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Abstract

The traveling-wave model is a popular tool for investigating longitudinal

dynamical e�ects in semiconductor lasers, e.g., sensitivity to delayed optical

feedback. This model consists of a hyperbolic linear system of partial di�eren-

tial equations (PDEs) with one spatial dimension which is nonlinearly coupled

with a slow subsystem of ordinary di�erential equations (ODEs). Firstly,

we prove the basic statements about the existence of solutions of the initial-

boundary-value problem and their smooth dependence on initial values and

parameters. Hence, the model constitutes a smooth in�nite-dimensional dy-

namical system. Then, we exploit this fact and the particular slow-fast struc-

ture of the system to construct a low-dimensional attracting invariant manifold

for certain parameter constellations. The �ow on this invariant manifold is de-

scribed by a system of ODEs which is accessible to classical bifurcation theory

and numerical tools like, e.g., AUTO.

1 Introduction

Due to their inherent speed, semiconductor lasers are of great interest for modern

optical data transmission and telecommunication technology. Typically, these ap-

plications utilize the laser in a non-stationary mode, e.g., to produce high-frequency

oscillations or pulse trains. Multi-section lasers allow to cultivate and control these

nonlinear e�ects by designing the longitudinal structure of the device; see, e.g., [19],

[29]. This paper focusses on the basic properties of the traveling-wave model with

gain dispersion describing longitudinal e�ects in semiconductor lasers as introduced

in [2], [5], [15], [25].

Structure of the traveling-wave model This model describes the dynamics of

the laser by the interaction of two physical variables: the complex electro-magnetic

�eld E, roughly speaking the light amplitude, and the e�ective carrier density n

within the active zone of the device. The system has the structure

_E = H(n)E

_n = "(I � n� g(n)[E;E])
(1)

if we neglect noise and high-power e�ects. Here, E is complex and spatially resolved

in the longitudinal direction of the laser, and n describes the spatially section-

wise averaged carrier density. Hence, system (1) couples a linear system of partial
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di�erential equations (PDEs) for E with a system of ordinary di�erential equations

(ODEs) for n. Furthermore, the variables E and n act on di�erent time-scales

implying a slow-fast structure of (1). This fact is expressed by the presence of the

small parameter " which is the ratio between the averaged lifetime of a photon and

the averaged lifetime of a carrier. Finally, g is a hermitian form implying a symmetry

of (1) with respect to rotation of the complex variable E. Consequently, (1) admits

solutions of the type (E(t) = E0e
i!t, n(t) = const), i.e., rotating waves or stationary

lasing states.

A remark about the relation of the traveling-wave model to other models concerned

with semiconductor lasers: A very popular model for the simulation of delayed

optical feedback e�ects in lasers is the Lang-Kobayashi model ; see [28] and references

therein. The Lang-Kobayashi system is a system of delay-di�erential equations

which has also the structure (1). It turns out that all results of this paper extend

to the Lang-Kobayashi system in an obvious manner (see �6).

Non-technical overview In �2 we introduce the system under consideration in

detail and specify all conditions on the parameters assumed implicitly in the follow-

ing sections.

In �3 we prove the basic statements about existence, boundedness and regularity of

solutions of the initial-boundary value problem corresponding to (1) on arbitrarily

large non-negative time intervals [0; T ]. Furthermore, we prove that the solutions

depend smoothly (C1) on initial values and all parameters. Hence, (1) constitutes

a smooth in�nite-dimensional dynamical system. In this section, we consider also

inhomogeneous boundary conditions in (1) modeling optical injection into the laser.

We permit the inhomogeneity to be discontinuous in time to allow modeling of

rectangular-shape signals. This potential discontinuity prevents homogenization of

the boundary conditions [18]. However, the introduction of the inhomogeneity as

an in�nite-dimensional variable (and part of E) transforms the system back into

structure (1). Then, all statements of this section are a direct consequence of the

theory of strongly continuous semigroups and an a-priori estimate exploiting the

small dissipation in (1).

In �4 we investigate the spectral properties of the operator H for �xed n extending

results of [21] and [20]. Although the cases of periodic boundary conditions and

Dirichlet type boundary conditions have to be treated separately, the fundamental

result is the same for both cases: The growth properties of the strongly continuous

semigroup generated by H are determined by the dominating eigenvalues ofH which

are isolated and of �nite algebraic multiplicity.

Section 5 is concerned with the construction of a �nite-dimensional attracting invari-

ant manifold utilizing the slow-fast structure of (1) and the results of �3 and �4. The

result follows from the general theorems of [7], [8], [9] if we introduce appropriate

coordinates and cut-o� modi�cations.

Finally, in �6 we explain how the system of ODEs obtained in �5 can be made
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accessible to standard numerical bifurcation analysis tools like AUTO [11], and

conclude that the model reduction theorem of �5 is also valid for the Lang-Kobayashi

system.

The appendix explains the physical interpretation of the quantities appearing in the

traveling-wave model, and lists possible ranges of the parameters.

2 The traveling-wave model with nonlinear gain dis-

persion

A well known model describing the longitudinal e�ects in narrow laser diodes is the

traveling wave model, a hyperbolic system of PDEs coupled with a system of ODEs

[2], [15], [25].

