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Abstract

We study mild solutions u to the semilinear Cauchy problem

{ Srut(z) = %(1 2) 2yur() + yu(2) (L —w(x) (£ 20),

uo(z) = f(z),

with 2 € [0,1], f a nonnegative measurable function and 7 a positive constant. Solutions
to this equation are given by u; = Uy f, where (U;);>0 is the log-Laplace semigroup of a
supercritical superprocess taking values in the finite measures on [0, 1], whose underlying
motion is the Wright-Fisher diffusion. We establish a dichotomy in the long-time behavior
of this superprocess. For v < 1, the mass in the interior (0, 1) dies out after a finite random
time, while for v > 1, the mass in (0,1) explodes as time tends to infinity with positive
probability. In the case of explosion, the mass in (0, 1) grows exponentially with rate y—1
and is approximately uniformly distributed over (0,1). We apply these results to show
that (U;)¢>0 has precisely four fixed points when v < 1 and five fixed points when y > 1,
and determine their domains of attraction.
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1 Introduction and main results

1.1 Superprocesses and binary splitting particle systems

Before turning to our specific processes of interest, we recall the concept of a superprocess and
a binary splitting particle system in a somewhat more general set-up. Let E be a compact
metrizable space, let B(E), C(E) denote the spaces of bounded measurable real functions and
continuous real functions on E, respectively, and set B, (F) := {f € B(E) : f > 0}, etc. Let
G be the generator of a Feller process £ = (§;)i>0 on E and let a € C4(F), 8 € C(F). Then,
for each f € B, (FE), the semilinear Cauchy problem in B, (E)

{ (%ut Guy + Buy — au? (t > 0), (1)

Up = f’



has a unique mild solution u; =: U;f (see Section 2.1 for details). Moreover, there exists a
unique (in law) Markov process X with continuous sample paths in the space M(FE) of finite
measures on F, defined by its Laplace functionals

Ebe XN = e~ US) (150, pe M(E), f € BL(E)). (2)

X is called the superprocess in E with underlying motion generator G, activity o and growth
parameter B (the last two terms are our terminology), or shortly the (G, a, 8)-superprocess.
(Up)i>o = U = U(G, o, B) is called the log-Laplace semigroup of X. X can be constructed in
several ways and is nowadays standard; see, e.g., [Fit88, Fit91, Fit92]. We can think of X as
describing a population where mass flows with generator GG, and during a time interval dt a
bit of mass dm at position z produces offspring with mean (1 + (z)dt)dm and finite variance
2a(z)dt dm. For basic facts on superprocesses we refer to [Daw93, Eth00].

Similarly, when G is (again) the generator of a Feller process on a compact metrizable
space E and y € C;(E), then, for any f € By 1)(E) := {f € B(E) : 0 < f < 1}, the semilinear
Cauchy problem

{ %ut = Guy + yug(1 — uy) (t >0), 3)
up = f,

has a unique mild solution u; =: U;f in By y (E). Moreover, there exists a unique Markov
process X with cadlag sample paths in the space N (F) of finite counting measures on E,
defined by its generating functionals

B [0- X =(1-Tf)Y  (t>0, veN(E), f € Byy(E)). (4)

Here if v = )" | 0y, is a finite counting measure and g € Bjg1)(E), then ¢” := [[i_; g(z;)-
We call X the binary splitting particle system in E with underlying motion generator G
and splitting rate -y, or shortly the (G, ~y)-bin-split-process. (U;)i>0 = U = U(G,7) is called
the generating semigroup of X. We interpret a counting measure Y, ; 85, as a collection of
particles, situated at positions z1,...,z,. In this interpretation, the particles in X perform
independent motions with generator G and additionally, a particle splits with local rate 7 into
two new particles, created at the position of the old one.

1.2 Introduction of the problem and motivation
Let A be the closure of the operator

A=31z(1- w)% (5)

Then A is the generator of a Feller process ¢ on [0,1], called the (standard) Wright-Fisher
diffusion (see [EK86, Theorem 8.2.8]). We are interested in mild solutions to the Cauchy
equation B
{ %ut:Aut+7ut(1—ut) (t >0), (6)
Ug = f7

where v > 0 is a constant. For f € B.[0,1], the mild solution of (6) is given by u; = Usf,
wherel = U(A,~,7) is the log-Laplace semigroup of a superprocess A in [0, 1] with underlying
motion generator G = A, and activity and growth parameter a« = 8 = 7. We call X the super-

Wright-Fisher diffusion (with activity and growth parameter v > 0).! If f € Byp 1[0, 1], then

'More generally, if V is the (4, a,v)-superprocess, with «,y > 0 constants, then 1Y = X in law, and
therefore this more general case can be reduced to the case o = 7.
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Figure 1: A system of binary splitting Wright-Fisher diffusions with splitting rate v = 1.

the solution of (6) is also given by u; = U, f, where U = U(A, ) is the generating semigroup
of a system X of binary splitting Wright-Fisher diffusions, with splitting rate y. See Figure 1
for a simulation of X for v = 1. The points 0,1 are accessible traps for the Wright-Fisher
diffusion, and therefore a natural question is whether eventually all particles of X end up in
0 or 1. This question will be answered for all v > 0 in Proposition 4 below.

Our interest in the Cauchy equation (6) is motivated by recent work of Greven, Klenke and
Wakolbinger [GKWO01]. They study a system of linearly interacting Wright-Fisher diffusions
on Z%, catalyzed by a voter model. They show that the long-time behavior of this model in
dimension d = 2 can be expressed in terms of a function p, which is defined in terms of the
system X of binary splitting Wright-Fisher diffusions with splitting rate v =1, as

p(z) = lim P*[X,({1}) > 0] = lim P*[X,((0,1]) > 0] (€ [0,1)). (7)

In order to show that the two expressions for p in (7) are identical, they note that both
expressions correspond to a fixed point p of the generating semigroup U(A, 1) with boundary
conditions p(0) = 0 and p(1) = 1. Assuming that p is sufficiently smooth, the fixed point
property means that p solves the equation

Lo(1 - 2) Z5p(x) +9p(@)(1 —p(x) =0 (z €[0,1]). (8)

Though stated only for the case v = 1, the proof of Lemma 1.13 in [GKWO01] shows that
equation (8) has at most one solution with boundary conditions p(0) = 0 and p(1) = 1 when
v < 22/8 =2 1.836, where zj is the smallest non-trivial zero of the Bessel function of the first
kind with parameter 1. The authors do not answer the question whether solutions to (8)
with these boundary condions are unique for v > zg /8, or what solutions may exist for other
boundary conditions. Proposition 3 below settles these questions. We show moreover that all
fixed points of U(A4,) are smooth, a fact tacitly assumed in [GKWO1].

