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Abstract

In this paper we review some recent rigorous results that provide an essen-
tially complete solution of a class of spin glass models introduced by Derrida
in the 1980ies. These models are based on Gaussian random processes on
{—1,1}" whose covariance is a function of a ultrametric distance on that set.
We prove the convergence of the free energy as well as the Gibbs measures in
an appropriate sense. These results confirm fully the predictions of the replica
method including in situations where continuous replica symmetry breaking
takes place.



1. Introduction.

In spite of considerable recent progress [T1,T3,T4,GT,G], there remains a considerable
gap between the heuristic understanding of mean field spin glasses such as the Sherrington-
Kirkpatrick model [SK] (see [MPV]) , and the mathematical understanding of the properties of
such models. We have now a reasonably good insight in situations when the so-called “replica
symmetric” solution is expected to hold, but already solution of a model with one-step replica
symmetry breaking has required an enormous effort [T6]. Understanding situations with full
continuous replica symmetry breaking in the context of SK models appears presently quite
hopeless, even though Guerra [G] has proven very recently an extremely interesting result
that shows that in the standard SK model, Parisi’s solution provides a lower bound for the

free energy.

In this note I will report on progress in understanding the emergence of replica symme-
try breaking in the context of a class of “simple” spin glass models, introduced by Derri-
da in 1980: the random energy model (REM)[D1,D2|, and the generalised random energy
model(GREM)[D3,DG1,DG2,DG3]. The former consisted of modelling the random ener-
gy landscape as simply i.i.d. Gaussian random variables on the set of spin configurations,
{—1,1}". This model can be seen formerly as the limit of the so-called p-spin SK-models
[SK], when p tends to infinity [D1]. In spite of its simplicity, this model has proven to be
a rather instructive toy model, and has received considerable attention in the mathematical
community [DG3,DW,Ei,OP,GMP,Ru,BKL,KP, B]. Of course, in many respects this mod-
el is mathematically almost trivial, and physically quite unrealistic, as all the dependence
structure that is present in more realistic models like the SK model, is absent. The GREM
was introduced in view of keeping dependence, while simplifying it to a hierarchical structure
to still yield a mathematically more tractable model. In fact, the GREM can be seen as a
class of models that is obtained by equipping the hypercube {—1,1}" with a tree structure
and an associated ultra-metric distance, and then considering standardized Gaussian ran-
dom fields on the hypercube whose correlation function depends only on this distance. We
will call these models “Derrida’s models” in contrast to the “Sherrington/Kirkpatrick (SK)
models” where the covariance depends on the Hamming distance, respectively the overlap
Ry(o,0')=N"1 Zil 0i0;.

In [DG1], B. Derrida and E. Gardner presented a solution of the model with finitely many
hierarchies in the sense that they computed the free energy in the thermodynamic limit. A

rigorous derivation of this solution (in a somewhat more elegant form) was later obtained by
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Simple spin glasses 3

Cappocaccia et al. [CCP]. Derrida and Gardner also considered the limit of their formulae
when the number of hierarchies tends to infinity. They argued that for suitable choices of
the covariance function, this limits yield approximations for the standard p-spin SK models,

even though, as they point out, the quality of the approximations is not spectacular.

In this paper we review recent results obtained in [BKL,BK1,BK2,BK3| that give an
essentially complete solution confirming the results of the replica method for all these models.
In Section 2 we present first in detail the rather simple case of the REM which will serve as

a pedagogical example. In Section 3 we then turn to the general class of Derrida’s models.
2. The random energy model.

The random energy model, introduced by Derrida [D1,D2] can be considered as the ulti-
mate toy model of a disordered system. In this model, rather little is left of the structure
of interacting spins, but we will still be able to gain a lot of insight into the peculiarities of
disordered systems by studying this simple system. For rigorous work on the REM see e.g.
[Ei,OP,GMP,DW,BKL,T5].

The REM is a model with state space Sy = {—1,+1}". For fixed N, the Hamiltonian is
given by
Hy(o) = —VNX, (2.1)

where X, is a family of 2V i.i.d. centered normal random variables.

2.1. The free energy.

Before turning to the question of Gibbs measures, we turn to the simpler question of
analysing in some detail the partition function. In this model, the partition function is of

course just the sum of i.i.d. random variables, i.e.

Zgn=2"N Y VN (2.2)
cESN

One usually asks first for the exponential asymptotics of this quantity, i.e. one introduces

the free energy,
1
Fﬂ’N = _N h’lZﬂ’N (23)

and tries to find its limit as N 1 co. Let me mention that in general mean field spin glasses,
the existence of the limit even of the averaged free energy has been a long standing open

problem. While writing this note, a preprint by Guerra and Toninelli [GT] has appeared in
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which a simple and clever proof of the existence of the limit in a rather large class of mean

field spin glass models is given.

In this simple model one can compute this limit exactly. In fact it was found be Derrida
[D1] that:

Theorem 2.1: In the REM,
—ﬁ, for 8 < 6.
lim EFﬂ’N = { ;2 /B_lB
Nteo _TC - (/B - ﬂc)/@ca for :6 > /Bc
where B, = v/2In2.

2.2. Fluctuations and limit theorems.

Knowing the free energy is important, but, as one may expect, it is not enough to under-
stand the properties of the Gibbs measures completely. It is the analysis of the fluctuations
of the free energy that will reveal, as we will see, the necessary information. In the REM this
can be done using classical results from the theory of extreme value statistics. The proofs

are, nonetheless, quite cumbersome, and may be found in in [BKL] or [B].

Theorem 2.2: The partition function of the REM has the following fluctuations:

(i) If B < \/In2/2, then

x oy Z
ez (2= 1y “BN B prig 1), (2.5)
Zp.N
(i) If B = \/In2/2, then
~ oy Z
V2eT n2=8%) 1y ZBN B pr(g 7). (2.6)
EZs n

(i) Let a = B/v2In2. If \/In2/2 < 8 < v/2In2, then

R B (OB SR CY)
EZg N —oo

where P denotes the Poisson point process' on R with intensity measure e *dz.
(iv) If B=+2In2, then

f Z 1 In(NIn2)+Indr D/O _ ]°
[In(N 1n 2)+1n 47] B,N z z z
e? ——+ — e*(P(dz)—e *dz)+ | e*P(dz).

(EZﬂ,N 2 4v/7N1n2 ) oo (P(dz) ) ) (dz)

(2.8)

1For a thorough exposition on point processes and their connection to extreme value theory, see in par-
ticular [Re].
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(v) If B> +v2In2, then

e_N[ﬂM—lnﬂ—}—%[ln(Nln2)+1n41T]Zﬂ’N 2) / e**P(dz) (2.9)
and ¥ T
InZg n —Eln Zg N B n / e**P(dz) —Eln / P )

Remark: Note that expressions like f_ooo e*(P(dz) — e *dz) are always understood as
lim, | fyo e*(P(dz) — e*dz). All the functionals of the Poisson point process appearing are
almost surely finite random variables. Note that the limit in (2.7) has infinite variance and

the one in (2.9) has infinite mean.