This model has been extended by adding polarization equations to include nonlinear

gain dispersion e�ects [1], [2], [5], [23]. In this section we introduce the corresponding

system of di�erential equations and specify the fundamental assumptions on its

coe�cients.

Let  (t; z) 2 C 2 describe the complex amplitude of the optical �eld split into a

forward and a backward traveling wave. Let p(t; z) 2 C 2 be the corresponding

nonlinear polarization (see appendix). Both quantities depend on time and the one-

dimensional spatial variable z 2 [0; L] (the longitudinal direction within the laser).

The vector n(t) 2 Rm represents the spatially averaged carrier densities within the

individual sections of the laser (see Fig. 1). The initial-boundary value problem

S1 S2

Ll20 1
z

n1

l1

n3

S3

l3

z1
z2 z3 z4

n2

Figure 1: Typical geometric con�guration of the domain in a laser with 3 sections.

reads as follows:

@t (t; z) = �@z (t; z) + �(n(t); z) (t; z)� i�(z)�c (t; z) + �(n(t); z)p(t; z) (2)

@tp(t; z) = (i
r(n(t); z)� �(n(t); z)) � p(t; z) + �(n(t); z) (t; z) (3)

d

dt
nk(t) = Ik �

nk(t)

�k
�
P

lk
(Gk(nk(t))� �k(nk(t)))

Z
Sk

 (t; z)� (t; z)dz

�
P

lk
�k(nk(t)) Re

�Z
Sk

 (t; z)�p(t; z)dz

�
for k = 1 : : :m (4)
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accompanied by the inhomogeneous boundary conditions

 1(t; 0) = r0 2(t; 0) + �(t),  2(t; L) = rL 1(t; L) (5)

and the initial conditions

 (0; z) =  0(z), p(0; z) = p0(z), n(0) = n0. (6)

The Hermitian transpose of a C 2 -vector  is denoted by  � in (4). We will de�ne the

appropriate function spaces and discuss the possible solution concepts in �3. The

quantities and coe�cients appearing above have the following sense (see also Tab. 1

and Fig. 1):

L is the length of the laser. The laser is subdivided into m sections Sk of length

lk with starting points zk for k = 1 : : :m. We scale the system such that l1 = 1

and denote zm+1 = L. Thus, Sk = [zk; zk+1]. All coe�cients are supposed to be

spatially constant in each section, i.e. if z 2 Sk, �(z) = �k, �(n; z) = �k(nk),

�(n; z) = �k(nk), �(n; z) = �k(nk). The matrices � and �c are de�ned by

� =

�
�1 0

0 1

�
, �c =

�
0 1

1 0

�
.

The model for �(n; z) = �k(nk) 2 C (z 2 Sk) we use throughout the work reads

�k(�) = dk + (1 + i�H;k)Gk(�)� �k(�)

where dk 2 C , �H;k 2 R, and Re dk < 0. A section Sk is either passive, then the

functionsGk and �k are identically zero, or Sk is active. In this case, Gk : (n;1)! R

is a smooth1 strictly monotone increasing function satisfying Gk(1) = 0, G0k(1) > 0.

Its limits are lim�&nGk(�) = �1, lim�!1Gk(�) =1 where n � 0. Typical models

for Gk in active sections are

Gk(�) = ~gk log � (n = 0) or

Gk(�) = ~gk � (� � 1) (n = �1).

IfGk 6� 0, the function �(n; z) = �k(nk) is bounded for nk < 1. Moreover, we suppose

�k;
r;k;�k : (n;1)! R to be smooth and Lipschitz continuous, and �k(�) > 1.

The coe�cients r0 and rL in (5) are complex with modulus less than 1. The inho-

mogeneity �(t) is bounded but may be discontinuous in time. The variables and

coe�cients, their physical meanings, and their typical ranges are shown in Tab. 1.

Finally, we introduce the hermitian form

gk(�)

��
 

p

�
;

�
'

q

��
=

1

lk

Z
Sk

( �(z); p�(z))
�
Gk(�)��k(�)

1

2
�k(�)

1

2
�k(�) 0

��
'(z)

q(z)

�
dz (7)

1The notation smooth refers to C1 throughout this paper.
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and the notations

k k2k =

Z
Sk

 �(z) (z)dz

fk(�; ( ; p)) = Ik �
�

�k
� Pgk(�)

��
 

p

�
;

�
 

p

��
(8)

for � 2 [n;1) and  ; p 2 L2([0; L]; C 2). Using these notations, (4) reads

d

dt
nk = fk(nk; ( ; p)) for k = 1 : : :m. (9)

3 Existence and Uniqueness of Classical and Mild

Solutions

In this section, we treat the inhomogeneous initial-boundary value problem (2)-(5)

as an autonomous nonlinear evolution equation

d

dt
u(t) = Au(t) + g(u(t)), u(0) = u0 (10)

where u(t) is an element of a Hilbert space V , A is a generator of a C0 semigroup

S(t), and g : U � V ! V is smooth and locally Lipschitz continuous in an open set

U � V . The inhomogeneity in (5) is included in (10) as a component of u.

3.1 Notation

The Hilbert space V is de�ned by

V := L
2([0; L]; C 4)� R

m � L
2
� ([0;1); C ) (11)

where L2� ([0;1); C ) is the space of weighted square integrable functions. The scalar

product of L2� ([0;1); C ) is de�ned by

(v; w)� := Re

Z
1

0

�v(x) � w(x)(1 + x2)�dx.