In the present paper, we prefer to study solutions to the Cauchy problem (6) by means
of the (A,,)-superprocess X rather than by means of the (A,~)-bin-split process X. The
fact that X and X are related to the same semilinear Cauchy equation reflects a deeper fact,
namely, that X is the trimmed tree of the superprocess X. Heuristically, this means that the
particles in X correspond to those infinitesimal bits of mass in &X', that have offspring at all
later times. For a precise statement of this fact we refer the reader to our forthcoming paper
[FS02a).



Another motivation for our present paper comes from work in progress on the renormal-
ization analysis of systems of linearly interacting Wright-Fisher diffusions, catalyzed by an
autonomous system of linearly interacting Wright-Fisher diffusions [FS02b]. In this project,
there have turned up certain continuous-mass branching processes in discrete time, as well as
their log-Laplace semigroups, which are in some sense similar to U(A4, 7, ), but more compli-
cated to describe. In future, we hope to apply the methods developed in the present paper to
study fixed points of these more complicated log-Laplace semigroups.

1.3 Results

The following theorem is our main result. We write ‘eventually’ behind an event, depending
on t, to denote the existence of a (random) time 7 < oo such that the event holds for all ¢ > 7.

Theorem 1 (Long-time behavior of the super-Wright-Fisher diffusion) Let X' be the
super- Wright-Fisher diffusion with activity and growth parameter equal to the same constant
v > 0, started in p € M[0,1]. Set

v(z) == 6z(1 — z) (z € [0,1]). (9)

Then there exist nonnegative random variables Wo, W1, W 1) (depending on p) such that

(i) lim e "X, 1) =W, a.s. (r=0,1),
(ii) t;;lo e vy = W, a.s (10
Jim, o) =Woy  as.
and
(i) {W, =0} ={X({r}) =0 eventually} a.s. (r=0,1), (1)
(i) {W,1) =0} = {A((0,1)) = 0 eventually} a.s.
Moreover,
{We,) >0} C{W1 > 01N {W2 >0} as. (12)
If v < 1, then
W(O,l) =0 a.S. (13)

If v > 1, then W1y satisfies
B (W) = (1) and Var*(Wio,) < 352 {u,v) (14

as well as
lim B {|e=0~X, 0f) — W (6,0f)|*] =0 ¥/ € Bo,1], (15)

t—00

where £ denotes the Lebesgue measure on (0,1).

Theorem 1 has the following consequence for the log-Laplace semigroup U(A,, 7).



Proposition 2 (Long-time behavior of U(A,~,~v)) Let X, Wo, W1, W1y be as in The-
orem 1 and let U = U(A,~,7). Then, for all u € M[0,1] and f € B,[0,1],

lim e~ {1 ULf)

t—00
:P“[{f(O) =00rWo=0}Nn{f(1) =0 or W1 =0}N{(£,f) =0 or W, :0}]
1 if f(0)=f(1)=(,f)=0,
PH[Wo,1) = 0] if f(0)=f(1)=0, {£f)>0,
= ¢ PH[Wy = 0] = P*[Wy = Wp,1) = 0] if  f(0)>0, f(1) =0,
PH[W, = 0] = PH[W) = W4y = 0] if  f(0)=0, f(1) >0,
pPH [W() =W = 0] pPr [Wo Wi = W(O,l) = 0] if f(O) > 0, f(l) > 0.
(16)
Here PF[W(o1) = 0] < 1 if and only if v > 1 and (u,v) > 0.
Except for the statement about smoothness (of the functions p1, ..., ps below), the following

result is immediate from Theorem 1 and Proposition 2.

Proposition 3 (Fixed points of U(A,~,v)) For any v > 0, all fized points of the log-
Laplace semigroup U(A,~,7) are given by

p1(z):=0,

po(z) := — log P% (Wio,1) = 0],

p3(x) := —log P [W, = 0], (z €[0,1]). (17)
pa(z) := —log PO [W, = 0],

ps(x) := — log P% Wy =W, =10]

Here po = 0 if v < 1, and po > 0 on (0,1) if v > 1. The functions pi,...,ps are twice
continuously differentiable on [0,1] and solve (8).

Since conversely, every nonnegative twice continuously differentiable solution to (8) is a fixed
point of U(A,,~), we see that (8) has precisely four solutions when y < 1 and precisely five
solutions when v > 1. Proposition 2 shows that U;f converges pointwise as ¢ — oo to one of
the functions pi,...,ps, where the limit depends on the values of f(0), f(1) and (¢, f). The
functions py,...,ps are [0,1]-valued and therefore fixed points of the generating semigroup
U(A,v) as well. Our final result describes pi,...,ps in terms of the system X of binary
splitting Wright-Fisher diffusions with splitting rate -y.

Proposition 4 (Fixed points of U(A,v)) The functions p,...,ps in (17) satisfy

p1(z) =0,

pa(z) = P2 [X;((0,1)) > 0 eventually),

p3(z) = P%=[X;({0}) > 0 eventually) = P%[X;([0,1)) > 0 eventually], » (z €[0,1]). (18)
pa(z) = P%=[X;({1}) > 0 eventually] = P%[X;((0,1]) > 0 eventually),

ps(z)=1

See Figure 2 for a plot of the functions py and p4 (for v = 2).
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Figure 2: Two solutions to the differential equation 3z(1 — z) %p(x) + 2p(z)(1 — p(x)) = 0.

1.4 Methods and related work

An essential tool in the proof of Theorem 1 is the weighted super- Wright-Fisher diffusion XV,
defined as
XY (dz) = v(z) X (dz) (t>0), (19)

where v is defined in (9). Note that v is an eigenfunction of the operator A, with eigenvalue
—1. For convenience, we have normalized v such that (¢,v) = 1.

In general, when a superprocess is weighted with a sufficiently smooth density, the result is
a new superprocess, with a new activity and growth parameter and a new underlying motion,
which is an h-transform of the old one. For the case that the underlying motion is a locally
uniformly elliptic diffusion on R?, weighted superprocesses were developed by Englinder and
Pinsky in [EP99]. In our case, the following can be proved without too much effort.