Let us just briefly comment on how these results are obtained. In fact, (i) follows from

the standard CLT for arrays of independent random variables under Lindeberg’s condition.

As the Lindeberg condition fails for 232 > In2, it is clear that we cannot expect a simple
CLT beyond this regime. Such a failure of a CLT is always a problem related to “heavy
tails”, and results from the fact that extremal events begin to influence the fluctuations of
the sum. It appears therefore reasonable to separate from the sum the terms where X, is
anomalously large. For Gaussian r.v.’s it is well known that the right scale of separation is

given by uy(z) defined by

T dz 2
2N / e *2=¢" 2.11
o (2.11)
un(z)
which (for £ > —InN/In2) is equal to (see e.g. [LLR])
In(NIn2)+1n4
un(z) = VAN 4 —2_ _ aVIn2) +lndm o (2.12)

V2N In2 2v/2N In2

z € R is a parameter. The key to most of what follows relies on the famous result on the
convergence of the extreme value process to a Poisson point process. Let us now introduce

the point process on R given by

Pn= ), 8ut(x,)- (2.13)

c€ESN

A classical result from the theory of extreme order statistics (see e.g. [LLR]) asserts that

Theorem 2.3: The point process Py converges weakly to a Poisson point process on R

with intensity measure e~ *dzx.
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The key idea is then to split the sum by a cutoff corresponding to whether X, is bigger
or smaller than uy(x); the former can then be represented as a functional of the extremal
process that converges to the Poisson process, and the latter has to be controlled carefully.

The computations are in fact quite tedious.

If we write

Zg,n =25 N+ (Zp,n — Z5 N) (2.14)
for 8> +v2In2
n2—In2(—2[ln n n4m au (X,
Zon—Zhn = eN[AV2In2-1n 2]~ § [In(N 1n.2)+1n 4x] Z ][{U;(U)M}e N (Xo) (2.15)
cESN
so that for any z € R,
(Zﬂ,N . Zg’N)e—N[ﬂ\/2ln2—ln2]+%[ln(Nln2)+ln47r] 2) /eazp(dz)_ (216)

The remaining term is shown to converge to zero in probability as first N T oo and then

Tzl —00. &

2.3. The Gibbs measure.

With our preparation on the fluctuations of the free energy, we have accumulated enough
understanding about the partition function that we can deal with the Gibbs measures. Clear-
ly, there are a number of ways of trying to describe the asymptotics of the Gibbs measures.
Recalling the general discussion on random Gibbs measures, it should be clear that we are
seeking a result on the convergence in distribution of random measures. To be able to state
such a results, we have to introduce a topology on the spin configuration state that makes
it uniformly compact. The usual topology to do this would be product topology, and this
clearly would be an option here. However, given what we already know about the partition
function, this topology does not appear suited to give describe the measure appropriately.
Part (v) of Theorem 2.2 actually implies that the partition function is dominated by a ‘few’
spin configurations with exceptionally large energy. This is a feature that should remain
visible in a limit theorem. The question we therefore must address in mean field models is
how to describe a limiting measure on an infinite dimensional cube that properly reflects the
symmetry (under permutation) of the finite dimensional object, in other words that views

this object in an unbiased way.
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A first attempt consists in mapping the hypercube to the interval [—1, 1] via
N
Syo0ry(0) =) 027 €[-1,1] (2.17)
=1

Define the pure point measure fig y on [—1,1] by
ApN= ) bun(o)ipn(0) (2.18)
ocESN

Our results will be expressed in terms of the convergence of these measures. It will be
understood in the sequel that the space of measures on [—1, 1] is equipped with the topology

of weak convergence, and all convergence results hold with respect to this topology.

As the diligent reader will have expected, in the high temperature phase the limit is the

same as for § = 0, namely

Theorem 2.4: 1If 8 <+/2In2, then

- 1

fdg,N — 5)\, a.s. (2.19)
where A denotes the Lebesque measure on [—1,1].

Proof: Note that we have to prove that for any finite collection of intervals Iy,...,Ir C
[-1,1], the family of random variables {fig n(I1),-..,g,n(Ir)} converges jointly almost
surely to 3|11/, ..., 5|Ix|. But by construction these random vectors are independent, so that
this will follow automatically, if we can prove the result in the case & = 1. Our strategy is to

get first very sharp estimates for a family of special intervals.

In the sequel we will always assume that N > n. We will denote by II,, the canonical
projection from Sy to S,. To simplify notation, we will often write o, = Il,,c when no

confusion can arise. For o € Sy, set
an (o) = r, (I, 0) (2.20)

and
I,(0) = [an(0) — 27", ax(0) +277) (2.21)

Note that the union of all these intervals forms a disjoint covering of [—1,1). Obviously, these

intervals are constructed in such a way that

fip,N(In(0)) = pp,n ({o" € Sy : In(0") = (0)}) (2.22)
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The first step in the proof consists in showing that the masses of all the intervals I,,(o) are

remarkably well approximated by their uniform mass.

Lemma 2.5: Set 3 = ,/lenﬂ. For any 0 € S,

() If B < /%5,
g (In(0)) — 27| < 27 me~(N=)(n 2= )y N _ (2.23)

where Yy has bounded variance, as N 1 oc.
(it) If /132 < B’ <+v2In2,
|ﬁﬂ,N(In (0.)) . 2—n| < 2—'n.e—(N—n)(\/2ln 2—,3')2/2—a1n(N—n)/2YN_n (224)

where Yy is a random variable with bounded mean modulus.
(iii) If B = v21In2, then, for any n fized,

|Zg,n(In(0)) —27"| = 0 in probability (2.25)

Remark: Note that in the sub-critical case, the results imply convergence to the uniform
product measure on S in a very strong sense. In particular, the base-size of the cylinders
considered (i.e. n) can grow proportionally to N, even if almost sure convergence uniformly
for all cylinders is required! This is unusually good. However, one should not be deceived
by this fact: even though seen from the cylinder masses the Gibbs measures look like the
uniform measure, seen from the point of view of individual spin configurations the picture
is quite different. In fact, the measure concentrates on an ezponentially small fraction of
the full hypercube, namely those O(exp(N(In2 — 32/2))) vertices that have energy ~ BN
(Exercise!). It is just the fact that this set is still exponentially large, as long as 8 < V2In2,
and is very uniformly dispersed over Sy, that produces this somewhat paradoxical effect.
The rather weak result in the critical case is not artificial. In fact it is not true that almost
sure convergence will hold. This follows e.g. from Theorem 1 in [GMP]. One should of course

anticipate some signature of the phase transition at the critical point.

Proof: The proof of this lemma is a simple application of the first three points in Theorem

2.2. Just note that the partial partition functions

BVNX

Zg n(on) =Eye M1, (0" =0m (2.26)
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are independent and have the same distribution as 27" Zg ny_,. But

— Zg,n(0n)
[Zﬁ,N - Zﬂ,N(Un)] + Zﬁ,N(o'n)

fip,N(In(ow)) (2.27)
Note that Zg n(o,) and [Zg v — Zg,n(0n)] are independent. It should now be obvious how
to conclude the proof with the help of Theorem 2.2.