We choose � < �1=2 such that the space L1([0;1); C ) is continuously embedded

in L2� ([0;1); C ). The complex plane is treated as two-dimensional real plane in the

de�nition of the vector space V such that the standard L
2 scalar product (�; �)V of

V is di�erentiable. The corresponding components of v 2 V are denoted by

v = ( 1;  2; p1; p2; n; a).

The spatial variable in  and p is denoted by z 2 [0; L] whereas the spatial variable

in a is denoted by x 2 [0;1). The Hilbert space H 1
� ([0;1); C ) equipped with the

scalar product

(v; w)1;� := (v; w)� + (@xv; @xw)�
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is densely and continuously embedded in L
2
� ([0;1); C ). Moreover, its elements are

continuous [24]. Consequently, the Hilbert spaces

W := H
1([0; L]; C 2)� L

2([0; L]; C 2)� R
m � H

1
� ([0;1); C ), and

WBC := f( ; p; n; a) 2 W :  1(0) = r0 2(0) + a(0);  2(L) = rL 1(L)g

are densely and continuously embedded in V . The linear functionals  1(0)�r0 2(0)�
a(0) and  2(L)�rL 1(L) are continuous fromW ! R. We de�ne the linear operator

A : WBC ! V by

A ( 1;  2; p; n; a) := (�@z 1; @z 2; 0; 0; @xa) .

The de�nition of A and WBC treat the inhomogeneity � in the boundary condition

(5) as the boundary value at 0 of the variable a. We de�ne the open set U � V by

U := f( ; p; n; a) 2 V : nk > n for k = 1 : : :mg,

and the nonlinear function g : U ! V by

g( ; p; n; a) =

0
BB@

�(n) � i��c + �(n)p

(i
r(n)� �(n))p+ �(n) 

(fk(nk; ( ; p)))
m
k=1

0

1
CCA . (12)

The corresponding coe�cients of (2)�(4) de�ne the smooth maps � : (n;1)m !
L(L2([0; L]; C 2)) and �;
r;� : Rm ! L(L2([0; L]; C 2)). The function g is contin-

uously di�erentiable to any order with respect to all arguments and its Frechet

derivative is bounded in any closed bounded ball B � U [12].

According to the theory of C0 semigroups, there are two solution concepts [17]:

De�nition 1 Let T > 0. A solution u : [0; T ]! V is a classical solution of (10) if

u(t) 2 WBC \ U for all t 2 [0; T ], u 2 C1([0; T ];V ), u(0) = u0, and equation (10) is

valid in V for all t 2 (0; T ).

The inhomogeneous initial-boundary value problem (2)-(6) and the autonomous evo-

lution system (10) are equivalent in the following sense: Suppose � 2 H 1([0; T ); C )

in (5). Let u = ( ; p; n; a) be a classical solution of (10). Then, u satis�es (2)-(3),

and (6) in L2 and (4), (5) for each t 2 [0; T ] if and only if a0j[0;T ] = �. On the

other hand, assume that ( ; p; n) satis�es (2)-(3), and (6) in L2 and (4), (5) for each

t 2 [0; T ]. Then, we can choose a a0 2 H
1
� ([0;1); C ) such that a0j[0;T ] = � and

obtain that u(t) = ( (t); p(t); n(t); a0(t + �)) is a classical solution of (10) in [0; T ].

De�nition 2 Let T > 0, A be a generator of a C0 semigroup S(t) of bounded

operators in V . A solution u : [0; T ]! V is a mild solution of (10) if u(t) 2 U for

all t 2 [0; T ], and u(t) satis�es the variation of constants formula in V

u(t) = S(t)u0 +

Z t

0

S(t� s)g(u(s))ds. (13)
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We prove in Lemma 3 that A generates a C0 semigroup in V . Mild solutions of

(10) are a reasonable generalization of the classical solution concept of (2)-(5) to

boundary conditions including discontinuous inputs � 2 L
2
� ([0;1); C ).

3.2 Global Existence and Uniqueness of Solutions for the

Truncated Problem

In order to prove uniqueness and global existence of solutions of (10), we apply the

theory of strongly continuous semigroups [17].

Lemma 3 A : WBC � V ! V generates a C0 semigroup S(t) of bounded operators

in V .

Proof: We specify the C0 semigroup S(t) explicitly. Denote the components of

S(t)( 0
1;  

0
2; p

0; n0; a0) by ( 1(t; z);  2(t; z); p(t; z); n(t); a(t; x)) for z 2 [0; L], x 2
[0;1), and let t � L.

 1(t; z) =

�
 0
1(z � t) for z > t

r0 
0
2(t� z) + a0(t� z) for z � t

 2(t; z) =

�
 0
2(z + t) for z < L� t

rL 
0
1(2L� t� z) for z � L� t

p(t; z) = 0

n(t) = 0

a(t; x) = a0(x+ t).

For t > L we de�ne inductively S(t)u = S(L)S(t � L)u. This procedure de�nes a

semigroup of bounded operators in V since

k 1(t; �)k2 + k 2(t; �)k2 + ka(t; �)k2 � 2(1 + t2)��
�
k 0

1k+ k 
0
2k+ ka

0k
�

for t � L. The strong continuity of S is a direct consequence of the continuity in

the mean in L
2 . It remains to be shown that S is generated by A.

