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Abstract

Many laser systems show self-pulsations with a large amplitude that are

born suddenly in a homoclinic bifurcation. Just before the onset of these self-

pulsations the laser is excitable where the excitability threshold is formed by

the stable manifold of a saddle point. We show that there exists a special

con�guration, a codimension-two bifurcation called a non-central saddle-node

homoclinic orbit, that acts as an organizing center of excitability in lasers. It

is the key to understanding excitability in laser systems as diverse as lasers

with saturable absorbers, lasers with optical injection and lasers with optical

feedback.

1 Introduction

Excitability has been well-known for a long time in physiology and chemistry. About

half a century ago, the Nobel price winner A.L. Hodgkin [23] already described dif-

ferent kinds of neural excitability, namely a unique response to a stimulus above a

certain threshold (all-or-none law) and repetitive �ring to a su�ciently strong stim-

ulus. The possibility of spontaneous �ring is also well-known [22]. Other examples

of excitable physiological or chemical systems are neurons and axons [24, 25], heart

muscles [1, 30], electrodissolution and passivation of iron [44], and di�erent chemical

reactions [27, 28, 37]. In recent years it has become clear that excitable systems are

prevalent also in other �elds of science, including population dynamics [5], protein

dynamics (calcium waves) [47], and laser dynamics, the �eld we concentrate on here.

Recently excitability in laser systems has been receiving considerable interest. It

was found in nonlinear cavities with temperature dependent absorption [36], lasers

with optical injection [52, 58], lasers with optical feedback [40, 61], multisection

DFB lasers [60], lasers with integrated dispersive re�ectors [54], and lasers with

saturable absorber [8, 9]; see also the overview Ref. [52]. This interest is also due to

possible applications of excitability in lasers: the laser acts as an optical switch that

reacts only to su�ciently high optical input signals. This may be used in optical

communication systems, for example, for pulse reshaping (a dispersed input pulse

can trigger a large `clean' output pulse).

It is important to realise that the notion of excitability is de�ned phenemenologically.

Following Ref. [42], a system is called excitable when

(i) the unperturbed system is at a stable equilibrium;
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Figure 1: Two `�avors' of a topological con�guration leading to excitability: the

two branches of the unstable manifold of the saddle either form a smooth invariant

closed curve (a), or they come back `on the same side' of the attractor (b).

(ii) a perturbation above the excitability threshold triggers a large excursion from

the stable equilibrium;

(iii) the system then settles back to the attractor in what is called the refractory

phase, after which the system can be excited again.

As we will see below, this large excursion can be quite complicated and produce not

just a single pulse, but a �xed number of pulses.

When one models excitability in the framework of dynamical systems theory (e.g.

by ordinary di�erential equations), then certain topological con�gurations of phase

portraits are associated with di�erent types of excitability [26, 45, 46]. An immediate

question arises: how does the phase space have to be organised (apart from having

a stable equilibrium) in order for a system to be excitable?

There are some known topological con�gurations of the phase space that imply ex-

citability. One con�guration represents a slow-fast system with an S-shaped slow

manifold. This situation occurs in the FitzHugh-Nagumo model [15, 41] (an approx-

imation of the famous Hodgkin-Huxley equations [24] describing the action potential

of a squid axon) as well as in a two-dimensional system modelling an optical cavity

[36]. Another such con�guration occurs in the original Hodgkin-Huxley equations

[24]: there is a thin region in the phase space where the dynamics depend very sensi-

tively on the initial conditions. This region can be interpreted as a threshold set [26]

and indicates the existence of a quasi-threshold of excitability. This con�guration

also exists in a model of a laser with integrated dispersive re�ectors [54].

In this paper we are concerned with yet another topological con�guration that arises

in models of excitable systems (see e.g. Refs. [45, 46]), and in particular in models

of laser systems; see the examples in Secs. 3�5. The situation is sketched in Fig. 1:

both branches of the one-dimensional unstable manifold of a saddle point end up

at an attractor. This con�guration comes in two cases or `�avors': the unstable

manifold of the saddle either forms a smooth invariant closed curve [Fig. 1 (a)],

or the two branches of the unstable manifold come back `on the same side' of the

attractor [Fig. 1 (b)]. In both cases (a) and (b), a small perturbation relaxes back to

the attractor, while a perturbation beyond the stable manifold of the saddle results
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in a large excursion along one branch of the unstable manifold, and then a relaxation

back to the attractor. The closer the saddle and the attractor are together, that is,

the closer the system is to a saddle-node bifurcation, the `more excitable' it is.

