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ROTHE’S METHOD FOR EQUATIONS MODELLING
TRANSPORT OF DOPANTS IN SEMICONDUCTORS

A. GLITZKY, K. GROGER, R. HUNLICH

ABSTRACT. This paper is devoted to the investigation of some nonlinear reaction—
diffusion system modelling the transport of dopants in semiconductors and arising
in semiconductor technology. Besides of results on existence and qualitative pro-
perties of the solution to the problem itself we are interested in the investiga-
tion of corresponding discrete-time problems. Using Rothe’s method in a fully
implicite and a semi-implicite version, respectively, we get analogous results on
existence and qualitative behaviour of solutions to the discrete-time equations.
Moreover, convergence in some strong sense will be proved. Essential tools are
estimates of the energy functional, L®-estimates obtained by De Giorgi’s method,
L9(S, WhP)—estimates for the continuous problem as well as a discrete version of
Gronwall’s lemma.
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1. INTRODUCTION

In this paper we continue the mathematical analysis of a reaction—diffusion system
modelling the transport of dopants in semiconductors, see [3]. There the physical
background of the equations under consideration is described and results concer-
ning the existence, uniqueness as well as the asymptotic behaviour of solutions
are obtained. Here we are mainly interested in the investigation of corresponding
discrete-time problems. Furthermore, different to [3] we use more general boundary
conditions and more general assumptions on the coefficients of volume and boundary
reactions.

The investigation of the reaction-diffusion system as well as its discrete-time ver-
sions starts with estimates of the free energy. Here the main tool is some relation
between the free energy and the dissipation rate (see Lemma 2.1). Because of the
stronger assumptions on the coefficients of the boundary reactions the proof of this
relation in [3] has been nearly trivial. Now we are forced to apply ideas of [7], addi-
tionally taking into account the fact that at least one activity nonlinearly depends
on the concentration. Thus we obtain the fundamental result that along any so-
lution to the reaction—diffusion system and its discrete-time versions, respectively,
the free energy decays monotonously and exponentially to its equilibrium value as
time tends to infinity. Using this result first global a—priori estimates are derived.

For getting global upper bounds, we intend to apply De Giorgi’s method. Since
the regularity results obtained by the energetic estimates are not sufficient to do
so, firstly we have to improve these results. This will be done by multiplying the
differential equations with suitable chosen test functions where we had to overcome
the difficulty that in the boundary conditions some second order terms are present.
Another delicacy which we have to manage in handling the discrete-time problems
is that the test functions must be modified in such a way that a discrete version of
Gronwall’s Lemma (cf. [12]) is applicable.

The paper is organized as follows. In Section 2 we investigate the reaction-diffusion
system itself. The basic assumptions are summarized in Subsection 2.1. Results
~ on energetic estimates as in [3] are stated in Subsection 2.2. Here only the relation
between the free energy and the dissipation rate is proved in detail. Subsection 2.3
summarizes results on existence and uniqueness.

Section 3 is devoted to discrete-time problems. We use Rothe’s method (in other
words, BDF of first degree) in two versions. The first one is a fully implicite scheme
while the second one is a semi-implicite scheme in the sense that the diffusion
coefficients (as far as they depend on.the concentrations) are taken in the old
time step. For both versions a—priori estimates are obtained in Subsection 3.2 and
Subsection 3.3, existence results in Subsection 3.4. To prove existence we use some
regularization technique as well as results on operators of variational type ([13]).

Our main result namely the convergence theorem is stated in Section 4. Besides of
some additional regularity of the solution to the continuous problem (see [8]) once
more the discrete version of Gronwall’s Lemmais applied to prove strong convergence
for both discrete problems.

Finally, let us note that one of our basic assumptions requires the existence of a
thermodynamic equilibrium with nonzero concentrations uniquely determined in



some sense. A more detailed discussion of this asssumption is given in Appendix A.

2. THE REACTION-DIFFUSION SYSTEM

2.1. Notation.

Let © C R? be a bounded Lipschitz domain, T’ := 9Q and u = (ug, u1, us, u3): R4 X
0 — RY the vector of concentrations. We consider the system of differential
equations

Guo
ot

Ouy = — div 71 — Ry(n),

ot (2.1)

= — le jo + Rl(u),

Ou ..

_(9_753 = — div j; — Ra(u),

0 .

—;T:; = —div j3 — Ri(u) — Ra(u),

jo = —DougV Ing(uo), ji = —D;u,'Vlnu;, 1= 1,2,3,

Ri(u) = I::l(ulu3 — ki g(wo)), Ra(u) = I~cz(u2u3 — k2)

in Ry x §, complemented by the boundary conditions

)
),
) (2.2)
)

Ry(u) = ks(g(uo) — ks), Ra(u) = ka(g(uo) — ksus),

Rs(u) = Z)s(’llq - k5), Rs(’u) = ]::6(“2 — ks), R7(’LL) = ;37(’11,3 - k'()
on R; x I' as well as the initial condition
u(0,)=U (2.3)

on (.

Let us put together the assumptions concerning the data in the equations formula-
ted above, which will be used during the following sections:



D; € LY(Q),D;>d; >0, j=0,...,3,

ki,..., k7 = const > 0,

ki, ky € LT(Q), (2.4)
kj € LL(T), 1=3,...,7,

U e L2(Q,R*) N WP(Q,R*) for some p > 2;

gc CZ(R-F))
_ 9wy _9@) .9 Wy
Sa(y) E g(y) ) "\b(y) = y ) (y) . @, Yy > 0,
are such that (2.5)

’llb(y) 2 T1, |¢(y1) '—’lp(yz)l S T2|y1 - yZI) Y,¥1,Y2 > 0;
73 < p(y) <74, y >0,
lo(y)| <75, y>0; i =const >0, 2=1,...,5.

In order to formulate our last assumption we introduce the quantities

Bio= L /l::id:é,izl,.‘z, Fii= L fl},-dr,z'zs,...ﬂ,
0 r

mes Q2 mes [

) (26)
U= zig [ Uda.

and denote by S the stoichiometric subspace of R* belonging to the volume and
surface reactions given in (2.1) and (2.2)

S = span {p1, p2, p3, P4, P5, Pe; P}

where p; = El(—l: 1,0, 1)a P2 = Ez(0,0,l, 1)) p3 = E3(1’0)0;0): Pa = ];’4(1y0a 0, '—1)1
ps = ks(0,1,0,0), ps = ks(0,0,1,0), pr = £r(0,0,0,1). Finally, let

R = {uE R:: R;(u)zO ae,t1=1,...,7, u—ﬂES}.
Now we assume that
there exists a u* € R*, u* > 0 such that R = {u*}. (2.7)
Remark 2.1. ‘
i) (2.5) implies that ¢, ¢, 0 € C([0,+00)) and the inequalities in (2.‘5) are

satisfied for y = 0, too. We have ¢(0) = 0, ¥(0) = ¢'(0) > 0, ¢(0) = 1,
o(0) = 0.

ii) Further properties of the functions g, ¢, ¥ are summarized in [3].

iii) Because of g € C?, ¢ is locally Lipschitz continuous.



iv) For example, the function
9(y) =ay (y ~y%+V(E—v)’+y), ¥y20 a3 >0, yoeR
satisfies (2.5). Its physical meaning is explained in [3].

v) Nessecary and sufficient conditions for (2.7), expressed in terms of k;, ki, i=
1,...,7 and U are given in Appendix A.

We use the notation X := H*(Q,R*), Y := L*(Q,R*), Z := L*(T',R*). Additionally
let '
V= {ue Ll (Ry, X): u € LZ(Ry, LH(Q,RY)},

W .= {U € leoc(R-i-!X): ' € leoc(R-HX*)} .
We define A: X Xx X X X — X* A: X — X* for u, v, w, 2 € X by
3
(A(w,v,u), 2) :=/n {Docp(wo)Vrozo + Y D;Vu;Vz;
1=1

+ R1('U)(Zl + 23 — ZO) + RZ(U)(zz + 23)} da (28)

+/1“ {R3(U) 20+ Ra(v)(20 — 23) + g&+4(v)zi} dr,

A(u) :=A(u,u,u).

where (-, ) denotes the dual pairing of X and X*. The problem we shall be concer-
ned with consists in finding a solution to

uw'(t) + A(u(t)) =0 foraeteRy, uw(0)=U,vueWNV, u>0. (P)

Here u' denotes the derivative of u with respect to time in the sense of X*-valued
distributions and » > 0 means that all components u; > 0. For any T € R we
denote by S the finite time interval [0, T] and

Vs = {u € L¥(5,X): ue L= (8, L4(Q,R4))} :
Ws = {u € L*(8,X): o' € L*(5,X")}.