Let u = ( 0
1 ;  

0
2; p

0; n0; a0) satisfy limt!0
1
t
(S(t)u�u) 2 V , de�ne 't(z) := 1

t
( 1(t; z)�

 0
1(z)), '0 = limt!0 't, and let Æ > 0 be small. Firstly, we prove that u 2 WBC. 't

coincides with the di�erence quotient 1
t
( 0

1(z � t) �  0
1(z)) for t < Æ and z 2 [Æ; L].

Thus, @z 
0
1 2 L2([Æ; L]; C ) exists. Furthermore, 't(� + t) ! '0 in L2([0; L � Æ]; C ).

Since 't(� + t) = 1
t
( 0

1(z) �  0
1(z + t)), @z 

0
1 exists also in L2([0; L� Æ]; C ). Conse-

quently  0
1 2 H

1([0; L]; C ). The same argument holds for  0
2 2 H

1([0; L]; C ) and for

a0 2 H
1
� ([0;1); C ).

In order to verify that u satis�es the boundary conditions we write

't(z) =

8>><
>>:
z 2 [t; L] : �1

t

R z
z�t

@z 
0
1(�)d�

z 2 [0; t] : 1
t

�
r0
R t�z
0

@z 
0
2(�) + @za

0(�)d� �
R z
0
@z 

0
1(�)d�

�
+

+1
t
(r0 

0
2(0) + a0(0)�  0

1(0))

(14)
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Consequently, the limit '0 is in L
2([0; L]; C ) if and only if r0 

0
2(0)+a

0(0)� 0
1(0) = 0.

The same argument using 1
t
( 2(t; z)�  0

2(z)) implies rL 
0
1(L)�  0

2(L) = 0.

Finally, we prove that for any u 2 WBC we have limt!0
1
t
(S(t)u � u) = Au. Using

the notation 't introduced above, we have
R t
0
j't(z)j2dz !t!0 0 due to (14). Hence,

't !t!0 �@z 0
1 on [0; L]. Again, we can use the same arguments to obtain the

limits @z 
0
2 and @xa

0. �

The operators S(t) have a uniform upper bound

kS(t)k � Ce
t (15)

within �nite intervals [0; T ]. In order to apply the results of the C0 semigroup theory

[17], we truncate the nonlinearity g smoothly: For any bounded ball B � U which

is closed w.r.t. V , we choose gB : V ! V such that gB is smooth, globally Lipschitz

continuous, and gB(u) = g(u) for all u 2 B. This is possible because the Frechet

derivative of g is bounded in B and the scalar product in V is di�erentiable with

respect to its arguments. We call

d

dt
u(t) = Au(t) + gB(u(t)), u(0) = u0 (16)

the truncated problem (10). The following Lemma 4 is a consequence of the results

in [17].

Lemma 4 (global existence for the truncated problem)

The truncated problem (16) has a unique global mild solution u(t) for any u0 2 V .

If u0 2 WBC, u(t) is a classical solution of (16).

Corollary 5 (local existence) Let u0 2 U . There exists a tloc > 0 such that the

evolution problem (10) has a unique mild solution u(t) on the interval [0; tloc]. If

u0 2 WBC \ U , u(t) is a classical solution of (10) in [0; tloc].

3.3 A-priori Estimate � Existence of Semi�ow

In order to state the result of Lemma 4 for (10), we need the following a-priori

estimate for the solutions of the truncated problem (16).

Lemma 6 Let T > 0, u0 2 WBC \ U . If n > �1, we suppose Ik�k > n for all

k = 1 : : :m. There exists a closed bounded ball B such that B � U and the solution

u(t) of the B-truncated problem (16) starting at u0 stays in B for all t 2 [0; T ].

Proof: Let u0 = ( 0; p0; n0; a0) 2 WBC \ U .

Preliminary consideration

Let n� 2 (n; n0k) be such that Gk(n�)� �k(n�) < 0 for all k = 1 : : :m where Gk 6� 0.

Let t1 > 0 be such that the solution of the non-truncated problem (10) u(t) =

8



( (t); p(t); n(t); a(t)) exists in [0; t1], and nk(t) � n� for all k = 1 : : :m and t 2 [0; t1].

We de�ne the function

h(t) :=
P

2
k (t)k2 +

mX
k=1

lk(nk(t)� n�).

Because of the structure of the nonlinearity g (linear in ( ; p)), u(t) is classical in

[0; t1]. Hence, h(t) is di�erentiable and the di�erential equations (2) and (4) imply

d

dt
h(t) � J �

mX
k=1

�
lk

�k
nk + P Re dkk k2k

�
� J � ~��1n� � 
h(t),

where


 := min

�
��1k ;�

Re dk

2
: k = 1 : : :m

�
> 0

J :=

mX
k=1

lkIk + sup
�
jr0z + a0(x)j2 � jzj2 : z 2 C ; x 2 [0; T ]

	
<1

~��1 :=

mX
k=1

lk�
�1
k .