Lemma 5 (Weighted super-Wright-Fisher diffusion) Let X' be the super- Wright-Fisher
diffusion with v > 0 and let XV be defined as in (19). Then XV is the (AY, v,y — 1)-
superprocess in [0,1], where A? is the closure of the operator

2
AV = %x(l — w)%g + 2(% — :L')a% (20)

Indeed, AV generates a Feller process &Y in [0,1] (see [EK86, Theorem 8.2.1]). The diffu-
sion &Y is an h-transform (with A = v) of the Wright-Fisher diffusion . This v-transformed
Wright-Fisher diffusion £V is ergodic with invariant law v£ (Lemma 20 below). For v > 1,
the (A, v,y — 1)-superprocess is supercritical, and in this case one expects e*(Vfl)tXt” to
converge, in some way, to a random multiple of v£. This is the idea behind formula (15).
Recently, Engliander and Turaev [ET02], have shown for a certain class of superdiffusions X
in R? with underlying motion generator G, growth parameter 5 and activity «, the convergence
in law
e MUX gy = Wip,g) ast— oo, (21)

where W is a nonnegative random variable, A. is the generalized principal eigenvalue of G +
(which is assumed to be positive), p is a measure on R?, defined in terms of G + 3, and g is
any compactly supported continuous function on R%. In their work, the weighted superprocess
X?(dz) := ¢(z)X;(dz) plays a central role, where ¢ is the principal eigenfunction of the



operator G + 8. Their dynamical system methods are based on a result on the existence of an
invariant curve of the log-Laplace semigroup of their superprocess. Using this invariant curve,
they give an expression for the Laplace-transform of the law of the random variable W in (21).
Their methods use in an essential way the fact that their underlying space is R? (and not an
open subset of R¢, like (0,1)), and therefore their results are not immediately applicable to
our situation. It is stated as an open problem in [ET02] whether the random variable W in
(21) in general satisfies {WW = 0} = {X}; = 0 eventually}.

In our set-up, we can prove that {Wg )y = 0} = {&;((0,1)) = 0 eventually} because of the
following property of the weighted super-Wright-Fisher diffusion X?.

Lemma 6 (Finite ancestry) For all v > 0, the weighted super-Wright-Fisher diffusion X
satisfies

inf P&[X?=01>0 Vt>O0. (22)

z€[0,1]

Formula (22) has been called the finite ancestry property (of X?); for a justification of this
terminology we refer the reader to [FS02a]. Our proof of Lemma 6 is quite long. It is not clear
whether the weighted superprocesses X occurring in [ET02] will in general satisfy a formula
of the form (22). Therefore, we mention as an open problem:

How to check, in a practical way, whether a given superprocess has the finite
ancestry property (22)?

Another problem that is left open by the present paper, is whether the Lo-convergence in (15)
can be replaced by almost sure convergence. In fact, we suspect that (15) can be strengthened
to

lim e~ " V9X, 10,1 f) = Wio1)(6 f) Ve B[0,1] as, (23)

t—00

but we do not have a proof.

The rest of the paper is organized as follows. Sections 2.1 and 2.2 contain some general facts
about (G, a, B)-superprocesses and (G, a, 3)-superprocesses enjoying the finite ancestry prop-
erty, respectively. After some preparatory work in Sections 2.3 and 2.4, we prove Lemmas 5
and 6 in Section 2.5. In Sections 2.6 and 2.7 we derive some properties of the weighted super-
Wright-Fisher diffusion X?, culminating in the proof of Theorem 1 in Section 2.8. Finally,
Sections 2.9-2.11 contain the proofs of Propositions 2, 4, and 3 (in this order).

2 Proofs

2.1 Preparation: some general facts about log-Laplace semigroups

Let FE be a compact metrizable space and let C(E) be the space of continuous real functions
on F, equipped with the supremum norm || - ||o. Let & = (&);>0 be a Feller process in E with
semigroup S;f(z) := E*[f(&)] (t > 0, z € E, f € B(E)). By definition, the (full) generator
G of ¢ is the linear operator on C(E) given by Gf := limy .ot '(Sif — f) where the domain
D(G) of G is the space of all functions f € C(E) for which the limit exists in C(E).

Let « € C4(E), p € C(E), and f € C(FE). By definition, u is a classical solution of the
Cauchy problem (1) if u : [0,00) — C4+(F) ND(G) is continuously differentiable in C(F) (i.e.,
the derivative %ut := limg_,; s 7! (usys — uy) exists in C(E) for all ¢ > 0 and the map %u :



[0,00) — C(E) is continuous) and (1) holds. A measurable function u : [0,00) x E — [0, 00)
is called a mild solution of (1) if u is bounded on finite time intervals and solves (pointwise)

up = Sif + /tStS (Bus — au?)ds (t>0). (24)
0

Equation (1) has a unique mild solution for all f € B, (E) (see [Fit88]) and this solution is a
classical solution if f € C1(E) ND(G) (see [Paz83, Theorems 6.1.4 and 6.1.5]; the fact that f
is nonnegative and « > 0 implies that solutions cannot explode).

The (G, a, B)-superprocess X is defined as the unique strong Markov process with contin-
uous sample paths in M(FE), equipped with the topology of weak convergence, such that (2)
holds for all f € B (FE); see [Fit88, Fit91, Fit92].

Note the following elementary properties of the log-Laplace semigroup U(G, o, 5). Here,
we write bp-lim,,_,  f, = f if f is the bounded pointwise limit of the sequence (f5)n>0-

Lemma 7 (Continuity and monotonicity of log-Laplace semigroups) For each t > 0,
Uy : C+(E) — C4(E) is continuous. Moreover, if bp-lim, ., fn, = f for some sequence
fn € BL(E), then bp-lim,,_, U fr =Uif. Finally, f < g implies Usf <Uig (f,g € B+(E)).

Proof The continuity of U; : C4(E) — C4(F) follows from [Paz83, Theorem 6.1.2] and the
fact that solutions do not explode. Continuity of U; with respect to bounded pointwise limits
is obvious from (2), and the same formula also makes clear that ; : B{(E) — B4 (F) is
monotone. |

Recall that (1) has a classical solution for f € C.(F) N D(G). Because of the following, for
many purposes it suffices to work with classical solutions.

Lemma 8 (Closure and bp-closure) For ¢t > 0 fized, {(f,Usf) : f € C+(E)} is the closure
in C(E) of {(f,Usf) : f € CL(E)ND(G)}, and {(f,Usf) : f € BL(E)} is the bp-closure of
{(f;Usf): f €CL(E)}

Here, the bp-closure of a set B is the smallest set B such that B C B and f € B whenever
bp-lim,,_, f, = f for some sequence f,, € B.

