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Abstract

We study a singularly perturbed scalar reaction-di�usion equation on a

bounded interval with a spatially inhomogeneous bistable nonlinearity. For

certain nonlinearities, which are piecewise constant in space on k subintervals,

it is possible to characterize all stationary solutions for small " by means

of sequences of k symbols, indicating the behavior of the solution in each

subinterval. Determining also Morse-indices and zero numbers of the equilibria

in terms of the symbol sequences, we are able to give a criterion for heteroclinic

connections and a description of the associated global attractor for all k.

1 Introduction

Scalar reaction di�usion equations on a bounded interval provide an interesting class

of in�nite dynamical systems, which still allows to obtain a detailed qualitative un-

derstanding of the dynamics. Due to standard theorems they give under appropriate

conditions rise to compact analytic semigroups, possessing a global attractor that

contains all solutions which are uniformly bounded for all times. Moreover there

have been a lot of investigations about stationary solutions, their stability and how

their nodal properties determine the heteroclinic connections in the attractor (see

[Pol02] and references there).

A particular interesting situation is the case where the e�ect of di�usion is very small

compared to the size of the reaction terms. This is modeled by a small parameter

" in front of the di�usion term. Some examples like the Chafee-Infante equation

[CI74] show that one must expect both the number of equilibria and the dimension

of the global attractor to become unbounded as " & 0. On the other hand, there

are situations where the dimension remains uniformly bounded, e.g. for viscous

conservation laws with dissipative source terms, see [Hä98].

In this paper, we want to investigate the interaction of small di�usion with spatial

inhomogeneities of the nonlinearity. To this end we study a special class of examples

of the form

ut = "
2
uxx + (1 � u

2)(u� a(x)); x 2 (0; 1) (1)

under Neumann boundary conditions ux(0) = ux(1) = 0, with a bistable nonlinearity

where the position of the unstable root �1 < a(x) < 1 may change in space.

It has been shown in [AMP87], that for small ", all stable stationary solutions stay

close to the stable roots �1 and 1 except for some transition layers, occurring at po-

sitions where a(x) = 0 and a0(x) 6= 0. In general, however, the number of stationary
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solutions, together with the dimension of some unstable manifolds becomes in�nite

for small " [ABF93]. Hence it is still impossible, to obtain a complete understanding

of the set of all stationary solutions and the attractor in the limit "& 0.

Salazar and Solà-Morales suggested in [SS01] to study the situation of piecewise

constant functions a(x), being alternatingly smaller and bigger than 0. This means

that a(x) = ci for x 2 [xi; xi+1), where 0 = x1 < x2 < : : : < xk < xk+1 = 1 is a given

partition of the unit interval. For de�niteness, we will always assume that ci �(�1)i >

0. Equation (1) with piecewise constant a(x) has �rst been considered by Rocha

[Ro88] who showed that for " su�ciently small there are exactly Fk stable stationary

solutions, where Fk is the k-th Fibonacci number. In [SS01] it has been shown

that for ci su�ciently distant from 0, the number of equilibria and the unstable

dimensions stay bounded in the limit " ! 0 (see Theorem 1 in [SS01]). Later,

together with Fiedler and Rocha, they proved in [FRSS01] some statements about

the number and stability of stationary solutions of (1).

Building on these results we propose a more algebraic framework which allows to

translate the information on the stationary solutions e�ciently into information on

the dynamics. We will give in Section 2 a characterization of all stationary pro�les,

using a description of transition layers and spikes by symbol sequences (Theorem

1). Then, in Section 3, we give an easy condition for heteroclinic connections of the

equilibria in terms of their symbolic description (Theorem 2). To this end, we recall

a general result about heteroclinic connections for such equations from [Wo00]. We

show that corresponding order relations, as they are used in [Wo00], can be de�ned

also for the symbol sequences. Moreover, the symbol sequences and their order

relations can be used to obtain explicitly the permutation of the equilibria. This

permutation is de�ned by the ordering of the stationary pro�les at both ends of the

interval [FuRo91]. It contains all information about nodal properties and can also

be used to determineMorse-indices and heteroclinic connections [FR96]. Finally, we

give in Section 4 a system of ordinary di�erential equations in k dimensions, which

reproduces the dynamics of the equation (1).

2 Describing stationary solutions by symbol sequen-

ces

Stationary solutions to (1) are given as solutions of the second order ODE boundary

value problem

"
2
u
00 + (1� u

2)(u� a(x)) = 0

u
0(0) = u

0(1) = 0

which can be written as a �rst order system for u = (u; v):

(
"u

0 = v

"v
0 = (u2 � 1)(u� a(x))

(2)
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ci = 0

v v v

ci < 0 ci > 0

u u u

Figure 1: The vector�eld for a(x) � ci

with boundary conditions

v(0) = v(1) = 0: (3)

For each subinterval [xi; xi+1], we can look at the phase portrait of this �rst order

system, which is di�erent for odd i, i.e. a(x) � ci < 0 and even i, i.e. a(x) � ci > 0:

There are always three equilibria (�1; 0), (ci; 0) and (1; 0). For ci < 0 there is a

homoclinic orbit attached to the hyperbolic equilibrium (�1; 0), while for ci > 0 the

homoclinic orbit is asymptotic to the other hyperbolic equilibrium (1; 0) (see Figure

2). For ci = 0 there exists a pair of heteroclinic orbits that connect (�1; 0) and

(1; 0). The size of the homoclinic orbits is measured by its diameter


(ci) =
2

3

�
3� jcij �

q
c
2
i + 3jcij

�
;

the distance between the asymptotic state and the point where the homoclinic in-

tersects the u-axis.

The linearization at the equilibrium to which the homoclinic orbit is asymptotic

possesses the real eigenvalues �
q
2(1 � jcij). The eigenvalues of the linearization at

the other hyperbolic equilibrium are �
q
2(1 + jcij).

Salazar and Solà-Morales have obtained su�cient conditions to assure a de�nite

limiting behavior for "! 0. We restate their result in our coordinates:

Proposition 2.1 ([SS01], Theorem 3) Assume that

ci � (�1)i > 0; (4)


(ci) + 
(ci+1) < 2 for i = 1; 2; : : : ; k � 1 (5)

and

(x2 � x1)
q
1� jc1j < (x3 � x2)

q
1 + jc2j;

(xi+1 � xi)
q
1 � jcij < (xi � xi�1)

q
1 + jci�1j for i = 3; : : : ; k:

9=
; (6)

Then for " small enough the number Nk of stationary solutions of (1) does not
depend on ". Nk satis�es the recursion relation Nk+1 = Nk + 2Nk�1 with N2 = 3,
N3 = 5. Moreover, the Morse index of any stationary solution does not exceed 2k.

Note that these conditions are satis�ed for example if all subintervals are of equal

length, and the ci just satisfy (4) and (5).
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�i = �1

i = 1 2 3 4 : : : k

�i = 1

�i = 0

Figure 2: Each symbol sequence in Sk corresponds to a directed path in this graph

2.1 Abstract symbol sequences

In this section we describe a set of �nite symbol sequences. Later, we show that

these symbol sequences can be identi�ed with the stationary solutions of (1), such

that each symbol describes the behavior of the stationary pro�le in one subinterval.