Consequently, h(t) � maxfh(0); 
�1J � 
�1~��1n�g for all t 2 [0; t1]. Since h(0) =
P
2
k 0k2 +

Pm
k=1 lkn

0
k � Ln�, we obtain the estimate

0 � h(t) �M � � � n� (17)

where

M := max

(

�1J;

P

2
k 0k2 +

mX
k=1

lkn
0
k

)
, and � := min

�

�1~��1; L

	

do not depend on n�. Since nk(t) � n� in [0; t1] for all k = 1 : : :m, the estimate (17)

for h(t) and the di�erential equation (3) for p imply bounds for  , p and n in [0; t1]:

k (t)k2 � S(n�)
2 := 2P�1(M � � � n�)

kp(t)k � kp0k+ S(n�) (18)

nk 2
�
n�; n� + (2lk)

�1PS(n�)
2
�
.

Hence, fk(n�; ( (t); p(t))) is greater than

Ik �
n�

�k
�
P

lk
max
�2R

�
(Gk(n�)� �k(n�))�

2 + j�k(n�)j(jp0k+ S(n�))�
�

(19)

for all k = 1 : : :m and t 2 [0; t1].

Construction of B

Since Gk(�) !�!n �1 and �k(�) bounded for � ! n, or Gk = �k = 0, we can

9



�nd a n� such that the expression (19) is greater than 0 for all k = 1 : : :m. Then,

we choose B such that ( ; p; n; a) 2 B if  , p and n satisfy (18) for this n� and

a = a0(t+ �) for t 2 [0; T ].

Indirect proof of invariance of B

Assume that the solution v(t) = ( (t); p(t); n(t); a(t)) of the B-truncated problem

leaves B. The preliminary consideration and the construction of B imply that there

exists a t1 such that u(t) exists in [0; t1], and, for one k 2 f1 : : :mg, nk(t1) = n� and

nk(t) > n� for all t 2 [0; t1]. Consequently, _nk(t1) = fk(nk(t1); ( (t1); p(t1))) < 0.

However, this contradicts to the construction of n� such that (19) is greater than 0.

�

Moreover, a solution u(t) starting at u0 2 WBC\U and staying in a bounded closed

ball B � U in [0; T ] is a classical solution in the whole interval [0; T ] because of the

structure of the nonlinearity g.

The bounds (18) do not depend on the completeWBC-norm of u0 but on its V -norm

and the L1 -norm of a0j[0;T ]. Hence, we can state the global existence theorem also

for mild solutions:

Theorem 7 (global existence and uniqueness)

Let T > 0, u0 = ( 0; p0; n0; a0) 2 U and ka0j[0;T ]k1 <1. If n > �1, let Ik�k > n

for all k = 1 : : :m. There exists a unique mild solution u(t) of (10) in [0; T ].

Furthermore, if u0 2 WBC \ U , u(t) is a classical solution of (10).

The bounds (18) do not depend on T explicitly, either. Thus, the solutions are

globally bounded if a0 is bounded:

Corollary 8 (global boundedness)

Let u0 = ( 0; p0; n0; a0) 2 U and ka0k1 < 1. There exists a constant C such that

ku(t)kV � C.

The next corollary is an immediate consequence of the general theory of C0 semi-

groups [17]:

Corollary 9 (continuous dependence on initial values)

Let T > 0, u0j = ( j; pj; nj; aj) 2 U , kajj[0;T ]k1 < 1 for j = 1; 2. There exists

a constant C depending on ku01kV , ku02kV , ka1j[0;T ]k1, ka2j[0;T ]k1, and T such that

ku1(t)� u2(t)kV � C � ku01 � u02kV .

Therefore, the nonlinear equation de�nes a semi�ow S(t; u0) for t > 0. S is even

continuously di�erentiable with respect to its second argument in the following sense:

Corollary 10 (continuous di�erentiability of the semi�ow)

Let T > 0, u0 = ( 0; p0; n0; a0) 2 U , ka0j[0;T ]k1 <1. Let

MC;" :=
�
( ; p; n; a) 2 V : kaj[0;T ]k1 � C; k( ; p; n; a)kV � "

	
.
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Then, MC;" is a closed subset of V , and

S(t; u0 + h)� S(t; u0) = SL(t; 0)h+ oC(khkV )

for h 2 MC;" for arbitrary C and su�ciently small ". SL(t; s) is the evolution

operator of the linear evolution equation in V

d

dt
v(t) = Av(t) +

@

@u
g(u(t))v(t), v(s) = v0.

This follows from the C0 semigroup theory [17] since we can choose a common ball

B for all u0 + h, h 2 MC;". This result extends to C
k smoothness (k > 1) since the

nonlinearity g is C1 with respect to all arguments.

The continuous dependence of the solution on all parameters within a bounded pa-

rameter region is also a direct consequence of the C0 semigroup theory. In order to

obtain a uniform a-priori estimate, we impose additional restrictions on the param-

eters: 1 � jr0j > c > 0, Ik�k � n > c > 0, Re dk < �c < 0 for k = 1 : : :m, and for

active sections (gk 6= 0), gk > c > 0, for a uniform constant c.

4 Asymptotic behavior of the linear part

4.1 Introduction of a small parameter

We restrict ourselves to the autonomous system (2)-(4) in the following. The bound-

ary conditions are

 1(t; 0) = r0 2(t; 0),  2(t; L) = rL 1(t; L) (20)

in the autonomous case.