In the canonical way we extend the definition of the operator A to functions from
Vs. For any finite time interval S the reaction-diffusion system leads to the problem

U‘,+A(u)=07 u(O):U, ueWsNVs, u>0. (PS)

Now we introduce several symbols and collect some basic results which we shall use
in our considerations. Let be u € R* § € R. By u+ 6, /4, lnu, |u|, u* and
u~ we denote the vector whose i-th component is u; + 6, \/u;, Inu;, |us|, sup(u,0)
and sup(—u;,0), respectively; u > ¢ means u; > ¢ for 1 = 0,...,3. If there is no
danger of misunderstanding we shall write shortly L? instead of LP(Q,R¥), k € N,
and H* instead of H'(2). We apply the Sobolev imbedding theorems as well as the
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following form of the Gagliardo-Nirenberg inequality (cf. [9]):
Let @ C R? u € HY(RQ), then
g
llull 2~ < co Hu“Lq “uHHl , where 1 < g<r, 0= . (2.9)

Additionally, for estimates of traces we use the inequality:
Let Q C R? w € HY(Q), then

1
““”Lp(an) < cllullZap-o lul g - (2.10)

A direct consequence of the Gagliardo-Nirenberg inequality is the following interpo-
lation result:

Let @ C R% v e L™ (Ry, LY(Q))N LA (R, HY(Q)), ¢ > 1, then u € L? (Ry, L™(Q2))
withp=2/(1-6), r=¢q/8, 6§ €(0,1) and

7]
”uHiF(]RJr,L"(ﬂ)) <q Hu“zioo(mJ,,Lq(n)) ||u”iz(m+,H1(n)) . (2.11)

2.2. Estimates by the energy functional.
Let {x;}j=1,., be an orthogonal basis of S* in R* (if S = R* we set [ = 0). We
define the functions i;: R* — R and the functionals I;: ¥ — R by

$3(u) == (u, )me, Tiu) i= /n i(u(z))de, 5 =1,...,L (2.12)

Obviously the functionals I; are convex and continuous. For u € VV[O,t] it holds

(u(t) = 1,(u(0)) = [ (w(s),5) ds.

If w is a solution to (P) we thus obtain V¢ € R,

Li(u(t)) — I{(U) / {/ ankth,kR‘(u dm+/ ZanZp,kR(u)dF}ds

=3

= /ot{/nig(/’imj)m*fii(u)dm +L§(Pi;'ﬂj)m*&(u)dlﬂ}dys
=0, j=1,...,1L (2.13)
Therefore I;, j =1,...,1 are invariants of problem (P). Let
I = Li(U), i=1,...,L
By assumption (2.7) there exists a u* € R* such that u* > 0, Ri(u*) = 0 ae,

k=1,...,7,1;(v*) =4;(U),j =1,...,1. By means of u* we introduce the density
of the free energy f: R* — [0, 400,

Fu) = {eg(uo,ua) + 30 e(ui,uf) ifu>0,

+00 otherwise,

as well as the free energy F': ¥ — [0, +00],
F(u) ~/ flu )d:v - (2.14)
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where

e(y,y") = fy

y

fyln g(n,,) dn, y 20, y* > 0..
y* g(y )

The functional F' is proper, convex and lower semicontinuous (cf. [1]). For u €
Wit » > 6 >0, A € R it holds

1n?-7:d77, eg(y,y") :

e F(u(ty)) — eM Flu(ty)) = tze’\‘ AFusr u'(8), Vf(u(s ds.
(u(t) - 4 Plu(tn)) = [ {AP(u(e) + (w(0), V1 (u(s))) -

If u is a solution to (P) with w > & > 0 then (2.15) implies

F(u(ta) ~ Flu(t)) =~ [ D(u(s))ds

t;

where D denotes the dissipation rate:

D := Dgif + Dreac: {v € X:u > 0)} — [0, +o0],

2
}dm,

Vv

Da(u) =4 | {Do (o) [V/ag| + ;D,-

Dreac(u) :=/n {791(“1 uz — k1 g(uo)) In k?;(ujo) + 792(114 uz — k2)1n uz’:g }da;
L g(uo) 1 g(uo)
— ks)l — Ao/ (2.16)
-I-/F{ks(g(m) k3)ln . + ka(g(uo) — kaus)ln P~
3 .
+ Z Z’i+4(“i —kit4)ln ku, }d].",

=1 144
Theorem 2.1. There ezists a constant ¢ > 0 such that
i) sup F(u(t)) < F(U),

teR 4
i) ”u||L°°(]R+,L1(ﬂ,]R4)) <c
w) ||D(U)HL1(1R+) <¢

SN

for any solution u to (P).

L2(R4,L2(0,R2)) < ¢ 1= 0, ceey 3

For the proof we refer to [3], Theorem 3.1. The additional boundary reaction Rj
does not produce new difficulties.

Lemma 2.1. For every R > 0 there ezists a cr > 0 such that

P < en(D) + 3 (50 - ')

i=1

forue Mp:={ue X:Jue X, F(u)<R}.
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Proof. i) In the following and later ¢ denotes (possibly different) positive constants
the values of which depend only on the data. Let u € Mg, w; := u—i — 1. Then
- ui
(see [3])
c llwlly < F(u) < e (Jlly + lwlzs) (2.17)
Furthermore we get

D(u) > ¢ D(u),

o= [{S[fal on (- 15) +o (52 -) )
Lo (2 ) e ) e ()
Let
9(e) i= | LBUE) 5y
glug) 7

Then we have v(0) = 1, 4'(0) = ¢(ug) and

*
Ug

v'(€) = Ven) (20(u5(1+ &)%) + w(ug(1 + &)%) o (ug(1 + €)))

where o is defined in (2.5) and oy is given by

ony) = 9() —g'(y)y

¥ Va(y)

Since |o(y)| < 75 and |o1(y)| < |o(0y)| < 75, 0 < 8 < 1, we find |
7€) =1+ e(w)E+ O E, M@l <e VE= -1

Thus we obtain
I

D)+ (1) - 1)’ = Z Vil + Qu),
Q(w) = Qu(w) + Qo(w), (2.18)

l

Qi(w) =4 ; (I;(w))z + /ﬂ {701(11)1 + w3 — p(ud) wo)? + ka(wsy + wg)z}d:c

-~ o~ 3 -~
+ [ {Rowug)wl + Ra(p(ug)o — ws)? + Y hepaof Jr
1=1

where
I (w) = /n(m,diag(ug,u;,u;,u;)w)wdm

and ,
|Q2(w)| < ¢ (HWHia(n) + |wllzaay + Ilwllzsy + HWII‘}}(F)) <c (fwlis + lwli3) -

8



Let be w = const € R% w > —1. If Q(w) = 0 thenw = 0 by (2.7). If w = const € R*
and @i(w) = 0 then w = 0, too. Indeed, from Q;(w) = 0 it follows that Miw €
S, Myw € St, where M; := diag(ug,ul,us,u}) and M, := diag(e(u§),1,1,1).
Therefore (M; Maw,w)gs = 0, and because M; M, is positive definite, we conclude
that w = 0.

Instead of the assertion of the lemma we shall prove the sharper inequality

Flu) < &2 (D(u) + glj (Iw) - I;?)2) Vue Mg, R>0.  (2.19)

ii) Suppose that (2.19) is false. Then there exist R > 0 and sequences ¢, € R, u, €
Mg such that ¢, — oo and

R > F(u,) = cn (D(u,,) + 3 (Ii(un) - I;’)z> > 0.

=1

Set An := V F(u,) and wy; := ‘/% — 1. Then (cf. (2.18))

3
B2 = LlIVunlls +Qua)) 0. - (220)
=0
This implies Vw,; — 0 in L? and since ||wn[|§, < cA? < cR (cf. the left hand side
of (2.17)) we may assume that w, converges in H' to a constant vector w € R*
Furthermore,

0< Q) < minfQ(un) = 0
such that w = 0. Consequentely, A, — 0 (cf. the right hand side of (2.17)).

Now, set v, := % Dividing (2.20) by ),.* we get
12 ) 1
— =2 [ Vonillzz + Qu(va) + 17 @2(An vn). (2.21)
Cn 1=0 n

This implies Vup; — 0 in L? and since ||va||3> < ¢ (cf. (2.17)) we may assume that
v, converges in H' to a constant vector 7 € R%. Since

1
77 1@ )l < € (hn [allip + 2n? [loallf) — 0

from (2.21) it follows that @1(%) =0, ¥ = 0. On the other hand, because of (2.17)
it holds ‘
L< e (lonlly +An flonl3:) =0

which yields the contradiction. O
Theprem 2.2. There ezist positive constants c, A such that
i) Fu(t)) <e™FU) VYt>0
i) [[u(t) — u*“Li(Q,]R‘*) <ce™? Vi>0o,
1) lJw — U*IILl(IR+,L1(Q,IR4)) y flu— U*lle(m+,Y) Se

for any solution u to (P).



The proof of Theorem 2.2 is the same as in [3], now using Lemma 2.1 and (2.13).

2.3. Further regularity results, existence and uniqueness. -
Theorem 2.3. There ezists a constant ¢ > 0 such that
el oo (4 Lo (mey) < €

for any solution u to (P).

The proof of this result is devided into two steps. The first one is the iteration result

Lemma 2.2. Letj € N, 7 > 5. Then there ezxists a constant ¢ > 0 such that

”[u—u'lsl

L
, ‘|u —u*|® H <c
LZ(IR+,X) L°°(]R+,Y)

for any solution u to (P).

