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Abstract

We investigate general control problems governed by ordinary di�erential

systems involving hysteresis operators. Our main hypotheses are of continuity

type, and we discuss existence results, discretization methods, and approxi-

mation approaches.

1 Introduction

Many engineering systems contain nonlinear functional dependencies of hysteresis

type. There are several books devoted to the study of such models, and we just

quote the recent monographs by Visintin [16] and by Brokate and Sprekels [6] for a

comprehensive introduction into the topic. Concerning the control of such systems

basic references are the book of Brokate [2] and his articles [3], [4], [5], and the works

of Smith [14], Banks, Smith and Wang [1].

In this paper, we analyze a controlled ordinary di�erential system with hysteresis:

z
0 = f(t; z; y; u) in [0; T ] ; (1.1)

z(0) = z0 2 IR
N
; (1.2)

y(t) = W (S[z])(t) ; S[z](t) = g(z(t)) in [0; T ] ; (1.3)

u(t) 2 U in [0; T ] : (1.4)

Here f : [0; T ]� IR
N� IR� IR

m ! IR
N and g : IRN ! IR are continuous mappings,

U � IR
m is a closed bounded convex set, and W : C[0; T ]! C[0; T ] is a hysteresis

operator, i.e. rate-independent and with the Volterra property, Sprekels and Brokate

[6]. More assumptions will be added as necessity appears.

To the relations (1.1)�(1.4) the following cost functional is associated

J(u) =

TZ
0

L (y(t); z(t); u(t)) dt ; (1.5)

with L : IR � IR
N � U ! IR continuous in y; z , convex and lower semicontinuous

with respect to u .

Comparing with the study of Brokate [2], one di�erence is that we allow g or S

to be nonlinear. Moreover, many of the results that we shall establish will use just
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continuity and will not require local Lipschitz assumptions on the data. Our investi-

gation has the main motivation to provide a theoretically founded way towards the

approximation and the numerical analysis of the control problem (1.1)�(1.5). In this

respect, it seems that only the paper by Brokate [3] reports numerical experiments

in a control problem with hysteresis. While in that work the optimality conditions

are solved numerically, our approach uses a complete discretization of (1.1)�(1.5)

and the computation of descent directions via the Clarke [8] generalized gradient.

This is due to the lack of di�erentiability of hysteresis operators and still allows the

application of bundle-type algorithms, Strodiot and Nguyen [15], Lemaréchal [11].

In Section 2 we give the formulation of the control problem, and we establish the ex-

istence of optimal controls under general assumptions. Section 3 introduces the fully

discretized optimization problem and studies existence and approximation questions.

It is shown that the mapping control 7! state is Lipschitz under the given assump-

tions on f; g;W .

Section 4 uses an alternative formulation of the problem to analyze the variations

and the directional derivatives. An algorithm and examples are also indicated.

The notations for spaces, norms, scalar products are standard.

2 Existence

We start with a Peano-type result for the Cauchy problem with hysteresis (1.1)�(1.3).

We omit �rst the dependence on u , and we assume that f : [0; T ] � IR
N � IR !

IR
N
; g : IRN ! IR , and W : C[0; T ] ! C[0; T ] are continuous mappings and

operators. Notice that W remains causal, i.e.

v1j[0;t] = v2j[0;t] ) W (v1)(t) = W (v2)(t) ; t 2 [0; T ] ; (2.1)

and rate-independent, i.e.:

W (v Æ ')(t) = W (v)('(t)) ; 8 v 2 C[0; T ] ; (2.2)

for any admissible time transformation ' : [0; T ]! [0; T ] , continuous, nondecreas-

ing, and onto.

Theorem 2.1 Under the above assumptions, the initial value problem (1:1)� (1:3)

has at least one global solution z 2 C
1([0; T ]; IRN) if the following sublinearity

hypotheses are ful�lled:

jW (w)jC[0;T ] � � + �jwjC[0;T ] ; 8 w 2 C[0; T ] ; (2.3)

jf(t; z; y)jIRN � � + �jzjIRN + 
jyj ; (2.4)

jg(y)j � � + 
jyj ; �; �; 
 2 IR+ : (2.5)
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Proof. For the positive numbers a; b and c = �+�q ; q = maxfjg(z)j; jz� z0jIRN �

bg , consider the set

� = f0 � t � a ; jz � z0jIRN � b ; jyj � cg :

Denote by M = maxfjf(t; z; y)jIRN ; (t; z; y) 2 �g and Æ = inf(a; b

M
;
c

M
) .