We reformulate (2)-(4) to exploit its particular structure. The space dependent

subsystem is linear in  and p:

@t

�
 

p

�
= H(n)

�
 

p

�
. (21)

The linear operator

H(n) =

�
�@z + �(n)� i��c �(n)

�(n) i
r(n)� �(n)

�
(22)

acts from

Y := f( ; p) 2 H
1([0; L]; C 2)� L

2([0; L]; C 2) :  satisfying (20)g

into X = L2([0; L]; C 4). H(n) generates a C0 semigroup Tn(t) acting in X. Its

coe�cients �, and for each n 2 R
m �(n), 
r(n), �(n) and �(n) are linear operators

11



in L
2([0; L]; C 2) de�ned by the corresponding coe�cients in (2), (3). The maps

�; �;�;
r : R
m ! L(L2([0; L]; C 2)) are smooth.

We observe that Ik and �
�1
k in (8) are approximately two orders of magnitude smaller

than 1 (see Tab. 1). Hence, we can introduce a small parameter " and set P = " in

(4) such that (9) reads:

d

dt
nk = fk (nk; E) = "(Fk(nk)� gk(nk)[E;E]) (23)

forE 2 X where the coe�cients in Fk(nk) = "�1(Ik�nk��1k ) are of order 1. Although

" is not directly accessible, we treat it as a parameter and consider the limit "! 0

while keeping Fk �xed. At " = 0, the carrier density n is constant. It enters the

linear subsystem (21) as a parameter. We will investigate the longtime behavior of

this linear equation throughout the rest of this section. For brevity, we drop the

argument n.

4.2 Spectral Properties of H(n)

In this section, we investigate the spectrum of the operator H(n) treating n as a

parameter.

De�ne the set of complex �resonance frequencies�

W = fc 2 C : c = i
r;k � �k for at least one k 2 f1 : : :mgg � C

and � : C n W ! L(L2([0; L]; C 2)) (see appendix for explanation and [5], [23] for

details) by

�(�) =
��

�� i
r + �
2 L(L2([0; L]; C 2)) for each � 2 C nW.

For � 2 C n W, the following relation follows from (22): � is in the resolvent set of

H if and only if the boundary value problem

(�@z + � � i��c + �(�)� �)' = 0 with b. c. (20) (24)

has only the trivial solution ' = 0 in H 1([0; L]; C 2). The transfer matrix correspond-

ing to (24) is

Tk(z; �) =
e�
kz

2
k

�

k + �k + e2
kz(
k � �k) i�k (1� e2
kz)

�i�k (1� e2
kz) 
k � �k + e2
kz(
k + �k)

�
(25)

for z 2 Sk where �k = � � �k(�) � �k and 
k =
p
�2k + �2k [2], [20]. The right-

hand-side of (25) does not depend on the branch of the square root in 
k since the

expression is even with respect to 
k. Denote the overall transfer matrix of (24) by

T (z1; z2;�) for z1; z2 2 [0; L]. The function

h(�) =
�
rL; �1

�
T (L; 0;�)

�
r0
1

�
=
�
rL �1

� 1Y
k=m

Tk(lk;�)

�
r0
1

�
(26)

12



de�ned in C n W is the characteristic function of H: Its roots are the eigenvalues

of H and R := f� 2 C n W : h(�) 6= 0g is the resolvent set. Consequently, all

� 2 C nW are either eigenvalues of H or in R, i. e., there is no essential (continuous
or residual) spectrum in C n W. We note that maxReW � �1 for physically

sensible parameter constellations. Let � 2 L
2([0; L]; C 2). We denote the solution '

of the inhomogeneous boundary value problem

(�@z + � � i��c + �(�)� �)'+ � = 0 with b. c. (20) (27)

by R1(�)�. An expression for R1(�)� is

[R1(�)�](z) =
1

h(�)
T (z; 0;�)

�
r0
1

�
(rL;�1)

LZ
0

T (L; s;�)��(s) ds�

zZ
0

T (z; s;�)��(s) ds.

(28)

Hence, R1(�) : L
2([0; L]; C 2) ! L2([0; L]; C 2) is compact for � 2 R. The resolvent

of H, R(�) := (�Id�H)�1 : L2([0; L]; C 4)! L2([0; L]; C 4) for � 2 R is

R(�)

�
 

p

�
=

0
@ R1(�)

�
 + �p

��i
r+�

�
1

��i
r+�

h
p+ �R1(�)

�
 + �p

��i
r+�

�i
1
A (29)

which is a compact perturbation of the operator ( ; p)! (0; (�� i
r + �)�1p).

The following lemma provides an approximate upper bound for the real parts of the

eigenvalues.

Lemma 11 Let � 2 C nW be in the point spectrum of H. Then, � is geometrically

simple, and its real part satis�es the estimate

Re� � �u := max
k=1:::m

�
�
�k

2
;Re�k + 2�k

�
.

Proof: Let ( ; p) be an eigenvector associated to �. Then,  is a multiple of

T (z; 0;�) ( r01 ), and p = � =(�� i
r + �). Thus, � is geometrically simple. Partial

integration of the eigenvalue equation (24) and its complex conjugate equation yields:

2Re� � 2 max
k=1:::m

(Re �k +Re�k(�)) . (30)

For Re� > ��k=2, we get Re�k(�) � j�k(�)j � 2�. �

It turns out that we have to treat the cases r0rL = 0 and r0rL 6= 0 di�erently

for more detailed analysis of the spectrum of H and the growth properties of the

semigroup T (t).