While there is no topological or qualitative di�erence between the two cases in Fig. 1

(a) and (b), their distinction has a history that can be explained by the physical

manifestation of the excitability associated with them. The excited pulse one gets

when there is an attracting invariant circle is generally less sharp (in particular when

there are several pairs of attractors and saddle points on the invariant circle [16]).

For example, in an optically injected semiconductor laser one notices a 2� phase

jump of the electric �eld with hardly a change in the laser intensity; see Ref. [56]

and also Sec. 5. Case (b) on the other hand, can be characterised as being near a

homoclinic bifurcation, and this typically leads to larger and shorter excitable pulses

(and associated self-pulsations) in lasers; see Sec. 3. Indeed these changes are of a

quantitative nature and depend on what observables can be measured in the system

under consideration.

In this paper we emphasize the role a nearby homoclinic orbit in both cases of Fig. 1

for understanding excitability in lasers. We identify a codimension-two bifurcation

called a non-central saddle-node homoclinic bifurcation that acts as an organising

center for excitability. This special point ties together the cases (a) and (b) in a con-

sistent way. We demonstrate with the examples of a laser with saturable absorber,

a laser with optical feedback and an optically injected laser that excitability near

homoclinic orbits is particularly prominent in lasers systems.

The paper is organised as follows. In Sec. 2 we discuss in more detail the phe-

nomenon of excitability near a homoclinic orbit. Sections 3�5 discuss excitability

in a laser with saturable absorber, with optical feedback and with optical injection,

respectively. We draw some conclusions in Sec. 6.

2 Excitability near a homoclinic orbit

Three examples of excitability near a homoclinic orbit are sketched in Fig. 2. The

respective homoclinic orbit itself is shown in the left column, the excitable phase

portrait near the homoclinic orbit in the middle column, and time traces in the right

column. It may be easiest to �rst consider the simplest situation of a homoclinic orbit

in the plane as sketched in Fig. 2 (a). While a small perturbation quickly relaxes

back to the attracting equilibrium (grey curve), a perturbation above threshold,

namely one above the stable manifold of the saddle, leads to a large excursion (bold

black curve). During this excursion the system follows the unstable manifold of the

saddle back to the equilibrium, which results in a pulse as is sketched in the right

column. In Fig. 2 (b) the saddle involved is a saddle-focus, so that the homoclinic

orbit is of Shilnikov type. As a result, there is an element of oscillation in the

reaction to perturbations, but otherwise the situation is exactly as in Fig. 2 (a).

Finally, Fig. 2 (c) shows excitability near a so-called 2-homoclinic orbit where the
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Figure 2: Excitability near a homoclinic orbit to a real saddle (a), a homoclinic

orbit to a saddle-focus (b), and a 2-homoclinic orbit (c). The respective homoclinic

orbit is shown in the �rst column, the excitable phase portrait in the second column,

and time traces in the third column. The last two columns show the reaction to a

perturbation below (grey curves) and above (bold curves) the excitability threshold.

unstable manifold misses the saddle at the �rst pass and connects to the saddle

only when it comes close the second time. After a perturbation above threshold

the system again follows the unstable manifold of the saddle. Because this manifold

comes close to the saddle two times before ending up at the attractor, this now

leads to two clearly discernible pulses as a result of a single perturbation above the

excitability threshold. In general, there is an n-pulse reaction near an n-homoclinic

orbit. We show in Sec. 5 that this e�ect, which we call multipulse excitability, is

related to a Belyakov bifurcation [4] and actually occurs in an optically injected

semiconductor laser.

There is an organising center that allows us to describe di�erent kinds of excitability

and their occurrence in lasers. It is a codimension-two bifurcation called a non-

central saddle-node homoclinic bifurcation. At this special point, the unique part of

the center manifold of the saddle-node returns back to the saddle-node along the

stable manifold of the saddle-node. Its unfolding (giving all possible dynamics near
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Figure 3: Bifurcation structure near a codimension-two saddle-node homoclinic bi-

furcation point. Phase portrait 1 corresponds to self-pulsations, phase portrait 2 to

excitability due to a saddle and an attractor on an invariant circle, phase portrait 3

to excitability near a homoclinic orbit, and phase portrait 4 to bistability between

a steady state and self-pulsations.