Once we have the excellent approximation of the measure on all of the intervals I, (o),
almost sure convergence of the measure in the weak topology is a simple consequence. Of
course, this is just a coarse version of the finer results we have, and much more precise
information on the quality of approximation can be inferred from Lemma 2.5. But since the

high-temperature phase is not our prime concern, we will not go further in this direction.

Somehow much more interesting is the behaviour of the measure at low temperatures that
we will discuss now. Let us introduce the Poisson point process R on the strip [—1,1] x R
with intensity measure 3dy x e ®dz. If (Yj, Xx) denote the atoms of this process, define a

new point process W, on [—1,1] x (0, 1] whose atoms are (Yj,wy), where

ean

Wk = Ty djeee (2.28)

for & > 1. Let us note that the process W = >k Wk is known in the literature as the

Poisson-Dirichlet process with parameter o [K].
With this notation we have that

Theorem 2.6: If 8> v2In2, with o = 3/v21n2,

i B fia= | Weldy, duw)d,w (2.29)
[-1,1]x(0,1]

Proof: With uy(z) defined in (2.12), we define the point process Ry on [—1,1] X R by

Ry = Zs 6(”‘N(0’),u;]1(Xa)) (2.30)
ocESN

A standard result of extreme value theory (see [LLR], Theorem 5.7.2) is easily adapted to
yield that
Ry B3R, as N?1oo (2.31)
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where the convergence is in the sense of weak convergence on the space of sigma-finite mea-

sures endowed with the (metrizable) topology of vague convergence. Note that

eau;{1 (Xs) eaux,l (Xs) 5 39
He.N (@) = S, eouy' (Xo)  [Rn(dy,dz)ex® (2:32)
Since [ Rn(dy,dz)e** < oo a.s., we can define the point process
W= ) 6 ( exp (Tl (o) ) (2.33)
oc€ESN rN(a)’f’R,N(dy,dm)exp(am)
on [—1,1] x (0,1]. Then
fg,N = /WN(dy,dw)5yw (2.34)

The only non-trivial point in the convergence proof is to show that the the contribution to
the partition functions in the denominator from atoms with un(X,) < z vanishes as z | —oo0.
But this is precisely what we have shown to be the case in the proof of part (v) of Theorem
2.2. Standard arguments then imply that first Wy z W, and consequently, (2.29). ¢

Remark: Note that Theorem 2.6 contains in particular the convergence of the Gibbs measure
in the product topology on Sy, since cylinders correspond to certain subintervals of [—1,1].

On the other hand, it implies that the point process of weights ) 0,5 n (o) CODVETgES in

0cESN
law to the marginal of Wy on (0, 1] which is the process introduced by Ruelle [Ru]. The
formulation of Theorem 2.6 is moreover very much in the spirit of the meta-state approach to
random Gibbs measures [NS]. The limiting measure is a measure on a continuous space, and
each point measure on this set may appear as “pure state”. The “meta-state”, i.e. the law of
the random measure fig is a probability distribution concentrated on the countable convex
combinations of pure states randomly chosen by a Poisson point process from an uncountable
collection, while the coefficients of the convex combination are again random and selected via

another point process.

Let us discuss the properties of the limiting measure fig. It is not hard to see that with
probability one, the support of fig is the entire interval [—1,1]. On the other hand, its mass
is concentrated on a countable set, i.e. the measure is pure point. To see this, consider the
rectangle A, = (Ine€, 00) x [—1,1]. Clearly, the process R restricted to this set has finite total

intensity given by €1

i.e. the number total number of atoms in that set is a Poissonian
random variable with parameter e~!. Now if we remove the projection of these finitely many

random points from [—1, 1], we will show that the total mass that remains goes to zero with
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€. Clearly, the remaining mass is given by

az Ine azx

/ ’R(dy,d:v)ei = P(dz) °
[-1,1]x (—oo,ln€)

_— 2.35
J P(dz')e> oo J P(dz')e> (2:35)

We want to get a lower bound in probability on the denominator. The simplest possible
bound is obtained by estimating the probability of the integral by the contribution of the

largest atom which of course follows the double-exponential distribution. Thus

1

P [ / P(dz)e*® < z] <e® "o 2w (2.36)

Setting Q7 = {P : [ P(dz)e*® < Z}, we conclude that, for a > 1,

lne P Ine s
P P(dz) > <P| [ Pla) >y, 0% | + P[0
[ xfp eoe 7= mfp eoe 'YZ""[Z]
[ plne
<P P(dz)e*® >~Z, Q5| + P[Qz]
r Ine
<P P(dz)e®® > 7vZ | + P[] (2.37)
Ine
E P(dx)e>*
< Jooe Pll) + P[Qz]
Y
a—1 1
€ -z~
D —
Sla—112 +e

Obviously, for any positive <y it is possible to choose Z as a function of € in such a way that
the right hand side tends to zero. But this implies that with probability one, all of the mass

of the measure fig is carried by a countable set, implying that fig is pure point.

So we see that the phase transition in the REM expresses itself via a change of the prop-
erties of the infinite volume Gibbs measure mapped to the interval from Lebesgue measure

at high temperatures to a random dense pure point measure at low temperatures.

2.4. The replica overlap.

While the random measure description of the phase transition in the REM appears rather
nice, one would argue that it ignores fully the geometry of the statespace as a hypercube. A
neat object to measure look at in this respect would be the mass dustribution around a given

configuration,
mqy(t) = pp,n (Rn(o,0") > t) (2.38)
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where the o is fixed and the measure y refers to the configuration o’. m,(-) is a probability
distribution function on [—1,1]. As a function of o, this is a measure values random variable.
Taking the overage of this quantity again with respect to the Gibbs distribution of o, we

obtain the popular “overlap distribution”,

Fo.n[w)(d2) = ps,n (Mo (dz)) = pp,N[w] ® pp,N[w] (BN (0,0") € d2) (2.39)

It turns out that a much richer object is obtained by passing to a measure valued quantity,

namely

Ken= > 1p.n(0)0m, (2.40)
ocESN

This measure tells us the probability to see a given miss distribution around oneself, if one

is distributed with the Gibbs measure. Of course we have that

fanlol) = [ Ka(amym:) (2.41)

Of course, in the REM, one is not likely to see anything very exciting, the overlap distri-
bution is asympototically concentrated on the values 0 and 1 only:

Theorem 2.7:

(i) For all B < v2In2

13{1%210 fa,n =00, a.s. (2.42)
(ii) For all B> v/21n2
fa,N B 6 (1 — /W(dy,dw)w2) + 61 /)/V(dy,dw)w2 (2.43)

(111) The random measures Kg N converge to a random probability distribution Kg that is sup-

ported on the atomic measures with support on {0,1}, more precisesly if B > v/21n2,
]Cﬂ = /W(dy,dw)wéw,;l_,_(l_w),;o (2.44)
while for B < +v/2In2, Kg is the Dirac mass on the Dirac mass concentrated at 0.