13



4.3 The di�erentiable case: r0rL = 0

According to the notations in [17], [10] we denote:

De�nition 12 A C0 semigroup T (t) is called eventually di�erentiable if there exists

a t0 � 0 such that t ! T (t)x is di�erentiable for all x 2 X and t > t0. It is called

eventually compact if there exists a t0 � 0 such that T (t) is a compact operator for

all t > t0.

Theorem 13 If r0rL = 0 in (20), then the C0 semigroup T (t) generated by H is

eventually di�erentiable.

Proof: Let M , ! be such that kT (t)k � Me!t for all t � 0. According to [17], it is

su�cient to �nd constants a > 0, b > 0, and C > 0 such that

1. R � � := f� : bRe�+ log j Im�j � ag, and

2. kR(�)k � Cj Im�j for all � 2 �, Re� � !.

Firstly, we prove property 1. We know that C ! := f� : Re� > !g � R because of

kT (t)k �Me!t. Consider the following two sets

S1 := f� : Im� > 1g n C !

S2 := f� : Im� < �1g n C ! .

Within each of both sets, we can choose the branch of the square root for 
k satisfying

lim
j�j!1


k(�)� �k(�) = lim
j�j!1


k(�)� � = 0. (31)

Consider the function

~h(�) = h(�) exp

 
�

mX
k=1


k(�)lk

!

= (rL;�1)
1Y

k=m

�
Tk(lk;�)e

�lk
k(�)
��r0

1

� (32)

which is a multiple of the characteristic function h(�) of H. (31) implies that the

factor matrices ~Tk(�) = e�lk
k(�)Tk(lk;�) of ~h have the form

~Tk(�) =

�
e�2lk
k(�) 0

0 1

�
+ Ak(�)

where all coe�cients of Ak satisfy the inequality

jAk;ij(�)j � ckj�j�1e�2lk Re� (33)

14



for some ck > 0 in S1 and in S2. Hence, we can expand the matrix product in (32)

into a sum such that ~h(�) reads:

~h(�) = r0rL exp

 
mX
k=1


k(�)lk

!
� 1 + r(�).

The �rst summand is zero and the remainder r(�) is bounded by

jr(�)j � cj�j�1e�2LRe� (34)

for some c > 0 in S1 and S2. If we choose b > 2L, then

lim
j�j!1
�2�

j�j�1e�2LRe� = 0 for any a > 0.

Thus, we can choose a su�ciently large such that � n C ! � S1 [ S2 and

cj�j�1e�2LRe� < 1=2 for all � 2 � n C ! .

Hence, jr(�)j < 1=2, and j~h(�)j > 1=2 for all � 2 � n C ! . Consequently, � � R.

Concerning property 2: The only term which is unbounded w.r.t. � for j�j ! 1 in

the right-hand-side of (29) is R1(�). We substitute h(�) = ~h(�) exp (
Pm

k=1 lk
k(�))

in (28) and estimate

jTk(z;�)j � ce�lk Re� (35)

for all � 2 S1 and S2 due to (31). (35) and ~h(�) > 1=2 imply

kR1(�)k � ce�3LRe� (36)

for all � 2 S1 and S2. Hence, if we choose b > 3L in the de�nition of �, property 2

is also satis�ed in �. �

The next theorem establishes precisely how the growth properties of the semigroup

T (t) are related to the spectrum of H.

Theorem 14 Let � > maxReW, and denote C � := f� 2 C : Re� � �g, and
�+ := specH \ C � . Then, �+ consists of at most �nitely many eigenvalues of H.

All eigenvalues � 2 �+ have only �nite algebraic multiplicity. The space X can be

decomposed into two closed subspaces X1�X2 invariant with respect to H and T (t)

such that

1. dimX1 <1, specHjX1
= �+ and X1 is spanned by the �nitely many general-

ized eigenvectors of H associated to the eigenvalues of H in �+.

2. There exists a M > 0 such that kT (t)jX2
k �Me�t for all t > 0.
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Proof: Let 
 2 C n C � be a smooth closed path around W. Since the spectrum of

H is discrete in C nW, we can choose 
 such that 
 � R. De�ne the projectors

P :=
1

2�i

I



R(�) d�

Q := Id� P .

These projectors decompose X into two closed subspaces XP = ImP , and XQ =

ImQ which are invariant with respect to H. The resolvent of HjXQ
, QR(�), is

compact since

Q

�
0

(�� i
r + �)�1p

�
= 0,

and R1(�) is compact. Since T (t) is eventually di�erentiable, there exists a t0 such

that T (t) is continuous with respect to t in the uniform operator topology for all t �
t0, i.e., kT (t+h)�T (t)k !h!0 0 for all t � t0 [17]. Thus, T (t)jXQ

is continuous with

respect to t in the uniform operator topology for all t � t0. Consequently, T (t)jXQ
is

eventually compact, i.e., compact for t � t0 [17]. This permits us to split the closed

subspace XQ further: At most �nitely many eigenvalues of HjXQ
, the generator

of T (t)jXQ
, are situated in C � , and they have at most �nite algebraic multiplicity

[10]. We denote the corresponding �nite-dimensional eigenspace by X1, and its

invariant closed complement by X2;Q. Then, the spaces X1 and X2 = XP � X2;Q

satisfy the assertions of the theorem: HXP
is a bounded operator, and its spectrum

outside the discrete set W is discrete. Hence, the growth of T (t)jXP
is restricted by

kT (t)jXP
k � Me�t for some M > 1 as the path 
 is contained in C n C � . Likewise,

the growth of the eventually compact semigroup T (t)jX2;Q
is bounded by the spectral

bound of HjX2;Q
which is less than �: kT (t)jX2;Q

k �Me�t for someM > 1 [10].

