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Abstract

Assume that zero is a stable equilibrium of an ODE _x = f(x; �) for pa-

rameter values � < �0, and becomes unstable for � > �0. If we suppose that

�(t) varies slowly with t, then, under some conditions, the trajectories of the

nonautonomous ODE _x = f(x; �(t)) stay close to zero even long after �(t) has

crossed the value �0. This phenomenon is called `delayed loss of stability' and

is well-known for ODEs . In this paper, we describe an analogous phenomenon

for delay equations of the form _x(t) = f(t; x(t� 1)).

Further, we point out a di�erence between delay equations and ODEs: The

inhomogeneity h in the linear equation _x(t) = cx(t�1)+h(t) inevitably leads

to an excitation of the most unstable modes of oscillation of the homogeneous

equation, even if all segments ht are contained in a space of more rapidly

decaying solutions for the homogeneous equation.

1 Introduction

Dynamical systems as mathematical models of real life processes depend on several

parameters which are assumed to be �xed within some time period (see e.g. [6],

[16], [1]). The in�uence of a parameter � on the behavior of a dynamical system

is studied within the framework of bifurcation theory. Suppose now that a relevant

system parameter � changes very slowly in time, for example, because of an aging

process. In the model equation, one can then replace the parameter � by �("t), where
" > 0 is a small. (The new equation is then nonautonomous.) The so-called dynamic

bifurcation theory is concerned with the investigation of the corresponding changes

of the system behavior [1]. A special phenomenon, known as delayed loss of stability,

can lead to dramatic consequences (e.g. thermal explosion [11]). For ordinary

di�erential equations (ODEs), this e�ect is well-known and has been studied from

di�erent points of view [22], [5], [12], [9], [8], [19], [20], [2],[3], [4], [17], [18], [21].

Let us illustrate the phenomenon by considering the simple linear equation

(1:1) _y(t) = k("t) y(t);

where " > 0 is small, such that the coe�cient k("t) in equation (1.1) changes slowly

in time. Setting "t = �; y(t) = y(�=") = x(�), we get from (1.1)

(1:2) "
dx

d�
= k(�)x:

Concerning the function k, we suppose
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(A) k : R �! R is continuous, strictly increasing, and there exist numbers �� <

�0 < �+ such that

(1:3) k(�) < 0 for � < �0; k(�) > 0 for � > �0;

Z �+

�
�

k(�)d� = 0:

The so-called associated system to (1.2) reads

(1:4)
dx

d�
= k(�)x(�);

where � in the right-hand side has to be considered as a parameter and � is the

independent variable. From hypothesis (A) it follows that the equilibrium x = 0 of

the associated equation (1.4) is stable for � < �0 and unstable for � > �0, that is, it

changes its stability at � = �0.

The solution x(�; ��; x�) of equation (1.1) satisfying x(��; ��; x�) = x� is explicitly

given by

x(�; ��; x�) = x� exp

�
1

"

Z �

�
�

k(s)ds

�
:

We see that if k satis�es assumption (A), then x(�; ��; x�) is exponentially decaying
for �� < � < �0, and stays near x = 0 also for some time interval �0 < � < �̂ with

�̂ < �+, during which x = 0 is an unstable equilibrium of (1.4).

The main goal of this paper is to describe a similar e�ect for di�erential-delay

equations, where we restrict ourselves to simplest cases. In Section 2 we study the

linear inhomogeneous equation

(1:5) _x(t) = a(t)x(t� 1) + h(t);

assuming that the function a takes values in [�3�=4;��=4] and changes slowly. It

is well known that for constant a and h = 0, the zero solution of equation (1.5) is

stable for a 2 (��=2; 0), and unstable if a < ��=2. Contrary to the ODE case,

the exponential rate of growth or decay is not directly given by a, but has to be

estimated. We provide such estimates in Section 2, and we derive a variation-of-

constants formula for the case of nonconstant a and h 6= 0. In Section 3 we use this

formula to express solutions of

_x(t) = g(t; x(t� 1))

(with nonlinear g) on successive time intervals Ii by solutions of the equation

dx

dt
= cix(t� 1);
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with constants ci which are values of @2g(�; 0) on Ii. In Theorem 3.2, we obtain

estimates that express the phenomenon of delayed loss of stability for di�erential-

delay equations. In Section 4 we treat the equation

_x(t) = (��=4� "t) arctan(x(t� 1))

as an example. Here, we study the initial value problem with the initial segment

identically 1, and estimate the time until the solution is close enough to zero by a

method that is not based on linearization. Theorem 3.2 is then applicable to the

motion close to zero, and we obtain a lower bound for the time until the solution

reaches absolute value 1 again.

Complementary to the results on delayed loss of stability, which express similar

behavior of delay equations and ODEs, Section 5 exhibits a substantial di�erence

between both types of equations. Namely, the additive term h(t) in the equation

_x(t) = c � x(t� 1) + h(t) inevitably has an in�uence on the development of all `com-

ponents' of solutions (in terms of expansion into eigenfunctions of the homogeneous

equation). For a linear constant coe�cient system of ODEs, the perturbation h can,

of course, be chosen such that it in�uences only speci�c components.

Acknowledgement. Thanks to Sergei Yanchuk for preparing the �gure in Section

4.

Notation. For bounded functions ' on [�1; 0], the sup-norm is denoted by j'j.
Generally, we use the symbol jj jj1 for the sup-norm of bounded functions on some

domain.

Let C denote the space of continuous functions on [�1; 0] with the max-norm. As-

sume that G : R �C ! R is continuous, locally Lipschitz continuous with respect

to the second argument, and satis�es a linear growth condition

jG(t; ')j � L(t)(1 + j'j) (t 2 R; ' 2 C)

with L : R �! R
+
0 continuous. Then, for ' 2 C and � 2 R, there is a unique

continuous function xG;';� : [� � 1;1] �! R such that

xG;';�� = '; _xG;';�(t) = G(t; xG;';�t ) for t � �:

(At t = � , the derivative is to be read as right-side derivative.) The symbol xt, as

usual, denotes the segment of the function x at time t, that is, xt(�) = x(t+�); �1 �
� � 0.

We shall need solutions of linear equations also for discontinuous initial values; let

J denote the space of functions ' : [�1; 0] �! R which are continuous on [�1; 0),
but possibly have a jump discontinuity at 0 (i.e., lim

t�!0;t<0
'(t) exists). We use the

sup-norm j j also on this space, and we introduce the weaker norm j j� on J de�ned

by

j j� := j (0)j+
Z 0

�1
j (s)j ds:
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2 Linear equations

First we consider linear equations of the type

(a) _x(t) = a(t)x(t� 1):

Proposition 2.1 Let �; T 2 R; � < T , and let a : [�; T ] �! R be continuous.

a) For  2 J and s 2 [�; T ] there exists a unique solution xa; ;s : [s� 1; T ] �! R

of the initial value problem _x(t) = a(t)x(t� 1); xs =  .

b) The map

F : (J; j j�)�
n
(s; t) 2 [�; T ]2

�� s � t
o
3 ( ; s; t) 7! xa; ;s(t) 2 R

is continuous.

c) If a 2 C1 and T � � + 3; then for t � � + 3; t � T the segment xa; ;�t is C2.

Proof: Ad a): This assertion follows from successive integration: On [�; � + 1], one
has xa; ;� (t) =  (0) +

R t
�
a(s) (s � � � 1)ds, the segment x

a; ;�
�+1 is contained in C,

and so on.

Ad b): It follows from [13], Theorem 2.2, p. 43 that the map

F1 : (C; j j)�
n
(t1; t2) 2 [�; T ]

�� t1 � t2

o
3 ('; t1; t2) 7! xa;';t1(t2) 2 R

is continuous. If t; s 2 [�; T ] with t > s+ 1 then

xa; ;s(t) = xa;x
a; ;s

s+1
;s+1(t);

and we have x
a; ;s
s+1 2 C. In order to prove the asserted continuity of F at points

( ; s; t) with t > s+ 1, it su�ces to show that the map

F2 : (J; j j�)�
n
s 2 [�; T ]

�� s+ 1 � T
o
3 ( ; s) 7! xa; ;ss+1 2 C

is continuous, since we have

F ( ; s; t) = xa; ;s(t) = F1[F2( ; s); s+ 1; t] if t > s+ 1:

Assume ~s 2 [�; T � 1] and  ; ~ 2 J. It follows from the di�erential equation that

(2.1.1)

jxa; ;~s~s+1 � xa;
~ ;~s

~s+1 j � j (0)� ~ (0)j+ jjajj1
Z 0

�1
j (r)� ~ (r)j dr � (1 + jjajj1)j � ~ j�:
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Further, for � 2 [�1; 0],

jxa; ;~s~s+1 (�)� x
a; ;s
s+1 (�)j =

j (0) +

~s+1+�Z
~s

a(r) (r � ~s� 1) dr �  (0)�

s+1+�Z
s

a(r) (r � s� 1) drj

� 2j~s� sj � jjajj1j j+
Z

[maxfs;~sg;minf~s;sg+1+�]

ja(r)[ (r � ~s� 1)�  (r � s� 1)]j dr;

where the integral is to be read as zero if maxfs; ~sg � minf~s; sg + 1 + �. (Note

that in the opposite case the arguments of  are contained in [�1; 0].) Denote the

continuous extension of  ��[�1; 0)
to [�1; 0] (which in general di�ers from  ) by  ̂.