this point) is sketched in Fig. 3; see [3, 26] for further details. The codimension-two

point on the saddle-node curve S marks the transition from a saddle-node bifurcation

on an invariant closed curve (formed by the unique part of the center manifold

of the saddle-node returning along the center (linearly neutral) direction; phase

portrait 1$2) to a saddle-node bifurcation o� an invariant closed curve (a limit

cycle; phase portrait 1$4). There is a homoclinic bifurcation curve h emanating

from the codimension-two point, along which there is a homoclinic orbit to the

saddle (phase portrait 3$4). It turns out that, to make this unfolding complete,

there must be a curve het corresponding to a heteroclinic connection where the

unstable manifold of the saddle returns to the attractor along the strong stable

manifold (phase portrait 2$3). While this is not a bifurcation (phase portraits 2

and 3 are topologically equivalent; see also Fig. 3) this heteroclinic connection is

the moment when the invariant closed curve is lost as a smooth object; see also

Ref. [32]. We can now identify the region in parameter space where the system is

excitable due to a saddle and an attractor on an invariant closed curve [Fig. 1 (a)]

as region 2, while it is excitable near a homoclinic orbit [Fig. 1 (b)] in region 3.

Both cases of excitability occur near the onset of self-pulsation, which one �nds in

regions 1 and 4. However, the boundary between self-pulsations and excitability is

di�erent in both cases. Importantly, in region 4 the selfpulsations co-exist with the

attracting equilibrium.

Before considering examples in detail, we now discuss some practicalities of �nding

excitability in a given laser system.

It is an important question how one can experimentally achieve a su�cient pertur-
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bation to trigger a pulse. In lasers the triggering mechanism most used is a periodic

train of short changes of the pump current [19]. Excitability then shows up as a cor-

responding train of optical pulses for su�ciently strong and su�ciently wide-spaced

pulses [18, 19, 52]. From a dynamical systems point of view, this experimental tech-

nique is a change in a parameter and not a perturbation in phase space. One needs

to be careful with the strength and duration of such a pulse in order to avoid the

system simply adiabatically following this parameter change; see Ref. [54]. This

is of particular importance for semiconductor lasers, which have very fast internal

time scales. Only recently [60] the �rst experiment was conducted that used a small

optical pulse, that is, a perturbation in phase space, to trigger an excited pulse.

Furthermore, many laser systems are only weakly dissipative. As a consequence,

above the excitability threshold the size of the excited pulse varies somewhat with

the size of the perturbation. This is in contrast with, for example, excitability in

the FitzHugh-Nagumo system. This is why, in our characterization of excitability

above, we did not require the size of the output pulse to be independent of the

input perturbation once excited, as some authors do; compare [52]. Nevertheless,

this variation is much smaller than the noticeable and experimentally measurable

di�erence of the reaction below and above the excitability threshold.

3 Laser with saturable absorber

One mechanism for self-pulsations in lasers (with absorbers) is called passive Q-

switching. It is due to the interplay of the slowly responding population di�erences

in a gain and an absorber medium and the much faster response of the electric �eld

in the cavity. This type of oscillations is characterized by a slow build-up of carriers

in the absorber which are then suddenly transformed into a short pulse of laser light,

after which this process repeats. The result is a pulse train with a typical frequency

of the order of several GHz; see, for example, Refs. [29, 38].

Semiconductor laser diodes with saturable absorber are known both from exper-

iments and numerical studies to show self-pulsations immediately after reaching

their laser threshold [8]. Furthermore, they were recently shown to be excitable be-

fore threshold [9]. The basic dynamics of a laser with saturable absorber is modelled

well by the Yamada model [62], a three-dimensional dynamical system given by the

(dimensionless) equations

_I = (G�Q� 1)I

_G = 
(A�G�GI) (1)

_Q = 
(B �Q� aQI)

for the laser intensity I, the gain G, and the absorption Q. In Eqs. (1) A is the bias

current of the gain, B the amount of absorption, a the di�erential absorption relative

to the di�erential gain, and 
 the relative relaxation rate of gain and absorber.

Because 
 is small, typically of the order of 10�3, Eqs. (1) are a slow-fast system.
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The gain G and the absorption Q develop on the slow time scale, and the intensity

I is the fast variable. It is an important feature of Eqs. (1) that the plane fI = 0g
is invariant under the �ow and a slow manifold at the same time.
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Figure 4: The bifurcation diagram of the Yamada system in the (A; 
)-plane for

a = 1:8 and B = 5:8 (a), together with the relevant phase portraits 1�4 for small 
.