Proof: We will write for any I C [—1,1]

fan(I) = Zg_jonEo' Z AVN(Xo+X,1)
RN(Ze,i’):t

(2.45)
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First of all, the denominator is bounded from below by [Zﬂ, ~(c)]?, and, with probability
of order =2 exp(—Ng(c, B)), this in turn is larger than (1 — 5)2[EZ~57N (c)]?. Now let first
B < v2In2. Assume first that I C (0,1) U[—1,0). We conclude that

Efg,n (1) < Ey By Z 1+ 6 29BN

(1-4)
tGI’
fon(me)= N ) (2.46)
t

\/27‘(‘ 1—622 1—¢2

for any 8 < ¢ < v2In2, where ¢ : [—1,1] — R denotes the Cramér entropy function

(1 ; D1+ + E=Y - g (2.47)

B(t) = ;

Here we used of course that, firstly, if (1 —¢t)N =2¢,£=0,...,N, then

N
EoFo' TRy (0,00)=t = 2—N ( e) (2.48)

and, secondly, Stirling’s approximation which implies that

N 1 N NN
(5> T Ver\ N =) ee(N_g)N_e(l +0(1)) (2.49)

valid if £ ~ zN with z € (0,1). Under our assumptions on I, we see immediately from this
representation that the right hand side of (2.46) is clearly exponentially small in N. If 1 € I,
the additional term coming from ¢ = 1 gives an exponentially small contribution. This shows

that the measure fg y concentrates asymptotically on the point 0. This proves (2.42).

Now let 8 > v2In2. Here we use the sharper truncations introduced in 2.2. Note first

that for any interval I

225 n

2.50
e (250)

fonI) = ZZAEEr Y Hx, x, suy(@e®Y N XX <

terl
Ry (o,0')=t

The proof of Theorem 2.2 shows that the right hand side of (2.50) tends zero in probability
as first V 1 oo and then z | —oo. On the other hand, for ¢ # 1

P [Ela,zr,:RN(a',a"):t Xtr > ’U,N((L') A Xz’r > ’U,N((L‘)]

2.51
< By lpy (0,0)=t 272N P[X, > un(z)]” = —¢(ON g2 (251)

2
—_— ¢
V2rNV1 — 2
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by the definition of un(x) (see (2.11)). This implies again that any interval I C (0,1)U[—1,0)

will have zero mass. To conclude the proof it will be enough to compute fg n(1). Clearly

fon(l) = 22N (2.52)

By Theorem 2.2, (v), one sees easily that

fan(1) D m
N[ e (an)

Expressing the left hand side of (2.53) in terms of the point process W, defined in (2.28)

(2.53)

yields the expression for the mass of the atom at 1; since the only other atom is at zero the

full results follows from the fact that fz n is a probability measure.

The assertions on the measure K n are essentially a corollary of the preceeding results.
The fact that fg is a sum of §y and J; implies immediately that the probability that m, is

not such a sum tends to zero. The explicit formula (2.44) is then quite straightforward. ¢

2.5. Multi-overlaps and Ghirlanda—Guerra identities.

It will be interesting to see that the random measures Kz can be controlled with the help
of some remarkable algebraic identities that in fact allow us to avoid the detailed analysis of

fluctuations performed in Section 2.2.

Let us first note that the convergence of the measures Kg n can be controlled through

their moments, which can be written als follows:

([ Kewtamymt... [ Ka(mm* )
=Bl (i) mii(-))

l+k1+-+k 1 I+k
:Eﬂﬂ-’,—Nl-’- +l(RN(017U+1)E'7"'7RN(0170+ 1)6'7"')

(2.54)

I Uk otk +1 I _dtky+etk
.., Ry(at, gttt thiatly e L Ry(at, ot TRt +')€-)

The right hand side is a (marginal of) the distribution of the m(m — 1) replica overlaps under
the averaged product Gibbs measure on m =1+ ky + --- + kj—1 + 1 independent replicas of
the spin variables. Thus, if we can show that these multi-replica distributions converge, as
N 1 oo, then the convergence of the measures Kg n will be proven. This is a general fact,
which has notheing to do with the particular model we look at. In the REM, of course,

considerable simplification will take place since we know that the overlap takes only the
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values 0 and one in the limit, and thus instead of looking at the entore distributions, it will
be enough to look at the atoms when overlaps equal to 1. That is to say it will be enough in

our case to consider the numbers

I+ky+-+k 1 _I+1 1 _I+k
Epg N ’(RN(U,U"'):l,...,RN(a,o-"'l):l,...,
U kgt g +1 U _ltkittk
. Ru(at, gl thtothiostly _ 1 Ru(gl glthit +z):1)
_Eﬂl+k1+ +k,(0 e N
(2.55)
ot = ghtRietkiatl ol ke +k1)
_Eul+k1+ +kt(0_ S R
ol = ghthtetkiatt ...:01+k1+---+kz)

As we will show now, the multi-overlaps are not independent, but satisfy recursion relations
that are due to rather general principles. It will be instructive to look at them in this simple
context. These identities have been known in the physics literature and a more rigorous
analysis is given in a paper by Ghirlanda and Guerra [GG]. Equivalent relations were in fact
derived somewhat earlier by Aizenman and Contucci [AC]. See also [L]. The importance of
these relations has been underlined by Talagrand [T4,T5]. Let us begin with the simplest

instance of these relations.

Proposition 2.8:For any value of 3,
d

B Fan = —B(1~ Efp. (D) (256)
Proof: Obviously,
E,VNX ePVNXo
a1 o o
dﬂFﬂN N™E E, AVNK, (2.57)

Now if X is standard normal variable, and g any function of at most polynomial growth,

then

E[Xg(X)] = Eg'(X) (2.58)
Using this identity in the right hand side of (2.57) with respect to the average over X,, we
get immediately that

E /NX,eBVNXo 2-NE,_ 2VNX,
=NpE|1-
E,efVNXo (E,eﬂ\/NXa)z

(2.59)
- NﬁIE(l — u2 (1, 1_¢,2))
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which is obviously the claim of the lemma.{
In exactly the same way one can prove the following generalisation:

Lemma 2.9: Let h: S} — R be any bounded function of n spins. Then

1
WE#?’?V (X o h(c, ... ,a™))

) (2.60)
_ ﬂE ®n+1 h(0'17.--,0-n) Z]Ia'k:a'l _n]IU'k:Un+1
=1

Proof: Left as an exercise.

The strength of Lemma 2.9 comes out when combined with a factorization result that in

turn is a consequence of self-averaging.