Proof of Lemma 8 It follows from the Hille-Yosida Theorem (see [EK86, Theorem 1.2.6])
that D(G) is dense in C(E). Since D(G) is a linear space and 1 € D(G), it is not hard to see
that C;(F) N D(G) is dense in C,(F). The fact that {(f,U;f) : f € C+(E)} is the closure in
C(E) of {(f,Uf) : f € C+(E)ND(G)} now follows from the continuity of U; : C,(E) — C4(E).

In [EK86, Proposition 3.4.2] it is proved that C(E) is bp-dense in B(E); the argument can
easily be adapted to show that C(FE) is bp-dense in B (E). Therefore Lemma 8 follows from
the continuity of U; with respect to bounded pointwise limits. [ |

Uif may be defined unambiguously such that (2) holds also for functions f that are not
bounded, or even infinite.

Lemma 9 (Extension of / to unbounded functions) For each measurable f : E — [0, 0]
and t > 0 there exists a unique measurable Usf : E — [0,00] such that (2) holds for all
pu € M(E), where we put e := 0.

Proof Define U; f by Usf(z) := —log E%[e~{*:)] where log0 := —oo. To see that (2) holds
again for all y € M(E), choose B (E) > fn 1 f, note that U f, T U f, and take the limit in
(2). |

We will often need the following comparison result.



Lemma 10 (Sub- and supersolutions) Assume that T > 0 and that @ : [0,T] — C+(E) N
D(QG) is continuously differentiable in C(E) and solves

2, < Gy + By — oty (t €10,T)). (25)
Then ar < Urtg. The same holds with both inequality signs reversed.
Proof Let g : [0,7] — C(E) be defined by the formula
iy =Gy + Py — ot — g (t€[0,7)). (26)

Set uy := Uytig. Then u : [0,T] — C(FE) is the classical solution of

%ut = Guy + Buy — au? (t €[0,77), (27)
uO:’ao.
Put At :=up — @ (¢ € [0,T]). Then A solves
IN =GA + BA; — o (ug + Gg) Ay + (t € [0,7))
{ 3tAt 0 t t t t)Bt T gt ) ) (28)
0o=V\.

The generator G satisfies the positive maximum principle (see [EK86, Theorem 4.2.2]) and
therefore (28) implies that A > 0. For imagine that A¢(z) < 0 somewhere on [0,7] x E. Let
R be a constant such that 8 — « (us + @) + R > 0. Then A, := e®*A; solves

{ %At =GA, +{B — a(u + i) + RYA, + gre™ (t €[0,77), (29)

Ay=0.

If Ay(z) < 0 for some (t,z) € [0,7] x E, then A must assume a negative minimum over
[0,7] x E in some point (s,y), with s > 0 since Ay = 0. But in such a point one would
have 2 A (y) < 0 while GA,(y) + {B(y) — a(y) (us(y) + s (y)) + R}A(y) + g5 (y)ef > 0, in
contradiction with (29).

The same argument applies when both inequality signs are reversed. [ |

Lemma 10 has the following application.

Lemma 11 (Bounds on log-Laplace semigroups) Let U = U(G, o, 8), U = U(G, a, B),
where o, € Co(E) and 83,8 € C(E) satisfy

a>a and B<B. (30)
Then
Usf <Uf for all measurable f: E — [0,00] (¢ > 0). (31)

In particular, if o, B are constants and a > 0, then, for t > 0,

b (B#0) and Upo =

1 _
a(l—e Bt at

Uroo = (8=0), (32)
and (81) with f = oo gives

P, = 0] > e~ U0) (45 ). (33)



Proof For each f € C;(E) N D(G), the function 4, := Uy f solves
g = Giiy + By — oiif < Gy + Bl — iy (t > 0), (34)

and therefore U; f = @i; < U;f by Lemma 10. Using Lemmas 8 and 9 this is easily extended
to measurable f : E — [0, 00], giving (31). Define w by the right-hand side of the equations
in (32). Then it is easy to check that w solves %ﬂt = Buy — aw? (t > 0) with limy_you = o0,
and therefore (33) follows from the fact that

PHY, = 0] = Brfe= X009 = ¢ ~(U0) (1> 0, e M(B)), (35)

and a little approximation argument. [ |

2.2 Some consequences of the finite ancestry property

Let X be a (G, a, B)-superprocess as in the last section. In line with Lemma 6, we say that X
has the finite ancestry property if

inf P»[X, =0]>0  (t>0). (36)
ek

Note that by (35), property (36) is equivalent to ||;00]lc < 0o (¢ > 0). In this section we
prove three simple consequences of the finite ancestry property.

Lemma 12 (Extinction versus explosion) Assume that the (G, a, 8)-superprocess X has
the finite ancestry property. Then, for any u € M(E),

PH[X, =0 eventually or (X, 1) =o00] =1, (37)

lim
t—00
Proof We use a general fact about tail events of strong Markov processes, the statement and

proof of which can be found in the appendix. Consider the tail event A := {X; = 0 eventually}.
By Lemma 23 in the appendix

lim P*(4) =14 as. (38)

t—00

For any fixed T' > 0, by (35),

PH(A) > PHXp = 0] = e~ (UTro0) 5 o= DlUrolle (e M(E). (39

Hence (38) implies that

lim inf e~ (Xt 1) [Uro0]|oo <1y a.s. (40)

t—o0

By the finite ancestry property, [|[Uroo|leo < 0o and therefore limy_, oo (X, 1) = 00 a.s. on AR

The following is a simple consequence of Lemma, 12.

Lemma 13 (Extinction of (sub-) critical processes) Assume that the (G, «, 3)-super-
process X has the finite ancestry property and that B < 0. Then, for any p € M(E),

PHX, =0 eventually] = 1. (41)
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Proof Since E#[(X;,1)] < (u,1), P*[limy_,0 (X, 1) = oo] = 0. Now the claim follows from
Lemma 12. n

Our final result of this section is the following.
Lemma 14 (Extinction versus exponential growth) Assume that the (G, «, 3)-super-
process X has the finite ancestry property and that 8 > 0 is a constant. Then, for any
u € M(E), there exists a nonnegative random variable W, depending on u, such that
(i) lim e P X,1) =W  Pl-as.,
t—00 st )
.. . ol _ _
(i) Jim B*[le P, 1) - W) =0,
(iii) E*(W) = (u,1), (42)
) Var'(W) <267 alloo{p, 1),
) {W =0} ={X =0 eventually} Pt—as.

