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Abstract

Existence and propagation of the surface waves at a free interface of a saturated

porous medium are investigated in the low-frequency range. Similar to the high-

frequency range, two types of surface waves are proven to be possible: the generalized

Rayleigh wave, which exists always and propagates almost without attenuation and

the Stoneley wave, which exists for a limited range of wave numbers and is strongly

attenuated. Bifurcation behavior of both the Stoneley wave and the Biot slow bulk

wave depending on wave number is revealed.

Introduction

Surface acoustic waves (SAW) at a plane interface of an isotropic elastic half-space were

discovered by Lord Rayleigh [1]. Surface waves take di�erent forms and exist in a broad

frequency range governing more than 10 orders of magnitude. Current research extends

from seismic waves in the infrasound region (� 1 � 100 Hz) to interdigital transducers

and laser-generated SAW pulses in the ultrasound region (� 10� 107 kHz) [2]. Surface

waves are studied primarily within the scope of single-component models [3,4]. There are

just a few papers concerning the surface waves in multicomponent media [5,6]. These

works are based on the classical Biot model for �uid-saturated porous medium [7,8] and

are devoted to investigation of surface modes in the high-frequency range in which, as the

Biot theory predicts, the slow P2 bulk wave is propagatory.

The focus of this paper is on the research of existence and asymptotic behavior of the

surface waves at a free interface of a saturated porous medium in the low-frequency range.

In contrast to the widely used Biot's model, various phenomenological parameters of which

it is di�cult or impossible to measure, we rely on the more simple mathematical model

of saturated poroelastic materials, proposed by K. Wilmanski [9-12]. This model leads to

similar results as the classical Biot model. In particular, it also predicts the existence of

three bulk waves in an unbounded �uid-saturated medium: shear, fast longitudinal (P1),

and slow longitudinal (P2) waves. Detailed comparison of the models is presented in [13].

In our previous papers concerning the surface waves, which propagate along a free interface

of a porous medium at high frequencies, it was proven the existence of two surface modes:

the true Stoneley wave and the generalized Rayleigh wave [13,14]. It was shown that

behavior of the surface modes depend crucially on the properties of the bulk waves. In

the high-frequency range there are not peculiarities in propagation of both bulk and

surface waves: velocities of bulk waves are almost constant and the true Stoneley and the
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generalized Rayleigh waves spread with speeds somewhat less than those of P2 and shear

waves, respectively.

However in the low-frequency range the Biot slow wave (P2) is not always propagatory.

Low-frequency limit of the Biot theory assumes that slow wave is highly dispersive and

strongly attenuated below some critical frequency, which depends on the pores size in

the skeleton and the viscosity of the �uid. This critical frequency is typically around

1 � 10 kHz for water saturated porous materials of around 1 Darcy permeability [15].

The Biot slow wave is characterized by the out-of-phase motions of the solid skeleton

and pore �uid. This relative motion is very sensitive to the viscosity of the �uid and the

dynamic permeability of the porous medium. >From experiments it is known, that the

slow wave was observed only at ultrasonic frequencies in arti�cial rocks made of sintered

glass beads [16] and in natural granular soils (Monterey sand) [17]. Although Biot's theory

has been thoroughly studied during last 40 years, the question of why slow wave cannot

be detected in low-permeability materials such as natural rocks is still open.

In this paper we prove analytically that the Biot slow wave is not propagatory below some

critical wave number which depends on permeability of the media and viscosity of the �uid

(see also [18]). This critical wave number is a bifurcation point, above which longitudinal

wave of the second kind begins to propagate. Because of this complicated behavior of P2

mode, the properties of low-frequency surface modes should be di�erent in comparison

with a high-frequency range. In this paper we prove that in the low-frequency range,

similar to P2 wave, the Stoneley surface mode possesses a bifurcation in the vicinity of

some critical wave number. Also we prove an existence of the generalized Rayleigh wave.

In should be noted that we consider the propagation of elastic bulk waves through an

in�nite space in the absence of external forces, so that corresponding solutions are de�ned

uniquely by the Cauchy data (initial value problem). Thus, one must set the wave number

k to be real and de�ne frequency ! = !(k), which can be complex, as a solution of

dispersion equation.

1. Behavior of the Biot slow (P2) wave in the low-

frequency range

Before we proceed to study the existence of the surface modes, let us examine propagation

of the bulk waves through an unbounded �uid-�lled porous medium. Speci�cally, we focus

on the Biot slow (P2) wave.

1.1. Mathematical model

Let an in�nite space 
 be occupied by a saturated porous medium. The set of balance

equations describing the porous two-component medium has the following general form

(x 2 
; t 2 [0; T ]) [9-12]:
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Mass conservation equations

@�F

@t
+ div

�
�FvF

�
= 0;

@�S

@t
+ div(�SvS) = 0: (1:1)

Here, � is the mass density, v is the velocity vector and indices F and S indicate �uid or

solid phases, respectively.

Momentum conservation equations

�F
�
@

@t
+ (vFj ;

@

@xj
)

�
vFi �

@

@xj
T F
ij + �(vFi � vSi ) = 0;

�S
�
@

@t
+ (vSj ;

@

@xj
)

�
vSi �

@

@xj
T S
ij � �(vFi � vSi ) = 0; (1:2)

where (�; �) denotes the inner product.

Balance equation for the change of porosity

@�n

@t
+
�
vSi ;

@

@xi

�
�n + nEdiv(v

F � vS) = �
�n

�
; (1:3)

where � is the relaxation time of porosity, assumed to be constant. TF and TS are the

partial stress tensors. Here a positive constant � = �f=K, �f is a viscosity of a liquid, K
is a permeability of a porous medium.