De�nition 2.2 The set Sk consists of sequences s := (�1; : : : ; �k) of symbols �i 2

f�1; 0; 1g satisfying the following rules:

� For odd i the symbol �i = 1 may be followed by any symbol �i+1 , whereas for
�i = �1 or 0, �i+1 has to be �1.

� For even i the symbol �i = �1 may be followed by any symbol �i+1 , whereas

for �i = +1 or 0, �i+1 has to be +1.

For any s = (�1; : : : ; �k) 2 Sk we denote with i(s) the number of zeroes contained in
this sequence.

In Figure 2 these transition rules are visualized by a directed graph. Now we de-

compose Sk into subsets

S
j

k = fs 2 Skj i(s) = jg:

The cardinalities of the sets Sj

k can be computed recursively:

Lemma 2.3 We have the recursions:

jSkj = jSk�1j+ 2jSk�2j (7)

jS0
k j = jS0

k�1j+ jS
0
k�2j (8)

jS i
kj = jS i

k�1j+ jS
i
k�2j+ jS

i�1
k�2j;

subject to the (arti�cial) initial values jS�1j = jS0j = jS0
�1j = jS0

0 j = 1 and jS i
�1j =

jS i
0j = 0 for i > 0.
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These recursions coincide with those, given in [FRSS01] for the numbers of station-

ary solutions with Morse index i in the case of k subintervals.

Proof: We proceed by induction. First, it is straightforward to check that the

arti�cial initial values give the correct values for k = 1 and k = 2. Assume now

that k is even and take an arbitrary sequence s = (�1; : : : ; �k) 2 Sk. Then for

�k = �1 the predecessor �k�1 is arbitrary, i.e. the sequence (�1; : : : ; �k�1) is arbi-

trary in Sk�1, giving the �rst term in (7). For �k = 0 or +1, the transition rule

requires �k�1 = �1, and only the sequence (�1; : : : ; �k�2) is arbitrary in Sk�2. Since

we can extend in two ways with �k = 0 or +1, we get the factor 2 in the second term

of (7). Not allowing the symbol 0 at all, leads to (8), where the factor 2 is missing.

If the number of symbols 0 is �xed to some value i, then �k = 0 and �k = �1 give

di�erent contributions jS i�1
k�2j and jS

i
k�2j since the remainder (�1; : : : ; �k�2) contains

the symbol 0 either i � 1 or i times, respectively. For odd k the same arguments

work, interchanging �1 and +1. 2

2.2 Stationary pro�les

We show now that the symbol sequences in Sk can be used to describe the stationary

pro�les in the case of k subintervals for su�ciently small ". With E"
k we denote the

set of stationary solutions to (1) in the case of k subintervals.

Theorem 1 Assume that the piecewise constant function a(x) satis�es (5) and (6).

Then there exists a "0 > 0 such that for 0 < " < "0 the following statements are
true:

(i) There is a one-to-one-correspondence between the stationary solutions in E
"
k

and the symbol sequences in Sk.

(ii) A stationary pro�le w 2 E
"
k is characterized by its corresponding symbol se-

quence s = (�1; : : : ; �k) in the following way: The i-th symbol �i describes
the behavior of w(x) in the i-th subinterval (xi; xi+1); �i = �1 corresponds to

w(x) � �1,whereas �i = 1 corresponds to w(x) � 1. The symbol �i = 0 is
associated with a spike-type or boundary-layer behavior in the corresponding

interval.

(iii) The Morse-index (dimension of the unstable manifold) for a stationary pro�le
w 2 E

"
k is given by the number i(s) of symbols 0 in the corresponding symbol

sequence s.

Recall that for x 2 (xi; xi+1), i.e. for a(x) � ci equation (2) de�nes a Hamilto-

nian system which possesses a homoclinic orbit �i asymptotic to the equilibrium

((�1)i; 0).

For i = 1; 2; : : : ; k, let W s
i and W

u
i be the stable and unstable manifold of the

hyperbolic equilibrium ((�1)i+1; 0), which is not contained in the closure of �i.
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Figure 3: Numerically computed stationary pro�les for two subintervals, " = 0:1,

a(x) = �1
2

Remark 2.4 W
u
i and W

s
i+1 intersect transversally, as can be checked from their

representation as level sets of the corresponding Hamiltonian systems.

It is easy to show that any solution of the boundary value problem (2), (3) must

satisfy u(x) 2 [�1; 1] for all x 2 [0; 1]. To see this, assume that u(x) = (u(x); v(x))

is a trajectory satisfying the left boundary condition v(0) = 0 and that u(�x) > 1 for

some �x. Then v(�x) > 0 since the region fu � 1; v � 0g is negatively invariant and

cannot be reached by a trajectory that starts from the u�axis. Similarly, the region

fu > 1; v > 0g is positively invariant which implies that the trajectory will never

reach the u�axis again and therefore cannot satisfy the right boundary condition.

The proof that u(x) � �1 is completely analogous.

In a next step we therefore describe all solutions of the system

"u
0 = v

"v
0 = (u2 � 1)(u� a(x))

for which u(x) remains in the interval [�1; 1] as long as x is in some subinterval

[xi�1; xi+1]. We do not aim at an optimal description of this set but rather prepare

the setting for the proof of Theorem 1.

Let Æ be small such that Æ�neighborhoods of adjacent homoclinic orbits do not

intersect, in other words,


(ci) + 
(ci+1) + 2Æ < 2

is satis�ed for i = 1; : : : ; k. Moreover, we require that Æ�neighborhoods of �i and

W
s
i do not intersect either. This can obviously be achieved by choosing Æ su�ciently

small. With such Æ, letHi be a Æ�neighborhood of the equilibriumwhich is contained

in the closure of the homoclinic �i and Ni a Æ�neighborhood of the intersection

between W
s
i and the strip f�1 � u � 1g. The notation indicates that Hi is

associated with the equilibriumwhere the homoclinic orbit is, while Ni contains the

equilibrium with no homoclinic orbit.

6



Lemma 2.5 Consider solutions of (2) where the ci satisfy (5). Then for " small

enough the following holds:

If a trajectory u(x) of (2) satis�es u(x) 2 [�1; 1] for all x 2 [xi�1; xi+1] for some

2 � i � k, then

u(xi) 2 Hi [ Ni:

Proof: We will determine separately the locus of �initial conditions� u(xi) for which

u(x) remains in [�1; 1] for x 2 [xi; xi+1] and the locus of �terminal conditions� for

which u(x) 2 [�1; 1] for x 2 [xi�1; xi]. The intersection of the two sets will be

contained in Hi [ Ni.

From the phase portrait for x 2 [xi; xi+1] we can immediately read o� that for "

small we have �1 � u(xi+1) � 1 only if

(i) the initial condition u(xi) is close to the stable manifolds of the two hyperbolic

equilibria, or

(ii) the initial condition u(xi) lies in the interior of the homoclinic orbit �i.

In particular, u(xi) must for " small lie in the union of W s
i and some neighborhood

of the interior of �i.

Similarly, the condition u(x) 2 [�1; 1] for x 2 [xi�1; xi] can only be satis�ed for small

" if u(xi) is close to one of the unstable manifolds or if u(xi) lies in the interior of

the homoclinic orbit �i�1. In other words, u(xi) has to lie in a neighborhood of

W
u
i�1 or in some neighborhood of the interior of �i�1.