Clearly f is uniformly continuous in � , that is jf(t; z; y)�f(~t; ~z; ~y)jIRN < " for any

" > 0 if (t; z; y); (~t; ~z; ~y) 2 � and jt � ~tj < �(") ; jz � ~zjIRN < �(") ; jy � ~yj < �(") .

Denote by h" = inf

�
�(");

�(")

M

�
and take the division tj = jh"; j 2 IN , of [0; Æ] .

We consider the polygonal functions (the Picard iterations with Euler polygonal

lines):

'"(t) = '"(tj) + (t� tj) f(tj; '"(tj); y"(tj)); tj < t � tj+1 ;

'"(0) = z0 ; (2.6)

y"(tj) = Wf (S('")) (tj) :

Due to (2.1), relation (2.6) makes sense. Recall that

Wf (S('")) (tj) = ~Wf (S(z0); S ('"(t1)) ; : : : ; S ('"(tj))) (2.7)

with Wf : C[0; T ]! IR being the generating functional of W , Brokate and Sprekels

[6]. Here, S is the set of all �nite strings of real numbers and ~Wf the application

induced on S by Wf (see Section 3).

Note that (2.2) plays an essential role in this construction. We have the following

inequality:

j'"(tj+1) � z0jIRN � j'"(tj) � z0jIRN + h" jf (tj; '"(tj); y"(tj))j

� j'"(tj) � z0jIRN + M h" : (2.8)

Here, we argue by induction: Assuming that (tj; '"(tj); y"(tj)) 2 � and j'"(tj) �

z0jIRN � j M h" , relation (2.8) gives that j'"(tj+1)� z0j � (j + 1)M h" �M Æ � b .

By (2.3), (2.7), and (2.8), we have

jy"(tj)j � � + � max
0�i�j

jS ('"(ti))jIRN � � + � q = c : (2.9)

Inequalities (2.8), (2.9) show that (tj; '"(tj); y"(tj)) 2 � in all steps (2.6) such that

j h" 2 [0; Æ] . Then, jf(tj; '"(tj); y"(tj))jIRN � M , and (2.6) gives directly that

j'"(t)� '"(s)jIRN � M jt� sj � �(") ; 8 " > 0 ; 8 t; s 2 [0; Æ] : (2.10)

Then '" ! ' uniformly in [0; Æ] , on a subsequence, and ' 2 C([0; Æ]; IRN) . If

~y"(t) = W (S('"))(t) , then ~y"(tj) = y"(tj) and ~y" ! y = W (S(')) in C[0; Æ] due

to the continuity of S;W and on the same subsequence.
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We also have that

'
0

"(t) = f(tj; '"(tj); y"(tj)) if t 2 ]tj; tj+1[ (2.11)

while, by (2.10),

jf (tj; '"(tj); y"(tj)) � f (t; '"(t); y"(t))jIRN � " ; t 2 [tj; tj+1] (2.12)

by the uniform continuity of f in � .

For any � > 0 , again the uniform continuity of f in � gives that

jf (t; '"(t); y"(tj)) � f (t; '"(t); ~y"(t))jIRN � � ; t 2 [tj; tj+1] (2.13)

if " < "(�) , due to the equicontinuity of the sequence f~y"g and to ~y"(tj) = y"(tj) .

Relations (2.11)�(2.13) allow to pass to the limit and to see that '; y give a solution

of (1.1)�(1.3) in [0; Æ] and that ' 2 C
1[0; Æ] .

Under assumptions (2.3)�(2.5), it is well-known that the local solution is in fact a

global one, Brokate and Sprekels [6], p. 126. 2

Remark. By Theorem 2.1, uniqueness may be not true for the state system (1.1)�

(1.3). The control problem (1.1)�(1.5) has to be understood as a minimization over

pairs: to each control we associate all the possible states. This is well-known in

the setting of optimal control theory of ODEs, Cesari [7], or in the case of singular

control problems for PDEs, Lions [12].