Constitutive relations for linear poroelastic materials

T
F = �pF1� ��n1; pF = pF0 + �(�F � �F0 ); (1:4)

T
S = T

S
0 + �SdivuS1+2�SsymgraduS + ��n1; (1:5)

where pF is the pore pressure, pF0 and �F0 are the initial values of pore pressure and

�uid mass density, respectively, � is the constant compressibility coe�cient of the �uid

depending only on the equilibrium value of porosity nE. �n = n � nE is the change of

the porosity, and � denotes the coupling coe�cient of the components. T
S
0 denotes a

constant reference value of the partial stress tensor in the skeleton, �S and �S are the

Lamé constants of the skeleton, which depend only on nE, and u
S is the displacement

vector for the solid phase with

v
S =

@uS

@t
: (1:6)
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1.2. Dimensionless variables and parameters

Let us rewrite the system of equation (1.1)-(1.6) in a dimensionless form. For this purpose

we introduce the following dimensionless variables and parameters:

�̂F =
�F

�S0
; �̂S =

�S

�S0
; v̂

F =
v
F

US
jj

; v̂
S =

v
S

US
jj

;

where �S0 is the initial value of the skeleton mass density and US
jj =

p
(�S + 2�S)=�S0 is a

velocity of a longitudinal wave in an unbounded elastic medium. Also one has

x̂ =
x

US
jj �
; t̂ =

t

�
; û =

u

US
jj �
; p̂F =

pF

�S0 (U
S
jj )

2
; �̂ =

�

(US
jj )

2
;

�̂ =
��

�S0
; �̂ =

�

�S0 (U
S
jj )

2
; �̂S =

�S

�S0 (U
S
jj )

2
; �̂S =

�S

�S0 (U
S
jj )

2
; �̂ = �US

jj :

After the change of variables and parameters the original system (1.1)-(1.6) keeps its

form except of the right-hand side in the equation for the change of porosity. One gets

there ��n. For typographical reasons we omit below the symbol ^ characterizing

dimensionless quantities.

1.3. Dispersion equation for the bulk waves

Let us investigate propagation of the bulk waves through the porous medium. We con-

�ne ourselves to the consideration of a 1D problem, i.e. we study the propagation of

longitudinal waves only. In 1D case the system (1.1)-(1.6) takes the following form (for

convenience strain tensor eS has been introduced and we have assumed that � = 0):

@�F

@t
+

@

@x

�
�FvF

�
= 0; (1:7)

@�S

@t
+

@

@x
(�SvS) = 0: (1:8)

�F
�
@

@t
+ (vF ;

@

@x
)

�
vF + �

@�F

@x
+ �(vF � vS) = 0; (1:9)

�S
�
@

@t
+ (vS;

@

@x
)

�
vS � (�S + 2�S)

@eS

@x
� �(vF � vS) = 0; (1:10)

@eS

@t
=
@vS

@x
; (1:11)
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@�n

@t
+
�
vS;

@

@x

�
�n + nE

@

@x
(vF � vS) = ��n; (1:12)

Consider the propagation of the harmonic waves whose frequency is ! and wave number

is k. Below we use the following dimensionless parameters: !̂ = !� and k̂ = kUS
jj � (the

upper symbol ^ is again omitted in further consideration). Substituting solutions in the

form

�F � �F0 = RF exp (i (kx� !t)) ; �S � �S0 = RS exp (i (kx� !t)) ;

vF = V F exp (i (kx� !t)) ; vS = V S exp (i (kx� !t)) ; (1:13)

eS = E exp (i (kx� !t)) ; �n = D exp (i (kx� !t))

into equation system (1.7)-(1.12) one gets the system of algebraic equations for the un-

known amplitudes. Requesting that the determinant of this system must vanish yields

the dispersion equation for longitudinal waves:

F(k; !) = 0; (1:14)

where

F(k; !) = r(!2 � c2fk
2)(!2 � k2) + i!�

�
(1 + r)!2 � k2(1 + rc2f)

�
; (1:15)

r = �F0 =�
S
0 , cf = UF=US

jj , and sound velocity in a �uid UF =
p
�.

It should be reminded here that similar to our previous research [13,14], we derive ! as

a function of the real wave number k 2 R1. Thus, Re!=k de�nes the phase velocity of a

wave and Im! gives its attenuation.

Our goal is to prove that solution !P2(k) of dispersion equation (1.14), corresponding

to the Biot slow wave, possesses a bifurcation. It occures in some critical point kcr
(bifurcation point), in small neighborhood of which solution of equation (1.14) splits into

several branches.

1.4. Bifurcation of the Biot slow wave

Let us rewrite equation (1.14) as

r(~!2 � c2f)(~!
2 � 1) + i~!

1

~k

�
(1 + r)~!2 � (1 + rc2f)

�
= 0; (1:16)

where ~! = !=k and ~k = k=�. Obviously, for the case k � 1 (high-frequency range)

equation (1.16) has the roots (note that here 1=~k� 1 is assumed to be a small parameter)
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~!P1 = �1�
i

2

1

~k
�

4 + r � rc2f

8r(1� c2f)

1

~k2
+O

� 1

~k3

�
(1:17)

and

~!P2 = �cf �
i

2r

1

~k
�

1� c2f(1 + 4r)

8r2(1� c2f)(�cf )
1

~k2
+O

� 1

~k3

�
; (1:18)

which de�ne the velocities and attenuations of forward and backward directed longitudinal

waves of the �rst (P1) and second (P2) kinds, respectively. It is evident, that in the high

frequency limit, phase velocities of P1 and P2 waves do not depend on frequency !.

Next let us consider low-frequency range, when k � 1 and, consequently, ~k � 1. Solutions

of equation (1.16) are sought in the following form:

~! = ~!0 + ~k~!1 + ~k2~!2 + : : : (1:19)

For the longitudinal P1 wave of forward and backward directions one obtains:

~!P1 = �

s
1 + rc2f

1 + r
� ~k

ir(1� c2f )
2

2(1 + rc2f)(1 + r)2

�~k2
s

1 + r

1 + rc2f

r2(1� c2f)
3(2(1� r)(1 + rc2f ) + 1� c2f)

8(1 + r)4(1 + rc2f)
2

+O(~k3): (1:20)

However for the P2 wave construction of asymptotic solution for the corresponding root of

(1.16) is much more complicated. We prove later on that there exists some critical value

of wave number kcr, below which longitudinal wave of the second kind is not propagatory.

Thus, asymptotic expansion of corresponding root of (1.16) has a di�erent structure de-

pending on whether wave number of P2 wave is smaller or bigger than its critical value

kcr.