The laser shows self-pulsations (b) in region 3 (A = 7:0, 
 = 0:05). It is excitable

before the laser threshold in region 2 (A = 6:5, 
 = 0:05) where a su�ciently strong

excitation leads to a trajectory that follows closely the unstable manifold (almost

entirely overdrawn thin curve) of the saddle (c). This leads to a single pulse in the

intensity (black curve), while a sub-threshold perturbation immediately relaxes back

to the o�-solution (grey curve) (d).

There are two possible con�gurations of a semiconductor laser with saturable ab-

sorber: two segment lasers where the gain and absorber are spatially separated in

the longitudinal direction, and stripe lasers where the absorber is constituted by

the unpumped material next to the gain region. The Yamada model (1) is valid for

both, provided that the decay times in gain and absorber are of the same order in

the segment laser, or the di�usion between gain and absorber is negligible for the
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stripe laser.

Singular perturbation methods (making use of the limit of small 
) were applied to

this system in Refs. [11, 14, 17] to obtain expressions for the pulse frequency and

the maximum pulse intensity; see also Ref. [13]. A complete bifurcation analysis

describing all possible dynamics of the model in dependence on all four parameters

(that is, not only for small 
) was carried out in Ref. [8].

For the realistic values B = 5:8 and a = 1:8, the bifurcation diagram in the (A; 
)-

plane is as shown in Fig. 4 (a). The relevant phase portraits 1�4 that occur for

small values of 
 are sketched qualitatively. We remark that these phase portraits

are presented as plots in a plane; the missing direction is always attracting. As the

pump parameter A is increased for �xed small 
, the laser is initially o� in regions

1 and 2, and then, after crossing its threshold given by the transcritical bifurcation

T, produces pulse-like oscillations in region 3, as is shown in Fig. 4 (b). These self-

pulsations have been found in semiconductor lasers both in the stripe [39, 51, 62]

and the longitudinal con�guration [31]. They �nally increase in frequency, become

more sinusoidal and disappear in the Hopf bifurcation H . In region 4 the system is

attracted to the single steady state with positive intensity, that is, the laser produces

constant output.

In region 2, that is, just before threshold, the dynamics of the laser is topologically

equivalent to Fig. 1(b) and therefore excitable. The excitability threshold is given

by the two-dimensional stable manifold of the saddle closest to the o� state (the

attractor on the invariant plane fI = 0g). Because this saddle merges with the o�

state at the transcritical bifurcation T, which marks the laser threshold, the system

is `most excitable' just before the laser threshold. (The transcritical bifurcation

plays the role of the saddle-node bifurcation in Secs. 1 and 2 due to the invariance

of fI = 0g.) A small perturbation simply relaxes back to the o� state; see the grey

curve in Fig. 4 (d). However, Fig. 4 (c) shows that a su�ciantly large perturbation

results in a trajectory that closely follows the one-dimensional unstable manifold of

the saddle, resulting in a large pulse as is shown in Fig. 4 (d). The system then

relaxes back in a refractory phase along the slow manifold fI = 0g. In Ref. [9] it

is shown that, once it is excited, the pulse has a height that depends linearly on

the size of the perturbation. There one also �nds an expression for the excitability

threshold.

The excitability is due to the vicinity of the homoclinic orbit along the curve h,

which emanates from a Bogdanov-Takens bifurcation BT. Even though the point

BT lies in a part of the bifurcation diagram with unphysically large 
, it neverthe-

less acts as an organizing center for the dynamics [8]. The curve h was continued

with AUTO/HomCont [7] from BT to values of small 
, which showed that the

self-pulsations are indeed born in a homoclinic bifurcation as was conjectured, for

example, in Ref. [11]. For small values of 
 the curve h is virtually indistinguishable

from the transcritical curve T, so that for all practical purposes the laser threshold

coincides with this homoclinic bifurcation. This explains why the laser produces

self-pulsations immediately after threshold.
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4 Laser with optical feedback