We assume that the continuity of L(�; �; u) : IR�IR
N ! IR+ is uniform with respect

to u 2 U . The mapping f is a�ne with respect to u , i.e.

f(t; z; y; u) = f1(t; z; y) + f2(t; z; y) u (2.14)

where f1 : [0; T ]� IR
N � IR! IR

N
; f2 : [0; T ]� IR

N � IR! IR
m�N are continuous

sublinear mappings (like in (2.4)).

As U is bounded, convex and closed, the admissible controls are in L
1([0; T ]; IRm) ,

and the mapping (2.14) will not satisfy the continuity requirements of Theorem

2.1 (with respect to t , via u ). However, the argument from its proof can be

repeated when u is continuous, and a simple approximation argument may be used

for u 2 L
1([0; T ]; IRm) . The state z 2 W

1;1([0; T ]; IRN) in this case.

Theorem 2.2 Under the above assumptions, the optimal control problem (1:1) �

(1:5) has at least one optimal triplet [u�; z�; y�] 2 L
1([0; T ];U)�W 1;1([0; T ]; IRN)�

C[0; T ] .
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Proof. Let [un; zn; yn] be a minimizing sequence. Then fung is bounded in

L
1([0; T ]; IRm) . By (2.4), (2.14) and (1.1), (1.2), we have

jzn(t̂)jIRN � jz0jIRN +

t̂Z
0

jf (t; zn(t); yn(t); un(t))jIRN dt

� jz0jIRN + c

t̂Z
0

(� + �jzn(t)jIRN + 
jyn(t)j) dt :

We may consider the truncated functions ~yn; ~zn to the interval [0; t] , and we still

have ~yn(t) = yn(t) = W (S(~zn))(t) . Then (2.3) applies, and we get:

jzn(t̂)jIRN � jz0jIRN + c

t̂Z
0

 
� + �jzn(t)jIRN + � + � sup

s2[0;t]

jzn(s)jIRN

!
dt

� jz0jIRN + 2 c � t̂ + 2 c �

t̂Z
0

sup
s2[0;t]

jzn(s)jIRN dt :

Consequently, by taking the supremum in both sides of the inequality above, we

obtain

sup
t2[0;t̂]

jzn(t)jIRN � jz0jIRN + 2 c � T + 2 c �

t̂Z
0

sup
s2[0;t]

jzn(s)jIRN dt ;

and Gronwall's lemma shows that fzng is bounded in C([0; T ]; IRN) . By (1.1),

(1.2), (2.14) we see that fzng is bounded in W
1;1([0; T ]; IRN) . And (2.3), (2.5),

(1.3) give that fyng is bounded in C[0; T ] .

We denote un ! �u 2 U weakly� in L
1([0; T ]; IRm) and zn ! �z in C([0; T ]; IRN) ,

on a subsequence. Then, the continuity of W;S gives that yn ! �y in C[0; T ] with

�y = W (S(�z)) .

Moreover, (2.4) and (2.14), together with the Lebesgue theorem, ensures that

t̂Z
0

f(t; zn(t); yn(t); un(t)) dt!

t̂Z
0

f(t; �z(t); �y(t); �u(t)) dt

which shows that [�u; �z; �y] satis�es (1.1)�(1.4), i.e. it is admissible for the control

problem.

Notice that����
Z T

0

L(zn(t); yn(t); un(t)) dt �

Z T

0

L(�z(t); �y(t); un(t)) dt

����! 0
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as the continuity of L(�; �; un) is uniform with respect to un . We also have that

lim inf
n!1

TZ
0

L(�z(t); �y(t); un(t)) dt �

TZ
0

L(�z(t); �y(t); �u(t)) dt

by the convexity and lower semicontinuity with respect to u of L and the weak�

convergence of un .