Substitution of (1.19) into (1.16) yields for the forward directed P2 wave:

~!
f
P2 = �i

rc2f

1 + rc2f

~k � i
r3c4f (1 + rc4f )

(1 + rc2f)
4

~k3 +O(~k4): (1:21)

Solution for the backward directed P2 wave is sought in the form

~! =
1

~k
~!0 + ~!1 + ~k~!2 + : : : (1:22)

and it leads to the expansion

~!b
P2 = �i

1 + r

r

1

~k
+ i

r(r + cf)

(1 + r)2
~k +O(~k2): (1:23)
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Obviously, expansions (1.21), (1.23) consist of the imaginary terms only. The latter means

that phase velocity of P2 wave is equal to zero, i.e. the wave is not propagatory. However,

these expansions are valid only if wave number k is less then some critical value kcr. In

other words there exists a bifurcation point kcr in small neighborhood of which solution

of equation (1.14) splits into several branches. Let us prove this statement. Consider

dispersion equation (1.14). It is easy to see that exact solution for P2 wave is given by:

k2 =
1

2rc2f

�
r!2(1 + c2f ) + i�!(1 + rc2f)

+

q
r2!4(1� c2f )

2 � �2!2(1 + rc2f)
2 + 2ir�!3(1� c2f )(1� rc2f)

�
(1:24)

Proposition. There exists some critical value of wave number kcr 2 R+ such that:

a) if 0 < k < kcr then equation (1.24) has two pure imaginary roots !1(k) and !2(k),

Re!j(k) = 0, j = 1; 2;

b) if k = kcr then equation (1.24) has one multiple pure imaginary root, i.e. !1(k) = !2(k),

Re!j(k) = 0, j = 1; 2;

c) if k > kcr then equation (1.24) has no pure imaginary roots.

This critical wave number is de�ned asymptotically and is given by (for complete Proof

of Proposition see Appendix):

kcr � cf

�
1 +

1

2rc2f

�
�: (1:25)

Corresponding critical frequency is equal to:

!cr = �i�
cr; 
cr �
1

2r
+ 2c2f(1 + 3rc2f � 2c2f ): (1:26)

Consequently, if k � kcr than the Biot slow wave does not propagate. It is fully attenuated

mode (see (1.21)). If wave number of P2 wave is bigger than critical value kcr; then this

mode becomes to be propagatory. Namely, for any small parameter " and wave number

k = kcr

�
1 + "2k2

�
+O("2) (1:27)

frequency of P2 wave is de�ned as

!P2 = !cr + "!1 +O(�2) (1:28)

with

!1 = 2kcr

r
k2

A
; (1:29)
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A =
1 + c2f

c2f
+

1� c2f

c2fg(
cr)
p
g(
cr)

�
� r3(1� c2f)

3
3
cr + 3r2(1� c2f )

2(1� rc2f )

2
cr

�3r(1� c2f )(1 + r2c4f)
cr + (1� rc2f)(1 + rc2f)
2
�
> 0: (1:30)

Therefore, phase velocity of forward and backward directed P2 wave is de�ned by�Re(!P2)=k,
where k = kcr

�
1 + "2k2

�
+O(�3) (see Fig.1).

5 kcr 10 15 20 25 30 35
k

0.05

0.1

0.15

0.2

0.25

0.3

CP2

Figure 1: Phase velocity of P2 wave: r = 0:1; cf = 0:3; kcr � 7

Numerical example. Formula (1.25) shows clearly that critical wave number depends

on parameter �. Thus, corresponding critical wavelength's dependence on permeability

K is through a direct proportionality. To obtain estimates of critical wavelength, we take

the following typical values of parameters [19]: �F0 = 0:2 � 103 kg

m3 , �S0 = 2:0 � 103 kg

m3 ,

UF = 0:9 � 103 m
s
, US = 3:0 � 103 m

s
. Also � = 4 � 10�6 s. For � = 109 kg

m3�s
, � = 108

kg

m3�s
, and � = 107 kg

m3�s
critical wavelength is equal to 0:22 cm, 2:22 cm, and 22:21 cm,

respectively. Corresponding critical frequency for � = 109 kg

m3�s
(water saturated porous

material of permeability K � 1 Darcy) is about 20 kHz. Thus, we conclude that the Biot

slow wave becomes to be propagatory with rather short wavelength and, consequently, it

cannot be detected in the low-frequency range of interest in seismology (1� 100 Hz).

Obviously, complicated behavior of the Biot slow wave at low frequencies should have

an in�uence on the propagation conditions for the surface modes. Indeed, as we prove

below, in contrast to the high-frequency range, in which both the true Stoneley wave and

the generalized Rayleigh wave exist always at a free interface of a porous solid [13,14], at

low frequencies the Stoneley mode exists for a limited range of wave numbers. Similar

to the bulk P2 wave it possesses a bifurcation. Moreover, characteristic features of high-

and low-frequency surface modes are completely di�erent. Next we study existence and

propagation of the surface waves at an interface between vacuum and porous medium in

the low-frequency range.
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2. Problem statement

Consider two semi-in�nite spaces, 
� and 
+, having a common interface �. Let the

region 
� be occupied by a saturated porous medium and the region 
+ be occupied by

the vacuum. Balance equations (1.1)-(1.3) describe the porous two-component medium

(x 2 
�; t 2 [0; T ]). Let us linearize the system (1.1)-(1.3) about some equilibrium

state. The simplest case arises when in the equilibrium state the �elds have the following

constant values: �F = �F0 , �
S = �S0 , v

F = 0, vS = 0 and �n = 0. After the introduction

of the displacement vector for the �uid phase uF and linearization, the system (1.1)-(1.3)

takes the following form:

@�F

@t
+ rdiv

@uF

@t
= 0; (2:1)

@�S

@t
+ div

@uS

@t
= 0; (2:2)

r
@2uF

@t2
+ grad(pF + ��n) + �

@

@t
(uF � uS) = 0; (2:3)

@2uS

@t2
� �S�uS � (�S + �S)graddivuS � �grad�n � �

@

@t
(uF � uS) = 0; (2:4)

@�n

@t
+ nEdiv

@

@t
(uF � uS) = ��n: (2:5)

The general problem of propagation of elastic waves through a bounded space is com-

plicated. We con�ne ourselves to the consideration of a 2D problem (xy plane). This

assumption does not limit the generality for the plane boundary �. We investigate sur-

face waves on the interface of a porous medium which occupies the semi-in�nite space

y > 0 (region 
�) and is bounded by the vacuum, which �lls the semi-in�nite space y < 0

(region 
+).