Lemma 2.10: Let h be as in the previous lemma. For all but possibly a countable number
of values of B,

Jlrl%go T ‘]Eu?"’;v (Xprh(a',...,0™) — Bug,n (X,¢) ]Epg’"’]‘v (h(c',... ,a"))‘ =0 (2.61)

Proof: Let us write
2
(Ep?ﬁv (X,,:c h(al, ey o’")) —Eug n (Xak)IEu?’?v (h(al, .. ,0")))
2
_ (]Eugj;v ((X,,k —Eugj;vx,,k)h(al,...,a"))) (2.62)

2 2
<Eu§y (Xor — Bu§y Xou ) Euy (h(o,..,0™)
where the last inequality is the Cauchy—Schwarz inequality applied to the joint expectation

with respect to the Gibbs measure and the disorder. Obviously the first factor in the last

line is equal to

E (us,n(X2) — [up,n(Xo)]) + E(ps,n(Xs) — Eup,n (X))

d? d d ? (2.63)
=3~ 2Edﬂ2FﬂN—|—Nﬂ E(dﬂFﬂN ]EdﬂFﬂN>

We know that Fjg n converges as N 1 oo and that the limit is infinitely differentiable for all
B > 0, except at 8 = v/2In2; moreover, —Fpg y is convex in 3. Then standard results of

convex analysis imply that

2 2

li —E—F, = ——— lim EF 2.64
HJ?TT.}p( RE B,N) a7 i EFeN (2.64)
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which is finite for all 8 # v/2In2. Thus, the first term in (2.63) will vanish when divided
by N. To see that the coefficient of NV of the second term gives a vanishing contribution, we
use the general fact that if the variance of family of a convex (or concave) functions tends
to zero, then the same is true for its derivative, except possibly on a countable set of values
of their argument. In Theorem 2.2 we have more than established that the variance of Fg n

tends to zero, and hence the result of the Lemma is proven. {
If we combine Proposition 2.8, Lemma 2.9, and Lemma 2.10 we arrive immediately at

Proposition 2.11:For all but a countable set of values 3, for any bounded function h :
Sy = R,

. ®n+1 1 n
#TIEO Eug'y (GRG0} Iy

(2.65)

1 n n $
- ;EH?,A;H h(ct,...,0™) Z Tpi—pr + Eﬂ?’zjv(]:[a.lza.z) =0
1£k

Together with the fact that the product Gibbs measures are concentrated only on the sets
where the overlaps take values 0 and 1, (2.65) permits to compute the distribution of all

higher overlaps in terms of the two-replica overlap. E.g., if we put

A, = Bpgn (o1 —g2—...mon) (2.66)

lim
N1oo
then (2.65) with h = T,1_,2—...—,» provides the recursion

-1 1 1—-A
An+1: nn An+;AnA2:A'n. (]—_ n 2)

- ﬁ (1 _1 _kA2> A, (2.67)

Note that we can use alternatively Theorem 2.4 to compute, for the non-trivial case 8 >

v2In2,
Bim B (T o) = / K g (dm)[m(1)]* " (2.68)

so that (2.67) implies a formula for the mean of the n-th moments of W,

['(n+1)I'(A2) (2.69)

E/W(dy,dw)w" =
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where Ay = E [ W(dy,dw)w?. This result has been obtained by a direct computation by
Ruelle ([Ru], Corollary 2.2), but its derivation via the Ghirlanda—Guerra identities shows a
way to approach this problem in a different manner that has the potential to give results in

more complicated situations.?

3. The Derrida models.

The reader of the previous chapter may think that that was ‘much ado about nothing’.
First, it was all about independent random variables, second, we used heavy tools to describe
structure that is in fact very simple. We will now move towards a class of models that have
been introduced 17 years ago by Derrida as “simplified” spin glass models. It turns out that
while these models exhibit structure that is as complex as (and in fact almost identical to
) in the Sherrington-Kirkpatrick type spin glasses, they can now be analysed with full rigor
whith the help of the tools I have explained in the previous section. The results of these
Section cover recent work with Irina Kurkova [BK1,BK2,BK3]. The purpose of this section
is to explain how the remarkable universal structures predicted by Parisi’s replica symmetry
breaking scheme arise as a limiting object in a spin glass model. For further analysis of the
limting object itself we refer to papers by Bolthausen and Sznitman [BoSz| and Bertoin and
LeGall [BeLe].

3.1. Definitions and basics.

As we have already pointed out in the introduction, from a mathematial point of view it is
natural to embed the SK models in the general setting of models based on Gaussian processes
on the hypercubes Sy. The special feature of the SK models in that context is then that

their covariance depends only on the “overlap”, Rn(o,0') = %(a, a').

Derrida introduced annother class of models that he called Generalized Random Energy
models (GREM) that can be constructed in full analogy to the SK class by introducing

annother function charcterizing distance that is to replace the overlap Ry, namely
. A 1 . . !
dist(o,0’) = N (min(i : 03 # 0;) — 1) (3.1)
To be precise, dist is an ultrametric valuation on the set Sy. An ultrametric distance would

be given e.g. by a function D(o,0’) = exp(—dist(o,0’)). We will now consider centered

2More generally, one may dervive recursion formulas for more general moments of Ruelle’s process that
show that the identies (2.65) determine completely the process of Ruelle in terms of the two-overlap distri-
bution function.



Simple spin glasses 19

Gaussian processes X, on Sy those covariance is given as
cov (X,, Xo) = EX, X, = A(dist(o,0")) (3.2)

where A is a probability distribution function on the interval [0, 1].

In fact, the original models of Derrida correspond to the special case when A is the distri-
bution function of a random variable that takes only finitely many values, i.e. when A is a
monotone increasing step function with finitely many steps. However, Derrida also considered

limits when the number of these steps tend to infinty.

The choice of the distance dist has a number of remarkable effect that help to make these
models truely solvable. In particular, it allows to introduce a continuous time martingale
X, (t) those marginal at ¢ = 1 coincides with X,. This process is simply a Gaussian process

on Sy X [0,1] with covariance
cov (X, (t), Xo (') =t At' A A(dist(o,0")) (3.3)

In particular, this gives rise to the integral representation of X, as

Xo = /1 dX,(t) (3.4)
0
where the increments satisfy
EdX, (t)dX o (t') = dtdt'6(t — ') T4 ( qist(o,0))>t (3.5)
If A is a step function, this gives rise to a representation in the form

Xa' = \/a_lXa'l +\/a_2Xo-10'2 +---+ \/anXa'10'2...0'n7 ifa:UIUZ---Una (36)

i In

where a; is the increment of A at the step point ¢; = ijl o> and o = 0102 ...0, with

o; € {—1,1}nelN,

Note that in the SK class, neither is it possible to construct such a represntation, nor are

step functions allowed as covariances.

The representation (3.6) allows explicit computations of the partition function. This was
done first by Derrida and Gardner [DG1], and in full generality (and with full rigor) by

Cappocaccia, Cassandro, and Picco [CaCaPi]. While we will not reproduce this calculations
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(they are in spirit not very different from those in the REM and make use of (3.6) to set up

a recursive scheme), we will state their result in a particularly useful form.

Let us denote the convex hull of the function A(z) by A(z). We will also need the left-
derivative of this function, @(z) = limejg e~ 1(A(z) — A(z — €)) which exists for all values of
z € (0,1].