We may replace  by  ̂ in the last integral, and uniform continuity of  ̂ implies that

there exists a function ! : [0;1) �! [0;1) with ! (0) = 0, which is continuous

at 0 and such that

8t1; t2 2 [�1; 0] : j ̂(t1)�  ̂(t2)j � ! (jt1 � t2j):

We conclude that, if s; ~s 2 [�; T � 1], one has

(2.1.2) jxa; ;~s~s+1 � x
a; ;s
s+1 j � 2j~s� sj � jjajj1j j+ jjajj1! (j~s� sj):

Combining (2.1.1) and (2.1.2), continuity of F2 (with respect to j j� in the �rst

argument) follows.

It remains to prove continuity of F at points ( ; s; t) with s � t � s + 1. Assume

 2 J and s; t 2 [�; T ]; s � t � s+ 1.

First case: s < t < s+ 1. There exists Æ1 > 0 such that js� ~sj+ jt� ~tj < Æ1 implies

~s < minft; ~tg � maxft; ~tg < ~s + 1. For such ~s and ~t, and ~ 2 J, we have with
~� := ~t� (~s+ 1); � := t� (s+ 1) the estimate

(2.1.3)

jxa; ~ ;~s(~t)� xa; ;s(t)j = jxa;
~ ;~s

~s+1 (~�)� xa; ;ss+1 (�)j

� jxa;
~ ;~s

~s+1 � xa; ;ss+1 j+ jxa; ;ss+1 (~�)� xa; ;ss+1 (�)j

� jF2( ~ ; ~s)� F2( ; s)j+ jjajj1j j(jt� ~tj+ js� ~sj):

Continuity of F2 now shows continuity of F at ( ; s; t).

Second case: s = t. Then xa; ;s(t) =  (0), and for ~ 2 J; j ~ �  j� � 1 and

~s; ~t 2 [�; T ] with ~s � ~t; j~t� tj � 1=2; j~s� sj � 1=2, one has ~t � ~s+ 1 and

jxa; ~ ;~s(~t)� xa; ;s(t)j � jxa; ~ ;~s(~t)� xa;
~ ;~s(~s)j+ j ~ (0)�  (0)j

� jjajj1
Z ~t

~s

j ~ (r � ~s� 1)j dr + j ~ �  j�

� jjajj1

"
j ~ �  j� +

Z ~t

~s

j (r � ~s� 1)j dr

#
+ j ~ �  j�

� (jjajj1 + 1)j ~ �  j� + jjajj1j j(j~t� tj+ js� ~sj):
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This shows continuity of F at ( ; s; t).

Third case: t = s+1. Consider ~s; ~t 2 [�; T ]; ~s � ~t, and ~ 2 J, with j~s�sj+ j~t�tj � 1
and j ~ �  j� � 1. If ~t � ~s + 1 then we obtain (similar to (2.1.3))

(2.1.4)

jxa; ~ ;~s(~t)� xa; ;s(t)j = jF2( ~ ; ~s)(~t� (~s+ 1))� F2( ; s)(0)j

� jF2( ~ ; ~s)� F2( ; s)j+ jF2( ; s)(~t� (~s+ 1))� F2( ; s)(0)j

� jF2( ~ ; ~s)� F2( ; s)j+ jjajj1j j(jt� ~tj+ js� ~sj):

If ~t > ~s+1 then ~t� (~s+1) � j~t� tj+ j~s� sj � 1, so the di�erential equation shows

jxa; ~ ;~s(~t)� xa;
~ ;~s(~s+ 1)j � jF2( ~ ; ~s)j � jjajj1(j~t� tj+ j~s� sj);

and

jxa; ~ ;~s(~s+ 1)� xa; ;s(t)j = jxa; ~ ;~s(~s+ 1)� xa; ;s(s + 1)j � jF2( ~ ; ~s)� F2( ; s)j;

so we obtain

(2.1.5) jxa; ~ ;~s(~t)�xa; ;s(t)j � jF2( ~ ; ~s)j�jjajj1(j~t�tj+j~s�sj)+jF2( ~ ; ~s)�F2( ; s)j:

Continuity of F2 at ( ; s) and estimates (2.1.4) and (2.1.5) now show that F is

continuous at ( ; s; t) also in the third case.

Ad c): Assume now a 2 C1, and T � � + 3, and let  2 J. We know that the

restriction of xa; ;� to [� + 1; T ] is C1. For t � � + 2, we have t � 1 � � + 1 and

_xa; ;� (t) = a(t)xa; ;� (t � 1). Hence �xa; ;� (t) exists and equals _a(t)xa; ;� (t � 1) +
a(t)a(t � 1)xa; ;� (t � 2). (At t = � + 2, we mean the second derivative from the

right.) The last expression is continuous in t on [� +2; T ] (only continuous from the

right at � + 2), so we obtain that the restriction of xa; ;� to [� + 2; T ] is C2. The

assertion follows. �

Our aim is to express solutions of equation (a) with slowly varying coe�cient by

solutions of the constant coe�cient equation

(c) _x(t) = c � x(t� 1) (c 2 R):

It is known that the zero solution of equation (c) is stable for c 2 (��=2; 0) and
becomes unstable for c < ��=2. We �rst provide more detailed information on

equation (c) for values of c around ��=2. For c 2 R, let �c � C denote the set of

zeroes of the characteristic function � 7! �� c � exp(��) associated to equation (c).

Proposition 2.2 For c 2 (�1;�e�1), the set �c has the form

�c =
n
�k(c)

�� k 2 N0

o
[
n
�k(c)

�� k 2 N0

o
;

where �k(c) = �k(c) + i!k(c); �k(c) = �k(c)� i!k(c) (k 2 N0), and
!k(c) 2 (2k�; (2k + 1)�). The following properties hold:
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a) �k(c) > �k+1(c) (k 2 N0); so that �0(c) = maxRe�c.

b) �0(��=2) = 0.

c) For c 2 [�3�=4;��=4]; �00(c) exists, and �00(��=2) =
�2�

4 + �2
. Further,

!0(c) 2 (�=4; �), and

�
4(� + 2)

�2
� �00(c) � �

4(� � 2)

3�2
; and

�0(c) �

8><
>:
�jc+ �=2j

4(� � 2)

3�2
; if c > ��=2;

jc+ �=2j
4(� + 2)

�2
; if c � ��=2:

d) j�0(c)j � (� + 2)=� � 2 for c 2 [�3�=4;��=4].

Proof: The assertions on �c and property a) follow from Theorem 5 in [23]. Writing

� = �+ i!, the characteristic equation � = c exp(��) is equivalent to the equations

� = ce�� cos!; ! = �ce�� sin!:

Note that sin! = 0 would imply ! = 0, but we know already that for c < �e�1 there
exist no real roots of the characteristic equation. Hence, we can restrict ourselves

to the case sin! 6= 0, and we obtain from the above two equations

! = �c exp(! cot!) sin!. Setting

�(!) :=
!

sin!
exp(�! cot!) for ! 2 R n

n
k�
�� k 2 Z

o
;

the last equation is equivalent to

(2.2.1) �(!) = �c:

The function � is discussed in [23]. One has

(2.2.2) �0(!) =
�(!)