On the interface y = 0, separating the porous medium and the vacuum, the following

linearized boundary conditions, which are consequences of the general conditions [13],

have to be satis�ed:

1) the total stress vector must vanish

�@uS1
@ y

+
@uS2
@ x

�
jy=0 = 0; (2:6)

�
�S divuS + 2�S

@uS2
@ y

� �(�F � �F0 )
�
jy=0 = 0; (2:7)
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2) the relative normal velocity must be equal to zero, i.e. the pores at the interface are

completely closed
@(uF2 � uS2 )

@ t
jy=0 = 0: (2:8)

Our goal is to prove that the boundary value problem (2.1)-(2.8) has solutions in the

form of surface waves, i.e. solutions which decrease su�ciently fast as jyj ! 1. For

this purpose we will investigate the propagation of a harmonic wave whose frequency is

!, wave number is k, and its amplitude depends on y. The frequency ! is sought as

a function of the real wave number k 2 R1. Thus, Re(!=k) de�nes the phase velocity

of waves, while Im(!) de�nes the attenuation. Below we study the propagation of the

surface waves in the low-frequency range.

3. Surface waves at a free interface of a porous medium

3.1. Construction of solution

Solution in the region 
� (porous medium half-space) is sought in the following form

[13,14]:

u
F = grad'F + rot	F ; u

S = grad'S + rot	S; (3:1)

where 	F = (0; 0;  F ) and 	S = (0; 0;  S). Concequently, in the explicit form one has

uF1 =
@'F

@x
+
@ F

@y
; uF2 =

@'F

@y
�
@ F

@x
;

uS1 =
@'S

@x
+
@ S

@y
; uS2 =

@'S

@y
�
@ S

@x
:

Here unknown potentials are sought as

'F = AF (y) exp (i (kx� !t)) ; 'S = AS (y) exp (i (kx� !t)) ;

 F = BF (y) exp (i (kx� !t)) ;  S = BS (y) exp (i (kx� !t)) : (3:2)

Simultaneously,

�F � �F0 = AF
� (y) exp (i (kx� !t)) ; �S � �S0 = AS

� (y) exp (i (kx� !t)) ;

�n = A� exp (i (kx� !t)) : (3:3)

Substitution of (3.1) into (2.1)-(2.5) and the following insertion of expressions (3.2), (3.3)

result in three equations for the unknown amplitudes AF (y), AS(y) and BS(y)

�
c2f (

d2

d y2
� k2) + !2

�
AF +

�
�!nE

r (i + !)

�
d2

dy2
� k2

�
+
i�!

r

��
AF � AS

�
= 0; (3:4)
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�
d2

dy2
� k2 + !2

�
AS �

�
�!nE

i+ !

�
d2

dy2
� k2

�
+ i�!

��
AF � AS

�
= 0; (3:5)

�
d2

dy2
� k2 +

!2

c2s
�

i�!2r

c2s (!r + i�)

�
BS = 0; (3:6)

and in four algebraic relations for BF (y), A�(y), A
S
� (y), and A

F
� (y) as follows:

BF =
i�

!r + i�
BS; (3:7)

A� = �
mE!

i + !
(
d2

d y2
� k2)(AF � AS); (3:8)

AS
� = �(

d2

d y2
� k2)AS; (3:9)

AF
� =

r!2

c2f
AF +

1

c2f

�
�!nE

i+ !

�
d2

dy2
� k2

�
+ i�!

��
AF � AS

�
= 0: (3:10)

Here

cs = US
?=U

S
jj < 1; US

? =

q
�S=�S0 :

Next let us prove the existence of solutions for the system (3.4)-(3.5) and for equation

(3.6) that decay with y. First consider (3.6). The solution has the following form

BS = Cs exp(�
s y) (3:11)

with


s =

s
k2 �

!2

c2s
+

i�!2r

c2s (!r + i�)
: (3:12)

We de�ne

Condition 1,

Re
h
k2 �

!2

c2s
+

i�!2r

c2s (!r + i�)

i
> 0: (3:13)

As we will show below, this condition is indeed ful�lled by all surface waves, which are

proven to be possible on the free interface of a porous medium. It is also quite natural.

Namely, a similar condition in the classical theory of elasticity yields the conclusion that

the phase velocity of a surface wave should be less than the velocity of a shear wave. Then,

11



the square root in (3.12) is de�ned as
p
1 = 1 and in order to get a bounded solution we

choose

BS = Cs exp(�
s y): (3:14)

We proceed to prove the existence of solution for the system (3.4)-(3.5). The solution is

sought in the form �
AF

AS

�
= Cj

�
RF
j

RS
j

�
exp(�
j y): (3:15)

Substituting (3.15) into (3.4),(3.5), one obtains the eigenvalue problem

�
dF1 (j) dS1 (j)

dF2 (j) dS2 (j)

��
RF
j

RS
j

�
= 0; (3:16)

where

dF1 (j) =
�
rc2f +

� nE!

! + i

��
2j
k2
� 1
�
+
!

k
(r
!

k
+ i

�

k
);

dS1 (j) = �
� nE!

! + i

�
2j
k2
� 1
�
� i

�!

k2
;

dF2 (j) = �
� nE!

! + i

�
2j
k2
� 1
�
� i

�!

k2
;

dS2 (j) =
�
1 +

� nE!

! + i

��
2j
k2
� 1
�
+
!

k
(
!

k
+ i

�

k
); (3:17)

for which eigenvalues 
j and eigenvectors (RF
j ; R

S
j )

T have to be found. Obviously, 
j
are de�ned from the condition that the determinant of the matrix of (3.16) must vanish.

Consequently, one can derive eigenvectors (RF
j ; R

S
j )

T .