Delayed optical feedback is known to be a source of instabilities and complicated

dynamics in semiconductor lasers. In particular, the situation of large delay times

has been studied extensively, both numerically and in experiments; see, for example,

references in Ref. [50] and Refs. [6, 43]. In this case, complicated dynamics with high-

dimensional chaos is observed even for very small amounts of feedback. In contrast,

the situation of an extremely short cavity, as it arises typically in multi-section

devices with integrated cavity, has received less attention. (The external cavity of

multi-section lasers is even much shorter than the short cavity regime investigated

recently in Ref. [21].) However, this situation is of great practical interest as the

small length of the external cavity makes the e�ects of delayed optical feedback

much more controllable [60]. A detailed local bifurcation analysis in terms of the

feedback phase � and feedback strength � was performed in Refs. [12, 50, 59] for the

well-known Lang-Kobayashi model [35] in the very short cavity regime.

The results of Refs. [12, 50, 59] locate the saddle-node curves and the curves of

Hopf bifurcations of the stationary lasing states in the (�; �)-plane. We will explore

the (�; �)-plane starting from small �, and search numerically for global bifurcations

leading to the general scenario described in Sections 1 and 2. This implies excitability

of the laser.

4.1 Lang-Kobayashi system

For our analysis, we model the laser-cavity system with the Lang-Kobayashi equa-

tions [35]. The scaling is appropriate for the case of a short cavity (see Ref. [59]):

_E(t) = (1 + i�)n(t)E(t) + �e
�i�

E(t� 1) (2)

_n(t) = "

h
J � n(t)� (n(t)� �)jE(t)j2

i
:

Here the complex quantity E models the �eld amplitude, n describes the deviation

of the carrier density from the laser threshold at � = 0, and time t is measured

in multiples of the external round-trip time. As already mentioned, we choose the

e�ective feedback strength � (which may be greater than 1 due to the rescaling

of time) and the feedback phase � as primary bifurcation parameters. The other

parameters are the linewidth enhancement factor �, the ratio � between external and

internal photon lifetime, the ratio " between photon lifetime and averaged carrier

lifetime, and J which models the pumping current.

Due to its rotational symmetry with respect to E, system (2) admits solutions of the

type E(t) = E0e
i!t
; n(t) = const, which are called stationary lasing states, external

cavity modes or continuous-wave (CW) states.
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4.2 Single-mode approximation

The factor " in (2) is of order 10�2 if the length of the external cavity is of the same

order as the length of the laser. This smallness of " implies that the dimension of the

dynamics of system (2) is low for a considerable range of � if all other parameters

have a moderate magnitude; see, for example, Refs. [49, 59]. We exploit this fact to

reduce system (2) to a two-dimensional single-mode approximation [49, 55] for small

�.

Since we do not take into account nonlinear gain saturation, the equation for _E

in (2) is linear in E. We denote the corresponding linear operator by H(n). The

operator H acts on E as a function in the delay time interval. The characteristic

function of H(n)

�(�;n; �; �) = �� (1 + i�)n� �e
�i���

has only one complex root � � 0 close to the imaginary axis in the vicinity of n = 0

and � = 0. That is, the compound cavity is in a single-mode regime for small

�. We project E onto the eigenspace of H(n) spanned by the dominant mode e�t

using the corresponding adjoint eigenvector, and reduce the rotational symmetry of

(2) to obtain an implicitly de�ned two-dimensional system of ordinary di�erential

equations:

_I =

 
2Re�+ Re

"
(1 + i�)(�� (1 + i�)n)

(1 + �� (1 + i�)n)2

#
_n

!
I

_n = "(J � n� (n+ �)I) (3)

0 = h(�;n; �; �)

where I = jEj2 and � is the root of � closest to the imaginary axis. According to

[49, 59], equilibria of (3) coincide exactly with CW states of system (2) and periodic

orbits of (3) with moderate maximum power are
p
" close to self-pulsations of (2).

Consequently, if the scenario described in section 1 is present in system (3), we can

conclude that the same scenario exists in (2) for parameters nearby.

4.3 Computational results

We �x the parameters � = 4, J = 2, � = 6, and " = 0:01 which correspond to

the setting of a two-section laser investigated in [60] (consisting of an active single-

mode laser section pumped well above threshold and a passive feedback section).