!
[(1� ! cot!)2 + !2];

� and �0 are positive on (0; �), with �(!) �! e�1 as ! �! 0, and �(!) �! 1
as ! �! �; ! < �. For c 2 (�1;�e�1), the number !0(c) is the unique solution

of equation (2.2.1) in (0; �), and �0(c) = �!0(c) cot!0(c) = log
�c sin!0(c)

!0(c)
, so we

have

(2.2.3) �0(c) = log(�c) + log sin!0(c)� log!0(c):

Obviously �(�=2) = �=2, so !0(��=2) = �=2 and �0(��=2) = 0. Properties a) and
b) are proved.
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Ad c): It follows from the inverse function theorem and from (2.2.3) that !0 and �0
are di�erentiable functions on (�1;�e�1), in particular, on [�3�=4;��=4]. Using
(2.2.2) we obtain for c 2 (�1;�e�1)

!00(c) = �
1

�0(!0(c))
= �

!0(c)

�(!0(c))[(1� !0(c) cot!0(c))2 + !0(c)2]

=
!0(c)

c[(1� !0(c) cot!0(c))2 + !0(c)2]
;

and from (2.2.3) we get

�00(c) =
1

c
+ !00(c)(cot!0(c)�

1

!0(c)
) =

1

c
+

!0(c) cot!0(c)� 1

c[(1� !0(c) cot!0(c))2 + !0(c)2]

=
1

c

�
1 +

!0(c) cot!0(c)� 1

[(1� !0(c) cot!0(c))2 + !0(c)2]

�
:

In particular, we see that �00(��=2) =
�2

�

�
1 +

�1

1 + �2=4

�
=

�2�

4 + �2
, which is the

�rst assertion of c). Note now that �(�=4) = �=4p
2=2

exp(��=4) = �
p
2

4
exp(��=4) <

�

4

p
2

1+�=4
< �=4, so !0(��=4) > �=4. It follows that

(2.2.4) !0([�3�=4;��=4]) � (�=4; �):

Further, for all ! > 0 and u 2 R, one has j
u

u2 + !2
j �

1

2!
. With (2.2.4) we conclude

that

j
!0(c) cot!0(c)� 1

[(1� !0(c) cot!0(c))2 + !0(c)2]
j �

1

2!0(c)
�

2

�
:

With the above expression for �00(c), we now obtain that �00(c) 2
1
c
[1� 2=�; 1+ 2=�]

for c 2 [�3�=4;��=4], so for these c one has (1 + 2=�)(�4=�) � �00(c) � (1 �
2=�)(�4=3�), or

�
4(� + 2)

�2
� �00(c) � �

4(� � 2)

3�2
:

The estimates on �0(c) in part c) follow by integration.

Ad d): It follows from b) and c) that for c 2 [�3�=4;��=4] one has

j�0(c)j �
�

4

4(� + 2)

�2
=
� + 2

�
� 2:

�

It is known that for c < �e�1 and � > �0(c), there exists K > 0 such that all

solutions xc;';� of equation (c) satisfy an estimate of the form

jxc;';�(t)j � K exp(�(t � �))j'j for t � � . (Compare, e.g., Cor. 6.1, p. 215 of [13],

and the de�nition of the constant K given in the proof of Lemma 6.2, p. 213 of

the same reference.) Analogous results hold for much more general linear equations.

We now derive a similar estimate with an explicit value for K, and with � = �0(c),
for the special case of equation (c).
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Proposition 2.3 Set K := [4+15�(3�=4)+24(3�=4)2]e4, and let c 2 [�3�=4;��=4]
and t; s 2 R; t � s.

a) For  2 C2([�1; 0];R), one has jxc; ;s(t)j � (4j j+ 7j 0j+ 13j 00j)e�0(c)(t�s):

b) For ' 2 J, one has jxc;';s(t)j � j'jK exp[�0(c)(t� s)]:

Proof: Since equation (c) is autonomous, it su�ces to prove the assertions for the

case s = 0. For t > 0, we have for ' 2 C the series expansion

xc;';0(t) =
X
�2�c

(pr�') exp(�t);

where pr�' =
1

1 + �
['(0) + �

Z 0

�1
e��s'(s)ds] (see [23], Theorem 6, or [14], Lemma

6.8).

Claim: For  2 C2([�1; 0];R) and for all � 2 �c, one has

jpr� j �
(3�=4)j j+ 4j 0j+ e2j 00j

j�(1 + �)j
:

Proof. If � 2 �c then � = ce��, so e� = c=�. Using partial integration twice, we

calculate

�

Z 0

�1
e��s (s)ds = [�e��s (s)]0�1 +

Z 0

�1
e��s 0(s)ds

= � (0) + e� (�1) +

Z 0

�1
e��s 0(s)ds

= � (0) + e� (�1) + [
�1

�
e��s 0(s)]0�1 +

1

�

Z 0

�1
e��s 00(s) ds

= � (0) +
c

�
 (�1) +

1

�
[
c

�
 0(�1)�  0(0)] +

1

�

Z 0

�1
e��s 00(s) ds:

It follows that

jpr� j �
1

j1 + �j
� jcj
j�j
j j+

1

j�j
(
jcj
j�j

+ 1)j 0j+
1

j�j

Z 0

�1
je��sj ds � j 00j

�
:

Since c 2 [�3�=4; �=4], we know from Proposition 2.2 that

�c =
n
�k(c)� i!k(c)

�� k 2 N0

o
;

that !k(c) � 2k� for k � 1, and that !0(c) � �=4. In particular, jcj=j�j �
(3�=4)=(�=4) = 3 for � 2 �c. Further, it follows from Proposition 2.2,d) that

for s 2 [�1; 0] we have je��sj � ej�0(c)j � e2. Thus we obtain

jpr� j �
1

j1 + �j
�3�=4
�

j j+
1

j�j
4j 0j+

e2

j�j
j 00j

�
:
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The claim is proved. For  2 C2([�1; 0];R), we haveX
� 2 �c

jpr� j � 2 �
X

� 2 �c;

Im� > 0

jpr� j

� 2
1X
k=0

[(3�=4)j j+ 4j 0j+ e2j 00j]
1

j!k(c)j(j!k(c)j+ 1)

� 2(
3�

4
j j+ 4j 0j+ e2j 00j)f

1

�=4(1 + �=4)
+

1X
k=1

1

(2k�)2
g

� 2(
3�

4
j j+ 4j 0j+ e2j 00j)f

1

(3=4) � (7=4)
+

1

4�2
�2

6
g

� 2(
3�

4
j j+ 4j 0j+ e2j 00j)

17

21
�

19=2

2

17

21
j j+

8 � 17
21

j 0j+
15 � 17
21

j 00j

� 4j j+ 7j 0j+ 13j 00j:

Now we obtain from the series expansion, and from je�tj � e�0(c)t for � 2 �c, that

jxc; ;0(t)j �
X

� 2 �c

jpr� je
�0(c)t � (4j j+ 7j 0j+ 13j 00j)e�0(c)t:

Assertion a) is proved.

Ad b): We know from Proposition 2.2,d) that j�0(c)j � 2, and hence we have

(2.3.1) ej�0(c)j � e2:

Let ' 2 J. For t 2 [0; 1], we have (using (2.2.1))

(2.3.2)
jxc;';0(t)j � j'j(1 + jcjt) � j'j(1 + jcj)e��0(c)te�0(c)t

� j'j(1 + jcj)e2e�0(c)t:

Moreover, one has xc;';01 2 C1, although _xc;';0 may have a jump discontinuity at 1.

Similarly, we have for t 2 [1; 2]

(2.3.3) jxc;';0(t)j � j'j(1 + jcj)2e��0(c)te�0(c)t � j'j(1 + jcj)2e4e�0(c)t:

Set  := xc;';02 ; then  2 C2, since xc;';01 2 C1, and we have

(2.3.4) j j � (1 + jcj)2j'j; j 0j � jcj � jxc;';01 j � jcj(1 + jcj)j'j; j 00j � c2j'j:

Using part a), and inequality (2.3.1) for the last step, we obtain for t � 2

jxc;';0(t)j = jxc; ;2(t)j = jxc; ;0(t� 2)j

� (4j j+ 7j 0j+ 13j 00j)e�0(c)(t�2)

� [4(1 + jcj)2j'j+ 7jcj(1 + jcj)j'j+ 13jcj2j'j]e�0(c)(t�2)

� [4 + 15jcj+ 24jcj2]e4e�0(c)tj'j:
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We see from (2.3.2) and (2.3.3) that this estimate also holds for t 2 [0; 2]. The

assertion of b) now follows from jcj � 3�=4. �

Next, we want to express solutions of equation (a), where the coe�cient function a is

slowly varying, by solutions of a constant coe�cient equation. For this purpose, and

also for the treatment of nonlinear equations in Section 3, we need a variation-of-

constants formula. As a preparation, we study the nonhomogeneous linear equation

(a; h) _x(t) = a(t)x(t� 1) + h(t):

We assume that a and h are continuous on an interval [�; T ]. For t 2 [�; T ] we de�ne
a segment ĥ(t) 2 J by setting

ĥ(t)(�) :=

(
h(t); � = 0

0; � 2 [�1; 0):

Note that jĥ(t)� ĥ(s)j = jh(t)� h(s)j for s; t 2 [�; T ], so that the map ĥ : [�; T ] �!
(J; j j); t 7! ĥ(t) is continuous.

Recall the notation xa; ;s for the solution of _y(t) = a(t)y(t � 1) starting with  at

time s. We now see from continuity of ĥ and from Proposition 2.1, b) that, for

t 2 [�; T ], the function [�; T ] 3 s 7! xa;ĥ(s);s(t) is continuous. In particular, the

integral

Z t

�

xa;ĥ(s);s(t)ds exists.