In what follows we consider the simpli�ed case when � = 0. The assumption on the

vanishing coe�cient � means that we neglect a static coupling between components. The

vanishing of the determinant of the matrix of system (3.16) yields a biquadratic equation

for the unknown functions 
j:

�

2j

k2
� 1

�2

+
!

k

 
!

k

�
1 +

1

c2f

�
+ i

�

k

�
1 +

1

rc2f

�!�
2j
k2
� 1

�

+
1

c2f

!3

k3

�
!

k
+ i

�

k

�
1 +

1

r

��
= 0: (3:18)
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One can prove, that there exist two roots, 
1 and 
2, such that [13,14]:


1;2 = k

vuut1�
1

2

!2

k2

�
1 +

1

c2f

�
�

1

2
Re Æ +

i

2

 
�Im Æ �

!

k

�

k

�
1 +

1

rc2f

�!
; (3:19)

where

Æ =

s
!4

k4

�
1�

1

c2f

�2
�
!2

k2
�2

k2

�
1 +

1

rc2f

�2
+ 2i

!3

k3
�

k

�
1�

1

rc2f

��
1�

1

c2f

�
:

The corresponding eigenvectors are given by

(RF
1 ; R

S
1 ) =

�
RF
1 ;

i�!
k2


2
1

k2
� 1 + !

k

�
!
k
+ i�

k

�RF
1

�

and

(RF
2 ; R

S
2 ) =

� i�!
k2

rc2f

�

2
2

k2
� 1
�
+ !

k

�
r!
k
+ i�

k

�RS
2 ; R

S
2

�
: (3:20)

In this paper we investigate the low-frequency range, i.e. k � 1 is assumed to be a small

parameter. Let us rewrite equation (3.18) as follows:

�
~
2j � 1

�2
+ ~!2

�
1 +

1

c2f

� �
~
2j � 1

�
+

1

c2f
~!4

+i~!
1

~k

 �
1 +

1

rc2f

� �
~
2j � 1

�
+

1

c2f
~!2
�
1 +

1

r

�!
= 0; (3:21)

where ~
j = 
j=k, j = 1; 2, ~! = !=k, and ~k = k=�.

Next we prove that similar to the high-frequency limit [13,14] equation (3.21) has two

roots corresponding to the longitudinal waves of �rst and second kind. However here

construction of solutions for (3.21) is more complicated since in limit problem (k = 0,

i.e. ~k = 0) the equation reduces to the second order. Thus, in contrast to the high-

frequency range, here these two roots have di�erent order. This fact is an evidence of

the phenomenon of hierarchy of P1 and P2 waves. Consequently, one of the solutions

(namely that one corresponding to P2 wave) has the structure of a boundary layer. The

idea of the boundary layer is that the higher-order terms of (3.21) dominate the behavior

of solution in the boundary layer. First root of (3.21) is sought in the form:

~
21 � 1 =
1

~k
Z0 + Z1 + ~kZ2 + : : : (3:22)
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Substitution of (3.22) into (3.21) results in the expression:

~
21 � 1 = �i~!
1

~k

�
1 +

1

rc2f

�
�

~!2

c2f

c2f +
1
rc2
f

1 + 1
rc2
f

+O
�
~k
�
; (3:23)

i.e.

~
1 =

vuut1� i~!
1

~k

�
1 +

1

rc2f

�
�

~!2

c2f

c2f +
1
rc2
f

1 + 1
rc2
f

+O
�p

~k
�
: (3:24)

We de�ne

Condition 2,

Re
h
1� i~!

1

~k

�
1 +

1

rc2f

�
�

~!2

c2f

c2f +
1
rc2
f

1 + 1
rc2
f

i
� 1; (3:25)

which means that ~
1 = O(

q
1=~k) and it is referred to as the boundary-layer solution. The

latter means that the part of solution (3.15), corresponding to 
1, is expected to decay

exponentially near y = 0 and the boundary layer occurs there. (We will prove below

whether this condition is indeed ful�lled by the surface waves, which are proven to be

possible on the free interface of a porous medium.)

The corresponding eigenvector is given by�
RF
1

RS
1

�
=

�
1

�rc2f

�
+ ~k

�
1

�rc2f

�
+O

�
~k2
�
: (3:26)

Second root of (3.21) is sought as

~
22 � 1 = Z0 + ~kZ1 + : : : (3:27)

and has the form:

~
22 � 1 = �~!2 1 + r

1 + rc2f
+O

�
~k
�
: (3:28)

Thus,

~
2 =

s
1� ~!2

1 + r

1 + rc2f
+O

�p
~k
�
: (3:29)

The corresponding eigenvector is given by�
RF
2

RS
2

�
=

�
1

1

�
+ ~k

�
1

1

�
+O

�
~k2
�
: (3:30)

We de�ne

14



Condition 3,

Re
h
1� ~!2 1 + r

1 + rc2f

i
> 0: (3:31)

As we will show below, this condition is indeed ful�lled by all surface waves.

Remark. Expansions (3.24) and (3.26), corresponding to P2 wave, are not valid in a neigh-

borhood of the bifurcation point kcr.

Thus, a bounded solution to (3.4)-(3.6) exists and has the form�
AF

AS

�
= C1

�
RF
1

RS
1

�
exp(�
1 y) + C2

�
RF
2

RS
2

�
exp(�
2 y);

BS = Cs exp(�
s y): (3:32)

Here, the constants C1, C2, and Cs are still unknown. In order to derive a system of

equations for C1, C2, and Cs and to get a dispersion relation for the de�nition of the

velocities of the surface waves, one should substitute solution (3.32) into the boundary

conditions.

It should be noted that in contrast to the case of high-frequency range, that has been

investigated earlier (see [13,14]) and where independent expressions for radicals ~
1 and

~
2 have been obtained, here these radicals are related because of coupling of P1 and P2

waves in the low-frequency domain of propagation.

3.2. Dispersion relation for small wave numbers k � kcr

By substituting (3.32) into the boundary conditions (2.6)-(2.8) one obtains the following

system of equations for unknown constants C1; C2; Cs:

~
1C1R
S
1 + ~
2C2R

S
2 +

i

2

�
~
2s + 1

�
Cs = 0; (3:33)

(~
21 � 1)C1R
S
1 + (~
22 � 1)C2R

S
2

+2c2s(C1R
S
1 + C2R

S
2 ) + 2ic2s~
sCs �

�
~!2r + i~!