We explore the (�; �)-plane for � � 0:5 applying the standard numerical bifurcation

analysis tool AUTO [7] to system (3). The parameter region of interest is depicted

in Fig. 5(a). The region where the curve h of homoclinic orbits and the curve S

of saddle-nodes join mirrors exactly the qualitative picture of Fig. 3. Moreover, it

turns out that system (2) behaves as the bifurcation diagram Fig. 5(a) of system (3)

predicts. Fig. 5(b) shows that system (2) exhibits self-pulsations at the lower cross

in Fig. 5(a) at (�; �) = (2:25; 0:4). Fig. 5(c) and (d) display the excitable behavior
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Figure 5: Self-pulsations and excitability in the feedback laser near a non-central

saddle-node homoclinic bifurcation point (a); also shown is a Hopf bifurcation curve

H. The laser shows self-pulsations (b) in region 1 (cross at � = 2:25, � = 0:4). It is

excitable in region 3 (cross at � = 2:25, � = 0:447) near the homoclinic bifurcation

curve h, where a su�ciently strong excitation leads to a trajectory close to the

homoclinic orbit (thin curve) (c). This leads to a single pulse in the intensity (black

curve), while a sub-threshold perturbation relaxes back to the o�-solution (grey

curve) (d).

of system (2) at the upper cross in Fig. 5(a) at (�; �) = (2:25; 0:447). We excite the

system by a sudden decrease of the carrier density n which is an approximate model

for the injection of an incoherent optical pulse. The response of system (2) follows

closely the shape of the nearby homoclinic orbit of system (3). There is one notable

di�erence between the grey and the black curve in Fig. 5(c). The maximum power of

the homoclinic of system (3) is too high compared to the maximum of the response

of (2) (see Fig. 5(c)) due to a nearby singularity of the root � of the characteristic

function � in system (3).

The response of system (2) to an excitation above its excitability threshold dis-

plays several characteristic features that are typical for a weakly dissipative system.

Firstly, there is a noticeable delay before the pulse occurs (see Fig. 5(d), black time

trace). During this delay, the carrier density increases continually until the pulse is

emitted. Secondly, the rest state is a focus which is only weakly attracting. Finally,
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the maximum power of the pulse depends on the strength of the excitation because

the attraction rate towards the unstable manifold of the saddle (guiding the response

trajectory) is small.

Experimentally, excitability has been found in laser systems with delayed optical

feedback in Ref. [52] in a double cavity ring laser. Moreover, Ref. [60] demonstrated

for the �rst time excitability with respect to injected optical pulses using a multi-

section laser composed of a single-mode DFB laser and an integrated cavity. The

small length of the integrated cavity (� 250�m) investigated in Ref. [60] enabled

the experimentators to tune the phase � of the feedback such that the system came

close to a homoclinic bifurcation. However, the e�ective feedback strength � was

chosen much higher than 0:5 in Ref. [60] leading to a genuine two-mode regime. This

implied, for example, that the number of pulses of the response might depend on

the strength of the excitation. However, the results depicted in Fig. 5 predict that

excitability is essentially a single-mode phenomenon and should be observable also

for an e�ective feedback strength � smaller than chosen in Ref. [60].

5 Laser with optical injection

The technique of optically (and unidirectionally) injecting the light of a master laser

into a laser (today usually a semiconductor laser) results in a narrow linewidth when

the laser locks onto the frequency of the master laser. Furthermore, by changing

the frequency of the master, the frequency of the laser can be tuned. The main

operational parameters are the injection strength K and the detuning ! between

the frequency of the master laser and that of the free-running laser. It is intuitively

clear that the laser will not lock onto the master laser for all combinations of injection

strength and detuning, and indeed the injection laser is now known to show a wealth

of additional behavior, especially when it is a semiconductor laser. We refer to

Ref. [56] and further references therein as an entry point to the extensive literature.

An optically injected single-mode semiconductor laser is described well [57] by the

rate equations

_E = K +

�
1

2
(1 + i�)n� i!

�
E (4)

_n = �2�n� (1 + 2Bn)(jEj2 � 1)

for the complex electric �eld amplitude E = Ex + iEy and the population inversion

n. In Eqs. (4) time is in units of the characteristic relaxation oscillation frequency

!r of the free-running laser. As mentioned above, the two (experimental) control

parameters are the injected �eld strength K and its detuning !. Further, � is the

linewidth enhancement factor, B the (rescaled) photon lifetime, and � the (rescaled)

damping rate of the relaxation oscillations, which were set to the realistic values

� = 2, B = 0:015 and � = 0:035; see Ref. [56] for more details.