We can now prove a variation-of-constants formula which is suitable for our purposes.

It is expressed in terms of values of functions, not as an equality in the space C.

Formulas of the latter type are given for a general class of autonomous equations in

[7], e.g., formula (2.16), p. 63. However, it is not so obvious what these formulas

(respectively, their generalizations to the nonautonomous case) mean concretely in

our situation. Therefore, and to make the presentation self-contained, we decided

to include a proof.

Lemma 2.4 (Variation of constants) For  2 C, the solution xa;h; ;� of equa-

tion (a; h) with xa;h; ;�� =  satis�es

xa;h; ;� (t) = xa; ;� (t) +

Z t

�

xa;ĥ(s);s(t)ds for t � �:

Proof: Set y(t) :=

Z t

�

xa;ĥ(s);s(t)ds for t � � , and y(t) := 0 for t 2 [� � 1; � ].

11



(2.4.1) Claim: yj[�;T ] is di�erentiable, and _y(t) = a(t)y(t� 1) + h(t) for t 2 [�; T ]:
Proof: Let t 2 [�; T ) be given, and let Æ 2 (0; 1) be such that t+ Æ 2 [�; T ]. Then

y(t+ Æ)� y(t)� [a(t)y(t� 1) + h(t)]Æ

=

Z t+Æ

�

xa;ĥ(s);s(t+ Æ)ds�
Z t

�

xa;ĥ(s);s(t)ds� [: : :]Æ

=

Z t+Æ

t

xa;ĥ(s);s(t+ Æ)ds+

+

Z t

�

[xa;ĥ(s);s(t + Æ)� xa;ĥ(s);s(t)]ds� a(t)y(t� 1)Æ � h(t)Æ

=

Z t+Æ

t

[xa;ĥ(s);s(t + Æ)� h(t)]ds+

+

Z t

�

[xa;ĥ(s);s(t + Æ)� xa;ĥ(s);s(t)]ds� a(t)y(t� 1)Æ:

We abbreviate the �rst term with T1, and the terms after the plus sign with T2. Since

Æ < 1, we have for s 2 [t; t+ Æ] that t+ Æ 2 [s; s+1] and hence xa;s;ĥ(s)(t+ Æ) = h(s).
It follows that

(2.4.2) jT1j �
Z t+Æ

t

jh(s)� h(t)jds:

We now consider the term T2 for the case t� 1 � � . For s 2 [�; t] one has

xa;s;ĥ(s)(t + Æ)� xa;s;ĥ(s)(t) =

Z t+Æ

t

a(r)xa;s;ĥ(s)(r � 1)dr;

so

T2 =

Z t

�

Z t+Æ

t

a(r)xa;s;ĥ(s)(r � 1)dr ds� Æ � a(t)
Z t�1

�

xa;s;ĥ(s)(t� 1)ds

=

Z t�1+Æ

�

Z t+Æ

t

a(r)xa;s;ĥ(s)(r � 1)dr ds+

Z t

t�1+Æ

Z t+Æ

t

a(r)xa;s;ĥ(s)(r � 1)dr ds

� Æa(t)

Z t�1

�

xa;s;ĥ(s)(t� 1)ds:

In the second last term, we have s � t� 1 + Æ, so r � 1 � t + Æ � 1 � s, and hence

xa;s;ĥ(s)(r � 1) = 0. Thus we obtain

T2 =

Z t�1+Æ

�

Z t+Æ

t

a(r)xa;s;ĥ(s)(r � 1)dr ds� Æa(t)

Z t�1

�

xa;s;ĥ(s)(t� 1)ds

=

Z t�1

�

Z t+Æ

t

[a(r)xa;s;ĥ(s)(r � 1)� a(t)xa;s;ĥ(s)(t� 1)]dr ds

+

Z t�1+Æ

t�1

Z t+Æ

t

a(r)xa;s;ĥ(s)(r � 1)dr ds:

12



In the second term above, Æ � 1 implies that r � 1 � t + Æ � 1 � s + Æ � s + 1, so
xa;s;ĥ(s) = h(s). It follows that the second term can be estimated by Æ2khk1 � kak1,
where the norms denote the max-norm on [�; T ]. Hence we have

(2.4.3) jT2j �
Z t�1

�

Z t+Æ

t

ja(r)xa;s;ĥ(s)(r�1)�a(t)xa;s;ĥ(s)(t�1)jdr ds+Æ2jjhk1kak1:

Let now " > 0. Continuity of h and (2.4.2) imply that there exists Æ1 2 (0; 1)
such that for Æ 2 (0; Æ1] one has jT1j � Æ � "=3. There exists Æ2 2 (0; Æ1] with
Æ2khk1kak1 � Æ"=3 for Æ 2 (0; Æ2]. In view of continuity of the involved functions

(see Remark 2.1 b), there exists Æ3 2 (0; Æ2] such that the left term in (2.4.3) can be

estimated by Z t�1

�

Z t+Æ

t

"

3(T � �)
dr ds � Æ"=3; if Æ 2 [0; Æ3]:

Together, we have shown that for Æ 2 (0; Æ3] one has

(2.4.4) jT1 + T2j � jT1j+ jT2j � 3Æ � "=3 = Æ � ";

in case t� 1 � � .

We now treat the case Æ 2 [0; 1) and t� 1 < � . In this case, y(t� 1) = 0, and for Æ

such that also t+ Æ < � + 1, we have for s 2 [�; t] that

xa;s;ĥ(s)(t+ Æ)� xa;s;ĥ(s)(t) = ĥ(s)� ĥ(s) = 0;

so T2 = 0. It is now clear that (2.4.4) also holds in this case for all su�ciently

small Æ. We have now proved that y is di�erentiable from the right on [�; T ),
with right derivative given by t 7! a(t)y(t � 1) + h(t). It is clear that the latter

function is uniformly continuous on [�; T ). It can be seen from estimate (2.4.4) that

di�erentiability of y to the right is uniform w.r. to t 2 [�; T ). The claim now follows

from the proposition given after this lemma.

We conclude the proof of the lemma: With y as above, the right hand side r(t) of
the asserted equality satis�es r(t) = xa; ;� (t) + y(t), so

_r(t) = a(t)xa; ;� (t� 1) + a(t)y(t� 1) + h(t) = a(t)r(t� 1) + h(t) for t 2 [�; T ]:

Uniqueness of solutions and r� =  now imply that

xa;h; ;� (t) = r(t) for t 2 [� � 1; T ];

which is the assertion. �

The proposition below was a technical auxiliary in the proof of Lemma 2.4.

Proposition 2.5 Let z : [�; T ] �! R be continuous, and uniformly di�erentiable

from the right on [�; T ) with uniformly continuous right derivative z0;+ : [�; T ) �! R.

Then z 2 C1([�; T ];R).
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Proof: Let " > 0 and t 2 [�; T ]. There exists Æ1 > 0 such that for all Æ 2 (0; Æ1] and
all s 2 [�; T � Æ] one has ����z(s + Æ)� z(s)

Æ
� z0

;+
(s)

���� < "

2
:

It follows that for all such Æ and for s 2 [� + Æ; T ] one has

(2.5.1)

����z(s)� z(s� Æ)

Æ
� z0

;+
(s� Æ)

���� < "=2:

Since z0;+ is uniformly continuous on [�; T ), it has a uniformly continuous extension

to [�; T ], which we also denote by z0
;+
. There exists Æ2 2 (0; Æ1] such that for

Æ 2 (0; Æ2] and s 2 [Æ; T ] one has

(2.5.2) jz0;+(s� Æ)� z0
;+
(s)j < "=2:

Combining (2.5.1) und (2.5.2) we get����z(s)� z(s� Æ)

Æ
� z0

;+
(s)

���� < " for s 2 [� + Æ; T ];

which shows that z also has a left derivative on (�; T ], which coincides with z0;+.

�

3 Nonlinear nonautonomous equations

We consider equations of the type

(g) _x(t) = g(t; x(t� 1));

where we assume that g : R � R ! R is continuous, and has two continuous

derivatives w.r. to the second argument. Further, we assume that for all t one has

g(t; 0) = 0, and that j@22gj has a �nite supremum which we denote by k@22gk.

For a bounded function a on an interval [s; t], we use the notation

Va(s; t) := sup
�2[s;t]

a(�)� inf
�2[s;t]

a(�):

Using Lemma 2.4, we can now obtain an estimate on solutions of nonautonomous

and nonlinear equations.