(iv
(v

Proof Put V,f := €5*S;. The mean and covariance of X are given by the following formulas
(see, for example, [Fit88]):

(i) BX[(%, )] = . Vi)
(i) CovP (4 ), (2,90 =2 [ ds s Vlex Vime) Vi) (t20, f,g € B(E).
(43)
Therefore,
E'[(X,, f)] = e (u, Suf) (>0, f € B(E)), (44)
and

Var((X, f)) 22/0td8 =9 (1, 85(a(Si-s1)?))
<o e [ s 2 (5)
<287 lallool fl3(m 1) (£ >0, f € B(E)).
Let (F)¢>0 be the filtration generated by X and put
X = e Pt (t>0). (46)
Then (44) and (45) show that for any 0 < s <t and f € B(E)

() E"[(&, f)|Fs] = (X5, Sisf)  as,

. 5 . (47)
() Vart[(, )] F,] <267 lallllf 12 (E, e as.
Since S; 51 = 1, formula (47 i) shows that ((A},1));>o is a nonnegative martingale, and hence
there exists a nonnegative random variable W such that (42 i) holds. Setting s = 0 in (47 ii),
we see that 3

Vart[(£,1)] < 2687 |alloo (1, 1) (> 0). (48)

This implies (42 ii), and, using Fatou, (42 iv). Moreover, by (48) the random variables
(Xt, 1)¢>0 are uniformly integrable, and therefore (42 iii) holds.

11



We are left with the task to prove (42 v). The inclusion D is trivial. Formulas (42 iii) and
(42 iv) imply that

(s, 1)?PHW = 0] < Vark (W) < 267" [|afloo (s, 1), (49)
and therefore
P > 0> 1 - 26 ool )70 (1 £0). (50)
Note that {WW > 0} is a tail event. Thus, by Lemma 23 in the appendix,
: Xt _
t]i)I&P [W > 0] = 1{W>0} a.s. (51)
Formula (50) shows that
.. X,
llgglfp t[W > O] > 1{1imt—>oo<Xt,1):OO}' (52)

Combining Lemma 12 with formulas (51) and (52) we see that {&; = 0 eventually}® C
{limy_y oo (A4, 1) = 00} C {W > 0} a.s. |

2.3 Smoothness of two log-Laplace semigroups

We return to the special situation E = [0,1] and G = A or G = AY, where A and Av are
the closures in C(F) of the operators A in (5) and AY in (20), respectively, with domains
D(A) = D(A?) := C?[0,1], the space of real functions on [0, 1] that are twice continuously
differentiable. Let U = U(A,~,y) and U’ = U (A", yv,y—1) denote the log-Laplace semigroups
of the super-Wright-Fisher diffusion X and the weighted super-Wright-Fisher diffusion A,
respectively, where v > 0 is constant. In this section we prove:

Lemma 15 (Smoothing property of ¢ and U") One has Uy(B+[0,1]) C C4+[0,1] and
Uy (B4[0,1]) € C+[0,1] for all t > 0.

To prepare for the proof, we start with the following elementary property of the semigroups
S and S” generated by A and AY, respectively (recall (5) and (20)).

Lemma 16 (Strong Feller property) The semigroups S and S” have the strong Feller
property, i.e., S¢(B[0,1]) C C[0,1] and S} (B[0,1]) C C[0,1] for all t > 0.

Proof Couple two realizations £2, &Y of the process with generator A, started in z,y € [0,1], in
such a way that £* and £¥ move independently up to the random time 7 := inf{t > 0 : £ = ¢/},
and such that & = &/ for all t > 7. (Here the superscript in ¢” refers to the initial condition,
and not, like elsewhere in this paper, to an h-transform.) Then it is not hard to see that

Pl =¢f1—1 as y—ax VE>0. (53)

In particular, (53) holds also for z € {0, 1} since the boundary is attainable. Since |S;f(z) —
Sif(y)| < 2||flleoPléF # &), formula (53) shows that S;f € C[0,1] for all f € B[0,1] and
t > 0. For the process with generator AV the argument is similar but easier, since in this case
{0,1} is an entrance boundary. |

Proof of Lemma 15 Fix f € B|0,1]. The function u; := U f is a mild solution of (6), i.e.,
(see (24))

t
ug = Sif —I-/O Sts(yus(1 — uy))ds (t>0), (54)
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where by Lemma 16, S;f and S;_; ('yus(l — us)) are continuous functions on [0, 1], for all
0 < s < t. Since the integral is continuous with respect to bounded pointwise convergence of
the integrand, we see that U f(x) is continuous in z for all ¢ > 0. The same argument applies
tolU f. |

2.4 Bounds on the absorption probability

Let U = U(A,~,7). Since the points 0,1 are traps for the Wright-Fisher diffusion, f(r) = 0
implies U f(r) = 0 (r = 0,1). We have already seen (Lemma 15) that U;f is continuous for
each t > 0. The following lemma shows that if f(r) = 0, then U, f has a finite slope at r = 0, 1,
for all ¢ > 0. By symmetry, it suffices to consider the case r = 0.

Lemma 17 (Absorption of the super-Wright-Fisher diffusion) Let U = U(A,~,7),
with v > 0. Then

Up(olp))(e) < Ky (>0, z €0,1]), (55)
with 42
e’ 8

Note that (55) implies that
Pela((0,1]) >0 <1—e KT <K,z (t>0, 2 €0,1)). (57)

We begin with a preparatory lemma.

Lemma 18 (Absorption of the Wright-Fisher diffusion) For the Wright-Fisher diffu-
sion &,

Pole, > 0] < (% + 2);3 (t>0, z € 0,1]). (58)
Proof For z > 0 put
fola) = 1gy() and fi(e) = (1 —2m)e T 1gn(a) (£ 0) (59)

A little calculation shows that for ¢ > 0 and z > 0,

2 fi(z) =4zl — 20)t 2 %]@)
Lop(1 — 2)D2fy(z) = (8x(1 — z)(1 — 2x)t 2™ % + 8x(1 — a:)t_le_%)l[o,%}(x) (60)
—|—2t_16_%(5% (z),

where D? denotes the generalized second derivative with respect to x and § 1 is the delta-
function at %. Since 4z < 8z(1 — z) for all z € [0, 1], it follows that

B2 fi(m) < a1 —2)Dify(x)  (¢>0, z>0). (61)

