56/ / Ul—UQ

U — v ov

e (e[ )\ :

or

Second step. We test the integral identity (15) for u = u;, v = v;, @ = 1,2, with

Y1 = v; — vy. Taking the difference of the obtained equalities, applying condition
i1)3 and the inequalities of Cauchy and Poincaré, we get

/ ‘8(1}1 — ’Ug) 2
Q 81'

Third step. We test the integral identity (15) for u = uy, v = v; with

dr dt <

’ (127)

+ 1+ a(t, x)] lug — u2|2} dz dt.

dr < 057/ luy — ug|? de. (128)
Q

3 = Pen [exp(Na(ul)) — exp(Na(uz))]+ (129)
and for u = uy, v = vy with
04 = N[uy — ug|; exp(No(ug)) , (130)

where N is a positive number depending only on known parameters and satisfying
Np?(s) +2p'(s) >1 for [s|<M (131)

with the constant M from (120). Taking the difference of the obtained equalities we
get

/OT{ < %, L[exp(Na(ul)) — exp(No(up))], > —

o ol (132)
~< %, Nlur — ]+ exp(No(us)) > } dt + 10 4 1@ 1 16 =,
where
7O — szn;/mr /bz (t,x, 3(u18; U1)> [p(ul)exp(NU(m))ng—
— p(u2) eXp(NU(uz))au2 _ ) /u1 p(s) exp(No(s)) ds - (133)
or;  p(u1) Ju,

: (8(7‘(197:;1“) + gzl)] dz dt,

26



PN [ f e (o )

(134)
_ [8(“187;“2) + Np(us)(uy — ’UJQ)ZZZ] exp(No(u,)) dz dt,
/ / i UI’UI [exp(No(u1)) — exp(No(up))] -
(135)

— Na(t,z, vy, uz)(u1 — uz) exp(Na(uz))} dz dt.

Here QF = {(t,z) € Q; : u1(t,z) > us(t, z) }.

We shall evaluate the terms of the left hand side of (132). To the first one we apply
Lemma 2 from [9] with respect to the function

o 1(z1)

F(z1, 22) = Fy(z1, 22) = N[/ (07" (21) — 5)p(s) exp(No(s)) ds
o 1(22) +
Using (120) we obtain
/0{ < %, @[exp(Na(ul)) — exp(No(u))], > —

~ < %,N[ul - u2]+exp(Na(u2))} dt = (136)

— /QFZ(a(ul(T, z)), o(ua(T, x))) dz > 058/9 [ul(T, z) — us(T, x)]i dz.

As to the second summand in (132) we use the inequality

u1

=2 [ exp(Va(s) ds >~ [ () exp(Na(s) ds -

p(u’l) u2 u2
(137)
— p(uz) exp(Nor(us)) — plur) exp(No(ur)) + N / s) exp(No(s)) ds
that follows from condition p). We obtain
= O(uy — 1)\ 0(u; — vy)
D> N2 / / bi(t — :
- z; oF Z( s ox ) ox;
” (138)

/ p?(s) exp(No(s)) dsdz dt —I—[{l) —|—[§1)

u2
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where

NZ/ / us) exp(No(usg))b; (t T, a(ula; Ul)) 8(u18; u2) dz dt,

NZ [, [l ) G {otw st

(139)
pl(ul) ul
— p(ug) exp(No(ug)) — () p(s) exp(No(s) ds} dz dt.
pl\u us
We transform the integral from (134) in the following way
1® = N? Z/ p? (uz)b; (t, T, 8(u18— Ul)) 8(u18— v,
-1 et ’ T (140)

- (u1 — us) exp(No(ug)) dz dt + [{2) + 12(2) + Iéz) :

where

% = —NZ/ / us) exp(No(ug))b; (t T, 8(u28; U2)> 8(u18; ) dz dt,

n O(uy —vy)\ Ov
[éQ) — _N? Z /+ /p2(u2)b,~ (t, z, %) 8:1:1- (uy — uz) exp(No(up)) dz dt,
i—1 /@7 ‘
(141)

O0(ug — v2)\ Ou
e :—NZZ/+/ (u2) “1—u2)eXP(NU(“2))[b (t o ( 28:r, 2)>6xj_
i=1

nfn ) 3

Now we shall estimate summands from I®) + I® that arise from (138) and (140).
In view of the choice of N ((132) we have for u; > us

/UI p*(s) exp(No(s)) ds — p*(u2) exp(No(uz)) (ur — ua)

] de dt.

(142)
/ / 2p(z ) + Np*(2)] exp(No(z)) dz ds > css|lur — uo .
Hence we get
sz/ / O(uq —U1)>3(u1ax—i U1){/uj1 0?(s) exp(No(s)) ds—
— p?(up) exp(No(uz))(uy — ug)} dz dt > cs9 /+ / Uy 2 w i
v (143)
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Using condition i) we get

_ 2 _ 2
[1(1) + [él) > 660/ / ‘78(7‘1 u) dz dt — cg1 / / ‘78(01 v2)
QT Oz Qf Ox

Since, as a consequence of the local Lipschitz continuity of p/,

pl(u) [
plu) exp(Nr(w)) ~ plu) exp(No(u)) - £ /  ls)exp No(s) da-

dz dt. (144)