Lemma 3.1 Let ' 2 C; T � 1; s 2 R, and let g : R � R ! R be as above. Set

a(t) := @2g(t; 0) for t 2 R. Assume that c 2 a([s; s + T ]) \ [�3�=4;��=4]. Set

V := Va(s; s+ T ), and, with K from Proposition 2.3, set

KV := maxfK; 1 + 3�=4 + V g; LV := KV e
2:
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Let x : [s � 1;1) ! R be the solution of equation (g) with xs = ', and assume

that � 2 [s; s + T ] and � � 0 are such that jxtj � � for all t 2 [s; � ]. Then, for all

t 2 [s; � ], one has

jxtj � LV j'j exp[(�0(c) + LV V + LV k@22gk�=2) � (t� s)]:

Proof: For t 2 [s; s+ T ], there exists rt 2 (0; 1) such that

g(t; x(t� 1)) =

= @2g(t; 0)x(t� 1) + [@22g(t; rtx(t� 1))=2]x(t� 1)2

= cx(t� 1) + (@2g(t; 0)� c)x(t� 1) + [@22g(t; rtx(t� 1))=2]x(t� 1)2

= cx(t� 1) + (a(t)� c)x(t� 1) + [@22g(t; rtx(t� 1))=2]x(t� 1)2:

Thus, with h(t) := (a(t)� c)x(t�1)+[@22g(t; rtx(t�1))=2]x(t�1)2 for t 2 [s; s+T ],
one has for these t

_x(t) = cx(t� 1) + h(t):

Further, for t 2 [s; � ] one has

jĥ(t)j � V jx(t� 1)j+ (k@22gk=2)x(t� 1)2 � [V + k@22gk�=2] � jx(t� 1)j:

It follows from Lemma 2.4 and from Proposition 2.3,b) that, for t 2 [s; � ],

jx(t)j =

= jxc;';s(t) +
Z t

s

xc;ĥ(�);�(t) d�j

� Kj'j exp[�0(c)(t� s)] +K

Z t

s

exp[�0(c)(t� �)]jĥ(�)j d�

� K

�
j'j exp[�0(c)(t� s)] + [V + k@22gk�=2]

Z t

s

exp[�0(c)(t� �)]jx(� � 1)j d�
�
:

Set W := [V + (k@22gk�=2)]. If now t 2 [s+ 1; � ] (in case s+ 1 � �) and � 2 [�1; 0]
then

jx(t+ �)j �

� K

�
j'j exp[�0(c)(t+ � � s)] +W

Z t+�

s

exp[�0(c)(t+ � � �)]jx(� � 1)j d�
�

� K exp(j�0(c)j)
�
j'j exp[�0(c)(t� s)] +W

Z t+�

s

exp[�0(c)(t� �)]jx�j d�
�

� K exp(j�0(c)j)
�
j'j exp[�0(c)(t� s)] +W

Z t

s

exp[�0(c)(t� �)]jx�j d�
�
:

Hence, for t 2 [s+ 1; � ], it follows trivially that with

KV := maxfK; 1 + 3�=4 + V g we have
(3.1.1)

jxtj � KV exp(j�0(c)j)
�
j'j exp[�0(c)(t� s)] +W

Z t

s

exp[�0(c)(t� �)]jx�j d�
�
:
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For t 2 [s; s+1]\ [s; � ], we obtain (using the di�erential equation, and the de�nition

of KV ) that

jxtj � j'j+
Z 0

�1
(jcj+ V )j'j ds = j'j(1 + jcj+ V )

� j'j(1 + 3�=4 + V ) � KV j'j:

The right hand side of (3.1.1) is, for t 2 [s; s + 1], obviously bounded below by

KV j'j. Hence, (3.1.1) holds also for t 2 [s; s+ 1].

Now, setting y(t) := exp[��0(c)t]jxtj for t 2 [s; � ], we obtain from (3.1.1) and from

(2.3.1) that

y(t) � KV exp(j�0(c)j)
�
j'j exp[��0(c)s] +W

Z t

s

y(�) d�

�

� KV e
2

�
j'j exp[��0(c)s] +W

Z t

s

y(�) d�

�

= LV

�
j'j exp[��0(c)s] +W

Z t

s

y(�) d�

�
:

It follows from Gronwall's Lemma that for t 2 [s; � ] one has

y(t) � LV j'j exp[��0(c)s] exp[LVW (t� s)]:

Hence we conclude

jxtj � LV j'j exp[�0(c)(t� s)] exp[LVW (t� s)]

= LV j'j exp[(�0(c) + LV V + LV k@22gk�=2) � (t� s)]:

�

We are now prepared for the proof of a delayed loss of stability estimate for nonlinear

nonautonomous equations of type (g). Again, we restrict attention to the case where
@2g(�; 0) takes values in [�3�=4;��=4]. Recall the de�nition of Va(s; t) for s � t.

Theorem 3.2 Let t� 2 R, let g be as above, and assume that the function de�ned

by a(t) := @2g(t; 0) takes values in [�3�=4;��=4]. Assume that there exists T � 1
and V � 0 such that one has for all s � t�

(3.2.1) Va(s; s+ T ) � V:

Let ' 2 J, and let x : [t�� 1;1)! R be the solution of equation (g) with xt
�

= '.

Assume that t+ � t� and � � 0 are such that

8t 2 [t�; t+] : jxtj � �:

De�ne LV as in Lemma 3.1, and set

C := C(V; T; �) := LV V + LV k@22gk�=2 + log(LV )=T:

Finally, for t; s 2 R; t � s � t�, set

u(t; s) := exp[

Z t

s

(�0(a(r)) + C) dr:
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a) Then one has for all t 2 [t�; t+]

jxtj � j'jLV u(t; t�):

b) With c� :=
4(� � 2)

3�2
; c+ :=

4(� + 2)

�2
, the following estimates hold:

If t; s 2 [t�; t+]; s � t; and a(�) � ��=2 on [s; t] then

u(t; s) � exp[

Z t

s

(�c�ja(s) + �=2j+ C) ds]:

If t; s 2 [t�; t+]; s � t; and a(�) � ��=2 on [s; t] then

u(t; s) � exp[

Z t

s

(c+ja(s+ �=2j+ C) ds]:

Remarks. 1. The �rst estimate in b) implies (not necessarily monotonous) decay

of jxtj, as long as a(s) � ��=2 and c�ja(s) + �=2j � C: One can expect the second

inequality to hold only if the term k@22gk�=2 is small enough, i.e., if the solution x

takes su�ciently small values. This is natural since the decay is an e�ect of the

linearization at zero. If one wants to obtain decay for `large' initial values ', it is

necessary to combine the estimate of Theorem 3.2, a) with di�erent methods, as we

do in the example in Section 4.

2. If one obtains jxt0 j < j'j for some t0 2 [t�; t+], then the second inequality in b)

can be used to give a lower estimate for the time until jxtj reaches j'j again.

Proof: [Proof of Theorem 3.2.] Set ~C := ~C(V; �) := LV V +LV k@22gk�=2. For t � t�,

set �(t) := exp[
R t
t
�

(�0(a(s)) + ~C) ds] = exp[
R t
t
�

(�0(a(s)) ds] exp[ ~C(t� t�)]. Consider
' and x as in the theorem.

Claim: If t 2 [t� + (j � 1)T; t� + jT ] for some j 2 N , and t � t+, then

jxtj � j'jLjV �(t):

Proof. (Induction on j.) The case j = 1: Assume t 2 [t�; t� + T ]. From the mean

value theorem, there exists � = �(t) 2 [t�; t] such thatZ t

t
�

�0(a(s))ds = (t� t�)�0(a(�)):

Applying Lemma 3.1 with s := t�; � := T; c := a(�), one obtains

jxtj � LV j'j exp[(�0(c) + LV V + LV jj@22gjj�=2)(t� t�)]

= LV j'j exp[
Z t

t
�

(�0(a(s)) + ~C) ds]

= j'jLV �(t);
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which is the assertion for j = 1.

Assume now that the assertion holds for some j 2 N, and that t 2 [t� + jT; t� +
(j + 1)T ]; t � t+. Set  := xt

�

+jT . Then the induction hypotheses gives j j �
j'jLjV �(t� + jT ): From the case j = 1, applied with t� + jT in place of t�, one

obtains for the solution y : [t� + jT � 1;1) ! R of equation (g) with yt
�

+jT =  

that

jytj � j jLV exp[

tZ
t
�

+jT

(�0(a(s)) + ~C) ds]:

Together with the estimate on j j, we conclude

jxtj = jytj � j'jLjV �(t� + jT )LV exp[

tZ
t
�

+jT

(�0(a(s)) + ~C) ds]

= j'jLj+1V �(t):

The claim is proved.