Theorem 3.1: Whenever A is a step function with finitely many steps, the free energy

Fgn = % InZg N converges almost surely to the non-random limit Fg given by

Fy = v2In23 /0 " Az + %(1 _ A(z(8)) (3.7)

where

25 = sup (x|d(x) > 2;?) (3.8)

It is also very easy to derive from (3.7) an explicit fromula for the distance-distribution

function
fan(z) = u?’%v(dist(a, o) <z) (3.9)

This just makes use of the fact that

Proposition 3.2:For any value of 8, and any i =1,...,n,
B2 Fyn = —B*VaiEfsn (g < ) (3.10)
d‘\/a’l B,N — ai; BN q q; °

with the convention that g9 = 0 and g, = 1.
This implies in fact immediately that

Theorem 3.3: Whenever A is a step function with finitely many steps, the fa N converges

in mean to the limiting function fg with

B~V2In2/\/a(z), ifr<=zp
1

_ (3.11)
) ifc > g

Efaa) - {

It is obvious that if A4, is a sequence of step functions that converges to a limiting function
A, then the sequences of free energies and distance distributions converge. It in not very

difficult to show [BK3] that these limits then are in fact the free energies and distribution
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functions for the corresponding models with arbirtrary A. The results obtained here coincide
with those of Derrida and Gardner, and in particular reproduce exactly the findings of the
replica method [DG2].

3.2. Gibbs measures and point processes.

As in the case of the REM, Ruelle [Ru] had proposed an effective model for the thermo-
dynamic limit of the GREM in terms of Poisson processes, or rather “Poisson cascades”, i.e.
nested sequences of Poisson processes, without establishing a rigorous relation between the
two models. Ruelle also constructed limiting objects of his processes when the number of
“levels” (i.e. n) tends to infinity. The connection between Ruelle’s models and the GREMs
with finitely many levels have been made rigorous in [BK1]. While again in spirit the proofs

are similar to those in the REM, they require considerably more computations.

However, it is quite remarkable that via the Ghirlanda-Guerra relations, one can construct
(at least in principle) the thermodynamic limit on the level of the measures on the mass
distribution without much explicit computation even in the case of continuous A. To prove
these inequalities, we have to impose a “non-criticality” conditions on A: For any x where
the convex hull of A is not stricltly convex (i.e. where A is linear in neighborhood of z,

A(z) < A(z)). We assume this condition to hold in the remainder of the article.

It will be convenient to introduce here the analogues of the random measures K defined

above where the overlap Ry is replaced by the distance dist. I.e. we set now

mq(z) = pg n(o : dist(c’,0) > z) (3.12)
and
Ken= Y #a.N(0)0m, () (3.13)
cESN

In the case when A is a step function with finitely many steps, one can control the convergence
of Kg,n to a limit rather explicitely. We will present the corresponding results, without proof,

below.

In the general case, this will no longer be possible. However, the Ghirlanda-Guerra iden-
tities will allow again to prove the existence of the limit and to decribe its properties. The

key point to notice is that to prove convergence, it is enough to prove convergence of all



22 Section 8

expressions of the form

q1

E( ( / Kpn (dm)m(Ag )™ .. .m(Aul)“n)

. ( / Kp.n (dm)m(Au)™ . .m(A,,-,)”n)qj

where A;; C [0,1] and g¢;,7;; are integers.

(3.14)

The key is thus to establish again the Ghirlanda-Guerra identities. In this the process

X, (t) plays a crucial role. It will be convenient to use the time-changed process

Y, (t) = X, (A(t)) (3.15)

Theorem 3.4: For any n € N and any z € [0,1]\zg,

},lTrf}o Budwt (h(ah, .., 0™) T a(dist(o*,0m+1))>2)
1 n n i
_ ;ENE’N‘FI h((]‘l7 sy O ) Z ][A( dist(o”“,a’l))Zz + EN??]V(]IA( dist(a’l,az))Zm) =0

£k
(3.16)

Proof: As a first step we need the following lemma.

Lemma 3.5: Let h: S} — R be any bounded function of n spins. For any t € (0, 1]
1

VN
. (3.17)
= ﬂEﬂ?SV+1 (h(ala s 70n) (Z ]Idist(a'k,trl)zt - n][dist(a'k,a"+1)2t)> dA(t)
=1

Eud’y (dY,x(t)h(c',...,0™))

Proof: The proof makes use of the Gaussian integration by parts formula

EdX, (t)f ( / dX,,:(s)) — B ( / dX,,:(s)) / EdX, ()dX, (s)
= Ef' (Xor) T g(aist(o,07))>2dt
where f is any differentiable function. Note that the left hand side of (3.17) can be written

(3.18)

as
n

N~Y2EE 1 _gnh(c",...,0™)dY,e(t) [[ f (Xo) (3.19)
=1
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with
eﬂ\/NX,l(l)
f(Xg1) = o BV (3.20)
Using (3.18) gives readily
1 n n
\/—NEM?’N (dY e (t)h(a",...,0™))
(3.21)

= BEuSH (h(ala -y (Z T 4( dist(o*,01))>t — n]IA(dist(crk,a""'l))Zt)) dt
=1
Realizing that A(dist(c,0’)) < A(t) is equivalent to dist(c,o’) < t whenever A(t) is not
constant then yields the claim of the lemma. {
The more important step of the proof is contained in the next lemma.

Lemma 3.6: Let h be as in the previous lemma. Except possibly when t = zg,

lim \/LN Eu8" ((Yor () — You(t — (o™, .., 0™))
(3.22)

—Eug N (You(t) — Yo (t —€)) IE,U?’?V (h(c*,...,0™)) ‘ =0

Proof: Let us write
(]Eug’j;v (Yor(t) = You(t — €)) — Bupg N (You (t) — You (t — €)) Eugy (B(o?,. .. ,a")))2
_ (Eugj;v (((Yak (8) = Yyu(t — €)) — Eu& (YVou(t) — You(t — €))A(a?, ... ,a")))2

< By ((Vor(t) — You(t = ) — Buly (Vor (1) — Yon(t — ) By (h(o”, ., 0))’
(3.23)

where the last inequality is the Cauchy—Schwarz inequality applied to the joint expectation
with respect to the Gibbs measure and the disorder. Obviously the first factor in the last

line is equal to

Epp,n (Yor (1) = You(t — €)) — pp v (Yor () = You(t — €)))”

\ (3.24)
+E(ppn(Yor(t) — You(t — €)) — Bug n (Yor () — You(t — €)))

Now let us introduce the deformed process

X = X, +u(Yo(t) — Yo(t —€)) (3.25)
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If we denote by Fg y the free energy corresponding to this deformed process, the last line of

(3.24) can be represented as

-2 d2 u -2 d u d u ?
At this point we need a concentration result on the free energy which we state here without

proof.
Lemma 3.7: For any 3, and any covariance distribution A, for any € >0

r2N
P[|Fp,n —EFg,n| > 7] < 2exp ~o5 (3.27)

Fg n converges as N 1 oo and that the limit is infinitely differentiable as a function of
u, except possibly when zg = t, provided A satisfies the non-criticality condition; moreover,
—Fg y is convex in the variable u. This can be seen by explicit computation using the
expression (3.7) for the free energy. Then a standard result of convex analysis (see [Ro],

Theorem 25.7) imply that

. d? z .

lu}\rllTsogp(—EWFg’N) = o2 ]171%20 EFg (3.28)
which is finite at zero except possibly if g = ¢. Thus, the first term in (2.63) will vanish
when divided by N. To see that the coefficient of N of the second term gives a vanishing
contribution, we use the general fact that if the variance of family of a convex (or concave)
functions tends to zero, then the same is true for its derivative, provided the second derivative

of the expectation is bounded (see e.g. Lemma 8.9 in [BG], or Proposition 4.3 in [T2]).