The proof of Lemma 2.2 uses simultaneously different powers of the components of
u—u* as test functions. This becomes nessecary because of the quadratic expressions
in the boundary terms coming from the boundary reaction R4. For the proof see [3,
Theorem 4.1]. A similar proof, somewhat adapted to a discrete version of Gronwall’s
Lemma, will be done for discrete-time problems corresponding to (P) in Section 3.
Lemma 2.2 ensures the regularity of uw —u* which is used as starting point for the De
Georgi method. Let k > max{1, HUHL,,Q(Q)W) , lu*||ge}- I ik denotes the Lebesgue

measure of the set {z € Q : u; > k} and

o 3 5/22
(k) := (/0 t'=Zom?,£5ds) |
one obtains from
[ = 8y * N = 7

the measure estimate

2
Lz(m“hx) -

ch(k)®

(h— B)p(h) < c((k))*°,

which guarantees by [6, Lemma 5| the boundedness of u. For the exact estimates see
[3, Theorem 4.2] or the proof of the corresponding L*®—estimate for the discrete-time
version (see Theorem 3.4 in Section 3).

Theorem 2.4. There ezists a po > 2 such that for every ¢ € [1,00) and every
P € [2,po] solutions u to (Pg) have the regularity property

u € L7 (8, W'*(Q,R*)) nWhe (8, W (2, R%)*) .

Proof. For the proof see [3, Theorem 6.1]. The L*®-estimates for u (Theorem 2.3)
and the assumption U € W?(£2, R*) enable us to apply regularity results for para-
bolic equations of [8] with somewhat modified boundary conditions. O

Theorem 2.5. There ezists a solution to (P).
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Proof. We only give the main ideas of the proof, for a more detailed one see [3]. It
sufficies to prove existence on finite time intervals. Let T' € R be arbitrarily fixed,

M > 1 and

3 -1
p(u) = (ma.x{l,z ]u,-|2/M2}> .
=0 ’
We define the regularized operators Ap: X x X x X — X*, Ap: X — X* by
(Ap(w,v,u), 2)

3

:=/ {Do o(wd )VueVzo + Z D,;Vu;Vz
ﬂ i=1

+ p(v) {Rl(v“L)(zl + 23 — 20) + Ra(v" ) (22 + 23)} } dz

+ /p P(U){Rz(v+)zo + R4(v+)(zo —z3) + i R,;+4(v+)z,-}df‘,

=1

Ap(u) :=Ap(u, u,u)

and consider the problem

uw'(t) + Ap(u(t)) =0 forae. ¢ :6' S, u(0)=U, ue Ws. (Pm)

If u is a solution to (Py) then u > 0 and u is bounded above by an L*-estimate
not depending on M. To prove the existence of a solution to (Py) we use freezing
techniques and fixed point arguments. For arbitrarily fixed w € Wg there exists
exactly one solution to the problem :

w'(t) + Ap(u(t),w(t),u(t)) =0 forae t€S, u(0)=U, ueWs. (Py)

This follows from standard results on evolution equations (see [2]). The mapping
Ws :— Wy assigning w the solution u to (Py) is completely continuous and maps
Ws into a (bounded) ball in Wg. Thus by Schauder’s Fixed Point Theorem there is
a solution to (Py). Because of the a-priori estimates this is also a solution to (P) if
we choose M sufficiently large. O

Theorem 2.6. There is a unique solution to problem (P).

For the proof we refer to [3]. Here the main idea consists in using a L3(S, LP(£2))-
estimate for Vyo to manage the problem that the diffusion coefficient for ug depends
on ug.

3. DISCRETE-TIME PROBLEMS

3.1. Notation.

Our aim is to approximate problem (P) by discrete-time equations. We shall use the
following notation, spaces and operators. We assume that we are given sequences

11



of subdivisions {Z,}nen of Ry,

To={t2,th,. 85}, =0, theRy, 57 <k, kEN, th — 400 as k — co.

n! ‘n?*°
Let
k k k-1 ok k-1 Lk k he k hit
Ry i=tr —tot, Spi= (¢t Hy = = G; = TR
n n

by :=sup hX H, :=sup HE.
, keN keN
Definition 3.1. Let h, H > 0 be given. A subdivision Z, of R is called regular
(with respect to h, H > 0) if A, < h and H, < H.
Definition 3.2. For a given regular subdivision Z, of R, we define the mapping
o Ry — R by A
42 Uiy 4l-1 I [>9
Sa(8) = {1m +Galt— 1) on S, 122,
—tl +1 on S}
Furthermore let
02 i R
'r,‘fu(t) = u( n(t)) Tf "9n(t) € Ky,
a if 9.(t) ¢ Ry
forue L (R4, X), a € X.
In the remainder of the paper we fix some h, H and consider only subdivisions of
R, being regular in the sense of Definition 3.1.

For a given subdivision of R} and a given Banach space E we introduce the space
of piecewise constant functions

Cn(Ry, E) = {u:R+ — E :ut)=uf Vie SS, w* € B, k EN}.

Obviously it holds Cn(R4, E) C L] (R4, E) for 1 < r < co. Analogously, for a
finite subdivision of a finite interval S the space of piecewise constant functions is

denoted by C,(S, E); then C,(S,E) C L7 (S,E) for 1 <r < 0.
Let U be the initial value of problem (P), we define the operators
An: Cr(Ry, X) — Cr(Ry, X¥), Ky Co(R4, X) — C(Ry, X)

by
1 ]
(A i= ok = o),
(Kwo)(t) = (85— 0 + (e 70k} Vi € S5, (3.1)
v?:=U.

Obviously, (K,v)' = A,v. For the sake of simplicity we denote 7.2 for a = U by 7.
If v € Ca(Ry, X) then (tov)f =vF1 k> 2, (rv)t = U.

We consider simultanously a fully implicite (FI) and a semi-implicite (SI) discrete-
time problem corresponding to subdivision Z,. We define

Yn: Ca(R4, X) — Ca(Ry, X), Yno : Cn(Ry, X) — Co(Ry, HY()),

12



An: Cn(R+,X) — Cn(R+, X*)

u for (FI)
Vol 1=
tau  for (SI),

Yro(u) := (1ntt)g
(An(w))(t) = A((1nu)(t),u(t), u(t)) VieR,.

where A is given in (2.8) and investigate the problem

Apu+ An(u) =0, ue€ Cu(Ry, X), u>0. (P,)

Now we collect some results which are essential tools in our further considerations:

Lemma 3.1.

i) Let Z, be a regular subdivision of Ry and u € L (R4, X), a € X. Then
ou € L2 (R4, X) and
1 -
Imavllz(s x) < Hit ||[ullpasx) + 2
for any finite interval S C R,. _
ii) Let {Zn},cn be a sequence of regular subdivisions of Ry with h, — 0 for
n — oo. Then

1
7 |lallx

[Tau = ull2sx) >0 asn— oo

or any u € L? (R, X), a € X and aﬁy finite interval S C R,.
loc\ "™+

Proof. For a = 0 the proof of both assertions is similar to that of [2, Lemma IV.1.5].
Now, let be a # 0 and S be any finite interval. Then

1L -1
Ty — Tou < Hi H'UIHLz(S,X) + hi |la|l %

L*(5,X) +

”TTTUHLz(s,X) < ”Tr?“ L?(5,X)

and

L%(5,X) +

a 0
TaU — T U

e = ullags xy < Jrow —u 5.0)

+7z,§:[|a|[x—>0asn—>oo. O

0
S “T"u —u 12(5,X)

Lemma 3.2. Let S be any finite interval in Ry, {Zn}nen a sequence of finite sub-
divistons of S with h, — 0 for n — co. Then for every u € Wg such that u(0) = U
there ezists a sequence {wn}nen with the properties

i) wn € Cn(S, X), Kpwn(0) = U,

i) lim {|lwn = ull ags,x) + 1 Knwn — ullgisy) + 1 Antn — 1 as 50y} = 0.

n—oo

Lemma 3.2 is an evident consequence of Lemma 1.2 in [4]. Another basic result
which is used for the discrete-time problems is the following discrete analogue of
Gronwall’s Lemma:

13



Lemma 3.3. Let {a;}, {bi}, | = 0,...,k be real valued sequences, let {b;} be non-
negative and ¢ > 0 a constant. If :

-1

a,Sc-{—Zb;ai, ZZO,...,k,
1=0
then
-1 -1
ar<c+c) biexp Y, bm, [=0,...,k.
1=0 m=it+1

This result follows easily from [12, Lemma 2].

3.2. Estimates by the energy functional.
We modify the definition (2.16) of the dissipation rate as follows:

D(v,u) := Daig(v,u) + Dreac(u), u € {u € X:u > O)}, v € HI(Q), v >0,

Daa(v,u) := 4/ {Do(v)p(uo) [V v/ao] + }:D
If u is a solution to (Py,) we define

Dn(u)(s) == D(fnou(s), u(s))-
Theorem 3.1. There ezist constants ¢ > 0 such that
i) sup F(Knu(t)) < F(U),
teR+

1) ”Dﬂ(u)HLl(]R+) Sc
w) IVl ey <6 10,3

for any regular subdivision Z, of R4 and any solution u to (P,).