Now let t 2 [t�; t+], and set j := min
n
n 2 N

�� t� + nT > t
o
. Then t�+(j� 1)T �

t < t� + jT , and from the above claim we get jxtj � j'jLjV �(t). Note that

Lj�1V = exp[
(j � 1)T log(LV )

T
] � exp[(t� t�)

log(LV )

T
] = exp[

Z t

t
�

log(LV )

T
ds]:

Recalling the de�nition of �, and noting that ~C + log(LV )=T = C, we obtain

jxtj � j'jLV exp[

Z t

t
�

(�0(a(s)) + ~C + log(LV )=T ) ds] = j'jLV u(t; t�);

that is, assertion a). Assertion b) follows from the estimates on �0 from Proposition

2.2,c). �

4 An example

For " 2 (0; 0:01], we set

g(t; x) := (��=4� "t) arctan(x);

and we consider the solution x : [�1;1) �! R of equation (g) with the constant

function equal to 1 as initial segment. (The dependence of all objects on " is not

denoted.) Note that a(t) := @2g(t; 0) satis�es a(t) 2 [�3�=4;��=4] as long as

t 2 [0; �=(2")]. Further, for these t and for y 2 R, one has

j@22g(t; y)j � j � 3�=4j sup
z2R

j2z=(1 + z2)2j � 2 � 3�=4 � 5:

(It is inessential that these properties do not hold for t outside the interval [0; �=(2")],
in which we will be interested.)
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Proposition 4.1 The solution x is slowly oscillating, that is: There exists a se-

quence (z1; z2; :::) in R such that 0 < z1 < z2 < :::, and such that the zi are precisely

the zeroes of x, and zi+1� zi > 1 for all i 2 N. The extrema of x on (0;1) occur at
the times �i := zi + 1 2 (zi; zi+1), so we have

z1 < �1 = z1 + 1 < z2 < �2 = z2 + 1 < : : : :

Further, one has z1 � 2.

Proof: Assume that x has no zero on some interval of the form [t0;1). Then the

negative feedback property g(t; y)y < 0 (t > 0; y 2 R n f0g) implies that x(t) �!
0 (t �! 1), so there exists t1 � t0 with jx(�)j � 0:1 on [t1;1). Now setting

�(t) :=
R 1

0
@2g(t; sx(t� 1)) ds, the function x satis�es _x(t) = �(t)x(t� 1) for t � t1;

and for these t one has

�(t) � �(�=4) min
jyj�0:1

arctan0(y) = �(�=4) � 100=101 < � exp(�1):

We can now apply Theorem 8 in [10] (with n := 1; r := 1; �(t;�1) := 0; �(t; �) :=
�(t) for � 2 (�1; 0], and with q(t; �) := ��(t; �)); in particular, the last inequality

shows that Condition (A4) of that theorem is satis�ed. It follows that x has in�nitely

many zeroes on [t1;1), in contradiction to our assumption.

We know now that x must have in�nitely many zeroes. It follows from the fact

that the segment x0 has no zero, and from the fact that the zero-counting Liapunov

functional used in [15] does not increase in time, that x is slowly oscillating (see [15],

Theorem 2.1). The assertion about extrema is now clear, in view of the di�erential

equation.

We now prove z1 � 2: On [0; 1], we have

_x(t) = (��=4� "t) arctan(1) � (��=4)(�=4) = ��2=16;

and hence x(1) � 1 � �2=16. On the other hand, for t 2 [0; 1], one obtains (using
" � 0:01) that _x(t) � (��=4� ")(�=4) � �10=16 = �5=8, so x(t) � 1� (5=8)t for
these t. It follows from j arctan(y)j � j(�=4)yj if jyj � 1 that for t 2 [1; 2] one has

_x(t) � �(�=4)(�=4)[1� (5=8)(t� 1)]:

Hence, integrating, we obtain

x(2) � 1� (�2=16)� (�2=16)[1� (5=8)(1=2)] = 1� (�2=16)� (�2=16) � (11=16)
= 1� (27�2=256) � 1� 27 � 9:5=256 = 1� 256:5=256 < 0;

and consequently x has a �rst zero z1 in [1,2]. �

Set mi := jx(�i)j for i 2 N; then mi = maxt2[zi;zi+1] jx(t)j: We �rst focus attention

on the time interval (0; �=(16")]. Let J 2 N be such that the extrema of x in this

interval occur at the times �1; :::; �J . The following estimate exploits the fact that

for t in [0; �=(16")] one has jg(t; y)j � qjyj (y 2 R) with some q 2 (0; 1).
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Proposition 4.2 For t 2 [0; zJ+1] one has jx(t)j � 1.
Further, with q := 5�=16, one has

mi+1 � qmi if i 2 f1; : : : ; J � 1g:

Proof: Note that j arctan(y)j � jyj for y 2 R. As long as t � �=(16"), we thus have

jg(t; y)j � (�=4 + �=16)jyj = 5�=16jyj = qjyj:

Since jx(�)j � 1 on [0; z1], we have m1 � q < 1. Further, if i 2 f1; : : : ; J � 1g, we
obtain (using zi+1 � zi > 1) that

mi+1 = j

zi+1+1Z
zi+1

g(s; x(s� 1)) dsj �

zi+1Z
zi+1�1

qjx(s)jds � qmi:

Together with jx(�)j � 1 on [0; �1] and the fact that jx(�)j decreases on [�J ; zJ+1], it
follows that jx(�)j � 1 on [0; zJ+1]. �

Next, we give a decay estimate for the case that �i � �i�1 is `large'.

Proposition 4.3 Assume i 2 f2; : : : ; J +1g and �i�1+1 � zi. Then for all j 2 N0

with �i�1 + j � zi one has

jx(�i�1 + j)j � qj�1mi�1:

Proof: The estimate is trivial for j = 0. Since jx(�)j decreases on [�i�1; zi] and
mi�1 � 1, we have jx(�)j � 1 on [�i�1; zi], and jx(�i�1 + 1)j � mi�1. Hence the

assertion holds for j = 1. Now if j 2 N and [�i�1 + j; �i�1 + j + 1] � [�i�1; zi], we
obtain (using j arctan(y)j � (�=4)jyj if jyj � 1, and the monotonicity of jx(�)j on
[�i�1 + j � 1; �i�1 + j]) that

jx(�i�1 + j + 1)j = jx(�i�1 + j) +

Z �i�1+j+1

�i�1+j

g(s; x(s� 1)) dsj

� jx(�i�1 + j)j � min
s2[�i�1+j�1;�i�1+j]

jg(s+ 1; x(s)j

� jx(�i�1 + j)j � (�=4)j arctan(x(�i�1 + j))j
� jx(�i�1 + j)j � (�2=16)jx(�i�1 + j)j
= [(16� �2)=16]jx(�i�1 + j)j � qjx(�i�1 + j)j:

For j 2 N with �i�1 + j � zi, it follows inductively that

jx(�i�1 + j)j � qj�1jx(�i�1 + 1)j � qj�1mi�1:

�

Proposition 4.2 above relates the value mi to the index i, but not to the time �i at

which it occurs. This is achieved in the next result.
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Proposition 4.4 With the negative number � := log(q)=4, one has

mj � q�1 exp(��j) (j = 1; : : : ; J):

Proof: Let i 2 f2; :::; Jg: If zi � �i�1 � 2 then �i � �i�1 � 3 < 4, and

(4.4.1) mi=mi�1 � q = exp(4�) � exp(�(�i � �i�1)):

Consider now the case zi � �i�1 > 2. Then, setting

j1 := max
n
j 2 N

�� �i�1 + j + 1 � zi

o
;

we obtain from Proposition 4.3 that

jx(�i�1 + j1)j � qj1�1mi�1:

Note that [zi�1; zi] � [�i�1+j1; zi], and hence jx(t)j � jx(�i�1+j1)j for t 2 [zi�1; zi].
We infer from the di�erential equation that

mi � qjx(�i�1 + j1)j � qqj1�1mi�1 = qj1mi�1:

Now, from the de�nition of j1,

�i � �i�1 = zi + 1� �i�1 � �i�1 + j1 + 3� �i�1 = j1 + 3 � 4j1;

and thus

mi=mi�1 � qj1 = exp(� � 4j1) � exp(�(�i � �i�1));

and we see that (4.4.1) also holds in the second case.

We conclude that for j 2 f1; : : : ; Jg one has

mj = m1

jY
i=2

(mi=mi�1) � m1

jY
i=2

exp(�(�i � �i�1)

= m1 exp[�(�j � �1)] = m1 exp(���1) exp(��j);

where the product is to be read as 1 if j = 1. Since m1 � 1 (Proposition 4.2) and

�1 = z1 + 1 � 3 < 4 (Proposition 4.1), it follows that mj � exp(�4�) exp(��j) =
q�1 exp(��j). �

We can now obtain an exponential decay estimate for x (which is not based on

linearization at zero) for the time interval [0; �=(16")].

Corollary 4.5 For t 2 [0; �=(16")], one has jxtj � 2q�3 exp(�t):

Proof: 1. For t 2 [0; �1], one has jxtj � 1, and �1 � 3 < 4 implies

2q�3 exp(�t) � 2q�3 exp(4�) = 2q�2 > 1;
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so the assertion is true for these t.