For " su�ciently small, the intersection of the four sets consists of the union of Hi,

Hi�1 and a small neighborhood of the intersection W u
i�1 \W

s
i . In particular, u(xi)

is therefore contained in Hi [Ni. 2

We outline now our strategy for the proof of Theorem 1: Stationary solutions will be

found via a shooting method. Denote with �"
i;j the �ow of (2) from x = xi to x = xj.

We follow the image of the line fv = 0g, which corresponds to the left boundary

condition, under the �ow �"
1;j+1 for j = 1; : : : ; k. Due to the previous lemma we

know that we need only to keep track of those parts of the shooting curve which at

x = xi lie within Hi [ Ni. Preimages of these parts will be intervals I"�1;:::;�j . As is

suggested by this notation these intervals will connect the di�erential equation with

the symbol sequences introduced earlier.

To get a precise correspondence between neighborhoods and symbols it is necessary

to decompose Hi in two parts. The line fv = 0g divides Hi in two sets: Hs
i is the

part that has a non-empty intersection with W
s
i�1 and Hu

i
contains some part of

W
u
i�1.

The basic tool will be the following lemma that describes the evolution of curves

under the �ow �"
i;i+1 corresponding to one interval where a(x) � ci is constant.
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Lemma 2.6 (Transition Lemma) (i) Suppose that the curve C � Ni is a graph

over the u-axis which is transverse to the stable manifold W s
i . Then for " suf-

�ciently small,

� �"
i;i+1(C) \ Ni+1 is a graph over the u-axis transverse to W

s
i+1,

� �"
i;i+1(C) \ Hi+1 is a curve which is C

1-close to W
u
i
. Therefore, it

intersects the homoclinic orbit �i+1 transversally and is again a graph

over the u-axis .

Moreover, �"
i;i+1 preserves the order on C, that is, if (u1; v1) and (u2; v2) are

two points on C with u1 < u2 then the u-coordinate of �"
i;i+1(u1; v1) is smaller

than the u-coordinate of �"
i;i+1(u2; v2).

(ii) Suppose that the curve C is a graph over the u-axis in Hs
i which is transverse

to the homoclinic orbit �i. Then for " su�ciently small,

� �"
i;i+1(C) \ Hi+1 = ;,

� �"
i;i+1(C) \ Ni+1 has a connected component which is a graph over the

u-axis transverse to W
s
i+1.

Again, �"
i;i+1 preserves the order on C.

(iii) Suppose that the curve C is a graph over the u-axis in Hu
i which is C1�close

to W
u
i�1. Then for " su�ciently small

� �"
i;i+1(C) \ Hi+1 = ;,

� �"
i;i+1(C) \ Ni+1 is a graph over the u-axis transverse to W

s
i+1.

The order on C is reversed by �"
i;i+1.

Proof: (i) is an immediate consequence of the �-lemma which states that for "

small �"
i;i+1(C) will be expanded along the unstable manifold W

u
i . Because of the

transverse intersection of W u
i and W

s
i+1 the curve �"

i;i+1(C) will also be transverse

to W
s
i+1 in Ni+1. Similarly, since it is C1�close to W

u
i
in Hi+1 it is automatically

transverse to �i+1. That �
"
i;i+1 preserves the order on C can be seen from the phase

portrait, see Figure 4.

(ii) The �rst claim is a simple consequence of the fact that for a(x) � ci there are

no trajectories of (2) which lead from Hi to Hi+1. As before, the �-lemma implies

that a small part of C near the intersection with �i will be stretched to a curve that

is close to the unstable manifold of the equilibrium contained in the closure of �i.

This in turn implies that it will be transverse to W s
i+1 in Ni+1. Note that �

"
i;i+1 may

in general map other parts of the curve C also back to Hi. This �spiraling� inside of

�i, however, does not occur if the curve C is close enough to W u
i�1. In the situation

we are interested in, this closeness is achieved by condition (6) (see[SS01]).

(iii) Again, since no trajectories of (2) pass fromHi to Hi+1 the �rst claim is obvious.

8



W
s
i

C
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W
u
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Ni+1

W
s
i+1

ci

Ni

v

�i

W
u
i

Hi

Hi+1
u

Figure 4: E�ect of the �ow �"
i;i+1 on C in case (i)

This time we will use the �-lemma in a di�erent way than before. The stable mani-

fold W s
i+1 is transverse to the homoclinic orbit �i. (This can again be checked using

level sets of the corresponding Hamiltonians.) The backward evolution �i+1;i(W
s
i+1)

will therefore stretch along �i and along the other branch of the unstable manifold of

the equilibrium. In particular, it will have a unique point of transverse intersection

with the curve C. This in turn guarantees that �"
i;i+1(C) \Ni+1 consists of a curve

that is transverse to W s
i+1. Due to the excursion along �i the order on the curve is

reversed. 2

From this lemma it becomes clear that u(xi) 2 Ni corresponds to the symbol �i =

(�1)i+1 because in this case the trajectory will remain near the equilibrium without

the homoclinic orbit for the major part of the interval [xi; xi+1]. Similarly, u(xi) 2

Hs
i corresponds to the symbol �i = (�1)i and u(xi) 2 H

u
i corresponds to the symbol

�i = 0 alias an excursion along the homoclinic orbit �i.

In the next step we use the transition lemma to �nd trajectories of (2) with a given

itinerary s 2 Sk.

In addition to the sets Hi and Ni we choose a neighborhood U` of the intersection

between the homoclinic orbit �1 and the u-axis. We need this set to take care of the

Neumann boundary conditions which allows for solutions with a sharp boundary

layer at x = 0 corresponding to trajectories close to a homoclinic orbit in (2).
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Figure 5: E�ect of the �ow �"
i;i+1 on C in case (ii) and (iii)

Lemma 2.7 Assume that (4) is satis�ed by the constants ci. Then for any " suf-
�ciently small and s = (�1; �2; : : : ; �k) 2 Sk, there exists some subinterval I"s of the
u� axis such that solutions of (2) with u(0) 2 I

"
s have the following properties:

(i) u(xi) 2 Ni i� �i = (�1)i+1,

(ii) u(xi) 2 H
s
i i� �i = (�1)i,

(iii) u(0) 2 U` if �1 = 0 and u(xi) 2 H
u
i if �k = 0 for some 2 � i � k.

Proof: We construct a sequence of intervals I"�1;�2;:::;�j with the property that

I
"

�1;:::;�j;�j+1
� I

"

�1;�2;:::;�j
; (9)

and such that u(0) 2 I
"
�1;�2;:::;�j

implies that the conditions (i)-(iii) are satis�ed for

1 � i � j.

To begin with, we choose intervals

I
"

�1 := H1 \ fv = 0g;

I
"

0 := U` \ fv = 0g; (10)

I
"
1 := N1 \ fv = 0g

and study the evolution of these intervals under the �ow �"
1;2 to x = x2. By the

�-lemma, if " is small enough �1;2(I
"
�1) is a curve which is C1-close to the unstable
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manifold W
u(0) alias the homoclinic orbit �1 and which may spiral inside the ho-

moclinic orbit �1. Hence, �
"
1;2(I

"
�1) \N2 may consist of several components. As we

want to avoid too much spiraling, we take as I"
�1;�1 the preimage of the connected

component, containing the origin in �"
1;2(I

"
�1) \ N2.