But by Lemma 3.7 the variance of Fjg y tends to zero, and (3.28) implies that ]E%FZ,‘, N
is bounded for large enough N whenever %EFE is finite. Hence the result of the lemma is

proven.

To prove the theorem we use integrate (3.17) and then use (3.22) on the left hand side.
This gives

. 1 n n n
lim Bugy (Yor(t) — Y (t — €) Bug’y (h(ct,...,0™))

t n
- /6/ <EM?3V+1 (h(017 s ,o.n) (Z ]Idist(a"‘,o")z.s - n]Idist(trk,o'""'l)Zs) )) dA(S)> =0
t—e 1=1

(3.29)
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Finally, we use once more (3.17) with n = 1 to express Eug”’}v (Yor(t) — Yy (t — €)) in terms
of the two replica distribution. The final result follows by trivial algebraic manipulations and

the fact that € is arbitrary. ¢

Following [GG], we now define the family of measures QS\?) on the space [0, 1]*(»=1)/2,

Q'\ (dist € A) = Eu$"; [dist € A (3.30)

where dist denotes the vector of replica distances whose components are dist(o?,0*), 1 <
I < k < n. Denote by By the sigma-algebra generated by the first k(k — 1)/2 coordinates,
and let A be a Borel set in [0, 1].

Theorem 3.8: The family of measures @E,"J)V converge to limiting measures QE,") for all
finite n, as N 1 oo. Moreover, these measures are uniquely determined by the distance

distribution functions fg. They satisfy the identities

(n+1) B = L@ )+ Ly o n .
Qs (dinsr € AlBa) = Q7 ( )+nZ@g (dk,1 € A[Bn) (3.31)

£k

for any Borel set A.

Proof: Choosing h as the indicator function of any desired event in Bj, one sees that
(3.16) implies (3.31). This actually implies that in the limit N 1 oo, the family of measures
Q(ﬁ"])\, is entirely determined by the two-replica distribution function. While this may not
appear obvious, it follows when taking into account the ultrametric property of the function
dist. This is most easily seen by realising that the prescription of the mutual distances
between k spin configurations amounts to prescribing a tree (start all k£ configurations at the
origin and continue on top of each other as long as the coordinates coincide, then branch
of). To determine the full tree of k£ + 1 configurations, it is sufficient to know the overlap
of configuration o(**t1) with the configuration it has maximal overlap with, since then all
overlaps with all other configurations are determined. But the corresponding probabilities

can be computed recursively via (3.31).
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d(1,2)=d(1,3)=d(1,k)=d(Lk+1)

d(2,k)=d(3,k) =d(2,k+1)=d(3,k+1)

_d(kk+1)
1 2 3 ok k+1
o o o o

Thedistance d(k,k+1) determinesall other distances
d(j.k+1)

Now we have already seen that Qg}v = Efﬂ ~ converges. Therefore the relation (3.31)
implies the convergence of all distributions Qﬁ > and proves the relation (3.31) hold for the

limiting measures. {

Now it is clear that all expressions of the form (2.38) (with Ry replaced by dist) can be
expressed in terms of the measures Qgcgv for k sufficiently large (we leave this as an exercise
for the reader to write down). Thus, Theorem 3.8 implies in turn the convergence of the

process Kg n to a limit Kg.

A remarkable feature takes place again if we are only interested in the marginal process
Kpg(t) for fixed ¢t. This process is a simple point process on [0, 1] and is fully determined in

terms of the moments
-F ?3\# +ri+i (dlst(a Gt > ¢, dist(o!, 09 t) > 8. (3.32)

, dist(o?, gd Tttty 5 ¢ dist(of, g T ) > t)

This restricted family of moments satisfies via the Ghirlanda-Guerra identities exactly the

same recursion as in the case of the REM. This implies:

Theorem 3.9: Assume that t is such that Eu?2(dist(a, o') <t) =1/a > 0. Then the

random measure Kg(t) is a Dirichlet-Poisson process (see e.g. [Ru,T1]) with parameter o .



Simple spin glasses 27

In fact much more is true. We can consider the processes on arbitrary finite dimensional
marginals, i.e.

Kﬁ’N(tl, ... ,tm) = Z llfﬁ,N(U)émg(tl),...,mt,(tm) (3.33)
cESN

for 0 < t; < +++ < ty, < 1. The point is that this process is entirely determined by the
expressions (3.14) with the A;; all of the form (¢;, 1] for ¢; in the fixed set of values t1,. .., t,,.
This in turn implies that the process is determined by the multi-replica distribution functions
Qg"])\, restricted to the discrete set of events {dist(o%,07) > ¢}. Since these numbers are
totally determined through the Ghirlanda-Guerra identities, they are identically to those
obtained in a GREM with m levels, i.e. a function A having steps at the values ¢;, those
two-replica distribution function takes the same values as that of the model with continuous

A at the points t; and is constant between those values. In fact

Theorem 3.10: Let 0 < t; < -+ <ty < gmaz(0) be points of increase of Efg. Consider a
GREM with k levels and parameters a;,a; and temperature 8 that satisfylna;/In2 = t;—t;_1,

ﬁ_l\/ 2Ina;/a; =Efs(t;). Then

; — (k)
zlrlTIgoKﬂ’N(tl""’tk)_Kﬁ (3.34)

Thus, if the ¢; are chosen in such a way that for all of them Efg(¢;) > 0, then we can
construct an explicit representation of the limiting marginal process Kg(t1,...,tm) in terms
of a Poisson-cascade process via the corresponding formulae in the associated m-level GREM.
This construction is done in the next section. In this sense we obtain an explicit description
of the limiting mass distribution function Kg.

3.2. Probability cascades in the GREM with finitely many levels.

Let us now briefly explain the structure of the process Kz in the case when A, is a step
function with steps of hight a; at the values ¢; = lf‘n‘;" ;

that the linear interpolation of this function is convex, and that all points ¢; belong to the

To avoid complications, we will assume

extremal set of the convex hull.

Remark: I will not give the proofs here, that are somewhat involved, in particular when
the general case is considered. They can be found in [BK1, BK2]. The following summary
of results is in fact just a cooked down version of the complete analysis of the GREM with

finitely many hierarchies given there. Note that we draw heavily on the representation (3.6).
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We introduce the function uis o,n (), € R as

T InN +Inlna + Indn
Una.nN(T) = V2InalN + — . 3.35
tn ¥ (@) vV2InaN 2v/2InaN ( )

Note that then for all ¢,
Z‘S sy Koy oi_yop) 7 P (3.36)

where P; are all independent Poisson point processes on R with intensity measure e™*dzx.