2. Let t 2 [�1; �=(16")]. There exists i 2 f2; : : : ; J + 1g with t 2 [�i�1; �i].

Case 1: t � �i�1 + 2. We have jx(s)j � mi�1 for s 2 [zi�1; zi], and

j _x(s)j � j(��=4� �=16)jmi�1 = qmi�1 � mi�1

for s 2 [zi; t], if t � zi. In this case, t� zi � �i�1 + 2� zi � 2, so jx(s)j � 2mi�1 for

s 2 [zi; t]. With Proposition 4.4, it follows that

jxtj � 2mi�1 � 2q�1 exp(��i�1) = 2q�1 exp(�(�i�1 � t)) exp(�t)

� 2q�1 exp(�2�) exp(�t) � 2q�2 exp(�t):

Case 2: t > �i�1 + 2. Then zi = �i � 1 � t � 1 � �i�1 + 1. Setting j1 :=

max
n
j 2 N

�� �i�1 + j � minft; zig
o
, we obtain from Proposition 4.3 that

jx(�i�1 + j1)j � qj1�1mi�1:

Subcase 2a: t � zi. Then j1 � 2, and t � (�i�1 + j1) � 1, and it follows from

Proposition 4.3 and Proposition 4.4 that

jxtj � jx�i�1+j1j = jx(�i�1 + j1 � 1)j � qj1�2mi�1

� qj1�2q�1 exp(��i�1) = q�1 exp[4�(j1 � 2)] exp(��i�1)

� q�1 exp[�(j1 � 2)] exp(��i�1) = q�1 exp(�t) exp[�(j1 � 2 + �i�1 � t)]

� q�1 exp(�3�) exp(�t) � q�2 exp(�t):

Subcase 2b: t > zi. Then t 2 [zi; �i] = [zi; zi + 1]. From Subcase 2a, applied to zi,

we obtain jxzi j � q�2 exp(�zi). For s 2 [zi; t], one has _x(s) � j(��=4��=16)jjxzij �
qq�2 exp(�zi). It follows that

jxtj � q�2 exp(�zi) = q�2 exp(�t) exp(�(zi � t))

� q�2 exp(��) exp(�t) � q�3 exp(�t):

From Part 1 and the di�erent cases of Part 2, the asserted estimate is obtained.

�

Combining the above estimate with the ones which were obtained from linearization

at zero in Theorem 3.2, we can now provide a lower estimate on the time that passes

until jx(t)j > 1 again.

With c� and c+ from Theorem 3.2, we set c1 := ��=16� c+�
2=16� 5c��

2=512 and

c2 := c+�=4 + c��=32: Note that c1 < 0 < c2.

Corollary 4.6 There exists "0 2 (0; 0:01] such that for " 2 (0; "0] the function

t 7! jxtj decreases to values below " on the interval [0; �=4"], and then reaches the

value
p
" again not before the time jc1=2c2"j. (In particular, the value 1 is not

reached before this time.)
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Proof: With K from Proposition 2.3, we set L := Ke2. There exists "0 2 (0; 0:01]
such that for " 2 (0; "0] the following estimates hold.

(4.6.1) 2q�3 exp(��=16") � "

(4.6.2) 5L
p
" � c��=32

(4.6.3) L2q�3 exp[(��=16� c��
2=512)=")] � "

(4.6.4) j log(q3
p
"=2L)j � jc1j=2":

Let now " 2 (0; "0]. We set T := T (") := 1=
p
". We then have for all s 2 R

Va(s; s+ T ) = "T =
p
" � 1:

It follows that with V :=
p
" and with KV ; LV as in Lemma 3.1, one has KV = K

and LV = Ke2 = L. Further, we have log(LV )=T =
p
" log(L).

We set � :=
p
"; then the constant C = C(V; T; �) from Theorem 3.2 satis�es

C � L
p
"+ 5L

p
"=2 + log(L)

p
" � 5L

p
":

From Corollary 4.5 and from (4.6.1), we obtain that

jx�=16"j � 2q�3 exp(��=16") � " < �:

Now we set t� := �=16", and t+ := min
n
inf
n
t > t�

�� jxtj > �
o
; �=2"

o
, and we

apply Theorem 3.2. It follows that with u(t; t�) de�ned as in that theorem, one has

8 t 2 [t�; t+] : jxtj � L2q�3 exp(��=16")u(t; t�):

Next, we estimate u(t; s) for t; s in di�erent time intervals. Note that for t 2 R, one

has ja(t) + �=2j = j � �=4 + �=2 � "tj = j�=4� "tj: Thus, for t 2 [�=16"; 3�=16"],
we have ja(t)+ �=2j � �=16. It follows from Theorem 3.2, b) and from (4.6.2) that,

for these t,

(4:6:5)

u(t; �=16") � exp[

Z t

�=16"

(�c��=16 + C) ds]

� exp[

Z t

�=16"

(�c��=16 + 5L
p
") ds]

� exp[

Z t

�=16"

(�c��=32) ds] = exp[(�c��=32)(t� �=16")]:

In particular, the function t 7! u(t; t�) decays on [�=16"; 3�=16"].
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With t0 := �=4", we have a(t0) = ��=2. For t 2 [3�=16"; t0], one has

�0(a(t)) + C � C � 5L
p
";

and for these t one has from the de�nition of u(�; �) and from (4.6.2) that

(4:6:6)
u(t; 3�=16") � exp[5L

p
"(t� 3�=16")] � exp[5L

p
"�=16"]

� exp[c��
2=512"]:

Combining (4.6.5) and (4.6.6), we see that

jxt0 j � L2q�3 exp[��=16"]u(t0; 3�=16")u(3�=16"; �=16")

� L2q�3 exp[��=16"+ c��
2=512"� c�(�=32)(�=8")]

= L2q�3 exp[(��=16� c��
2=512)="]:

Now (4.6.3) shows that jxt0 j � " < �, in particular, t+ > t0.

Finally, for t 2 [t0; t+] we have ja(t) + �=2j � �=4. Using Part b) of Theorem 3.2,

together with the inequalities C � 5L
p
" and (4.6.2), one sees that

(4:6:7) u(t; t0) � exp[(c+�=4 + C)(t� t0)] � exp[(c+�=4 + c��=32)(t� �=4")]:

Combining the estimates (4.6.5), (4.6.6) and (4.6.7), we conclude that for t 2 [t0; t+]
one has

jxtj �
L2q�3 exp[(��=16� c��

2=512)="� (c+�=4 + c��=32)(�=4") + (c+�=4 + c��=32)t]

= L2q�3 exp[(��=16� c+�
2=16� 5c��

2=512)="+ (c+�=4 + c��=32)t]

= L2q�3 exp[c1="+ c2t]:

First case: t+ < �=2". Then

L2q�3 exp[c1="+ c2t+] � � =
p
"; so t+ � [log(q3

p
"=2L)� c1="]=c2:

Using (4.6.4), we infer t+ � �c1=2c2". Thus, jxtj reaches the value � =
p
" again

not earlier than this time.

Second case: t+ = �=2". Then the function t 7! jxtj is bounded by
p
" on the

interval [t0; �=2"]. From the expressions for c1 and c2, it is not di�cult to see that

jc1=2c2j < �=2. Hence, the assertion also holds in the second case. �

Remark. The estimate in Corollary 4.6 is, of course, quantitatively correct only in

the sense that it predicts a `growth' time of order 1=". Further, the upper bound

0:01 for ", which we used above, is only of technical nature. As an illustration, we

show a numerically obtained plot of the solution x for " = 0:03 on the time interval

[0; 60] in Figure 4.1. (The equation was solved using Simpson's rule.)
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Figure 1: Numerical solution of _x(t) = (��=4 � "t) arctan(x(t � 1)) with constant

initial segment equal to 1 and " = 0:03.

5 Additive nonautonomous perturbations

The results of Sections 3 and 4 are not unexpected, in view of their analogy to the

case of ODEs.

In the last section, we want to demonstrate an e�ect in nonautonomous delay equa-

tions which is speci�c for delay equations and does not occur in ODEs. Brie�y, the

e�ect is as follows: If a (linear) autonomous delay equation has a leading pair of

eigenvalues on the imaginary axis, then every nonzero inhomogeneous term :::+h(t)
on the right side of the equation inevitably has at least a transient in�uence on these

oscillation modes. Contrary to the ODE case, it is not possible to choose h such

that it interacts only with the remaining, exponentially decaying modes. This ob-

servation is a rather easy consequence of the variation-of-constants formula (Lemma

2.4), but has to our knowledge not been emphasized in the literature so far. We

turn to the detailed description now, starting with a simple observation. For c 2 C ,

set

Dc :=
n
 2 C0([�1; 0]; C )

��  is C1;  0(0) = c (�1)
o
:

Remark 5.1 If c 2 C and x : [�1; 0] �! C satis�es 8t � 0 : xt 2 Dc, then x is

C1 and _x(t) = cx(t� 1) for t � 0.