Similarly, �"
1;2(I

"
0) \N2 may consist of several pieces and among the corresponding

preimages we take as I"0;�1 the component which contains the intersection of �1 with

the u-axis.

Lemma 2.6(i) tells us that �"
1;2(I

"
1) is a curve C

1-close to the unstable manifoldW u
1 .

This curve therefore intersects the sets N2 and H2 so that we can choose as I"1;�1,

I
"
1;0 and I

"
1;1 the preimage of the intersection with N2, H

u
2 and Hs

2, respectively.

From now on we proceed inductively and assume that all intervals I"�1;�2;:::;�j have

already been constructed for some j. Moreover, we assume that �"
1;j(I

"
�1;�2;:::;�j

) is

� a curve in Nj transverse to W
s
j if �j = (�1)j+1

� a curve in Hj close to W
u
j�1 if �j = (�1)j or �j = 0.

It is straightforward check that these assumptions are satis�ed for j = 2.

We distinguish now three cases:

1. �j = (�1)j+1

In this case �"
1;j(I

"
�1;�2;:::;�j

) is a curve in Nj. By Lemma 2.6 the image of this

curve under �"
j;j+1 intersects both Nj+1 and Hi+1. Choose I

"

�1;:::;�j;(�1)j
as the

preimage of the intersection with Nj+1, then �"
1;j+1(I

"

�1;:::;�j ;(�1)j
) is a curve

transverse to W s
j+1 as desired. The part which intersects Hj+1 is C1-close to

W
u
j . Choose as I"

�1;:::;�j;(�1)j
the preimage of the part which lies in Hs

j+1, and

as I"�1;:::;�j ;0 the preimage of the part which lies in Hu
j+1.

2. �j = (�1)j

By assumption, �"
1;j(I

"
�1;�2 ;:::;�j

) is a curve in Hs
j close to W

s
j�1 and therefore

transverse to th homoclinic orbit �j . From Lemma 2.6(ii) we know that the

image �"
1;j+1(I

"
�1;�2;:::;�j

) does not intersect Hj+1 but Nj+1. The preimage of

this intersection will be denoted with I
"

�1;�2;:::;�j;(�1)j
.

3. �j = 0

We have seen in Lemma 2.6(iii) that for " small there is a unique point on

I
"
�1;�2 ;:::;�j

that will be mapped to a point on W
s
j+1 under �"

j;j+1. Choose as

I
"
�1;�2 ;:::;�j;0

the preimage of the component of �"
j;j+1(I

"
�1;�2;:::;�j

) which contains

this point on W
s
j+1.

Inductively one can therefore �nd intervals which satisfy the conditions given above.

2
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We have not yet accounted for the right boundary condition although we have

already used all our information from the symbol sequences. We complete the proof

of Theorem 1 by showing that for each interval I"s there will be automatically one

point of intersection of �"
1;k+1(I

"
s ) with the u-axis. To this end, we introduce a

neighborhood Ur of the intersection between �k and the u-axis. This neighborhood

takes care of solutions with a sharp boundary layer at x = 1.

Proof of Theorem 1: Consider an arbitrary symbol sequence s = (�1; �2; : : : ; �k) 2

Sk. We will show that for " su�ciently small �"
1;k+1(I

"
s) has a point of intersection

with the u-axis. This intersection will correspond to a stationary solution in E
"
k.

Uniqueness will follow from the result of Salazar and Sola-Morales who determined

the exact number of stationary solutions under the assumptions (3)-(5).

For de�niteness, we discuss the case that k is even only. The case that k is odd

can be treated in a completely symmetric way. This assumption implies that in the

last interval [xk; xk+1] the homoclinic orbit �k is attached to u = 1. We have to

distinguish four cases:

Case 1: �k = �1

In this case, we know that �"
1;k(Is) is a curve in Nk which is transverse to W s

k . For "

small this curve will be stretched along W u
k according to the �-lemma. In particular

it will have a point of intersection with fv = 0g.

Case 2: �k = 1

Here �"
1;k(Is) is a curve in H

s
k close to W u

k�1 and transverse to the homoclinic orbit

�k. For " small this curve will be stretched along the unstable manifold of the equi-

librium u = 1 and will therefore have at least one intersection with fv = 0g.

Case 3: �k = 0

By Lemma 2.7 �"
1;k(Is) is a curve in H

u
k which is transverse to W s

k . By the �-lemma

this curve will be stretched along W
u
k
under the �ow �"

k;k+1 for " small enough.

Therefore �"
1;k+1(I

"
s ) = (�"

1;k Æ �
"
k;k+1)(I

"
s) will have an intersection with the u-axis

which corresponds to a hyperbolic stationary solution.

Uniqueness of stationary solutions with a given symbol sequence follows by referring

to Theorem 3 of [SS01]. It is obvious that solutions with di�erent symbol sequences

are distinct. In Lemma 2.3 we have shown how to determine the number of di�erent

symbol sequences jSkj recursively. It was shown in [SS01] that under the assumptions

(3)-(5) and for " small this is exactly the number of stationary solutions. This implies

that, under these hypotheses, we have found all stationary solutions. This proves

part (i) of Theorem 1.

Part (ii) follows from the considerations in the proof of Lemma 2.6. There we have

determined the way how trajectories pass from the neighborhoods Ni and Hi to

Ni+1 [ Hi+1.

For part (iii) note that the Morse index is exactly the number of clockwise half turns

of a tangent vector to the interval Is under the map �"
1;k+1 (see [FuRo91]). By our

considerations in Lemma 2.6 about the order-preservation along the curve under

�"
i;i+1 it is clear that the Morse index increases by 1 when the trajectory follows the

12



homoclinic loop �i and remains the same in all other cases. The Morse index of the

stationary solution can therefore be determined by counting the number of excur-

sions along homoclinic loops, i.e. by counting the number of zeroes in the associated

symbol sequence. 2

3 Heteroclinic connections in the attractor

In this section, we will prove an explicit criterion, deciding whether two equilibria

w; ~w 2 E
"
k
have a heteroclinic connection.

Recall that our choice of the nonlinearity in (1) satis�es a dissipativity condition,

providing a global compact semi�ow on the Banach space X � W
1;2((0; 1); IR).

This semi�ow possesses a global attractor A, i.e. a compact invariant set which at-

tracts bounded subsets of X and which is maximal with this properties (see [Hal88],

[BV92]). Moreover, due to the gradient structure of the system, the global attractor

contains only equilibria and their unstable manifolds, which consist of heteroclinic

connections. Stable and unstable manifolds always intersect transversely [An86].

Since we know from Proposition 2.1 that under the conditions (5), (6), su�ciently

small ", the equilibria do not change any more, we can describe the heteroclinic

connections in A" independent of ":

Theorem 2 Assume that the piecewise constant function a(x) satis�es (5) and (6)
and w; ~w are stationary solutions in E

"
k. Then there exists a "0 > 0 such that for

0 < " < "0 the following two statements are equivalent:

(i) There is a heteroclinic connection from w to ~w

(ii) If the two corresponding symbol sequences s = (�1; : : : �k) and ~s = (~�1; : : : ~�l)

di�er at any position i, that is �i 6= ~�i, then �i = 0.