It was recently shown in Ref. [58] that the injection laser may show multipulse
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Figure 6: Excitability in the injection laser near a curve h1 of one-homoclinic orbit

connecting to the saddle-node curve S at two codimension-two homoclinic saddle-

node points A1 and A2 (a). The bifurcating curve h1 is intersected by the neutral

saddle curve ns at the Belyakov points B1 and B2, which implies the existence of

curves hn of n-homoclinic orbit for any n. Many of these n-homoclinic bifurcation

curves also connect to S (b), and this leads to open regions where the system is

multipulse excitable. In such a region a su�ciently strong excitation leads to a

trajectory (c)�(f) that is close to the respective n-homoclinic orbit, resulting in an

n-pulse in the intensity (black curve in (g)�(j)), while a small perturbation dies out

(grey curve in (g)�(j)); time t is in units of !r. From (c)�(f) (K;!) has the values:

(0.45, -0.93), (0.472, -0.98), (0.48, -0.97), and (0.455, -0.95725).

excitability, a multipulse response to a single perturbation, near n-homoclinic orbits.

This phenomenon is explained here in more detail.

The parameter region of interest in the locking region for negative detuning ! is

shown in Fig. 6 (a). It was generally thought that in the injection laser the saddle-
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node bifurcation along the curve S always takes place on a periodic orbit (the con-

tinuation of periodic orbit for K = 0 corresponding to the solitary laser). How-

ever, there is a homoclinic curve h1 that forms a `homoclinic tooth' and meets the

saddle-node curve S at the two codimension-two non-central saddle-node homoclinic

bifurcation points A1 and A2. The dynamics near A1 and A2 is as in Fig. 3: between

A1 and A2 the saddle-node bifurcation at S does not take place on the basic periodic

orbit (the one continued from the solitary laser solution), and we �nd (single-pulse)

excitability near the homoclinic orbit along h
1. The unstable manifold in this ex-

citability region is shown in Fig. 6 (c) and the reaction to a perturbation in Fig. 6

(g). A small perturbation dies out quickly (grey curve), whereas a su�ciently large

perturbation (to above the stable manifold of the saddle) results in a single pulse

before the laser settles back to the equilibrium (black curve).

However, there are many more homoclinic curves present in the region shown in

Fig. 6 (a), which is due to the two codimension-two Belyakov bifurcation points

[4, 20] B1 and B2. At these codimension-two points, the neutral saddle curve ns

intersects h1, meaning that the saddle-focus changes its type, so that above ns the

homoclinic orbit on h
1 is no longer stable. Above ns we are in the situation of a

chaotic Shilnikov bifurcation, near which one �nds n-homoclinic orbits for any n

(passing the saddle closely (n-1) times before closing up); see, for example, Ref. [33].

The corresponding curves hn lie inside the homoclinc tooth formed by h1 and create a

cascade of bifurcations that is not entirely understood yet [20]. Many of these curves

of n-homoclinic orbits extend into the region below ns, leading to further Belyakov

points when they cross ns. Below the curve ns the homoclinic bifurcations along

h
n are non-chaotic Shilnikov bifurcations from which a single stable n-periodic orbit

bifurcates. A good number of curves hn get very close to the curve S or even `attach'

to it at further non-central saddle-node homoclinic bifurcation points. The complex

array of homoclinic curves near S is shown in Fig. 6 (b).

There are open regions bounded by curves hn where the system reacts in a deter-

ministic way by producing an n-pulse to a su�ciently large perturbation. Several of

these regions are so large that they should be experimentally accessible with todays

experimental resolution of � 100MHz (! is in units of !R � 5GHz); see Ref. [57].

The unstable manifolds in regions with 2-, 3- and 4-pulses are shown in Fig. 6 (d)�

(f). The respective reactions to a sub-threshold perturbation (grey curve) and to

a su�ciently strong perturbation (black curve) are shown in Fig. 6 (h)�(j). This is

clear evidence of multipulse excitability in the injection laser.