The two last convergence properties show that [�u; �z; �y] is optimal for the problem

(1.1)�(1.5), and the proof is �nished. 2

3 Discretization

Consider an equidistant partition ftigi=0;k of [0; T ] of step-size �t > 0 . The

discretized control problem is

Min

(
k+1X
j=1

L(yj; zj; uj)�t

)
(Pk)

subject to ui+1 2 U ; i = 0; k and

zi+1 = zi + �t f(ti+1; zi+1; yi+1; ui+1) ; (3.1)

yi+1 = ~Wf (S(z0); S(z1); : : : ; S(zi+1)) : (3.2)

Here, ~Wf (s) = Wf(�A(s)) ; 8 s 2 S , the set of all �nite strings of real numbers, and

z0 is given. The application �A(s) is the piecewise linear interpolation operator

with equidistant nodes in [0; T ] corresponding to the number of components of

s 2 S , and Wf is the generating functional associated to W , Brokate and Sprekels

[6]. The de�nition of ~Wf is essentially based on (2.2). We have the following result.

Proposition 3.1 If f; g; ~Wf are continuous in their arguments and satisfy (2:3)�

(2:5), then for every fui+1g0;k 2 U
k+1 , the equations (3:1); (3:2) have at least one

solution fzi+1g0;k 2 [IRN ]k+1
; fyi+1g0;k 2 IR

k+1 .

Proof. The argument is iterative, for every i . Assuming the solution de�ned at

level i is known, then zi+1 2 IR
N and yi+1 2 IR are obtained as a �xed point of

the continuous application (in �nite dimensional spaces) de�ned by the right-hand

side of (3.1).

If Bi+1 is a �big� closed ball around 0 , in IR
N , containing z0; z1; : : : ; zi in the

interior of 1
2
Bi+1 , then (2.3)�(2.5) show that zi + �t f(ti+1; z; y; ui+1) 2 Bi+1 for

�t �small� if z 2 Bi+1 and y = ~Wf(S(z0); S(z1); : : : ; S(zi); S(z)) . Then, Brouwer's

�xed point theorem, Kelley [10], provides at least one solution zi+1 of (3.1), and

yi+1 = ~Wf(S(z0); S(z1); : : : ; S(zi); S(zi+1)) .
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The important remark in this argument is that, for z 2 Bi+1 , then jzjIRN � ri+1

(the radius), and (2.3)�(2.5) generate a constant � > 0 , independent of i , such

that jf(ti+1; z; y; ui+1)jIRN � �ri+1 . Then �t = T

k
< (2�)�1 will be a satisfactory

choice of �t in the above argument, which is also independent of i . 2

Corollary 3.2 Under the above assumptions, if L is convex and lower semicon-

tinuous in u and continuous in y; z uniformly with respect to u , then the discrete

control problem (Pk) has at least one optimal n-tuple [(ukj ); (z
k
j ); (y

k
j )]j=1;k+1 in

U
k+1 � (IRN)k+1 � IR

k+1 .

The argument is similar to that used in the proof of Theorem 2.2, and we omit it.

Obviously fuki g are bounded in IR
m for any k and for i = 1; k + 1 . We examine

the boundedness properties of fzki g ; fy
k
i g .

By (2.4), (3.1), and the boundedness of U , we get

jz
k
i+1jIRN � jz

k
i jIRN + C�t

�
1 + jz

k
i+1jIRN + jy

k
i+1j
�
: (3.3)

We also have, by (3.2), (2.3), (2.5), that

jy
k
i+1j � C

�
1 + max

0�j�i+1
jz
k
j jIRN

�
: (3.4)

Combining (3.3) and (3.4), and taking the maximum with respect to the indices, we

obtain

max
0�j�i+1

jz
k
j jIRN � max

0�j�i
jz
k
j jIRN + C�t

�
1 + 2 max

0�j�i+1
jz
k
j jIRN

�
: (3.5)

Here C is an �absolute� constant depending just on �; �; 
 from (2.3)�(2.5) and on

the bound of fuki g in IR
m .

By summing (2.5) with respect to i , we can infer that

max
0�j�i+1

jz
k
j jIRN �

iX
l=0

C�t

�
1 + 2 max

0�j�l+1
jz
k
j jIRN

�
: (3.6)

If �t is �small�, the discrete Gronwall inequality shows that fzki g are bounded in

IR
N with respect to k and to i = 0; k + 1 . Inequality (3.4) gives the same for fyki g

in IR .