Note that according to this theorem the equilibrium w connects exactly to those

equilibria ~w whose symbol sequence ~s can be obtained by replacing in the sequence

s symbols 0 by other symbols. Interpreting this according to Theorem 1, one can

see that any heteroclinic solution can be described as follows: In one or several

subintervals, where for t ! �1 a spike is located, this spike disappears and for

t ! 1 the pro�le becomes either close to constant 1 or 0 in the interior of the

corresponding subintervals. In all other subintervals the shape of the solution re-

mains nearly unchanged. This means that for small " on the attractor the motion

in di�erent subintervals becomes nearly decoupled and in each subinterval there is

a simple bistable dynamical behavior.

13



3.1 Determining heteroclinic connections by order structures

In order to prove Theorem 2, we want to apply now a general result on heteroclinic

connections to our speci�c situation:

It has been shown in [Wo00] that for scalar parabolic equations

ut = uxx + f(u; ux; x); ux(0; t) = ux(1; t) = 0; x 2 [0; 1] (11)

with a dissipative nonlinearity and hyperbolic equilibria, the heteroclinic connec-

tions in the attractor can be described in a way which is similar to scalar ordinary

di�erential equations. For those it is well known that two hyperbolic equilibria have

a heteroclinic connection, if and only if there is no third equilibrium in between.

Indeed, due to [Wo00] a corresponding theorem can be formulated also for scalar

parabolic equations, where, however, the underlying order structure has to be more

complicated in order to cover also multidimensional structures in the attractor. Since

nodal properties of the solutions play a central role in scalar parabolic equations,

they are used to de�ne the appropriate order relations. We recall here the basic

de�nitions from [Wo00].

De�nition 3.1 (i) For any x-pro�le w 2 C
1[0; 1], we denote with z(w) the num-

ber of strict sign changes (zero number) of w(x) in the interval [0; 1].

(ii) A pair w; ~w of stationary solutions to (11) with z(w � ~w) = n is called n-

ordered, and we write
w �n ~w;

if we have w(0) < ~w(0).

(iii) A n-ordered pair w �n ~w of stationary solutions to (11) is called adjacent, if
there is no third stationary solution ŵ with w �n ŵ �n ~w.

Proposition 3.2 ([Wo00], Theorem 2.4) Two hyperbolic equilibria solutions w
and ~w of (11) have a heteroclinic connection if and only if they are adjacent.

In order to apply Proposition 3.2 to our speci�c situation, we have to recover the

order of the stationary pro�les at x = 0 and the zero numbers for pairs of stationary

solutions. in terms of the corresponding symbol sequence in Sk. This information is

su�cient to obtain the order relations �n and hence the notion of adjacency, which

is according to Proposition 3.2 the criterion for heteroclinic connections.

De�nition 3.3 On the set Sk, we de�ne recursively the total order � by the follow-

ing two rules:

(i) (�1; : : :) � (0; : : :) � (1; : : :)

14



(ii) (�1; �2; : : : �k) � (�1; ~�2; : : : ~�k),

(
(�2; : : : �k) � (~�2; : : : ~�k) and �1 6= 0

(~�2; : : : ~�k) � (�2; : : : �k) and �1 = 0

This means, to compare two sequences s = (�1; �2; : : : ; �k) and ~s = (~�1; ~�2; : : : ; ~�k),

one has to look at the �rst position i, where the two sequences di�er, i.e.

�i 6= ~�i; �j = ~�j for j < i:

The order of the sequences is then determined by the ordering of �i and ~�i. But

in contrast to usual lexicographic order, the number of symbols 0 appearing in the

�rst i � 1 identical symbols is taken into account: If this number is even, then

the sequences s and ~s are ordered in the same way as �i and ~�i (according to

�1 < 0 < 1). If this number is odd, the order of s and ~s is reversed with respect to

that of �i and ~�i.

Note that this de�nition can be applied to sequences of the symbols f�1; 0; 1g in-

dependent of the transition rules from De�nition 2.2. Especially, we can apply it to

the reversed symbol sequences

R(s) := (�k; : : : ; �1); s = (�1; : : : ; �k) 2 Sk:

Obviously, for reversed sequences R(s); s 2 Sk with even k, the transition rules for

odd and even i are interchanged.

Using the ordering of the reversed sequences, we can now de�ne a discrete counter-

part of the zero number:

De�nition 3.4 For a pair of sequences s = (�1; : : : ; �k) and ~s = (~�1; : : : ; ~�k) in Sk
we denote by t = (�1; : : : ; �k�1) and ~t = (~�1; : : : ; ~�k�1) the truncated sequences. The
discrete zero number zd(s� ~s) is then de�ned recursively by:

(i) zd(s � ~s) = zd(t � ~t), if R(s) and R(~s) are ordered in the same way as R(t)

and R(~t)

(ii) zd(s � ~s) = zd(t � ~t) + 1, if R(s) and R(~s) are ordered opposite to R(t) and
R(~t)

(iii) zd(s� ~s) = i(t), if t = ~t

For k = 2, the zero number for any pair of sequences is zero.

Note that although in the case k = 1 there will be no relation to the stationary

solutions of a corresponding PDE, we include this case in our de�nitions in order to

achieve a convenient description of the structural properties of the symbol sequences.

The following Lemma collects some basic properties of our recursive de�nition of the

zero number for symbol sequences:

Lemma 3.5 For two sequences s; ~s 2 Sk we have
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(i) zd(s� ~s) = zd(R(s) �R(~s))

(ii) s �n ~s()

(
R(s) �n R(~s); if n even

R(~s) �n R(s); if n odd

(iii) If zd(t� ~t) < zd(s� ~s), then �k�1 = ~�k�1

Proof: To prove statement (i), we �rst consider sequences s and ~s, such that �1 6= ~�1
and �k 6= ~�k, but �i = ~�i for all 1 < i < k. Computing for those sequences the zero

number zd(s� ~s) step by step, according to the recursion from De�nition 3.4, we get

a contribution +1 for all positions 1 < i < k with �i = ~�i = 0. These contributions

sum up to i(�2; : : : ; �k�1). Moreover, we get one more contribution +1, exactly if

(�1 � ~�1)(�k � ~�k) < 0 and i(�2; : : : ; �k�1) even

or

(�1 � ~�1)(�k � ~�k) > 0 and i(�2; : : : ; �k�1) odd:

Exactly the same is obviously true for the zero number of the reversed sequences

zd(R(s) � R(~s)). For an arbitrary pair of sequences s and ~s we observe, that

the zero number is given by summation over the zero numbers of all segments

(�i; �i+1; : : : ; �j), i < j which are of the form, described above. This formula is

obviously independent on the orientation of the sequences.

Statement (ii) follows inductively from De�nition 3.4: For k = 1, all zero numbers

are zero and s � ~s , R(s) � R(~s). Assuming the statement to be true for t 6= ~t,

both in Sk�1, we get it immediately for s and ~s, using the recursive de�nitions 3.4

(i), (ii). For t = ~t, it follows immediately from 3.4 (iii) and 3.3 (ii).