Proof. Let u be a solution to (Py), assume that 0 < ¢; < ¢, 0 < § < 1 and
Dis(u)(8) := D((nou)(s), u(s) + 8). We use the differential formula (2.15) for w =
Kn,u+6, XA =0. Taking into account that (K,u) = A

nl,

((Anu)(8), VF((Enu)(?) + 8)) < ((Anu)(2), Vi(u(t) +6)) Vi€ [0,8] (3.2)
and replacing (Anu)(s) by —(An(u))(s) we find

F((Kat)(t2) +8) = F((Kau)(2) +6) + [ Dua(as)(s)ds

t1

</ {c&(l + |1n 8] +Z< flui +1)32 + ||u,+1|[L2(F)))}d

1=0

</ cs(1 +|1n6| + Z Jus + 1% ) ds

1=0

< t2cé(1 4+ |1nél) + 052 f|lui + 1’”%2([0,t2],H1) :

1=0

14



Since u € L (R*, X), the norms on the right hand side are finite. Letting 6 | 0 we
get by Fatou’s Lemma

F((Rat)(t2) + | Dalu(s)) ds < F((Knu)(t2).

This proves 1). By setting t; = 0, ¢, = t for t € R, we get i) and iii). By the
definition of Dy,(u), (2.4) and (2.5) the estimate iv) follows. [

Corollary 3.1. There ezist constants ¢ > 0 such that
i)  FF)<F@YH for E>1>0,
1) sup F(uF) < F(U),

keN
11) [/l poz 22 (amey) < €
w)  fulnufpes, pnamy) <

for any regular subdivision Z, of Ry and any solution u to (P,).

Proof. Setting t; = t., t; = t¥ from Theorem 3.1 i) it follows i). From Theorem 3.1
ii) with ¢ = t¥ we obtain ii). Because of

HulnuHLl(n), ”““Ll(n) S F(u)+c
we get iii) and iv). O
Theorem 3.2. There ezist constants c, A > 0 such that
i) F(Kau(t)) <ce™F(U) Yt>0,
i)  F(u(t)) <ce™™F(U) Vt>0,
) [ult) gy S e Ve 0

for any regular subdivision Z, of Ry and any solution u to (P,).

Proof. i) Let t > 0. Then t € S¥*+! for some k € NU {0}. Forw = K,u+6 € Wy,
w > § > 0 we use formula (2.15) and the inequality (3.2), A will be specified during
the proof. We replace (Anu)(s) by —(An(u))(s) and use the following two estimates

(D, f(u +6)) < Das(u) +c8 [1+ | 1n 6] + lu+1[%],
F((Knu)(t2) + 8) — F((Kqu)(ts) + 6)
< b [(t2 — 1)1 + 10 8]) + [l + 1l ey -

which had been of importance also in the proof of Theorem 3.1. For ¢; = ¢!, ¢, =
t € S! this implies

F((Knu)(t)+6) < F(u'™ + 8) + ¢8 [h(l + [In6]) + flu + 1”%2([0,4,):)] :
We define

. |
S*(8,¢) := c6 /0 e (14 A)(1+ |10 6]+ [lu+ 1o g, + lu + 11%] ds.

15



Because of u € L2 (R, X) we have for all t € Ry, 5*(6,¢) — 0 for § — 0. From
eMF((Kau)(t) + 8) — F(U + 6)

t
< / e {AF(1pu + 6) — Dus(u)} ds + 5*(6,2)
0
k
< S RL{ AR (a4 6) — M Dos(u')} + 5%(5, 1)
=1

+(t = t5) A F(uk + 6) — MR Dpg(wF )}
< RAMF(U + 8) — (t — tF)eMrD, s (uF+) + S*(6,1)

k
+ 30 M AR F(ul + 6) — hLDps(ul)]

=1

we obtain by letting 6 — 0
eMF((Kau)(t)) — (1 + A F(U)

k
<M M [Ahﬁj’l eZ’fAF(ul) — hLDn(ul)] —(t— tﬁ)e’\tﬁDn(ukH)

=1

k A -1 ~ .
<D et [)\hffl e F(ul) — éhLD(ul)J

=1

where D is defined in (2.18). Taking into account that invariants of problem (P)
(cf. (2.13)) are also invariants of problem (P,) and using (2.19) we choose A > 0
such that AHe?** < ¢/ég which implies that the terms on the right hand side are
nonpositive. Therefore it follows i): ‘

F((Knau)(t)) < e (14 hAe)F(U) < ce™F(U) VteR,.

ii) Let ¢t € S*. Then
F(u(t)) = F(u*) = F((Kau)(t5)) < ce™ F(U) < ce™ F(U)
which proves ii).
iii) By the inequality
v vl < ViV
(2.17) and by ii) we obtain assertion iii):
* * 2 *
() = u*ll g pe < [V = V|, +e|[Va -Vt
<c(FU)e™ + VF(U)e ™)

<ce ™2 O

N N

) (3.3)

Y

16



Corollary 3.2. There ezist constants c, ¢(p) > 0 such that
%) lJu — U*”Ll(m%Ll(ﬂ,m*)) y flu— u*”Lz(]R.,.,LZ(Q,JR‘*)) <e
W Ve -Vl
wi)  [Vu -Vt

i'U) ||'U/ —u ”L2 }R La(n }R‘i)) S ¢

ds < ¢(p) where 0 < p < o0,

C)

L'—’(]R+,X) L°°(IR+ Y)

for any regular subdivision Z, of Ry and any solution u to (P,).

Proof. Integrating the inequality in Theorem 3.2 iii) over R} we obtain u — u* €
L' (R, LY (Q,RY)). Let w; := vu; — Vul. Because of (2.17), Theorem 3.2 ii) and
Theorem 3.1 iv) we conclude that w; € L? (R, H'). Together with Theorem 3.1 ii)
this yields iii). By interpolation we get w; € L* (R, L*), and therefore by (3.3)

||'u,i - u:“i?(R+,L2(ﬂ)) < /(; -/Q {I'U),'|4 + 4uf ]‘UJ,'I2 + 4\/11? Iw;‘z} dz ds

S C (”w,:”i4(m+’[l4) + ||w,“i’2(m+’L2)) S C, ’L = 0, “ e ,3,

which proves i). Assertion ii) is a direct consequence of (2.17) and Theorem 3.2 ii).
For 2 =0,...,3 we estimate by (3.3) and the Gagliardo—Nirenberg inequality (2.9)

1
. 2 < « 12 n% )2
e =13 0 oy S (f (tol® + 1) do) ds
o 3
<o [ (Il + el ) ds
<o [7 lhile (ol + sl ) s

<l oo Il oy + ¢ ) Il d.
" Thus iv) follows by ii) and iii). O

3.3. Further a-priori estimates.

We want to apply De Giorgi’s method in order to show that solutions to (P,) are
globally bounded. But the regularity results coming from the energy estimates are
not good enough for starting the measure estimates. Therefore, at first we improve
the regularity results. Here as well as in following sections we use the notation

(cf.(2.4), (2.5))
d = Il'lin(7'3do,d1,d2,d3). (34:)

Lemma 3.4. There ezists a constant K > 0 depending only on the data with the
following property: Let be 7 € N, ] > 5. Then there ezists a constant ¢ > 0 such
that

for any regular subdivision Z, of R and any solution w to (P,).

[(u—K)*']é <c

L2(R4,X)

(= )]

L>2(R4,Y)

17



Proof. The proof works by induction. The assertion for j = 5 is proved by using
regularity results based on the energetic estimates (see Subsection 3.2). Here also
the constant K will be fixed (cf. (3.5), (3.9)). In the followmg steps (j > 5) we
apply additionally the estimates of Lemma 3.4 with j < j. For j € N, j > 5 let
m = j — 1, 7 := m/4. For the sake of simplicity we shall handle the cases j = 5
(r=1) andj > 5 (r > 1) simultaneously, as far as it is possible.

First, let
K > k% := max {1> HU“Lw(n,m&) ) HU*H]R&} (3.5)
and z := (u — K)*. We take formally ! the test function

r—3/4
an 217 22’ 23

and use the following estimates

9(w0) < c(ug + o),

lui| < 2 + K, (3.6)
(u— K)" < zlulnul. (3.7)
Because of
r+1
/ (Bww)s, )ds > 2 |77 i=0,...3, (3.8)

we obtain for all £, € Z,

r+1
Lr+1 + ] -I-‘].)2

) 2

2
ds}

2
_Z [r—i—l
1=0

2

ds
Hl

th _-1-_1_

("”rl)2

Scfcts‘{/r{zazw(zwzo) ST oK ){(1+Zo)z3

+ 2§ + 21 +z2}}dl"

2 2

41

2
+) ||zt
1=0

m—3
T 2 r T 2
+ /ﬂ {z123z0 + 2527 + 25 + 2523 *

m+1

+ 338

L2

+ oK) {(1 + 21 + 23)25 + (1 4 20)2] + (1 + zo)z;m*;a} }d:c}ds

More precisely the following estimates are obtained by test functions of this kind where z; are
replaced by zV = min{z;, N}, s = 0,1,2,3, N > 0. It is possible to get estimates which are
independent of N. Letting N — oo we shall obtain the inequalities derived below.
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l