Let us now construct the functions 'k as in the proof of Theorem 2.1. In partic-

ular, we have:

'
0

k(t) = f (ti+1; 'k(ti+1); yk(ti+1); uk(ti+1)) ; t 2 ]ti+1; ti+2] : (3.7)

The mapping yk(t) = W (S('k))(t) and clearly f'kg is bounded in W
1;1([0; T ]; IRN);

fykg is bounded in C[0; T ] , and uk (piecewise constant interpolation of u
k
i ) is

bounded in L
1([0; T ]; IRm) .
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We thus have 'k ! '̂ uniformly in C([0; T ]; IRN) , on a subsequence. By the

continuity of S and of W , we get yk ! ŷ = W (S '̂) in C[0; T ] . We also may

assume uk ! û , on the same subsequence, weakly� in L
1([0; T ]; IRm) .

Now, compute the di�erence

D = f (t; 'k(t); uk(t)) � f (ti+1; 'k(ti+1); yk(ti+1); uk(ti+1)) ; t 2 ]ti+1; ti+2] ;

and take into account that uk(t) � uk(ti+1) in this interval, and (2.14). The uniform

continuity of f1; f2 and the above uniform convergences show that jDj � " if k is

big enough. One can pass to the limit to see that '̂; ŷ; û is an admissible pair for

the original control problem, i.e. it satis�es (1.1)�(1.4). We also have:

Theorem 3.3 The triplet [û; '̂; ŷ] is optimal for the problem (1:1)� (1:5).

Proof. The admissibility of [û; '̂; ŷ] is established above. The optimality of [û; '̂; ŷ]

can be obtained by considering [u�; y�; z�] as given byTheorem 2.2 and discretizing

u
� (or some regularization of it). Denoting this by u

�
k , the discrete cost correspond-

ing to it in (Pk) will be greater or equal to the one associated to uk . One can pass

to the limit in the corresponding equations and in this inequality, which ends the

proof. 2

Lemma 3.4 If W : C[0; T ] ! C[0; T ] is Lipschitz of rank C > 0 and s1 =

(v0; v1; : : : ; vl) ; s2 = (w0; w1; : : : ; wl) 2 S have the same number of components,

then ��� ~Wf (v0; v1; : : : ; vl) � ~Wf (w0; w1; : : : ; wl)

��� � C max
0�j�l

jvj � wjj : (3.8)

Proof. ��� ~Wf(v0; : : : ; vl) � ~Wf (w0; : : : ; wl)

��� = jWf (�A(s1)) � Wf (�A(s2))j

= jW (�A(s1))(T ) � W (�A(s2))(T )j � C j�A(s1) � �A(s2)jC[0;T ]

� C max
0�j�l

jvj � wjj :

2

Remark. Under regularity/Lipschitz assumptions on f; g; L , Lemma 3.4 shows

that the functional dependence from fuig 2 U
k+1 to the cost is a Lipschitzian

dependence. Thus, the Clarke [8] generalized gradient may be used to write the

optimality conditions for (Pk) and to devise descent algorithms. More will be said

about this below.

Proposition 3.5 Assume that f; g are real Lipschitz mappings and that W is

a Lipschitz operator in C[0; T ] . Then the correspondence fuig 7! fzig de�ned by

(3:1); (3:2) is Lipschitz from (IRm)k+1 to (IRN)k+1 .

Proof. Consider another control vector flig � U
k+1 , and denote by fwig the

solution of (3.1), and by xi = ~Wf (S(z0); S(w1); : : : ; S(wi)) , corresponding to flig

and to the same initial condition z0 .

8



Then we have ����zi+1 � zi

�t
�

wi+1 � wi

�t

����
IRN

= jf(ti+1; zi+1; yi+1; ui+1) � f(ti+1; wi+1; xi+1; li+1)jIRN (3.9)

� C fjzi+1 � wi+1jIRN + jui+1 � li+1jIRm + jyi+1 � xi+1jg ;

jyi+1 � xi+1j �

��� ~Wf (S(z0); S(z1); : : : ; S(zi+1))

� ~Wf (S(z0); S(w1); : : : ; S(wi+1))

��� � C max
1�j�i+1

jzj � wjjIRN ; (3.10)

due to Lemma 3.4 and to the Lipschitz assumptions on f; g .