1

~k

�
(C1R

F
1 + C2R

F
2 )

+i~!
1

~k

�
C1R

S
1 + C2R

S
2

�
= 0; (3:34)

~
1C1(R
F
1 �RS

1 ) + ~
2C2(R
F
2 � RS

2 )� iCs

�
1�

i

~k~!r + i

�
= 0: (3:35)
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Here unknown constants C1; C2; and Cs are sought as follows:

C1 = ~k3=2C1;0 + ~k2C1;1 + ~k5=2C1;2 + : : : ;

C2 = C2;0 + ~k1=2C2;1 + ~kC2;2 + : : : ; (3:36)

Cs = Cs;0 + ~k1=2Cs;1 + ~kCs;2 + : : :

Also we have

~! = ~!0 + ~k1=2~!1 + ~k~!2 + : : : (3:37)

and, consequently, radicals ~
1; ~
2 and ~
s have to be expanded as well:

~
1 =
1

~k1=2
~

(0)
1 + ~


(1)
1 + ~k1=2~


(2)
1 ;

~
2 = ~

(0)
2 + ~k1=2~


(1)
2 + ~k~


(2)
2 ; (3:38)

~
s = ~
(0)s + ~k1=2~
(1)s + ~k~
(2)s :

By substituting expressions (3.36)-(3.38) into (3.33)-(3.35) in the lowest order approxi-

mation one obtains the following system of equations:

~

(0)
2 C2;0 +

i

2

�
(~
0s )

2 + 1
�
Cs;0 = 0; (3:39)

�
(~


(0)
2 )2 � 1 + 2c2s � ~!2

0r
�
C2;0 + 2ic2s~


0
sCs;0 = 0; (3:40)

~
01(1 + rc2f)C1;0 � ~!0rCs;0 = 0; (3:41)

where

~
01 =

s
�i~!0

�
1 +

1

rc2f

�
;

~
02 =

s
1� ~!2

0

1 + r

1 + rc2f
; (3:42)
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~
0s =

s
1� ~!2

0

1 + r

c2s
:

Requesting that the determinant of this system must vanish yields the dispersion equation.

It has the form

P(~!0) �
�
� ~!2

0

1 + r

1 + rc2f
+ 2c2s � ~!2

0r
��

1� ~!2
0

1 + r

2c2s

�

�2c2s

s
1� ~!2

0

1 + r

1 + rc2f

s
1� ~!2

0

1 + r

2c2s
= 0: (3:43)

Let us prove that dispersion equation (3.43) has a unique root, corresponding to the gen-

eralized Rayleigh surface wave. It lies within the interval (cf ; cs) and satis�es conditions

(3.13), (3.31). Evidently, that in case r = �F0 =�
S
0 ! 0 (limit passage to elastic medium)

equation (3.43) is degenerated into the classical Rayleigh equation:

PR(~!) =

 
2�

~!2

c2s

!2

� 4
p
1� ~!2

p
1� ~!2=c2s: (3:44)

Let us consider r to be a small parameter " � r that is indeed ful�lled by virtue of physical

meaning: r < 1. Asymptotic expansion of the root is sought as follows:

~!0 = 
0 + "
1 + : : : (3:45)

It is easy to show that the leading part 
0 of (3.45) satis�es the Rayleigh equation

PR(
0) = 0, i.e. 
0 = cR, where cR is the speed of the classical Rayleigh wave in an

elastic half-space. For the de�nition of the next term 
1 of expansion (3.45) the following

equation is obtained:


1

PR(~!)

d~!
j~!=cR =

�
1�

c2R
2c2s

��
3c2R � 2c2sc

2
f

�

+

q
1� c2R

q
1� c2R=c

2
s

�
1�

c2R
c2s � c2R

�
c2R � c2f

1� c2R

�
: (3:46)

Finally one has

~!0;R0 = cR + "
1 +O(�2); (3:47)

where 
1 is determined by (3.46). Obviously, in the low-frequency range the generalized

Rayleigh wave propagates almost without attenuation (leading term and the next term
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in expansion (3.47) are real). This is because of the fact that the Biot slow wave does

not propagate with small wave numbers k � kcr and, consequently, at low frequencies

wave properties of a porous medium are very similar to those of an elastic solid. Thus,

asymptotic behavior of the generalized Rayleigh wave in the low-frequency range resembles

the behavior of the classical Rayleigh wave in an elastic half-space.

3.3. Dispersion relation for wave numbers in the vicinity of bifur-

cation point kcr

As it was proven in preceding sections of the paper, the Biot slow wave does not propagate

for wave numbers k � kcr. As a consequence, the only surface mode, which appear in

this range of wave numbers, is the generalized Rayleigh wave. Next we investigate an

existence of the surface modes in small neighborhood of the bifurcation point kcr, where

k > kcr and P2 bulk wave is propagatory.

Requesting that the determinant of the system (3.33)-(3.35) must vanish yields the fol-

lowing dispersion equation, which holds true for any k:

~
1

�
iR1 +

1

2
(~
2s + 1)(1� iR1)

r~! + i�
k

r~!

��
(~
22 � 1) + 2c2s

�2c2s~
s~
2(1� iR2)
r~! + i�

k

r~!
� ~!

�
r~! + i

�

k

�
iR2 + i~!

�

k

�

�~
2
�
1�

1

2
(~
2s + 1)(1� iR2)

r~! + i�
k

r~!

��
(~
21 � 1)iR1 + 2c2siR1

+2c2s~
s~
1(1� iR1)
r~! + i�

k

r~!
� ~!

�
r~! + i

�

k

�
� ~!R1

�

k

�
= 0: (3:48)

Here

R1 =

�
k
~!

~
1
2 � 1 + ~!(~! + i�

k
)
; R2 =

�
k
~!

rc2f ( ~
2
2 � 1) + ~!(r~! + i�

k
)
: (3:49)

Taking into account (1.25)-(1.28), consider the expansions in the vicinity of kcr

k =
�

2rcf

�
1 + "2k2 + � � �

�
(3:50)

and

~! = �i" + ~!1"
2 + � � � ; (3:51)

where small parameter " � cf . Radicals (3.12) and (3.29) remain to be valid for any k.