Statement (iii), �nally, is a consequence of the transition rules. Indeed, to obtain

R(s) � R(~s) for R(~t) � R(t), it is necessary to have

�k < ~�k or �k = ~�k = 0:

According to the transition rules, both is impossible if

~�k�1 < �k�1:

On the other hand, R(~t) � R(t) implies that ~�k�1 � �k�1. So, we must have

~�k�1 = �k�1. 2

In the following lemma, we prove that the above de�ned zero number and order

relation for symbol sequences indeed agree with their corresponding counterparts

for the stationary solutions.

Lemma 3.6 Assume that the piecewise constant function a(x) satis�es (5) and (6)

and " is su�ciently small (cf. Theorem 1). Then for any two stationary solutions
w; ~w 2 E

"
k and the corresponding symbol sequences s; ~s 2 Sk we have:
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(i) w(0) < ~w(0)() s � ~s

(ii) z(w � ~w) = zd(s� ~s)

Proof : To prove (i), we show that for su�ciently small ", the intervals of initial

conditions I"s and I
"
~s are ordered according to the order of s and ~s. Since for s 6= ~s, Is

and I~s are disjoint, there is an obvious notion for the order of these intervals of real

numbers. For k = 1, this follows immediately from (10). We proceed now by induc-

tion over k. If the sequences s and ~s di�er at any position i < k, then the ordering

of s and ~s is already determined by the order of the initial parts (�1; : : : ; �i) and

(~�1; : : : ; ~�i). By induction, the order for I"�1;:::;�i and I
"
~�1;:::;~�i

is the same. According

to (9), this ordering of the intervals carries over to I"s and I
"
~s .

It remains to treat the case, where �i = ~�i for all i < k. According to Lemma 2.6,

the image �1;k(I
"
�1;:::;�k�1

) is a graph over the u-axis. It contains the images

�1;k(I
"
�1;:::;�k�1 ;�1

); �1;k(I
"
�1;:::;�k�1;0

); �1;k(I
"
�1;:::;�k�1;1

);

ordered along the u-axis according to the last symbol. Tracing this ordering back

to the order of the intervals

I
"

�1;:::;�k�1;�1
; I

"

�1;:::;�k�1;0
; I

"

�1;:::;�k�1;1

inside the interval I"�1;:::;�k�1, we have to regard that according to Lemma 2.6 (iii),

the graph has been reversed i(�1; : : : ; �k�1) times while being mapped iteratively to

�1;k(I
"
�1;:::;�k�1

). This is exactly re�ected by our de�nition of the order relation � on

the set of symbol sequences.

To prove (ii), we proceed again by induction, assuming that the statement is true

for k�1: For any pair of sequences t; ~t 2 Sk�1 with corresponding stationary pro�les

u(x); ~u(x), we assume that

z(u(x)� ~u(x)) = zd(t� ~t): (12)

For k = 2 it is easy to check from the phase portrait, that z(u(x) � ~u(x)) = 0 for

any two stationary pro�les u(x); ~u(x) 2 E
"
2 (see Figure 3). According to De�nition

3.4 for k = 2 also zd(t� ~t) = 0 for all t; ~t 2 S2.

For given sequences s; ~s 2 Sk, we get the truncated sequences t; ~t 2 Sk�1. If t 6= ~t,

we can apply the induction hypothesis in the following way: For t; ~t, there exist

corresponding stationary pro�les wT (x); ~wT (x); x 2 [0; xk], satisfying Neumann

boundary conditions at 0 and xk, with zero number given by (12).

We will establish now a relation between z(wT (x)� ~wT (x)) and z(w(x)� ~w(x)) in

two steps: First, we restrict w(x) and ~w(x) to [0; xk] compare the zeroes there to

those of wT (x)� ~wT (x). Then, we account for the additional zeroes in the subinterval

[xk; 1].

To this end, we consider two trajectories

u�(x) = (u�(x); v�(x)); u�(x) = (u�(x); v�(x)); x 2 [0; xk]
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�k = 0

�k�1 = 0

�k = �1

�k�1 = �1

�k�1 = 1

�k = 1

Figure 6: Schematic picture at x = xk for k even. Left: bold lines indicate possible

locations of �0;k(It) and �0;k(I~t); points indicate corresponding locations of wT (xk)

and ~wT (xk). Right: segments of the preimage of fv = 0g (bold), intersecting �0;k(It)

and �0;k(I~t) (dotted lines) at w(xk) and ~w(xk) (points)

with initial condtions

u�(0) = � 2 I
"

t ; v�(0) = 0;

and

u�(0) = � 2 I
"
~t ; v�(0) = 0:

The zero number z(u�(x)�u�(x)) , x 2 [0; xk], is locally constant in � and �, unless

u�(xk) = u�(xk). At a point where u�(xk) = u�(xk), we have to regard whether

u�(xk) and u�(xk) move around each other clockwise, which leads to increasing

z(u��u�), or anti-clockwise, which leads to decreasing z(u�� u�) (see [FR96]). At

each such point the sign of u�(xk)� u�(xk) changes.

Note that not only wT (0) 2 I
"
t but also w(0) 2 I

"
s � I

"
t . Changing � monotonically

from wT (0) to w(0), the pro�le u�(x); changes from wT (x) to w(x). Then, changing

� monotonically from ~wT (0) to ~w(0), we move the pro�le u�(x); x 2 [1; xk] from

~wT (x) to ~w(x).

The values u�(xk) and u�(xk) are located on the curves �"
0;k(It) and �"

0;k(I~t), which

are close to the unstable manifold of one of the two �xed points, or to the homoclinic

loop �k. In Figure 6, we have drawn two instances of such curves for all choices of the

k � 1th symbol. For � and � varying as described above, we can observe in Figure

6 how the endpoints u�(xk) and u�(xk) move from wT (xk) and ~wT (xk) (left hand

side in the �gure) to w(xk) and ~w(xk) (right hand side in the �gure). The bold lines

in the left part show segments of the image of the u-axis under the backward �ow

�k+1;k in the kth subinterval. Each of the three segments corresponds to one possible

choice of the kth symbol. The order of points on the segments corresponding to �1

is the same as on the u-axis, whereas on the middle segment the order is reversed.

A zero of w(x)� ~w(x) in the interval [xk; 1] is accompanied with a di�erent sign of

w(xk)� ~w(xk) and w(1) � ~w(1). Obviously, there is at most one additional zero in

18



this subinterval.

From this con�guration, it is now easy to check that for wT (xk) < ~wT (xk), we get

z(w � ~w) = z(wT � ~wT )

exactly, if w(1) < ~w(1). If ~w(1) < w(1), we have

z(w � ~w) = z(wT � ~wT ) + 1:

Since the ordering of the endpoints corresponds to the ordering of the reversed

symbol sequences, this shows the coincidence of the zero number with its discrete

counterpart in the cases (i) and (ii) of De�nition 3.4

It remains to treat the case, where t = ~t, i.e �i = ~�i, for 1 � i < k and �k 6= ~�k. In

this case, both �1;k(I
"
s ) and �1;k(I

"
~s ) are contained in �1;k(I

"
t ). Due to the transition

rules we have �k�1 = (�1)k, and �1;k(I
"
t ) is close to W

u
k�1, which is a graph over

the u-axis. But for any two trajectories u�(x); u�(x) of (2) with initial conditions

�; � 2 I
"
t , we have

z(u�(x)� u�(x)) = i(�1; : : : ; �k�1): (13)

This follows from the fact according to Lemma 2.6 (iii) that the �ow �1;k reverses

the interval I"t exactly i(t) times. In the last subinterval x 2 [xk; xk+1], there are

no additional zeros. Since (13) coincides with De�nition 3.3 (iii), the lemma is true

also in this case. 2

Lemma 3.7 For any pair of symbol sequences s; ~s 2 Sk, s 6= ~s, the following two
statements are equivalent:

(i) s and ~s are adjacent and i(s) > i(~s)

(ii) For all i with �i 6= ~�i, we have �i = 0.