< /t‘ Z{f ( [z 23"‘" +z;zé] + ¢(K) [ziz;m‘*ﬁ +z{+z;*;3]) dr

m=s  mil
+/r‘z (c {Z:+2+Z:~'+123+Z 23 +23° ]
+c(K)[r+1+z3z + 27 +z,z3— +z3 J)dw}ds

</HZ{/< [2223_ +223]+C(K)[’+1+z +z;i_+z;‘_‘i])dr

1=0

—i—/n(c [zf“—l—zf“zg-}-zs ]—I—C(K) [z +23 ])dm}ds

To estimate these different terms under the time integral on principle we follow this
strategy: For boundary integrals at first the trace inequality (2.10) is applied. For

all terms the Gagliardo-Nirenberg inequality (2. 9) and the Young Inequality are

r+1 |2 2
.2

mj:l

, with small coefficients
H Ht
and other expressions. To manage the other terms Whlch arrise by this procedure

we take advantage of L= (R4,Y) N L? (R4, X )-estimates for 28 5<i<m. Ifr
is small some special estimates have to be provided. Then results obtained by the
energetic estimates supply the desired estimates. Here are the exact evaluations:

used to obtain summands

) )

1) Jp 22 z3 dI‘ 1=0,1,2:

2§ m—B!
m+l | TmIy

4
r41 A
m+1 23
L r+1 (I")

m-—3

rti
234 2

2;

+1
LT (D)

23

LR (r) 2(r)

4(8-1) m—3
r+l | (r 1) m+1

(,-+1),s ” mit

L2B-1) H
w41 || e (1H(B-1)(1-9))

Hl

2(r)

m=3

1

m-—3
ma:tl msj:l m+L
23 23 H

Hl

LZ

:ﬂ‘
Because the exponent of the H'-norm of 2;* is

Where 6 1‘+1 5 g = m

smaller than two, we obtain from the Young inequality with p' := (mt1)(r+1)

4r2 —r—1

(m;a) g' (m-—3 !E’
Ml ﬂ;hl_ mtl

23

, =3 r41 |12
/2-23* dI' <ellz; 2 +c
r H

m+1l
8
23

Ht

{(m+42)(m-3)p’
(m+1)?

LZ

r41 |2
<ellz? +c
H H!
1
4l 2 jm—azrp, Al ME“T:’.)E_
1 mil (m+1)
S ellz. 2 + C|123|1Li(m+ ) “ a
Hl

m+1l
8
23

m4l

m—3
(m+1)? i
23

2m._
Lm+l

H1

m+1l

The exponent of the H'-norm of 2;° is also smaller than two. We use Young’s

inequality again. With ¢’ := (m +1)(4r? —r —1)(8r* —6r* + 2)71, 23 € L= (R4, L")
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and the inequality (m — 3)(m + 1.)‘1 p' q' > 2 we conclude

)

2 m—3 rt1 2 m41 |]2 "’-i";l)
/zi z3t dl' <e |22 + |25 ® +cl|za|lpr
r H Ht
41 |2 mit |2 -,
2 8
<ellz + |23 + c||zal|%-
H1 H1
41 |2 mi1 ||2 |2
<ell|z? + 238 +cl|23
H! HL L?
2) [pz32ldl, +=0,1,2:
mil ||yt || b AT
r mB m+1 "2 r+1
z3z;dI' < |25 z; mbl 2o
/I‘ L2(T) Lm=3 731 (T)
2r 4
< clz Z3 258
H! L2 Ht
4(r41 4 1
r41 |2 m1 —(,;%rl mil %rl
<e|z? +cllzg® z3°
. H! L2 Hl
1|2 mil -(-—)—4(,::1)’; mi | (14
<elz? +cllzg® d
-0 LA H
4(r41
il 2 mi1 2 mil #n:)n'f—a
<el|z + |l23 +cl||2z3 2
H1 H L+
41 ||2 m41 |2 ar(m1)(ril)
mr—m—
<ella®| +]z° + c||zs| -
H! H1
r+1 (|2 mtl |2 ,
<ell=’ + {2 ° +c|[zs]]L- -
H! H1

3) fpZtdT, i =10,1,2:

2 2

_ +(K)

2

T+2 K)z)) de.
G ) ) da
Now we apply the estimates of step 7) and 10) derived below.

4) [p2Idl, 1 =0,1,2:

a)r=1:

t t
.dTd </ |
/0/1,‘5 i A [[u ut“L‘(I‘) S

rtl

2
Z;

41
ziz

oK) | Ztdl <e
T k1

LZ
1
_2

1

ez

t 2
s c/o <l\/;_ \/u_: LE(I‘)+ ”\/;—_ \/;': Lz(r)> ds
N (o e e W LS

because of Corollary 3.2 ii) and iii).
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b)r > 1:
By assumption z? € L* (R4, H'). Thus it follows 27 € L? (R4, L*(T)).

miL
5) fozst dT:
mtl mt1 ||2 m+1 ||2
C(K)/z3* dI' < ellz;® + ¢(K) |25
r H! L2
mt1 ]2 mis ‘me3
<elzg® —1—/(,23" +c(K)zs‘)dm.
H! 0

Now we apply the estimates of step 9) and 11).

m—3

8) frzs* dI'
a)yr < 41:

Let g := ™2 then by Corollary 3.2 ii) and iii)

[ fotaso e [ (W o -

12(T)
<of (W - ], -
<ec.

q
) ds
(D)

v

29
i-g

) ds
LZ

b)r> L

m—

By assumption Z:T—a € L? (R, H') which implies 25 ® ) € L*(Ry, LA(T)).

7) Jq2itide, 1 =10,1,2:
a)r=1:

Using inequality (3.7), Corollary 3.1 iv) and Corollary 3.2 iv) we estimate
2 4 L 4 2
/()Z?dw <ellzlm +cllzllze < ellzlam +ellzllz 202 l12lz2

1
C 2 3
< elallin + | st il paga, o] sl il

b)r>1:

, LT || rk ([T 41 |2 E
/zf"'da:g ziz 2r_ Z£2 Ssziz +c z£2 2r_
Q LT+1 Ht H! LT+t

1 12

.
<elz® | +elzlz-
H!
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8) [q2ittzdz, 1=0,1,2:

a)r =1

By (3.7), Corollary 3.1 iv) and Corollary 3.2 iv) we obtain
/nzfzsdm < Nzlza llzallze < Nl2ill o Nzl llzall o

' L 3
<ellalin + cllzallze lzlze < e llzllf +cllzalle llzsllzs 20z

2 c 2 3 2
< ellallp + [ s 0 wsllpmqay on)| asls e

b)r>1:
Because of z3 € L (R4, L")
R 2(r—1 4
/ 1, de < |27 “ ” < % 2 < r—'g—L Jv'-i-_ll -"—“12‘—1 Ex Y
Z;, "2304T S (|2; “ I z3 S C S Cilz; zZ;
Q i : Lr L;Z—“T * L;z.fr * H!
rt1 |2 r41 (2 r+1 |2 -
<eglz? +cliz;? <elz? +cllzillse .
— 1 HL Lrl-i-ﬁf = 1 o H 1“[/”
m+b
9) [zt dz:
a)r=1:
[ 5|5 5|2 512
4 8 8 —_ 8
/zsd.'z:< 23| 4 ll23 = ||z |23
Q L& e H!
1 512
< ——||luslnusl|; e 23 .
SLK [usInuall peom, 11y |23 -
b)r>1:
2m 10 2 2r
m+5 m+1l m41 m+1l mtl m+41 m+tl || 771
/z3“ dz < ||z, am |23 ¢ <elzg® +clz® 2m
Q Lm+1 H! H1 Lm+T
' m+t |2 . r
8
<ellzs +c|lzalz- -
HL

10) fp2ldz, 1 =0,1,2:
For r = 1 we get by Corollary 3.2 i) z; € L'(R4, L), if » > 1 by assumption
z; € L (R+, Lr)

m=3
11) [z * dz:
a)r<I:
Let g := 222, we use Corollary 3.2 ii)

¢ ¢
/tj-/nzgdmdss_/(J |lus — u3l|%, ds

g
N (e W = P
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byr>1I:
By assumption zz € L™% (R+, Lm—'_s)

Using the above estimates 1) to 11) we continue as follows:
ayr=1:
Using Corollary 3.1 iv) we find Ve N

5/8

5/4
L5/4 + /

)-+i;7;|hm1ntwan(R+Lq

2 e th, ) .
> ([ + " e as) +
1=0

<J ik

+Z[1nK

2
Hl

5/81|2

5/8’

ot 1

1
mwwijnm%WMz

; 1/2
[#
+ [an ln“3”L°°(lR+,L1)} 23|34 Z ll2:15.2 }ds +ei(K).

=0

Now we fix K > k* such that

¢
1 K ||u3 1nu3”L°°(]R+ Ll)
(3.9)

. 1/2
——————C «
[an Hui 1nu’:|lL°°(]R+,L1):| Hul Uy I|L3/2(]R+ L3) <-, +=0,1,2,3.