If f; were contained in D(A), then (61) would mean that % ft < Af, for t > 0, and a standard
argument (compare Lemma 10) would tell us that f; < S;fo, where S is the semigroup of &.
In the present case, we need a little approximation argument.
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Let ¢, > 0 (n > 0) denote C*°-functions defined on [0, c0) with support contained in [0, 1],
say, such that ¢,(z)dz are probability measures converging weakly to the §-measure dy as
n — co. Put

o0
()= [ dydalfla+u) = dut file) (>0, 520) (62
Then 5 5
51/t (2) = én x 5 fi(@) (63)
2 11(@) = bn + D2 fi(w),
and therefore (61) shows that
Gfi@) < 3e(l—2) 2 @) (>0, >0, n>0). (64)
Since f* € D(A) for all t > 0, the argument mentioned above gives
fle S8 (620, €>0). (65)
Letting n — oo and afterwards € — 0 we find that
fi(z) < Sifo(z) = P& =0] (>0, z€][0,1]). (66)

Note that (1 — fy(z)) = (1 — 2z)4tLe * +2¢~ % < (4 +2) for z € [0, §]. Therefore (66)
implies (58). (Note that (58) is trivial for z € [1,1].) |

Proof of Lemma 17 Fix f € B[0,1] satisfying f(0) = 0 and write U f = Uy /5U; /5 f. By (33)
from Lemma 11, Uy o f < (1 — e~7/2)~1 Since moreover U, /2f(0) = 0 because of absorbtion
at zero, we have

Upnf <Uyp((1—e ) ) (¢>0). (67)

Using (31) from Lemma 11, we may estimate U(A,~,v) in terms of U(A,0, ), which is just
the linear semigroup (€7*S;)¢>0. Thus, by Lemma 18,

Uy f (x) <2Sy((1 = €)™ ) (@) 5)
<e"P(1—e?) M E 42 (¢>0, z€[0,1).
Letting f 1 0o, by monotonicity we arrive at (55). |

2.5 The weighted super-Wright-Fisher diffusion

In this section we prove Lemmas 5 and 6. Recall that £,£” are the diffusions in [0,1] with
generators A, AV defined in (5) and (20), and associated semigroups S, SY, respectively, and

that U = U(A,~,v) and U = U(A?,yv,y — 1).
Lemma 19 (wtransformed log-Laplace semigroup) If f € D(AY), then vf € D(A) and
A(vf) =v (A" - 1)f. (69)

Moreover,
Ui(vf) =vU f (t>0, feBL0,1)). (70)
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Proof For any f € C?[0,1], it is easy to check that
A(wf) =v (A" = 1)f. (71)

Fix f € D(A?) and choose f,, € C2[0,1] such that f, — f in C[0,1]. Then (71) shows that
A(vf,) — v (AY — 1) f, which implies that vf € D(A) and that (69) holds.

Now fix f € C1[0,1] N D(A?) and put u? :=UPf (t > 0). Then u” is the classical solution
of the Cauchy equation

{ up = A + (v = D —yo (uf)® (¢ 20), (72)
ug = f-
It follows from (69) that
Gouy =viuf = vAuf + (v - Dou - (vuf)? 73)
—Aloup) +youd —y(u)2 (¢ > 0),
i.e., uy := vuy is the classical solution to the Cauchy equation
%ut :Z’U,t + Yut — ")”U,% (t Z O), (74)
ug=vf.

This proves that U (vf) = uy = vuy = vUYf for all f € C;[0,1] N D(A?). The general case
follows from Lemma 8 and the fact that the class of f € B,[0,1] for which (70) holds is closed
under bounded pointwise limits. [ |

Proof of Lemma 5 Set F; := o(X; : 0 < s < t). Then by (70), for all 0 < s < ¢ and
f € B+[Oa 1]a

Ble~ WA )| ] = E[e (X vh)| 7] = e~ (Xs, U—s(v]))

(75)

— e_<XS’Uut7Lsf> — e_<UXS’utvfsf>_
It follows that (vX;)s>o is a Markov process and that its transition probabilities coincide with
those of the (AY, yv,y — 1)-superprocess. Since X has continuous sample paths, so has vX. B

Proof of Lemma 6 We need to prove (22), which by (35) is equivalent to the statement
that ||Ufool|ee < oo for all ¢ > 0. Assume that f € By[0,1] satisfies f(0) = f(1) = 0. By
Lemma 17, U, f(x) < K;x for the constant K; mentioned there. By symmetry, one also has
Upf(z) < K; (1 - z) and, since z A (1 — z) < 3v(z), Upf(z) < 3Kyv(z). Let g € B,[0,1]. By
formula (70) and the fact that (vg)(0) = (vg)(1) = 0, we see that U g(z) = v(l—z)ut(vg)(x) <
1K, for all z € (0,1). By Lemma 16, Ug is continuous on [0, 1] and therefore U7 g(z) < $K;
holds also for z = 0, 1. Taking the limit g 1 0o we see that [l o0||c < $K; < 0o for allt > 0.8

2.6 Ergodicity of the »-transformed Wright-Fisher diffusion

Recall that ¢V is the diffusion on [0,1] with generator A? defined in (20) and associated
semigroup SY. As in Theorem 1, £ denotes the Lebesgue measure on (0,1) and v is defined by
(9). In this section we prove:
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Lemma 20 (Ergodicity of the v-transformed Wright-Fisher diffusion) The Markov
process £¥ has the unique invariant law v€ and is ergodic:

lim [IS7f = (vf, e =0 Vf € BIO,1]. (76)
Proof Since
231 — ()] =203 —x)(z)  (z€[0,1]), (77)

vl is a (reversible) invariant law for the process with generator @ (see [EK86, Proposi-
tion 4.9.2]). Fix z € [0,1]. Let £” be the process started in = and let £” be the process started
in the invariant law vf. Then £Y,£” may represented as solutions to the SDE

def = 2(3 — &)dt + /& (1 — £)dBy, (78)

relative to the same Brownian motion B. Using the technique of Yamada & Watanabe (see,
for example [EK86, Theorem 5.3.8]), it is easy to prove that

Blg - & =e "Bl - &l <e™  (t>0). (79)
It follows that for any function f satisfying |f(y) — f(2)| < |y — 2| (y,z € [0,1)),

|BLf ()] — (b, f)| < BIF(&) — fE)] < e (80)

This implies that the function z — L£%(&}) from [0, 1] into the space M;[0, 1] of probability
measures on [0, 1], converges as ¢ — oo uniformly to the constant function v¢. This shows that
(76) holds for all f € C[0,1]. Since &Y has the strong Feller property (Lemma 16), (76) holds
for all f € B[0,1]. ]

2.7 Long-time behavior of the weighted super-Wright-Fisher diffusion

The following lemma prepares for the proof of formula (15) in Theorem 1.