Thus, one has

~
2 = 1 +
1

2

�
1 + r

�
"2 +O("3) (3:52)
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and

~
s = 1 +
1

2c2s

�
1� 2r

�
"2 +O("3): (3:53)

However, expansion (3.24), which corresponds to P2 wave, is not true in a neighborhood

of the bifurcation point kcr. Solution for ~
1 in the vicinity of kcr is sought as follows:

~
1 = �1"+ �2"
2 + � � � (3:54)

By substituting (3.50)-(3.54) into (3.21) and (3.48), one obtains from the lowest approxi-

mations:

�1 =
r(4c2s � 1)

�
2(1 + r)� 1

2c2s
(1� 2r)

�
(1 + r)(c2s � 1)

(3:55)

and

~!2
1 = 2

�
k2 � 2r

�
: (3:56)

Finally, one gets

~! = �i" +
r
2
�
k2 � 2r

�
"2 +O("3): (3:57)

This root corresponds to the Stoneley surface wave and satis�es conditions (3.13), (3.31).

Obviously, real solution for ~!1 exists if expression in right-hand side of (3.56) is posi-

tive. Therefore, similar to P2 bulk wave, the Stoneley mode has bifurcation behavior in

neighborhood of the bifurcation point

kcr �
�

2rcf

�
1 + c2fk2

�
; (3:58)

where

k2 = 2r: (3:59)

Thus, if k2 � 2r, i.e. k � kcr, than the Stoneley wave does not propagate; it is fully

attenuated mode. Otherwise, if k2 > 2r, i.e. k > kcr, it begins to emerge. In the same

way as P2 bulk wave, the Stoneley surface mode is strongly attenuated (leaky mode). Its

velocity is very close to the speed of P2 wave.

4. Conclusions

The results presented in the paper concern propagation of the Biot slow wave through

an unbounded saturated porous medium and the surface waves which appear at a free

interface of saturated porous media in the low-frequency range. The asymptotic behavior

of both the Biot slow wave and the surface waves is very di�erent in comparison with the

high-frequency limit.
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It was proven that the Biot slow wave has a bifurcation behavior depending on its wave

number. Bifurcation occures in neighborhood of the critival value kcr (see (1.25)), so that

P2 wave becomes to be propagatory with wave numbers k bigger then kcr. Formula (1.25)

shows that slow wave behavior is dominated by permeability of a medium. One conse-

quence of this result is the fact that in �uid-�lled geological materials of low permeability

the Biot slow wave does not propagate at sesmic frequencies.

Complicated behavior of P2 wave at low frequencies causes considerable changes in the

properties of the surface modes which appear at a free interface of a porous solid. Similar

to the high-frequency range two types of surface modes were proven to be possible: the

Stoneley wave and the generalized Rayleigh wave. However, asymptotic behavior of these

waves is very distinct at low frequencies.

The generalized Rayleigh wave exists always (for any wave number) and, contrary to

the high-frequency limit, propagates almost without attenuation. The asymptotic anal-

ysis showed that its phase velocity is close to the speed of the classical Rayleigh wave.

Furthermore, asymptotic behavior of the generalized Rayleigh wave in the low-frequency

range resembles the behavior of the classical Rayleigh wave in an elastic half-space. The

letter is because of the fact that the Biot slow wave does not propagate with small wave

numbers k � kcr and, consequently, at low frequencies wave properties of a porous medium

are very similar to those of an elastic solid.

Another surface mode, which appear at a free interface of a porous medium, is the Stoneley

wave. Bifurcation behavior of the Biot slow wave dictates that the Stoneley wave must

also possess a bifurcation. Indeed, this surface mode exists for a limited range of wave

numbers. If its wave number k � kcr then the Stoneley wave does not propagate. If

k > kcr then it begins to emerge with phase velocity very close to the velocity of P2 wave.

By contrast to the high-frequency limit, the Stoneley wave is strongly attenuated at low

frequencies (leaky wave). It radiates a part of its energy into interior of the medium.
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Appendix: Proof of Proposition

Applying the change ! = �i�
; 
 � 0, equation (1.24) can be rewritten as

F1(
) = F2(
); (A1)

where

F1(
) = 


q

2r2(1� c2f)

2 � 2r
(1� c2f)(1� rc2f) + (1 + rc2f)
2; (A2)
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F2(
) = 2rc2f
~k2 + 
2r(1 + c2f)� 
(1 + rc2f); (A3)

and, as above, ~k = k=�. It should be noted here that function under the square root

g(
) = 
2r2(1 � c2f )
2 � 2r
(1 � c2f)(1 � rc2f ) + (1 + rc2f)

2 is always positive. Consider

equation (A1). First let us investigate behavior of functions F1(
); F2(
) as 
 ! 1.

Obviously,

F1(
)


2
� r(1� c2f) and

F2(
)


2
� r(1 + c2f) (A4)

i.e. F2(
) is steeper than F1(
). Consequently, if ~k = 0 then function (F2 � F1)(
) has

two real roots: 
 = 0 and some 
�, so that (F2 � F1)(
) < 0 in (0; 
�).

Next we calculate stationary points for F1(
) and F2(
) and in�ation points for F1(
).

One can easily check, that function F1(
) has two stationary points, namely 

(1)
1 �

(1+ (1+7r)c2f)=(2r) and 

(2)
1 � (1+ (1� 5r)c2f)=r and function F2(
) has one stationary

point 
2 = (1 + rc2f)=(2r(1 + c2f )) such that:


2 < 

(1)
1 < 


(2)
1 : (A5)

Function F1(
) has unique in�ation point


inf �
1� rc2f �

3
p
2 3
p
r 3

q
c2f(1�

3
p
2 3
p
r 3

q
c2f )

r(1� c2f )
(A6)

and it being known that 

(1)
1 < 
inf < 


(2)
1 as well as that F1(
) is concave if 
 < 
i

and F1(
) is convex if 
 > 
i. Presented analysis allows us to conclude that there exists

unique point of tangency of functions F1(
) and F2(
) (see Fig.2).

2 4 6 8 10 12 14
�

1

2

3

4

F1, F2

Figure 2: Numerical example: r = 0:1; cf = 0:3; ~k = ~kcr
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Thus, using that F
0

1(
) = F
0

2(
) one can de�ne point of tangency, i.e. critical value 
cr:


cr �
1

2r
+ 2c2f(1 + 3rc2f � 2c2f); (A7)

which is positive by virtue of physical sense. Corresponding critical value of wave number

is de�ned from equation (A1) and is given by:

~kcr � cf

�
1 +

1

2rc2f

�
: (A8)

Therefore, it was proven that there exist some critical real value kcr = ~kcr� for which

equation (1.24) has one multiple imaginary root !cr = �i�
cr.