Thus the conditions for the choice of K (see (3.5), too) depend only on the data (cf.
Corollary 3.1 iv) and Corollary 3.2 iv)). Let

th,
# [ Il as) + |4

then we obtain for this fixed K the estimate

5/8
=

ds
Hl

1
5/4 tn
Le/4 + A

2 2
e— E i
a ‘= ( 2; L2
=0

-1
CLzSCl-I-CZakbk Vie N,
k=1
where
3
by = A uf —u? 2
< L3

1=0
According to Lemma 3.3 we conclude that VI € N
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-1 -1
algcl+c1chkexp{c Z bm}

k=1 m=k+1
-1 32

<ec+eec Z by exp {c llu — “*”Laﬂ(m,m(n,m*))}
k=1

3/2 3/2
S 5] + c1C ”u — u*“L{’IZ(R.(.,La(Q,]R“)) €Xp {C Hu - U’*HL/(’/2(]R+’L3(Q,]R'1))} _<- C.

By the definition of a; it follows that
5/8

5/8 -
12ill Lo g 4,22 » l %3 lle(m+,L2)’”z"”Lz(M-Hl)’ |z3 L2(Ry,H1) s¢ =012
b)r>1:
We obtain from the above estimates with K fixed in the step for r =1
2 L r 2 mtl ik mt1 ||2
i /tn ok T e /'n mEk
?;; [ %l s T 0 % m ds| + “231 Lot o 12 ds
A PN Y mt1 |2
‘Sc—}—%/ [Z z;? + |23 ]ds vie N
0 1=0 H! Ht
Thus
r+l r+1 m+l m+1
Z; : y |24 ? y |23 * )y ||%3 ’ <ec
L°°(}R+,L2) Lz(R‘hHl) L°°(]R+,L2) Lz(]R‘hHl)
‘ mtl . m+l
Therefore ||z ® <c¢1=0,1,2. Toshow a L? (R, H')-estimate for z; ®

Leo(R4,L2)
3

m—

we take the test function z; * for : = 0,1 or 2 and use (3.6):

mtl tf| mt1]2
EOTEEy N a

‘ ’ m=3 m—3
Scfo {;L{U3Uk+Ui+uk+l}zi* dz + F(u3+1)zi4 dI‘}ds
=0
o m=3
SC/{ZA{Z3Zk+Zz+za+zk+1}zi4 dz
0 k=0

m—3

—I—/;(z;;-!—l)z,- : dI‘}ds

¢ 3 mtb mtl m—3
< [l (1ol o + N s ) + [ 277
k=0

2

ml mes 1
Lz(].") +/I‘Zi dI‘] + 2

+ |ea(t)™ ()

2
o Jds VEER.

mtl 41
From z;® , 2,7 € L™ (Ry, L)) N L*(Ry, H'), 1 =0,1,2, and results obtained du-
m+1
ring the energy estimates we thus conclude that ||z, & - <e¢ 1=0,1,2. O
L2(R4,HY)
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Theorem 3.3. For given r € N, r > 2 there ezist a constant ¢ > 0 such that

bu— %

i

L=(R4Y)’ r@ex) <€

for any regular subdivision Z, of Ry and any solution u to (P,).

Proof. Let u be a solution to (P,), w := u —u*, v := |w|. By |(u; — K)*| < |u; —u?]

and Lemma 3.4 we find that for p € R, p > 1, there exists a constant ¢(p) > 0 such
that

+ ¢ < ¢(p)

. i Le(RyY) = N [(u - K)+]§

with K defined in (3.5), (3.9). By Corollary 3.2 1) we have v € L1 (R+, L*(Q,RY).

We show: For everyr € N, r > 2 from vi € L? (R4,Y) it follows v T e L*(Ry, X).
Let r € N be given. Using the test function v"sgn(u — u*) and the following repre-
sentation of the reaction and boundary terms

L°°(1R+,Y)

Ri(u) = ky (wyws + uiws + ujw; — ky (g(uo) — 9(ud))),
Ra(u) = 722 (wows + ujws + u;?-Uz) )
Ra(u) = ks (g(uo) — g(up) — kaws),

l9(uo) — g(ug)] < ¢ (Juo — wgl” + Juo — u3)
we obtain for all t¥ € Z,

Lt + / ds)

3 ik
St e [ Lot 4l + ol + el s

2
}ds
L2

which really proves the theorem but we want to explain in more detail how the last
line in this estimate follows from the last but one:

(3.10)

v,(t’c

>

'.

-I—c

<ot [* {3

2(r42 3
'Ui dP = ||V 2(r+42 < [ 'Ut' 2(r+3 ‘Ui
r L™+ (T) L+ HL
LESHE LE38 3(,%31 r_+_1 2 LE3% g:rf—fl
<elv;? +cllv,;? (":ti") <e . +clv;? 2(r+3)
HL 1 H L7
<ely; +cllv P 2 < E|ly; +c V] ,
H L7+ H1 L2
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L Y ESY s ||FFT || meb||TEr
/vf*’dI‘ch’ v; 2 <clv? || 5 |v;?
r L2 H! LTI H!
r1 12 112 1|2 |2
SS 'Uiz +c 'Uiz ASE 'Uiz +c 'Uiz y
Al LT H! L
r42 T+l 4L || 54T 41 |12 4l || 72
/ dz < clv;? v; ? <efvy? +cfv;? || 2.
] L7HT H! Hi LT
412 - w112 o2
<ejv;? +c ? <eljv,;? +c|v} ,
L2 Ht L?
rt1 LT3 4l || 7oy 41 |12 r41 )2
/ dz < cly;? v; 2 <elfvy;? +efv;? || o
0 L™+ H H! LT+T
. r+1 |2 z z r,.i‘“' r41 |2 |2
<elw;? +c v} <elv;? + cl|jv? U
H! L2 H! L2
Theorem 3.4. There ezists a constant ¢ > 0 such that
”u||Lw(m+,L°°(n,R4)) <c
for any regular subdivision Z, of R, and any solution u to (P,).
Proof. 1) Let u be a solution to (P,), v := |u — u*|. Because of Theorem 3.3,

imbedding and trace theorems and (2.11) it is easy to check that there exists an
element b € L* (R+, (W1’5/4(Q))*) such that

/w [/ (v} +vj)vdz + /(v + ;)0 dI‘] dsV3 € LY (R ( +5 W1'5/4(Q)) .

ii) Let k¥ > K with K defined in (3.5), (3.9). We test by z := (u — k)t and denote
by mi the Lebesgue measure of the set {z € Q : u; > k}. Because of (3.8) and
(3.10) we find V¢, € Z,

z, tl

+2df 2] 2 ds]

x|

/ S [bllgprsrey lzlgesn ds
1=0
= C/ Z Hb”(Wl 5/4)« IEA ™ mg'/10
- 2 2 3/5
<[5 (@l + e Nblpnsny mil%) ds.
=0
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Thus we obtain the inequality
> 2 b2
>[It + [zl os]

1=0

3/s
i (3.11)

< CZ ”b”L4 ]R+ (W15/4) )
1=0
< CZ “m‘kHLGIE(R ) Vt € R+.

iii) Let ¢(k) := (f0°° 2o mfk/sds> 5/22. Then we obtain for A > k by the Gagliardo-
Nirenberg inequality (2.9) and (3.11) the estimate

o/5 5/22 s g 5/22
(h— k)p(h (/ Z [(h = k)12 Pm] d) (/ Z;”zzHLu/s )
5/22
< (e [ S Il el )

5/22
12/5
<c (Z . ||z,-1|iz(m+,m))

1=0
3 3 (5/22)-(11/5) / (5/22)-(11/10)
5 6/5
Sc (Z ||mikHLe/5(]R+)) _ =¢ (Z/ Mik )
1=0 1=0

< cqb(k)u/m.

By [6, Lemma 5] we conclude that there is a & such that ¢(k) = 0 for all k& > k.
Therefore by the definition of ¢ it follows u € L™ (R, L*(Q,R*). O

Remark 3.1. Theorem 3.4 implies that [|[u|r|| e, zo(rrsy) < €

3.4. Existence.

Let Z, be any regular subdivision of R;. To show the solvability of (P,) it suffices
to prove existence on any finite interval S := [O,tﬂ, k € N. That means, we have
to solve the problem

ul + AL A (('ynu)l,ul,ul) =u W =U uweX, u>0 1=1,... k.

We consider the corresponding regularized problem

ul + bl Ay (('y,,u)l,ul,ul) =u W =U,deX, I=1,..,k (Pu)
Lemma 3.5. If u is a solution to (PMn) then u > 0 and

|Iu|[L°°(S,L°°(Q,]R4))’ ”uIFHLw(s,Lm(r,w» < ()

where ¢ 15 independent of M.
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Proof. 1) By the testfunction —u~ € L?(S,X) it follows from (Pmy) that for [ =

1.k
mzl:jl (e L) <o

For | = 1 we obtain from u° > 0 that u' > 0 which implies (for ! = 2) that u? >0
and so on.
ii) Applying the procedure of the proof of Theorem 3.1 to (Pma) we get

22 + /n (u™)” u™ 'z + AT dHV (u™)”

Hu”Lw(S’Ll(Q,RQ)) S C’ “vﬁ;lle(S,Lz(n,]Rz)) _<_ C, 1: = 0, PRI ’3,

independently of M. Therefore, because S is a finite time interval we obtain

|va

[ = u*“Ll(S,Ll(Q.lﬂi*)) J H\/E I u*”L?(S,Y) < <(5),

L2(5,x)’
/S“\/E—\/QF ; ds < ¢(p,S) for 0 < p < o0,
“\/u——— Vu* 2(5.5) Vu —ur Lo (5Y) < ¢(S).