Proof: All segments xt (t � 0) are C1, which implies that x is C1. For t � 0, it
follows from xt 2 Dc that _x(t) = (xt)

0(0) = cxt(�1) = cx(t� 1): �

25



Consider now the harmonic oscillator equation

_x(t) = v(t); _v(t) = �
�2

4
x(t):

Setting y(t) := � 2
�
v(t), one obtains

_x(t) = �
�

2
y(t); _y(t) =

�

2
x(t);

or, setting w := x+ iy; � := i�=2, the more convenient complex form

(5.1) _w(t) = �w(t):

We now turn to the case of delay equations of the form

(5.2) _x(t) = �
�

2
x(t� 1) + h(t);

with continuous h : R �! R. For h = 0, equation (5.2) reduces to

(5.3) _x(t) = �
�

2
x(t� 1):

We explain why the last equation may be regarded as an analog of the harmonic

oscillator, together with a sequence of exponentially decaying oscillators (and no

coupling between any two of them):

Equation (5.3) has a leading pair of characteristic values �0 = i�=2; �0 = �i�=2,
with corresponding solutions t 7! e�it�=2. The remaining characteristic values (ele-

ments of ���=2, in the notation of Section 2) �1 = �1 � i!1; �2 = �2 � i!2; ::: satisfy

�k+1 < �k < 0 for k 2 N .

Now we add to the unperturbed harmonic oscillator (5.1) a second complex equation

_z(t) = �1z(t) with Re(�1) < 0, and then to the obtained system a perturbation h(t)
which lies entirely in the z�space. Thus we obtain the system

(5.4)
_w(t) = �w(t);

_z(t) = �1z(t) + h(t);

and it is clear that the perturbation has no e�ect on the evolution of the w-

component.

Our aim is now to point out that this is not so for equation (5.3), even if one chooses

h(t) = e�kt, where �k is one of the characteristic values with negative real part. More

precisely, we can state the following.

Theorem 5.2 a) Let � � f�0; �0; �1; �1; :::g be a �nite subset, and set

U :=
X
�2�

C � e����[�1; 0]
� C0([�1; 0]; C ):

If x : [�1; 0] �! C satis�es 8t � 0 : xt 2 U then x is C1 and _x(t) = ��

2
x(t�1)

for t � 0. Thus, x can satisfy equation (5.2) only with h = 0.
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b) Let h 2 C1([0;1);R) be such that h0 is bounded, that jh(s)j �! 0 (s �!1),
and that the integrals

R1
0
jh(s)jds and

R1
0
jh0(s)jds converge. The solution

of equation (5.2) with initial segment x0 = 0 has an asymptotic oscillation

amplitude given by

W1 :=

���� 2

1 + i�=2

Z 1

0

e�is�=2h(s)ds

���� :
c) In particular, if "; � 2 C , and Re(�) < 0, and h(t) = "e�t, one has

W1 =

����2 "

(1 + i�=2)(�� i�=2)

���� 6= 0:

If � = �k for some k 2 f1; 2; :::g, then this is true even though all segments

ht (t � 0) belong to the space with exponentially decaying solutions for the

unperturbed equation (5.3).

Proof: Ad a): Note that with D��=2 de�ned as before Remark 5.1, we have U �
D��=2, since each � 2 � satis�es � = �(�=2)e��. It follows from Remark 5.1 that

x is C1 and that _x(t) = �(�=2)x(t� 1) for t � 0.

Ad b): From Lemma 2.4 we obtain that, for t � 1, the solution of equation (5.2)

with x0 = 0 is given by

(5.2.1)

x(t) =

Z t

0

xc;ĥ(s);s(t) ds

=

Z t�1

0

xc;ĥ(s);s(t) ds+

Z t

t�1
xc;ĥ(s);s(t) ds:

Call the �rst and second term in the last sum A(t) and B(t), respectively. Let

� := ���=2 = f�0; �0; �1; �1; :::g denote the set of characteristic values of equation

(5.4), and for c 2 R let c� denote the constant function on [�1; 0] with value c.

In the term A(t) of (5.2.1) (with t � 1), the integrand is for all s < t � 1 equal to

the convergent series X
�2�

pr�[h(s)
�]e�(t�1�s)

(compare the beginning of the proof of Proposition 2.3), and

pr�[h(s)
�] = h(s)

1

1 + �
[1 + �

Z 0

�1
e��s ds] = h(s)

e�

1 + �
:

For s 2 [0; t�1], we get from Re(�) � 0 (� 2 �) and from the characteristic equation

that je�(t�s)j � je� j = j��=2
�
j, and hence

j
h(s)e�(t�s)

1 + �
j � jjhjj1

�

2j�(1 + �)j
:
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Now
X
�2�

1

�(1 + �)
converges, since j�kj = j�k + i!kj � j!kj > 2k� (k 2 N), see

Proposition 2.2. Thus we have uniform convergence on [0; t� 1] of the series in the

following integral, and we obtain

A(t) =

Z t�1

0

X
�2�

h(s)

1 + �
e�(t�s) ds

=
X
�2�

1

1 + �

Z t�1

0

e�(t�s)h(s) ds:

We denote the last integral by I�(t).

Claim: For � 2 � with Re(�) < 0 (i.e., � 2 f�1; �1; �2; �2; :::g) one has for t � 2

jI�(t)j �
1

j�j
[jh(t� 1)j+ jh(0)je�1t + jjh0jj1

t

2
e�1t=2 +

Z 1

t=2

jh0(s)j ds]:

Proof.

j
Z t�1

0

e�(t�s)h(s) dsj = je�tf[�
1

�
e��sh(s)]t�10 +

1

�

Z t�1

0

e��sh0(s) dsgj

�
1

j�j
[je� jjh(t� 1)j+ je�tjjh(0)j+ j

Z t�1

0

e�(t�s)h0(s) dsj]:

The last integral can be estimated by

jjh0jj1
Z t=2

0

je�(t�s)j ds+
Z t�1

t=2

jh0(s)j ds � jjh0jj1
t

2
je�t=2j+

Z 1

t=2

jh0(s)j ds:

Using that � = �k + i!k for some k 2 N , and that �k � �1 < 0, one obtains the

claim.

Abbreviating the square bracket in the above claim by C(t), we have jI�(t)j �
1
j�jC(t), and the properties of h imply that C(t) �! 0 (t �!1). Now

A(t) =
X

�2�;Re(�)<0

1

1 + �
I�(t) +

X
�2�;Re(�)=0

1

1 + �
I�(t);

and the absolute value of the left sum can be estimated by
P

�2�;Re(�)<0
1

j1+�j
1
j�jC(t),

which converges to zero as t �! 1. Recall that
n
� 2 �

�� Re(�) = 0
o

= f�0; �0g.
Thus, setting

A0(t) :=

�
1

1 + �0

Z t�1

0

e��0sh(s) ds

�
e�0t +

�
1

1 + �0

Z t�1

0

e��0sh(s) ds

�
e�0t;

we have

A(t)� A0(t) �! 0 (t �!1):

28



In the term B(t) of (5.2.1), the integrand equals h(s), so we have

B(t) =

Z t

t�1
h(s)ds:

The integrability condition on h implies

B(t) �! 0 (t �!1):

Together, the asymptotic amplitude of oscillation is determined by the term A0(t).
Since �0 = i�=2 and since the oscillation amplitude of a function of the form aei!t+
ae�i!t (! 2 R) is equal to 2jaj, we conclude that

W1 = 2

�����
R1
0
e�is�=2h(s) ds

1 + i�=2

����� ;
as asserted.

Ad c): For h as in c), one hasZ 1

0

"e(���0)s ds =
�"

�� �0
=

�"
�� i�=2

;

so W1 = 2

���� "

(1 + i�=2)(�� i�=2)

���� : The remaining statements are clear. �

Comment. In view of Remark 5.1, one might (in analogy to ODEs) try to �nd

solutions X : R �! C0([�1; 0]; C ) of equations of the form

(5.5) _X(t) = (��=2)X(t� 1) +H(t) (t 2 R);

which are de�ned on all of R and have values in some closed subspace S of the

space C0([�1; 0]; C ) (e.g., in one of the eigenspaces associated with a characteristic

value and its conjugate, or a �nite sum of such spaces). The function H in equation

(5.5) would then be continuous from R to S. Such equations and solutions exist:

For example, take as X : R �! S any C1 curve in S, and read equation (5.5) as

a de�nition of H : R �! S. Such a function H does then typically not consist of

segments of one function h : R �! R, i.e.,

6 9 h : R �! R : H(t) = ht (t 2 R):

In other words, the inhomogeneity in equation (5.5) is not of the type that would

typically be encountered in applications.
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