Proof : (i) implies (ii): To show this implication, we proceed as follows: We

assume that with a pair of two sequences from Sk, it is impossible to satisfy condition

(ii) for both choices of s; ~s from that pair. Then, we show by induction over k, that

the sequences cannot be adjacent. Having obtained in this way, that for a pair of

sequences, adjacency implies one of the two variants of condition (ii), we can use

the additional information i(s) > i(~s) from (i), to make the proper choice of s and

~s, and hence obtain that (i) implies (ii).

To prove the above assertion, we have to distinguish two cases. Moreover, we assume

for de�niteness, that s �n ~s.

Case 1: With the pair of truncated sequences t; ~t 2 Sk�1 it is impossible to satisfy

condition (ii) and t 6= ~t.

Then by induction they are not adjacent and hence there exists a sequence t̂ =

(�̂1; : : : ; �̂k�1), satisfying

t �m t̂ �m
~t; (14)
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with

m := zd(t� ~t) = zd(s� ~s) or zd(s� ~s)� 1:

This sequence t̂ 2 Sk�1 has now to be extended to ŝ 2 Sk by an additional symbol

�̂k, such that

zd(s� ŝ) = zd(~s� ŝ) = zd(s� ~s) = n: (15)

If this is possible, then we conclude that t � t̂ � ~t implies s � ŝ � ~s, which together

with (15) implies, that s and ~s are not adjacent, too.

We show now, how to choose �̂k: Using (14), Lemma 3.5 (ii) implies for m even that

R(t) � R(t̂) � R(~t): (16)

and hence

�k�1 � �̂k�1 � ~�k�1 (17)

For odd m the reversed inequalities are valid.

If n = m+ 1, Lemma 3.5 (iii) implies that �k�1 = ~�k�1. Due to (17), we get also

�̂k�1 = �k�1 = ~�k�1:

Moreover, n = m + 1 implies that either �k 6= ~�k or �k = ~�k = 0. In both cases,

the transition rules allow also for �̂k = 0. It is easy to check that this choice of �̂k
always satis�es (15).

If n = m, we choose �̂k 2 f�k; ~�kg n f0g. This set is nonempty, since �k = ~�k = 0

contradicts to n = m. Moreover, using (17), it is easy to check that there is always

such a choice, which satis�es the transition rules. Equation (15) is satis�ed for this

choice, since we get from (16) immediately

R(s) � R(ŝ) � R(~s);

which, together with (16), implies that no zero number changes occur by adding the

k-th symbol.

Case 2: t and ~t are equal, or satisfy condition (ii).

In this case, we look �rst at the reversed sequences (see Lemma 3.5). If they satisfy

the setting for Case 1, we are done. The only possibility, where this fails is, if

�1 = ~�k = 0

~�1 6= 0 6= �k

�i = ~�i for i = 2 : : : k � 1:

De�ning now

ŝ := (~�1; �2; : : : ; �k�1; �k);

one can check easily that

zd(s� ŝ) = zd(~s� ŝ) = zd(s� ~s) = i(�2; : : : ; �k�1)
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and either s � ŝ � ~s or ~s � ŝ � s. Hence there is no adjacency also in that case

and the assertion is proved.

(ii) implies (i): First, we show that for any pair of sequences s; ~s 2 Sk, condition

(ii) implies adjacency of s and ~s. We will prove this by showing inductively the

following assertion: If s; ~s 2 Sk, satisfy condition (ii), then for all ŝ 2 Sk with

s � ŝ � ~s; (18)

the quantity

Ds := zd(s� ŝ)� zd(~s� ŝ) (19)

is greater than zero. For de�niteness, we may assume s �n ~s.

First, note that for k = 1 there is no ŝ, satisfying (18), and hence the assertion

is trivially satis�ed. If the truncated sequences t; ~t are equal, then condition (ii)

implies also that there is no ŝ, satisfying (18). Hence we may assume in the sequel

that k > 1 and t 6= ~t. We distinguish now three cases:

Case 1: t 6= t̂ 6= ~t. Here, (18) implies

t � t̂ � ~t

and we can assume by induction that

Dt := zd(t� t̂)� zd(~t� t̂) > 0: (20)

From Lemma 3.5 (ii), we can conclude that exactly forDt even, one of the inequalities

R(t) � R(t̂) � R(~t) or R(~t) � R(t̂) � R(t) (21)

is true. Consequently, if (21) is satis�ed we get from (20) that Dt � 2. But since

jDt �Dsj � 1 (see De�nition 3.4), this proves our assertion in this case.

If (21) is not satis�ed, then Ds � Dt due to the following reason: To obtain Ds < Dt,

we need that zd(~s� ŝ) > zd(~t� t̂), whereas zd(s� ŝ) = zd(t� t̂). Moreover, if Ds = 0,

we obtain inequalities analogous to (21) for s; ŝ; ~s, which implies that

�k � �̂k � ~�k or ~�k � �̂k � �k:

Taking into account condition (ii), it follows that either �̂k = ~�k or �̂k = �k = 0.

But �̂k = ~�k is impossible since then zd(~s � ŝ) = zd(~t � t̂). Also �̂k = �k = 0 is

impossible, because it implies zd(s � ŝ) > zd(t � t̂). This �nishes the case where

t 6= t̂ 6= ~t.

Case 2: t̂ = t; t̂ 6= ~t. In this case, we can argue in a similar way as above. First,

we notice that

zd(s� ŝ) = i(t): (22)

Then, we show that

zd(~t� t) = zd(~t� t̂) < i(t): (23)
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Indeed, computing zd(~t � t) recursively according to De�nition 3.4, there is a con-

tribution +1, whenever �i = ~�i = 0. Further contributions +1 may occur only at

positions, where �i 6= ~�i, which implies �i = 0, according to condition (ii). Only at

the �rst position, where �i 6= ~�i, there is never a contribution to zd(~t � t). From

this, we can conclude (23), since the number of positions i = 1 : : : k�1 where �i = 0

is just i(t). Since

zd(~s� ŝ) � zd(~t� t̂) + 1;

it follows immediately from (22) and (23) that Ds � 0. To obtain Ds = 0, we would

need that zd(~s � ŝ) = zd(~t � t̂) + 1. According to De�nition 3.4, this implies that

~�k 6= �̂k. In contradiction to that, we obtain again inequalities analogous to (21) for

s; ŝ; ~s. As above, we conclude that either �̂k = ~�k or �̂k = �k = 0. But �̂k = �k is

excluded here, since it would imply ŝ = ~s.