These estimates correspond to the assertions of Corollary 3.2 formulated on the
finite time interval S, they guarantee that Theorem 3.3 and Theorem 3.4 are true
also for solutions to (Pyy). O

LA(S,L4(Q,R4))

Lemma 3.6. There ezist solutions to (Pyy).

Proof. To demonstrate the existence of solutions to (Pwmn), we show: For given
u7t € X, hl, € Ry there exist solutions u! € X of

ut + b Ay ((’ynu)l,u[, ul> =u'! (3.12)

such that solutions to (Pym) can be obtained step by step. For fixed u!™, AL let
B: X — X* be defined by '

B(u!) :=ul + B Ay (('ynu)l, ul,u’> :

Then B is an operator of variational type (cf. [13], we use for (FI) the decomposition
B(v) = B(v,v) with

3 3
(B(v,w), 2) :———/n { Zw,-z; + h; [Docp(vo)VwOVzo + Z D;Vw,Vz;
1=0

=1

+0(0) (R (0)(1 + 25— 20) + Ralv)(z2 + 29)) | }do

1, [ 000) (Ralo)eo + Ruo) oo — ) + 32 Ra(v)a)r

for all v,w,z € X. For (SI) the argument of ¢ has to be replaced by the given
(u'=1)o.) By [13, Corollaire 2.1] the problem (3.12) has at least one solution. [J

Thus the L*-estimates for the solutions to (P,) and (Pmn) lead to the following
existence result:

28



Theorem 3.5. For every regular subdivision Z, of R, there ezists at least one so-
lution to (P,).

4. CONVERGENCE THEOREM

Here we state and prove our main result.

Theorem 4.1. Let {Z,}nen be a sequence of reqular subdivisions of R with h, — 0
forn — oco. Let, forn € N, the function u, be a solution to (P,) and let u be the
solution to (P). If S :=[0,T] is any finite time interval, then

1) Up — u in L*(S,X) and u, — u in L®(S,Y) as n — oo.

i1) Koun — v in Ws and Kpu, — u tn C(S,Y) asn — 0.

Proof. Because T is not nessesarily a nodal point of the subdivisions Z,, we apply
the following construction: For every n € N let k, denote that index k& such that
thl < T <tk let

T:= rrr‘lea,hilct"" S:=100,T], Zn:= {ti < T} U {T}.

1. From the definition of A, and K, it follows easily

¢
/ (Apv — Apw,v —w — Kpv + Kaw)ds >0
0 (4.1)

Vi€ [0,tk], Vv, w € Cu([0, "], X).

2. By Lemma 3.2 we find for the solution u to (P) a sequence {wy}nen C Cu(S, X),
Knwa(0) = U with

2(5,x+ )} =0

where K"L A, are the operators corresponding to the subdivision Z.. Forse [0, tﬁ" ,
Wn € Cu(S,X) we have

Anwn(s) = Apwn(s), Rnwn(s) = K,wn(s).
Using (4.1) we obtain for every t € [0, tk»

S (e =l [ ]+ i =

= ||(Knu,, Knw)(®)])% + / () — Aw), un — u)ds
< /(; {(Anun — ApWn, Un — Wn) + (An(un) — A(u), Un — wn + w, —-u)}ds
= [ {0~ B =)+ (Anf) — A~ }ds (42)

< c( “u nwn

N )

since An(un) is uniformly bounded in L2 (5’ , X *), U, and w, are uniformly bounded

in L2 (8, X).
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3. Because of the L™~ estimates for the solutions un, and u and the local Lipsychitz
continuity of ¢ we get with that p occuring in the LI(S, W'P)-estimates for u (cf.
Theorem 2.4) and g = 2p/(p — 2)

k

[ ) — AGw),n — s
> [* {lfun e~ e (fom — 0l + i —3)
= [ lo(mottr) = (o) V0] [Vt = o)l fds
A e A T
~ el gt = woll [ Vol [V (0 = o)l

24
> [ {% lum =l = cllun = ully = ¢t — voll3¢ [ Vol } ds.

4. Taking into account the L®-bounds for u and u, the term ||ynoun — Uo7, Will
be estimated by

’ 4 4
Instin = wolf3s < e o = (Faollzs + I (rmn)o ~ ()l + l[(s)o = woll3s }-

Since A,(un) is uniformly bounded in L2 (S’ , X *) , Up and Tpu, are uniformly boun-

ded in L? (5’, X) we conclude by (P,) that

kn
lun — Tnun”i,?([o,tf,"],lf') = Z h;(u; - uf:l,'u,ﬁ —u )
=1

) (4.3)
- T -
< hn/ [{(An(tn), Un — Trun)| ds < ch,.
0
Furthermore, on S¥, k =1,..., k, we have
k k 7%

[[(un = u)(@)lly < “un - w"“Y + “K"w" N UHC(S,Y)
v (4.4)

+  sup lu(s) —u(r)lly -
7,8€S, |r—s|<hn

5. Using the inequalities of step 4, L™ (g,LP)—estimafes for Vug, 7 € [1,00) and
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the boundedness of {H!};,en we obtain for £ =1,...,k,

LI - ,
3 [ Imoun = ol 3¢ [ Vol ds
=1 tn )
e N ‘ .
S C{/O (”(uno - (Tn'u/n)O) (S)HEZ + ”(’U:o - (Tnu)0> (S)sz) ”vu‘)”ip ds

i RPN ( H HVuoHL,,ds}

k t'ln.
3 fio s

{ (hn + [|u — TnuHLz(s y)) HWollip(g,m)

q
I2

101 _uo(

' — uo(f)

LM (@)}, et}
+ lz—:; n \/tiy,—2 n Lr

-2 4
< ol + fu= ol a5y )

2 -
mT ¢ H “ufzo — uo(t)

L2

5> / (s ity — ua(d) * [V (5 @), ) df
=1 n
< C{BE + |Ju — T"“”Lz(sy) }

+Z/, 1 ( ““no UO(t

o teE (s () - wln)l
r,3€S, |r—s|<hn -

# - wtlf + [Ron—als) |90 (@)1, )

S MORRO

r,s€5, |r—s|<hn

2
+ ki + |lu— Tnu”
k-1 tsu,
+ X ([
=1 tn

6. Combining estimate (4.2) and steps 3 and 5 we get for k=1,...,k,

) [ B =

can )

u'an - uo(f)

e -l [ (), )

k_ o k|? & 2 S
Juk = k]l + [ hun =l ds <63 fub = b, [ 1Vu0(s)lg, s
1=1 . n
ko 2
+&3 hofun —wi], + ),
=1
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where

) = f T = ey + = g o = B

2 4
+ A+ lu—mullt, .\ + su u(s) — u(r 2}
| HLz(S,y) s |r1-)9|g1,1 Ju(s) —u(r)lly

With

— ||,k k|2 & 2 4
=k —wk]l, + [ lhm = ullids
we obtain for k =1,...,k,

k k-1
af < éZ aphy, + & Z o, HvuO”qu(slﬂ r?) +&(n).

For sufficiently large n we have éh, < 3 and therefore for k = 1,. /c

k-1

S Z (hl -+ l|vu0“L‘1(S£,,+1,LP)) a.ln + 2&(7‘&)

=1

By Lemma 3.3 we conclude that

ok < 23(n) + 4&(n)é (T + [ Veuollg g,L,,)) exp {26 (T + HWoHiq(S,LP)) }

< &) const(T)

for kK = 1,...,k, and sufficiently large n. From Lemma 3.2, Lemma 3.1 ii} and
u € C(S,Y) we obtain that &n) — 0 for n — co. By the definition of a* and by
S C [0,t5], n € N it follows u, — u in L?(S, X) and u, — w, — 0 in L= (S, 7).
Because of (4.4) we find u, — w in L= (S,Y) which finally proves 1).

7. Let
1/2
( / / (o) — @(tno)[* | Vol dmds) .
Because of the L*™-estimates for v and u, we estimate for & := u, —u and v €
L* (S, X)

[ ) = A, )
T
<c {Z Vs 1955 + el ol + 5l ol Jao + T ol
1=0

< c|[vllpzgs,xy {HEHLZ(S,X) + I"} '

From u, — u in L?(S,Y) and the properties of superposition operators it follows
I, — 0 for n — co. Therefore for all £ > 0 there is a ng(e) such that Vn > ng

T
”ﬁ‘“Iﬂ(S,X) + I <, 5 (An(un) — A(u),v) ds

Thus An(un) — A(u)in L? (S, X*) which proves Apu, = (Knun)' — u'in L2 (S, X*).