We can rewrite (3.9), (3.10) as

jzi+1 � wi+1jIRN � jzi � wijIRN

+C�t

�
jzi+1 � wi+1jIRN + jui+1 � li+1jIRm + max

1�j�i+1
jzj � wjjIRN

�
:

Acting as in the proof of Theorem 3.3 (see (3.5)), we get the desired Lipschitz

dependence via the discrete Gronwall inequality and with respect to the l
1 �nite

dimensional norm. Since all the norms are equivalent in �nite dimensional spaces,

the proof is �nished. 2

Remark. If the di�erentiable mapping ~S : (IRN)i+1 ! IR
i+1

; ~S(z0; z1; : : : ; zi+1) =

(S(z0); S(z1); : : : ; S(zi+1)) has a surjective Jacobian, then the chain rule is valid for

the Clarke generalized gradient �@� of the composed mapping ~Wf( ~S) , Clarke et al.

[9], Theorem 3.2:

@( ~Wf Æ
~S)( � ) =

h
~S 0( � )

i�
@ ~Wf ( ~S( � )) ; (3.11)

and one can write the equation in variations for (3.1), (3.2) and the �rst-order

optimality conditions for (Pk).

4 Approximation

In this section, in order to �x ideas, we shall assume that the mapping L is quadratic

and independent of y . We shall perform a further approximation of the problem

(Pk) by the penalization of (3.2) into the cost. We do not regularize the hystere-

sis operator W , as in Brokate [2]. Roughly speaking, we shall interpret y as a

supplementary/arti�cial control, and (3.2) as a mixed control-state constraint.

Since in the theory of hysteresis operators, Brokate and Sprekels [6], the piecewise

monotonicity of mappings plays an important role, our penalization method uses

just the positive part function, ( � )+ , which is monotone.
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Therefore, we introduce the penalized cost functional

Min

(
1

2

k+1X
j=1

jzj � zd(tj)j
2
IRN (tj+1 � tj) +

1

2

k+1X
j=1

jujj
2
IRm(tj+1 � tj)

(4.1)

+
1

"
max

j=1;k+1

��
yj �

~Wf (S(z0); : : : ; S(zj))
�
+
;
�
~Wf (S(z0); : : : ; S(zj)) � yj

�
+

��

subject to uj 2 U ; yj 2 IR , (3.1), and with z0 given as an initial condition.

The approximation properties of the penalized problem (4.1) with respect to (Pk),

when "! 0 , are standard, and we do not discuss this here.

Moreover, under usual di�erentiability and Lipschitz assumptions on f in (3.1) the

mapping fyig 2 IR
k+1

; fuig 2 (IRm)k+1 7! fzig 2 (IRN)k+1 is di�erentiable and

Lipschitz for the corresponding �nite dimensional norms.

Consequently, we may view (4.1) as the minimization of a Lipschitzian real mapping

( ~Wf is just Lipschitz), depending on fuig and fyig , and under the constraint

ui 2 U , convex, closed, bounded subset in IR
m .

We have already seen that the Clarke generalized gradient of ~Wf( ~S( � )) may be

computed via the chain rule (3.11). This may be done directly with respect to

fuig and fyig , since the dependence (3.1) of fzig on these variables, denoted as

A : IRk+1 � (IRm)k+1 ! (IRN)k+1 , may be assumed C
1 , and having a surjective

Jacobian.

Let us denote shortly by C = ~Wf Æ
~S Æ A : IRk+1 � (IRm)k ! IR , the superposition

Lipschitzian mapping. It is to be noticed that the composition of C with ( � )+ ,

appearing in (4.1), does not ful�l the assumptions of the chain rules indicated in

Clarke et al. [9], Ch. 2.4. In particular, the mapping C is not regular, in general

(i.e. the generalized Clarke directional derivative may not coincide with the usual

directional derivative). However, the mapping ( � )+ is regular (since it is convex),

has positive gradients and, clearly, a very simple structure. A direct computation

may be used to establish the following result.