Next we prove that if k < kcr then equation (1.24) has two pure imaginary roots and if

k > kcr then equation (1.24) has no imaginary roots. Consider the expansions

k = kcr

�
1� �k1 � �2k2 + : : :

�
and

! = !cr + �!1 + �2!2 + : : : ; (A9)

where � is a small parameter. Substitution of (A9) into (1.24) yields the bifurcation

equation. >From its O(�) approximation it follows that k1 = 0. From the next O(�2)

approximation one has:

�k2 =
1

4

!2
1

k2cr
A (A10)

with

A =
1 + c2f

c2f
+

1� c2f

c2fg(
cr)
p
g(
cr)

�
� r3(1� c2f)

3
3
cr

+3r2(1� c2f)
2(1� rc2f)


2
cr � 3r(1� c2f)(1 + r2c4f )
cr + (1� rc2f)(1 + rc2f)

2
�
> 0: (A11)

It is obvious, that for given k2 > 0 equation (A10) has two real solutions for !1 if plus

sign is chosen in its left-hand side. The letter means that we consider expansion k =

kcr + �2k2 + : : : and k > kcr. Consequently, equation (A1) has no solution (see Fig.3).

Vice versa, if k = kcr � �2k2 + � � � < kcr then for given k2 > 0 equation (A10), as well as

equation (1.24), has two imaginary roots (see Fig.4). Thus, Proposition was proven.

Remark. One can also prove Proposition applying the same procedure to the dispersion

equation (1.14). Taking into account that F(kcr; !cr) = 0 and F 0

!(kcr; !cr) = 0, one

can de�ne critical values kcr and !cr. Next one has to substitute expansions (A9) into

(1.14). As above one obtains at O(�) approximation that k1 = 0. From the next O(�2)

approximation one gets:
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Figure 3: Numerical example: r = 0:1; cf = 0:3; ~k > ~kcr
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Figure 4: Numerical example: r = 0:1; cf = 0:3; ~k < ~kcr

�k2 =
1

2

!2
1

k2cr
A1 (A12)

with

A1 =
�6r
2

cr + 3(1 + r)
cr � r(1 + c2f )
~k2cr

�r(1 + c2f)

2
cr + (1 + rc2f)
cr � 2rc2f

~k2cr
> 0: (A13)

Analogously to (A10), equation (A12) has two real solutions for !1 if for given k2 > 0

plus sign is chosen in its left-hand side.

Therefore we conclude that P2 wave is not propagatory if its wave number is less than

critical value kcr. Otherwise, the frequency of P2 wave is given by

!P2 = !cr + �!1 +O(�2) (A14)
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with

!1 = 2kcr

r
k2

A
: (A15)

Consequently, phase velocity of forward and backward directed P2 wave is de�ned by

�Re(!P2)=k, where k = kcr + �2k2 +O(�3).

References

[1] Lord Rayleigh: 1885, On waves propagated along the plane surface of an elastic solid,

Proc. London Math. Soc. 17, 4-11.

[2] Hess, P.: 2002, Surface acoustic waves in material science, Physics Today, 42-47.

[3] Viktorov, I.A.: 1967, Rayleigh and Lamb waves, Plenum, New York.

[4] Udias, A.: 1999, Principles of Seismology, Cambridge University Press.

[5] Deresiewicz, H.: 1962, The e�ect of boundaries on wave propagation in a liquid-�lled

porous solid. IV. Surface waves in a half-space, Bull. Seism. Soc. Am. 52(3),

627-638.

[6] Feng, S., Johnson, D.L.: 1983, High-frequency Acoustic Properties of a Fluid/Porous

Solid Interface. I. New Surface Mode & II. The 2D Re�ection Green's Function, J.

Acoust. Soc. Am. 74(3), 906-924.

[7] Biot, M.A.: 1956, Theory of propagation of elastic waves in a �uid - saturated porous

solids I. Low frequency range & II. High frequency range, J. Acoust. Soc. Am. 28,

168-186.

[8] Biot, M.A.: 1962, Generalized theory of acoustic propagation in porous dissipative

media, J. Acoust. Soc. Am. 34(9), 1254-1264.

[9] Wilmanski, K.: (1995) Lagrangean Model of Two-Phase Porous Material, J. Non-

Equilib. Thermodyn. 20, 50�77.

[10] Wilmanski, K.: (1996) Porous Media at Finite Strains. The New Model with the

Balance Equation for Porosity, Arch. Mech. 48(4), 591�628.

[11] Wilmanski,K.: 1998, Thermomechanics of Continua, Springer-Verlag, Berlin.

[12] Wilmanski, K.: (1998) A Thermodynamic Model of Compressible Porous Materials

with the Balance Equations of Porosity, Transport in Porous Media 32, 21-47.

[13] Edelman, I., Wilmanski,K.: 2002, Asymptotic analysis of surface waves at vac-

uum/porous medium and liquid/porous medium interfaces, Continuum Mech. Ther-

modyn., 14(1), 25-44.

[14] Edelman, I.: (2001), Waves on boundaries of porous media, Physics Doklady 46,

517-521.

24



[15] Nagy, P.B.: (1999), Acoustics and ultrasonics, in: Experimental methods in the phys-

ical sciences, Academic Press, 161-221.

[16] Plona, T.J.: 1980, Observation of a second bulk compressional wave in a porous

medium at ultrasonic frequencies, Appl. Phys. Lett. 36(4), 259-261.

[17] Nakagawa, K., Soga, K., Mitchell, J.K.: (1997), Observation of Biot compressional

wave of the second kind in granular soils, Geotechnique 47(1), 133-147.

[18] Edelman, I.: 2002, On the bifurcation of the Biot slow wave in a porous medium,

WIAS, Preprint No.738.

[19] Bourbie, T., Coussy, O., Zinszner, B.: (1987), Acoustics of porous media, Editions

Technip, Paris.

25