Case 3: t̂ = ~t; t̂ 6= t. Here, we have by de�nition that

zd(ŝ� ~s) = i(~t:)

Due to condition (ii), at all positions i = 1 : : : k � 1, where ~�i = �̂i = 0, we have

�i = 0 as well, and hence

zd(t� ~t) = zd(t� t̂) � i(~t):

Hence Ds � 0, and Ds = 0 is only possible, if

zd(s� ŝ) = zd(t� t̂) = i(~t): (24)

Additionally, we conclude as above, that either �̂k = ~�k or �̂k = �k = 0. The �rst of

these possibilities contradicts to ŝ 6= ~s, and the latter one gives

zd(s� ŝ) = zd(t� t̂) + 1

in contradiction to (24). This �nishes the proof for this case. Hence the assertion

that Ds > 0 for all ŝ between s and ~s is proved. Since for s 6= ~s, (ii) implies obviously

that i(s) > i(~s), we get that (ii) implies (i), and the proof of Lemma 3.7 is �nished. 2

Proof of Theorem 2: First, we recall that due to the Morse-Smale property of the

system (see [An86]), a heteroclinic connection from w to ~w implies for the Morse-

indices

i(w) > i( ~w): (25)

Due to Proposition 3.2, the heteroclinic connection implies also adjacency of w and

~w. According to Lemma 3.6, this is equivalent to adjacency of the corresponding

symbol sequences s and ~s. Due to Theorem 1 (iii), inequality (25) implies also

i(s) > i(~s):

This, together with the adjacency of the sequences, is due to Lemma 3.7 �nally

equivalent to the condition that for all j 2 f1; : : : ; kg

�j 6= ~�j =) �j = 0;

which is exactly our condition (ii) in Theorem 2. 2
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3.2 The Permutation of the equilibria

As an important tool for the investigation of scalar parabolic equations of the form

(11) Fusco and Rocha introduced in [FuRo91] the permutation of the equilibria. For

a given equation with hyperbolic equilibria, this permutation � is de�ned by �rst

numbering all equilibria pro�les according to their order at the left boundary x = 0

of the interval

w1(0) < w2(0) < : : : < wn(0);

and then looking how this order has changed at the right boundary x = 1:

w�(1)(1) < w�(2)(1) < : : : < w�(n)(1)

The permutation � contains all information about the nodal properties of the equi-

libria pro�les. It has been shown that � can be used do determine the Morse indices

and the heteroclinic connections of the equilibria [FR96]. Moreover, the permutation

determines the attractor up to C0 orbit equivalence [FR99]. How the permutation is

related in general to the order relations �n, which we used here, has been discussed

in [Wo00].

Since in [FRSS01], this permutation has also been used to study the speci�c class

of equations which is the subject of the present paper, we remark that, using the

results from the previous section, we get immediately the following result:

Corollary 3.8 Assume that the function a(x) is piecewise constant on k subinter-
vals and satis�es (5) and (6). Then for small enough " > 0 the permutation �k of

the equilibria can be obtained from the symbol sequences in Sk in the following way:
Numbering all sequences in Sk according to

s1 � s2 � : : : � sn;

the permutation �k is given by the order of the reversed sequences:

R(s�k(1)) � R(s�k(2)) � : : : � R(s�k(n))

4 An ODE model

Using the information we have obtained so far, we can now construct a model for

the global attractor A".

Theorem 3 For 0 < " < "0 the attractor A" is connection equivalent to the global

attractor M of the following model o.d.e. with y = (y1; y2; : : : ; yk) 2 IR
k:

_y1 = y1(1 � y
2
1)

_y2 = y2(1 � y
2
2) + (y1 � 1)(y2 + 1)

_y3 = y3(1 � y
2
3)� (y2 + 1)(y3 � 1)

...
...

_yk = yk(1� y
2
k) + (�1)k(yk�1 � (�1)k)(yk + (�1)k):

9>>>>>>>=
>>>>>>>;

(26)
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Figure 7: Heteroclinic connections on the attractor for k = 2 and k = 3

Although we expect that M is at least C0-orbit equivalent to A" we do only prove

the weaker statement of connection equivalence here.

Lemma 4.1 The stationary solutions of (26) are precisely the vectors

(y1; y2; : : : ; yk) 2 Sk:

Proof: Looking for stationary solutions we have to solve �rst the equation y1(1 �

y
2
1) = 0, hence y1 = �1 or 0 or +1. Concerning the second equation, we have to

distinguish two cases. If y1 = 1, then the second equation reduces to y2(1� y
2
2) = 0

which implies that y2 2 f�1; 0;+1g. If, however, y1 = 0 or y1 = �1, then the second

equation reads

0 = (y2 + 1)(�y22 + y2 + y1 � 1) = (y2 + 1)(�(y2 �
1

2
)2 +

1

4
+ y1 � 1):

Clearly, this implies that y2 = �1 since the term in brackets does not vanish for y1 �

0. One can now proceed by induction assuming that we have already found out that

yi 2 f�1; 0;+1g. If yi = (�1)i+1 then the (i+1)-st equation reads yi+1(1�y
2
i+1) = 0.

Hence yi+1 can take any value in f�1; 0;+1g. If yi = (�1)i or yi = 0 then we have

to solve

0 = (yi+1 � (�1)i)(�y2i+1 + (�1)iyi+1 + (�1)i+1yi � 1):

As the second term does not vanish for yi = (�1)i or yi = 0, we must have

yi+1 = (�1)i. Comparing with the de�nition of Sk we see that (y1; y2; : : : ; yk) 2 Sk.

2

Proof of Theorem 3: We proceed again by induction to show that two equilibria

(y1; y2; : : : ; yk) and (ŷ1; ŷ2; : : : ; ŷk) are connected by a heteroclinic orbit if and only

if

yi 6= ŷi =) yi = 0 (27)

holds for i = 1; 2; : : : ; k. That the claim holds for k = 1 and k = 2 can veri�ed

directly from the corresponding phase portraits.
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Assume now that the statement is true up to k = n and consider equation (26) with

k = n+ 1. From the last equation we can immediately read o� that the hyperplane

fyn+1 = (�1)ng is invariant and the restriction of the �ow to this hyperplane is

exactly (26) with k = n. From the induction hypothesis we know all about the het-

eroclinic orbits within this hyperplane. These heteroclinic orbits connect equilibria

with yn+1 = ŷn+1 = (�1)n which satisfy (27).

Another invariant hyperplane is fyn = (�1)n+1g. Within this hyperplane the �ow

is given by the system

_y1 = y1(1 � y
2
1)

_y2 = y2(1 � y
2
2) + (y1 � 1)(y2 + 1)

_y3 = y3(1 � y
2
3)� (y2 + 1)(y3 � 1)

...
...

_yn�1 = yn�1(1� y
2
n�1) + (�1)n�1(yn�2 � (�1)n�1)(yn�1 + (�1)n�1)

_yn+1 = yn+1(1� y
2
n+1):

The last equation is decoupled, so the �ow is a direct product of the �ow (26) with

k = n � 1 and the �ow generated by the last equation. It is therefore obvious that

(27) has to be satis�ed for 1 � i � n� 1 and also for i = n+ 1 while yn = ŷn.

To show that there are no other heteroclinic orbits outside the invariant planes

fyn+1 = (�1)ng and fyn = (�1)n+1g it su�ces to calculate the eigenvalue of the

linearization of the equilibria in the transverse direction. It turns out that all equi-

libria are stable in the transverse direction so there cannot be any heteroclinic orbits

outside the invariant hyperplanes. 2
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