Lemma 21 (Mean square convergence) Assume that~y > 1. Let XV be the (AY,yv,y—1)-
superprocess started in X = p € M[0,1]. Then there exists a nonnegative random variable
W, depending on i, such that

(i) lim e O"VHAY 1) =W as.

t—00 9 (81)
(i) lim E“[|e_(7_1)t(Xt”,f) — W (e, f)] ] =0 VfeB[o1]
Moreowver,
EF(W) =(u,1) and Var*(W) < 3-27(u,1), (82)
and
{W =0} ={X’ =0 eventually} a.s. (83)

Proof Except for formula (81 ii), all statements are direct consequences of the fact that X"
has the finite ancestry property (Lemma 6) and of Lemma 14 (note that ||yv]e = 37).

Fix f € B[0,1]. Let (F3)i>0 be the filtration generated by X¥ and put XY := e~ ("Dt Ap
(t >0). Pick 1 < s, <t such that s,, - oo and ¢, — s, — oo. Then, by (47),

B[, 1) = (B2, S8 D] <35I, De 070 as (39)
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Taking expectations on both sides in (84), one finds that

> 5 2 e
B[, £) = (22, 88,0 F)[P] < 352501F I (m, 1y 0D, (85)
By (42 ii),
: " %Y _ 21

Jim EF[[(X7,1) - W[*] =0. (86)

Using Lemma 20 (about the ergodicity of £¥) and (86), it is easy to show that

. 5 2

Tim B (|2, 87, f) - W, )] =o. (87)

Combining this with (85), we see that

. S 2
lim B¥|[(%,, f) = W (e, )| =o0. (88)
n—o0
Since this is true for any ¢, — oo, (81 ii) follows. n

2.8 Long-time behavior of the super-Wright-Fisher diffusion

Proof of Theorem 1 Using Lemma 5, we can translate our results on the weighted super-
Wright-Fisher diffusion &Y to the super-Wright-Fisher diffusion X. Thus, Lemma 21 proves
formulas (10 ii), (11 ii), and (14)—(15), where W(q 1) is the random variable W from Lemma 21.
Formula (13) follows from Lemma 13. To finish the proof of Theorem 1, it suffices to prove
(10 i), (11 i) and (12).

1. Proof of formula (10 i) One has E*[(X;, f)] = € {(u, Sif) for all t > 0, f € B[0,1]
by (44). Since the points r = 0,1 are traps for the Wright-Fisher diffusion, E#*[{X}, 1,4)] =
e, Stliry) > € (u, 1¢yy) for all £ > 0, 7 = 0,1. Thus, the processes (e7 (X, 1,3))i>0 (r =
0,1) are nonnegative submartingales, and hence there exist random variables W, (r = 0, 1)
such that (10 i) holds.

2. Proof of formula (12) For v < 1 the statement is trivial by (13), so assume vy > 1. By
symmetry it suffices to consider the case r = 0. From the Ly-convergence formula (15) we
have, for any K > 0,

{W,1) > 0} C {VT < oo 3t > T such that X([3, %]) > K} as. (89)
Assume for the moment that for some ¢ > 0 and (sufficiently large) K,

inf  PH[W, > 0] > 0. (90)

Then we see from (89) and (90) that
{Wo,1) > 0} C { lim PY[Wy > 0] =0}° C {Wo >0} as,, (91)
’ t—o0
where the second inclusion follows from the fact that, by Lemma 23 in the appendix,

lim PY[Wy > 0] = 1gys0p  as. (92)

t—o0
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Thus, we are done if we can prove (90). By the branching property, it suffices to prove (90)
for measures y that are concentrated on [1, 1]. Fix any ¢ > 0. Formulas (44) and (45) give

(l) EF [<Xt7 1{0}>:| = < 7St1{0}>67t7 (93)
(ii) Var* [(X;, 1j0p)] < 2(u, 1)e*".
It follows from formula (66) (recall (59)) that
wel[%f,%] Stl{o} (]7) > 0. (94)
Denoting the infimum by e, we get the bounds
i)  EM[(X,1 >e(p,1)e,
(i) (X 1op)] > ep, 1) (95)

(i) Var*[(A;, 1{0})] <2(u, 1)e*".

These formulas show that for large (u, 1), the standard deviation of (A}, 110}) is small compared
to its mean. Therefore, using Chebyshev’s inequality, it is easy to show that for every M > 0
there exists a K > 0 such that

inf Pu[<Xt, 1{0}) > M] > 0. (96)
neM(%,3]: (u,1)>K

Hence, by the Markov property, in order to prove (90) it suffices to show that for M sufficiently
large,

inf  PH[W, > 0] > 0. (97)

pp({0})>M

By the branching property, it suffices to prove (97) for measures p that are concentrated on
{0}. In that case, A}({0})¢>0 is an autonomous supercritical Feller’s branching diffusion (a
superprocess in a single-point space is just a Feller’s branching diffusion). Applying Lemma, 14
to this Feller’s branching diffusion, again using Chebyshev, it is not hard to prove (97). Since
the arguments are very similar to those we have already seen, we skip the details.

3. Proof of formula (11 i) The inclusion {W, = 0} D {X;({r}) = 0 eventually} a.s. is
trivial. By (12) and (11 ii), {W, = 0} C {W(,1) = 0} C {A((0,1)) = O eventually} a.s.
Therefore, by the strong Markov property, it suffices to prove {W, = 0} C {X({r}) =
0 eventually} a.s. for the process started in p with x((0,1)) = 0. In this case, (X;({r}))i>0 is
an autonomous supercritical Feller’s branching diffusion, and the statement is easy (see the
previous parapraph). |

2.9 Long-time behavior of the log-Laplace semigroup

Proof of Proposition 2 By formula (2),
ot} _ = FOX0D) ~F DX~ (X Lo Ty 98)
By (10 i) and (11 i) in Theorem 1,

lim e—f (M X({r})

t—o0

= ].{f(?"):() or WT:()} a.S. ("[‘ = 0’ ]_). (99)
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Now, if (£, f) = 0 for some f € B,[0,1], then e~{¥ 10/ =1 as. for each ¢ > 0. To see this,
note that by (43), B%[(X;, 10, f)] = €7(6s, Silio.) f) = " B7[1(0,)(&) (&) where € is the
Wright-Fisher diffusion. Since the law of the Wright-Fisher diffusion at any time ¢ > 0 (started
in an arbitrary initial condition) on (0,1) is absolutely continuous with respect to Lebesgue
measure, we see that E%[(X;, 1(0,1)f)] = 0 and hence (X}, 1¢g,1)f) =0 P%_a.s. (Actually, since
X is a one-dimensional superprocess, it is presumably true that X}, restricted to (0,1), for
t > 0 is almost surely absolutely continuous with respect to Lebesgue measure.)