S ce H’U”LQ(S,X)V'U € LZ (S,X) .
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8. By (4.3) we find
[ Vs < 55 )7 [0 oot

1
<3 ””n - Tnun”iz(g,X) — 0 forn —

which together with Theorem 4.1 i) yields Ku, — u in L?(S, X). Combined with
the result of step 7 we conclude that K u, — v in Ws. Thus K,u, — v in C(S,Y),
too. [

APPENDIX A. EQUILIBRIUM STATES

The assumption (2.7) is essential for deriving energetic estimates as well as results
on the asymptotic behaviour of solutions to the initial boundary value problem and
its time discrete versions. The properties of the set

’R:z{uERi:R4-(u)=0a.e.,z'=1,...,7, u—UES}

depend on the data k;, k;, @ = 1,...,7 and U such that necessary and sufficient
conditions for the validity of (2.7) should be expressed in terms of this data. This
could be done as in [5], [7], [10], [11]. Here we emphasize only some important cases;
a complete survey is given in Table 1-4.

Remember, that we have assumed k; > 0, k& >0, i =1,...,7 and U > 0 (see (2.6),
(2.4)).

1)k =0, ¢=1,...,7 (neither volume nor boundary reactions, No. 1 in Table 1):
Then § = {0},S* =R*and R = {U} Assumption (2.7) now means U; > 0, ¢ =
1,...,4, and no conditions on the k;’s.

2) ki >0, i =1,...,7 (all volume and boundary reactions, No. 128 in Table 4):
We obtain S = R*, thus (2.7) does not contain any condition on U. The relations

k3 = k4k7, kg = kak'r, k5 == k1k4 . (A].)

ensure that R # 0. From R;(u) =0, ¢ = 3,5,6,7, and the strong monotonicity of
g we get ug = g7 (ka) > 0, u; = kiys > 0,1 = 1,2,3. Because of (A.1) R;(u) =0,
t = 1,2,4, too. Thus R consists of only one element, it is positive and (2.7) is
equivalent to (A.1).

3) ki, k>0, k; =0, i =3,...,7 (only volume reactions, No. 9 in Table 1):
Because of S = span{(—1,1,0,1), (0,0,1,1)} we can choose &; := (1,1,0,0), &3 :=
(1,0,—1,1) to describe the invariants I;(u), j = 1,2, to problem (P). For u € R we
have

uruz = k1g(uo), (A.2)

Uguz = ky, (A.3)

ug +uy = Up + Uy, - (A.4)

U — Ug +uz = Uy — Uy + Us. ’V (A.5)
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By (A.3) uz, uz > 0. By (A.4) Uy + Uy > 0 is a necessary condition for u > 0.
Let Uy + U; > 0 then at least one of ug or u; is positive.
a) up > 0: Replacing u,, uz in (A.5) by

(cf. (A.2), (A.4)) we get

Ug =

ky

)

klg(UO)

3=[70+[71—U0

(A.6)

kz([jo + 0, — Ug) k1g(uo) — = -~
Uy — = = =U0—U2+U3.
k19(uo) Uo+ U —uo
No. | ky | ky | k3 | kg | ks | ke | k7 | Conditions on k; | Conditions on U;
| 1 To, U, Uz, Uz > 0 |
2| * Uy, Ug+ Uy, Uo+ U3 >0
3 * Uy, U1 >0
4 * Uy, Uy, Us >0
5 * [71, ﬁz, Up+Us>0
6 * Uo, Uz, U3 >0
7 * Uo, Uy, Uz >0
8 * Uo, U1, U2 >0
9| * | * U+ U1 >0
10 | * * Uy >0
11| = * Uy, Up+ Uz >0
12 | =* * Uy, Ug+Us >0
13 | * * Uo+ U1, U+ T3>0
14 | % * Uy, Ug+ U1 >0
15 * | * U >0
16 * * U, >0
17 * * Uo >0
18 * * Uo, U1 >0
19 * * Uo, U1 >0
20 * | * U, U>0
21 * * l'.72, Us>0
22 * * Uy, U3>0
23 * * Uy, U,>0
24 x| * Uy, Ug+ T3>0
25 * * U, Uo+03>0
26 * % U, 02>0
27 * | * Uo, Uz >0
28 * * Uo, Uy >0
29 * | * Uo, U1 >0

Table 1. Necessary and sufficient conditions for the validity of assumption (2.7) if
no, one or two reactions (indicated by *) are present.
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No. | k1 | ky | B3 | ka | ks | k¢ | k7 | Conditions on k; | Conditions on U
30 % | %= | *
311 % | % * '
32 % | % * U, + ﬁl >0
33| % | * *
34| * | * * Uo+ U1 >0
35 | * | * U2>0
36 | * * * U; >0
37| = * *
38| = * * U,>0
39| = * | * ks = kiks Uy, Uo+ Uz >0
40 | = * * Uo+Uz>0
41 | = * * U,>0
42 1 * * | * Uo+U3>0
43 | * * * U;>0
44 | = * | #* Uo+Uy1>0
45 * | ok | * Vﬁl >0
46 * | % *
47 x| * * U,>0
48 * | % * U,>0
49 * * | ok
50 * * * U1>0
51 * * * U; >0
52 * * | % Uo >0
53 * * * Up >0
54 * * | x| ky = kgkr Uo, Uy >0
55 * | % | % U2>0
56 * | % * ‘ U;>0
57 * | % * | ks = kgky 171, U, >0
58 * * | * Us>0
59 * * * U, >0
60 * x| % U;>0
61 * | % | * Uo+03>0
62 * | % * U2>0
63 * * | * Ij'l >0
64 * | x| % Uo >0

Table 2. Necessary and sufficient conditions for the validity of assumption
(2.7) if three reactions (indicated by %) are present.
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No. | ky | k3 | ka | k4 | k5 | k6 | k7 | Conditions on k; | Conditions on U;
651 % | * | = | x
66 * | * | % *
67 | # | % | * *
68| * | = | * *
69 | * | = * | % ks = kiky
70| * | * * *
1] = | * * *
T2 * | * * | %
73| * | = ) * A o* . .
T4 | * | % * | * | kg = keky U+ U1 >0
75 | * £ | % | % ks = kiky U;>0
76 | * * | ok *
771 * * | *x * | k3 = kaky U,>0
78 | * * * | %
79 | * * * * | kiks = kskr U; >0
80 | * * * | %
81| % NERE: ks = kiks Uo+ U3 >0
82 | = * | % x ks = kiky U; >0
831 * * x| %
84 | * * | % | %
85 * | % | % [ * ;
86 * | % | % | * kaoky = kzks U:>0
87 o B * | k3 =ksky Uy >0
88 * | % * | *
89 * | % * *
90 * | * * | % | kg = keky Ui>0
91 * * | % | *
92 * * | * *
93 * * ¥ | % | kg = keke Uy >0
94 * * | % | % | ky = keky Up>0
95 * |k | x| %
96 | % | % * | k3 = ksky U;>0
97 * | x * | x| k3 = kaky Uy >0
98 * * ] % | *
99 EEEERE

Table 3. Necessary and sufficient conditions for the validity of assumption
(2.7) if four reactions (indicated by %) are present.
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No. | ky | ko | k3 | k4 | ks | kg | k7 | Conditions on k; Conditions on U;
100 ) * | % | x| * | = ks = kiks

101 = | * | %= | = * koky = kake

102 * | % | * | = * | k3 = kaky

103 | * | = | * * | % kaks = kiksks

104 * | % | * * * | kiks = kskr

105 | % | * | * * | x| ka2 = keky

106 | * | = x | x| % ks = kiks

107 | = | = * | % * | ks = kiky

108 | * | * * * | * | ka = keky

109 | * | * * | % | x| ky = kekr

110 | = * Lok | x| ks = kiky

111 | = x| x| = % | k3 = kaky, kiks = ksky Uz >0
112 | = * | % * | % | k3= kake

113 ] % * * | % | % | kiks = kgkr

114 | * * | x| ok | % | by =kiky

115 * | x| k| % | * koks = kaks

116 * % | x| % *x | k3 = kaky

117 x| |« * | * | ky = kekr, ks = kske Uy >0
118 * | % * | x| % | ko= kghy

119 * * | % | x| x | ky = kghky

120 x| % | x| x| x| ks = kaky

120 % | % | * | * | %= | * ks = kiks, kaks = k3ke

122§ # | % | = | * | =* * | b3 = kakr, ks = kikg

123 | = | = | * | * * | % | k3 = kakr, k2 = kekr

124 | * | = | % * | % | x| ko= kekr, kiks = kskr

125 | * | =* * | % | % | % | ko= keky, ks = k1ka

126 | * * | % | % | x| % | ks = kakr,kiks = kskr

127 # 0k | % | % | % | x| ks = kakr, ko = kekr

[ 128L1* L* L* [ * l * ] * |k3=k4k7,k2=ksk7,ks=k1k4[ ]

Table 4. Necessary and sufficient conditions for the validity of assumption (2.7) if five, six
or all reactions (indicated by x) are present.

Because f: (0,r) — (—o00,400) defined by

)=y — et 1 ad¥) s
9ly) r-y
is bijective, (A.6) has for every right hand side Uy — U, + Us exactly one solution
Ug, and ug > 0. Then u;, 2 = 1,2, 3, are uniquely determined and positive.
b) uo > 0: Then g(uo) > 0 and by (A.2) u; > 0, too. Now we can conclude like in
case a). :

Thus (2.7) is equivalent to Uy + U; > 0.
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