It was generally believed that the locked solution is the only attractor in the locking

region, although some indications of complex dynamics and period-doublings within

the locking region were presented in Ref. [53]. Here we show that for values of

(K;!) inside the homoclinic tooth in Fig. 6 (a), between S and ns, the laser may

either lock to the input signal or show self-pulsations, which are due to additional

attractors. Examples of such self-pulsations inside the locking region are shown

in Fig. 7. Panels (a)�(c) show attractors in the (E; n)-space, together with the

attracting equilibrium corresponding to the locked state (black dot) and the saddle

14



�1
0

1

�1

0

1

�1

0

1

�1
0

n

Ey

Ex

jEj2

t0 135
0

4

0

2

f 0 0.4

(a)

(d) (g)

�1
0

1

�1

0

1

�1

0

1

�1
0

n

Ey

Ex

jEj2

t0 135
0

4

0

2

f 0 0.4

(b)

(e) (h)

�1
0

1

�1

0

1

�1

0

1

�1
0

n

Ey

Ex

jEj2

t0 135
0

4

0

2

f 0 0.4

(c)

(f) (i)

Figure 7: Inside the locking region one �nds a 1-periodic orbit (a), bifurcating to a 2-

periodic orbit (b), and eventually to a chaotic attractor (c); the black dot represents

the stable locked state and the gray dot the saddle equilibrium. The corresponding

self-pulsations are shown in panels (d)�(e); time t is in units of !r. Notice that

their amplitude hardly changes but the timing between consecutive pulses does, as

is further evidenced in the respective optical spectra in panels (g)�(i); the frequency

f is in units of (! � !inj)=!r. From (a) to (c) K= 0.445 and ! is: �0:94, �0:942,

and �0:9455.

point (grey dot). Indeed, panels (a)�(c) are part of a period-doubling transition

to chaos. The resulting chaotic attractor is shown in Fig. 7 (c). The respective

time series of the laser intensity are shown in panels (d)�(f), revealing characteristic

self-pulsations. It is interesting to note that the amplitude of the self-pulsations

practically does not change from (d)�(f), the only noticable di�erence being in the

timing of the pulses. This is due to the shape of the respective attractors in (E; n)-

space. Even the chaotic attractor in Fig. 7 (c) does not stray much from the �rst

periodic orbit in panel (a). The clearest indication that we are indeed dealing with

period-doubling to chaos comes from the optical spectra in panels (g)�(i), One clearly

notices the extra peaks of the period doubled solution in panel (h), while panel (i)

shows a continuous spectrum indicative of a chaotic attractor. Again, the chaotic

nature is entirely in the timing of the pulses, leading to increased jitter.

The period-doubling curves involved in the cascade are not shown in Fig. 6 (b). In
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fact, there is a complicated web of additional bifurcations, also including saddle-

node bifurcations of periodic orbits, in the vicinity of the (in�nitely many) Belyakov

points. As was mentioned earlier, the exact nature of the bifurcation diagram near

the Belyakov points is not known and beyond the scope of this paper; see Refs. [34,

48] for other examples of complicated dynamics near Belyakov points. However,

we found that, as is the case for the n-homoclinic curves hn in Fig. 6 (b), many of

these additional bifurcation curves extend to near the saddle-node curve S, leading

to extra attractors inside the locking region.

6 Discussion and conclusion

We gave a comprehensive survey of di�erent occurences of excitability in semicon-

ductor lasers, taking a detailed look at lasers with saturable absorber, delayed optical

feedback and optical injection. We discussed recent experimental and theoretical re-

sults and unveiled the common underlying mechanism: a non-central saddle-node

homoclinic bifurcation, a codimension-two bifurcation, is the organizing centre for

excitability in laser systems. Hence, a careful bifurcation analysis of the theoretical

models is the main tool for �nding excitability. This analysis is the basis for the

demonstration of excitability in the three di�erent laser system in a uni�ed man-

ner. The fact that there is a common mechanism implies common features of these

excitable systems, such as the slight dependence of the peak and the time of the

excursion on the level of excitation (also above threshold) or the weak attraction of

the rest state.

An important di�erence between the discussed con�gurations is the current state

of their experimental veri�cation. The phenomenon of excitability itself has been

demonstrated experimentally for a laser with optical injection [52] and multi-section

DFB lasers with integrated cavity [60]. Fundamental characteristics, such as the

refractory period or coherence resonance, have been studied only theoretically so far

[9]. Corresponding experimental investigations on multi-section lasers are presently

being conducted by the authors of Ref. [60]. Multipulse excitability in lasers with

optical injection has not been veri�ed experimentally yet. However, the excellent

quantitative agreement between the overall bifurcation diagram and experimental

measurements reported in Ref. [56] justify our expectation that such a veri�cation

might be achieved soon.
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