(145)
— Np*(usg)(uy — us) exp(Na(ug))‘ < cealus — up)?,
condition #3) yields
0
‘1 + ‘>063/ / 1+‘ “1 m v1‘|u1—u2| dz dt. (146)
Q+
The next estimate follows from the local Lipschitz condition for b;:
110(u; — 2
‘I ‘ < 064/ / lu; — 7( v) + —‘7@1 )
ox € Ox
(147)
110(vy — 2 |Ovy |2
T L S
€ ox ox

Here ¢ € (0,1) is an arbitrary number. The term I®) defined by (135) can be
estimated analogously to (126) such that we get

—065/ /1—|—at z))|uy — up|? dz dt. (148)

Finally, we obtain from (132), (136), (138), (140), (143), (144), (146) — (148) for
sufficiently small

O(u1 — 1) |2

/ [ui (7, 2) — uo(r, x)] dz +/ /|u1 5 dr dt <
T
_ _ 2
< 066/ / u]_ UIZ + ‘6(1/]_ Uz) + 6'[}1 |u1 _ u2| + (149)
Qt ox 3

+(1+ alt,2)|us — u2|2} dz dt.

Changing the places of u; and us in the last inequality we get immediately

/|u17'x—u2(7x|2d$ +/ /|u1—u2| %l;l (?91;2 )dmdt<

_ 2
< 667/ / UI U2 + (

+(1+alt,z))|u — u2|2} dz dt.

Gu, |
or

8’1)2 2

2 8(1}1 — ’Ug)
+ ‘ or

oz

) |’U,1 — UZ|2+

(150)
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Fourth step. Let {y;(z)},j = 1,...,J be a partition satisfying the conditions
(76) with a number R to be fixed chosen later on. We the integral identity (15) for
u = u,v = v; with
J
e = Z[vl — vy ] g0§|u1 — ug)? (151)
j=1
where v; ; = vy j(t) = v(¢,z;). We obtain after integration with respect to ¢
8'01 2

/T/h;(x)|u1 — up|?| =~

ov; O(u; —u
Jn = —ZZZ/ /n(x)-a—xt-(187%2)[1}1—vl,j](ul—m)(p?dxdt,

j=1 i=1 Y @r

Ovy Op
1= a3 [ [ Gl il e

7j=1 =1 T
J

59 = =3 [ [lotw) = Mo - visleun - wf da d

j=17@r

dr dt = JO + J@ 4 J& (152)

We estimate J, J® JG) by Cauchy’s inequality, Theorem 3 and (76) and obtain

o) < 1 / / 8”1‘ g — 12 dxdt+cGSR°‘/ /‘M‘ e i
|J(2)|§ / / luy — usg? dxdt—lrcﬁg/ /|u1—u2| dzx dt
J®) Scm/ /(1+|f|)|u1—u2|2dx dt.

QT

The equality (152) and 1nequaht1es (153) imply 1mmed1ately

8
/ /|’U,1 1 dl' dt < C71/ / Ra
Qr

—|—<R2—|—|f|>|u1—uz| b dz dt

End of the proof of Theorem 6. Applying Cauchy’s inequality to the term in
(127) involving the derivative of u; —v; and choosing a suitable value of R, we obtain
from (127), (128), (150), (154)

/|u17'x—u27'x|2dx+/ /‘ U = uz)

< 072/ /(1 + o] + [f]) |ur — uo|? dz dt.
Qr

81}1

(153)

’U,l — ’U,Q)

(154)

d:z: dt <
(155)
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We estimate the integral on the right hand site of (155) by Holder’s inequality and
use the conditions on a, f to get

esssup /|u17':1:—u27':1:|dx+//‘
6
- o
< cr3 / /|u1—uQ|2”1 dz dt} 1 +C73/ { luy — ug|?P2 do }pZ dt
Qe 0 Q

for an arbitrary 6 € (0,7).

Estimating the first integral on the right hand site of (156) by Holder’s inequality,
using the embedding V2(Qr) C L2"3"

(Qr) and setting ¢y = n + 2 — pin, we find

1 a1

{/ /|u1—u2|2”'1 dxdt}"1 g(/ /|u1—u2|2dxdt>2p1-
Qo Qo
2(n+2 L—T 21’1
lug —up| = dz dt} 1<e luy — ug|® dx dt +
Qo Qo
21 — Ug)
—|—c7452"1*‘11 ess sup /|u1 7,z) — ug(7,2) [ dz +/ /‘
6

with an arbitrary € € (0,1) and a constant ¢4 depending only on n.

* do dt}
(157)

In analogous way we estimate the last integral in (156). We define «y by the equality

2—v 1(1 n—2>

20—y 2\p n

(1+2)

Estimating the last integral in (156) by Holder’s inequality and (88) we find

[4 1 Y
/ {/ luy — up | da }”2 dt < C75(/ /|u1 — up)? dz dt) "2
Q Q Qo
9 N n
. {/ [/ |u1 _u2|2(1+2q72) d:I?] a2 dl_}(lJrz; )n+[12%12 S
Q YJa
2p2
Scm{s / /|u1—u2| dz dt +
22y — Ug)
—1—521’27 esssup /|u17'x—u27x|2dx+/ /‘ dxdt]}

(158)

Then ¢, =
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with € € (0,1).

The inequalities (156) — (158) imply with suitable &

/ lui (6, ) — u2(9,x)|2 < c77/ /|u1 — u2|2 dzx dt
Q Qo

for arbitrary 6 € (0,T). Finally, Gronwall’s lemma yields u; = uy and the equality
v = vy follows now from (128). O
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