On the other hand, if (¢, f) > 0, then by formulas (10 ii), (11 ii), (13), and (15) in
Theorem 1,

e~ (X100 f) Py L(3i0.1)=0}- (100)

Hence, for general f € B;[0,1]

e (XL f) By 1{(6,1)=0 or W(o.1)=0}» (101)

where — denotes convergence in probability. Inserting (99) and (101) into (98) we ar-
rive at the first equality in (16). Using formula (12) and checking the eight possibilities for
f(0), f(1), (£, f) to be zero or positive, we find the second equality in (16). |

2.10 Long-time behavior of binary splitting Wright-Fisher diffusions
Proof of Proposition 4 By Proposition 2, for the functions py, ...,ps from (17),

p1 (.’L‘) =0,

p2(z) =limy 00 Up1(g,1) (),

p3(.’13) = limt—)oo utl{o} (:L') = limt—>oo Z/{tl[o,l) (:L'), (.T S [0, 1]) (102)
pa(z) =m0 Upl 1y () = limy—y00 Up (0,17 (2),

p5(z) = limg, 00 Uy 1

Since by formula (4), for each Borel measurable B C [0, 1], P%[X;(B) > 0] = Uylp = Us15(z)
(t >0, z €[0,1]), we can rewrite the expressions in the right-hand side of (102) as in (18). B

2.11 Smoothness of fixed points

In order to finish the proof of Proposition 3 we need to show that the functions pi,...,ps
occurring there are twice continuously differentiable on [0,1]. We begin with the following.

Lemma 22 (Smoothness of fixed points) If p € B4[0,1] is a fized point under U(A,, ),
then p € D(A) and Ap+ yp(1 —p) =0.

Proof For any ¢ > 0, Lemma 15 implies that p = Uyp € C,[0,1]. Moreover, since u; := p
(t > 0) is a mild solution of (6) (recall (54)),

t
p= Stp+/ Ss(yp(1-p))ds (¢t >0). (103)
0
Hence ‘
Ap :=lim t'(S;p — p) = —lim t_1/ Ss(vp(1 —p))ds = —yp(1 —p), (104)
t—0 t—0 0
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where the limit exists in C[0, 1]. |

In this one-dimensional situation, the domain of A is known explicitly. One has (see [EK86,
Theorem 8.1.1])
_ . 2
D(A) = {f € C[0,1] N C2(0,1) : lim $a(1 - 2) Z f(z) =0 (r =0, 1)}. (105)
Here C[0,1] N C%(0,1) denotes the class of continuous real functions on [0,1] that are twice
continuously differentiable on (0, 1).

Proof of Proposition 3 We only have to prove the smoothness statement, all other state-
ments having been proved in the text. It suffices to show that p2 and p4 are twice continuously
differentiable on [0,1] and solve (8). The statement for ps then follows by symmetry, while
for py = 0 and ps = 1 (see Proposition 4), the claim is obvious. Since ps,p4 are fixed points
under U(A,,7), it follows from Lemma 22 and formula (105) that po,ps are continuous on
[0, 1], twice continuously differentiable on (0, 1), and solve equation (8) on (0,1). We are done
if we can show that their first and second derivatives can be extended to continuous functions

on [0,1]. (If f is twice continuously differentiable on (0,1) and the limits lim,_,, % f(z) and
limg_,, % f(z) exists (r = 0,1), then these limits coincide with the one-sided derivatives on
the boundary. This follows, for example, from Corollary 6.3 in the appendix of [EK86].)

Proposition 4 shows that po,ps < 1 and therefore, since they solve (8) on (0, 1), p2 and py4
are concave. Proposition 4 also shows that py(0) = pa(1) = 0 and p4(0) = 0, pa(1) = 1. (See
Figure 2 as an illustration.) Since ps is concave, %m(x) increases to a limit in (—o0, 00| as
z | 0. Lemma 17 implies that this limit is finite, and therefore %pQ(:c) is continuous at = = 0.
Since po solves (8) on (0, 1),

m 2 py(z) = lim 2yp2(2)(1 — pa(z))
oz’

i — 9y 0 1
:%l—>0 z—0 IE(l — 3;) fyapr(w)LC:()a ( 06)

which 2proves that ;—;pg (z) is continuous at x = 0. The saume2 argument proves that %pz(x)
and aa?pz(w) are continuous at z = 1, and that %m(m) and %p;;(:v) are continuous at z = 0.
Since py4 is concave, %p;;(m) decreases to a limit in [—00, 00) as z 1 1. Since p4(1) = 1 and ps <
1, %m(w)‘m:l > 0. Since py4 solves (8) on (0,1) and %[m(w)(l —p4($))]|ac:1 = —%m(x)‘z:l,

2ypa(z)(1 — pa(z))

. g2 . P
R el 1o
which proves that %m(w) and %m(w) are continuous at x = 1. |

Appendix: a zero-one law for Markov processes

Let E be a Polish space and let (P%)*€F be a family of probability measures on Dg[0, co) (the
space of cadlag functions w : [0, 00) — E) such that under (P*)*<¥  the coordinate projections
{w — wy =: &(w) : t > 0} form a Borel right process in the sense of [Sha88]. This is true, for
example, if (P%)*€¥ are the laws of a Feller process on a locally compact Polish space, or a
(G, a, B)-superprocess as introduced in Section 2.1 (see [Fit88]). Let T := (|;5q0(&s 1 s > 1)
denote the tail-o-field of £&. Let (fyw)s := weys (t,8 > 0) be the time-shift on Dg[0, 00). Then
the following holds.
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Lemma 23 (Zero-one law for Markov processes) Assume that A € T. Then for each
rz e FE,
lim P%(0;'(A)) =14 P%—as. (108)
t—o0
Proof Let F; := 0(&; : 0 < s < t) (t > 0) be the filtration generated by ¢ and set F, :=
o(&s s > 0). Since ¢ is a Markov process, P& (6, *(A)) = P[A|F] a.s. For any sequence of
times ¢, 1T oo one has F;, 1 Foo and therefore P[A|F;,] — P[A|Fw] = 14 a.s. (see [Loe63,
§ 29, Complement 10 (b)]). Since ¢ is a right process, the function ¢ — P& (6, *(A4)) is a.s.
right-continuous (see [Sha88] (7.4.viii)), and we conclude that (108) holds. n
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