Proposition 4.1 If yi � C(fuig; fyig) > 0 , and if [fvig; fxig] is some variation

of [fuig; fyig] , respectively, then

lim sup
[f~uig; f~yig] ! [fuig; fyig]

� # 0

(~yi+ �xi � C ([f~uig; f~yig]+ �[fvig; fxig]))+� (~yi� C (f~uig; f~yig))+
�

= lim sup
[f~uig; f~yig] ! [fuig; fyig]

� # 0

~yi + �xi � C([f~uig; f~yig] + �[fvig; fxig])� ~yi + C (f~uig; f~yig)

�
:

If yi � C(fuig; fyig) < 0 , the above lim sup is null.

Remark. By Clarke et al. [9], p. 79, if ~S and A are C
1 with surjective Jacobians,
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then the last lim sup in Proposition 4.1 coincides with

lim sup
w ! ~S(A(fuig; fyig))

� # 0

2
4� ~Wf

�
w + �( ~S Æ A)0(fvig; fxig)

�
� ~Wf (w)

�

3
5 + xi : (4.2)

Here, ( ~S ÆA)0 denotes the Jacobi matrix of the composed mapping. Relation (4.2)

and Proposition 4.1 indicate how to compute the Clarke generalized directional

derivative of the cost functional (4.1). For the max-operation appearing in (4.1),

one has to take the maximum of the lim sup computed as above.

The main example that we consider concerns the case when W is the so-called play

operator. We introduce the real mapping (for some given r > 0 )

fr(v; w) = maxfv � r ; minfv + r ; wgg ; 8 v; w 2 IR : (4.3)

Taking into account the discretized problems (3.2) or (4.1), we de�ne directly the

mapping ~Wf on S . This can be done inductively, Brokate and Sprekels [6], p. 39:

~Wf(v0) = fr(v0; w) ; 8 v0 2 IR ; (4.4)

~Wf(v0; : : : ; vi) = fr(vi; ~Wf(v0; : : : ; vi�1)) ; 8 v0; : : : ; vi 2 IR : (4.5)

Here w 2 IR is �xed (one can take w = 0 ) and has the signi�cance of an initial (or

memory) condition imposed on the operator ~Wf .

Proposition 4.2 The nonlinear functional ~Wf is piecewise linear on IR
i , for any

given i .

This is an immediate consequence of (4.3)�(4.5). We underline that piecewise linear

functionals are neither regular in the sense of Clarke [8], nor weakly semismooth in

the sense of Mi�in [13]. This shows the di�culties related to optimization problems

involving hysteresis operators, even in the simple case of the play operator.

However, Proposition 4.2 and (3.11) show that it is possible to compute numeri-

cally the Clarke generalized gradient @ ~Wf ( ~S ÆA( � )) , in any point. The observation

is that @ ~Wf ( � ) is piecewise constant in IR
i , for any i . Therefore, a �nite number

of operations will su�ce to compute the vectors whose closed convex hull gives the

generalized gradient, in any point of interest.

It is known that d( � ) = proj@ ~Wf ( ~SÆA( � ))f0g is a descent direction if it is nonzero,

Clarke [8]. This may be tested by the computations indicated in Proposition 4.1.

If it is zero, then a stationary point has been achieved.

The following conceptual algorithm may be used:

Algorithm 4.3

1. Let fuig; fyig be given.
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2. Compute the generating vectors of @J(fuig; fyig) .

3. Compute d .

4. If d = 0 , then STOP.

5. If d 6= 0 , then

[fuig; fyig]! [fuig; fyig]� � d ; � > 0 :

6. Compute J([fuig; fyig]� � d) .

7. GO TO 2.

Here J is the cost de�ned by (4.1). We note that in Step 5, a line search has to

be performed. In general, there is no convergence ensured for Algorithm 4.3 as

the weak semismoothness of J is not valid, Strodiot and Nguyen [15]. Therefore,

in practice, a number of steps has to be prescribed or some numerical convergence

tests have to be introduced.
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