Then under the assumptions on A, the following result holds:

Theorem 3.11: The following point processes on RF

Py —25 (Ve >Z SRR ELLD DLV SN Sl

Ok

converge weakly to point process P*) on R¥ | which is characterised by the following generating

functions:

Fa,x..xa,(2) = IEZZM 1{’1@1}"'2% LICTNS!
LXeX A =

= fl,A1(f2,A2 (f3,A3 Tt (fk—l,Ak—l(fk7Ak(z))) e ))7 |Z| <1

(3.37)

where fi a,(2) = eK"(z_l)("‘_ai_"‘_bi), A; = (a4, b)) with a;,b; e R orb; =00, 1=1,2,... ,k.

Moreover the following independence properties of the counting random variables of the pro-
cess Pk EEI ]I{mleA’}"'sz ][{mkeAi}’ corresponding to the intervals A{ X ee X Ai,
Aﬁ—[ b’) i=1,2,... ,k, k> 1, hold true:
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i) If the first components of these intervals are disjoint, i.e. a} < bl < a? <b? < ...aF < bk,
1 1 1 1 1 1

then these r.v. are independent.

(i) If the first I—1 components of these intervals coincide and the lth components are disjoint,
ie. Al =...=AFfori=1,...,1—1and a} < b <a? <b? <---aF < b, then these
r.v. are conditionally independent under condition that >, Woien,y Dy, Laiiien_y}
18 fized.

Remark: This theorem was proven for k = 2 in [GMP].

We would like to clarify an intuitive construction of the process P. If k = 1, this is just a
Poisson point process on R with intensity measure K;e~*dz. To construct P on R? for k = 2

we place the process P for kK = 1 on the axis of the first coordinate and through each of its
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points draw a straight line parallel to the axis of the second coordinate. Then we put on each
of these lines independently a Poisson point process with intensity measure Koe™*dzx. These
points on R? form the process P with £ = 2. Whenever P is constructed for k — 1, we place it
on the plane of the first £ — 1 coordinates and through each of its points draw a straight line
parallel to the axis of the nth coordinate. On each of these lines we put after independently
a Poisson point process with intensity measure Ke~®dx. These points constitute P on RF.
Indeed, the projection of P*) in R* to the plane of the first £ coordinates is distributed as
the process P in R¢.

We are now also in the position to formulate a result on the extreme order statistics of the

random variables X,.
Let v = v/ai/v2Ina;, | = 1,2,... ,n. By our assumption on 4, 73 > 72 > -+ > 7,.
Define the function Uj n by

n

Usn(z) =Y (\/2Nal Ind — N~Y2y,(In(N(In o)) + In 47) /2) FN"Y2p (3.38)

=1

and the point process

En= > Sy (x.)- (3.39)
oce{-1,1}V

Then the following holds true:

Theorem 3.12: The point process En converges weakly, as N 1 oo, to the point process
on R

£= / PO (dar, ..., de,)os (3.40)
n =1

where P™) is the Poisson cascade introduced in Theorem 3.11.

Next we state a convergence result for the partition function that is analogous to the

low-temperature result Theorem 2.2, (v), in the REM.

One would be tempted to believe that the process that is relevant for the extremal process
will again be the right one to choose. However, this will be the case only for large enough £.

However, only the first [(3) levels of the process participate, where
I(8) = max{l > 1: 3%y, > 1} (3.41)

and [(B8) = 0 if A%y, < 1.
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The following theorem yields the fluctuations of the partition function and connects the
GREM to Ruelle’s processes.

Theorem 3.13: With the definitions above, under our hypothesis on A,

ezg‘z”f (~BN\/2a; na; +B7;[In(N In a;)+1n 4x]/2+N In ;) — N S iyt ,B2a,-/2Zﬁ N
’ (3.42)
2) C(,B) ePrizs +ﬂ"/2z2+-..+,5’7l(ﬁ)ml(5)P(l(ﬂ)) (diEl o d.’L‘l(g))
RUB)

This integral is over the process P(B) on RB) constructed in Theorem 8.11 . The constant
C(B) satisfies

CB)=1, if Bwngp+ <1, (3.43)
and
o) = P( N (Va@ i Zupyes + -+ V@i Zi <0))

1(8)+1<i<I(8)+1
(aypy+1tteid/aygypr=tnlayg) i)/ 1n dyg) 11

(3.44)
if By =1
where Zygy+1,--- > Zig)+1 are independent standard Gaussian r.v. Moreover
In ZN,ﬂ — Eln ZN,ﬂ 2) In C(ﬂ)/ 6ﬂ71m1+ﬁ72m2+'"+ﬂ7l(ﬂ)ml(ﬁ)P(dwl R d.’cl(ﬁ))
RL(B)
Let us introduce the sets
Bi(o) = {d’ € Sy : dist(a,0") > qi} (3.45)
We define point processes W'y on (0,1]™ given by
m pp,N (o)
Wiy = 1) ... o)) ——————— 3.46
B,N Zf: (kg,n (B1(a))se 18,5 (B ( )))NB,N (Bm(0)) ( )
as well as their projection on the last coordinate,
RN = Z 0us n (B (o)) __Henle) (3.47)
’ —~ pp,N (Bm(0))

It is easy to see that the processes Wg'y satisty

1
Wi (dws, ..., dw,,) = / Wt (dwn, ., o, du 1) 2 (3.48)
0

m
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where the integration is of course over the last coordinate w,,+1. Note that these processes
will in general not all converge, but will do so only when for some o, pg(Bn(0)) is strictly
positive. From our experience with the partition function, it is clear that this will be the case

precisely when m < [(8). In fact, we will prove that

Theorem 3.14: If m < (B), the point process Wiy on (0,1]™ converges weakly to the
point process Wg' whose atoms w(i) are given in terms of the atoms (z1(),...,zm(i)) of the

point process P(™) by

(w1(3), - - -, wm(2))

_ (f P (dy)d(ys — 21(i)e’ 0V PN (dy)d(ys — 21(3)) . .- (ym — Tm (1))
- TP (dy)ePOrw) e TP (dy)ePtr)

(3.49)

whose atoms are the last

(m) (m)

and the point processes Ry converge to the point process Ry

component of the atoms in (3.49).

Of course the most complete object we can reasonably study is the process 17\7\5 = Wé(ﬂ ),

Analogously, we will set ﬁﬁ = Rgﬂ ),

The point processes Wém)

takes values on vectors whose components form increasing
sequences in (0,1]. Moreover, these atoms are naturally clustered in a hierarchical way.
These processes were introduced by Ruelle [Ru] and called probability cascades. Finally, our
last theorem gives the explicit construction of the limiting process Kz in the case of the step-

function A via Ruelle’s probability cascades.

Theorem 3.15: The process Kg,n converges to the process Kg which is supported on

measures 0,, indezed by points w = (w(1),... ,w(l(B))) € Wﬂ. More precisely

Ks= [ Wy(dw)w(l(B))dmw):

R(B)

where the measure m(w) is given by the formula

m(w) = (1 —w1)do + (w1 — W2)0lm oy /12 + *** + Wi(B)Fln(a -y s))/ 1n 2
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