�

4.4 The hyperbolic case: r0rL 6= 0

In order to prove a theorem similar to Theorem 14 for the case r0rL 6= 0, we treat

the operator H as a perturbation of the operator

H0 =

�
�@z + � 0

0 i
r � �

�

de�ned in Y � X (see also [12], [20], [21]). The spectrum of H0 consists of W and

the sequence of simple eigenvalues

�0j :=
1

L

"
mX
k=1

�klk +
1

2
log(r0rL) + j�i

#
for j 2 Z.

The eigenvector of H0 associated to �0j is

b0j :=
�
e(��

0

j z+
R z
0
�(z) dz)r0; e

(�0j z�
R z
0
�(z) dz); 0; 0

�T
.
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The sequence fb0j : j 2 Zg establishes a basis of L2([0; L]; C 2)�f0g, i.e., there exists
an automorphism of X mapping an orthonormal basis of L2([0; L]; C 2) � f0g onto

fb0j : j 2 Zg.

Firstly, we prove an estimate for the location of the eigenvalues of H:

Lemma 15 Let r0rl 6= 0. Then, there exists a vertical strip S := f� 2 C : Re� 2
[�l;�u] such that specH � S. There exist constants R > 0 and C > 0 such that the

following holds:

1. If � is an eigenvalue of H and j�j > R, then � is algebraically simple and there

exists a j 2 Z such that j�� �0j j < C=jjj < �=(2L).

2. If j�0j j > R, then there is exactly one eigenvalue of H in the ball Bj of radius

�=(2L) around �0j .

Proof: We choose the branch of the square root such that 
k(�) � �k(�) ! 0 and


k(�)��! 0 for j�j ! 1 in the negative half-plane of C . Hence, e2lk
k(�) !Re�!�1

0. Consequently, the matrices

elk
k(�)Tk(lk;�)!Re�!�1

�
1 0

0 0

�
.

Accordingly, the multiple of the characteristic function of H converges for Re� !
�1:

exp

 
mX
k=1

lk
k(�)

!
h(�)!Re�!�1 r0rL 6= 0,

and this limit is uniform for Im�. Consequently, there exists a �l < 0 such that

h(�) 6= 0 if Re� < �l. The upper limit for the strip S has been constructed in

Lemma 11.

Consider the function

h0(�) = r0rL exp

 
mX
k=1

�klk � �L

!
� exp

 
�

mX
k=1

�klk + �L

!
.

The characteristic function h converges to h0 within the vertical strip S for j Im�j !
1:

jh(�)� h0(�)j � C=j Im�j for � 2 S and some C > 0. (37)

The function h0 has the period 2� with respect to Im�, and its roots are �0j (j 2 Z).

Outside of the neighborhood of the roots �0j , jh0j is uniformly bounded from below

within S: jh0j > c > 0. Furthermore,

h00(�
0
j) = (�1)j+12L

p
r0rL 6= 0.

Hence, all �0j are uniformly simple roots of h0. Since h and h0 are analytic in S nW,

the convergence (37) implies the assertions 1 and 2 of the lemma. �
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Corollary 16 There exists a ball B, and constants j0 � 0 and C > 0 such that

there is a one-to-one correspondence between eigenvalues of H in C n B and the

elements of f�0j : jjj � j0g. If we denote the eigenvalue corresponding to �0j by �j,

then the eigenvector bj associated to �j satis�es



bj � b0j


 � C

jjj

if bj is scaled appropriately.

Proof: If we choose B around 0 of radius R according to Lemma 15, then we can

associate the eigenvalue of H located in the ball B�=(2L)(�
0
j) to �

0
j .

The eigenvector b of H associated to � can be scaled such that it has the form

b(z) =

0
BB@

T (z; 0;�)

�
r0
1

�
�(z)

��i
r(z)+�(z)
T (z; 0;�)

�
r0
1

�
1
CCA . (38)

Within the strip S, the expressions e�lk
k(�) are uniformly bounded, and we can

choose a branch of the square root such that 
k(�) � � !Im�!1 0, and 
k(�) �
�k(�) !Im�!1 0. Hence, the o�-diagonal terms of each matrix Tk are of order

O(j Im�j�1), and the diagonal terms have the form e�(�k��)z +O(j Im�j�1). �

We can now state a theorem similar to Theorem 14:

Theorem 17 Let r0rL 6= 0, and � > maxfmaxReW;Re�00g. Then, the space X

can be decomposed into two closed subspaces X1�X2 which are invariant with respect

to H and have the following properties:

1. dimX1 < 1, and X1 is spanned by at most �nitely many generalized eigen-

vectors of H.

2. There exists a M > 0 such that kT (t)jX2
k �Me�t for all t � 0.

Proof: We de�ne the family of operators Y ! X

H� =

�
�@z + � � i�c�� ��

�� i
r � �

�
.

The operator H corresponds to � = 1 and H0 to � = 0. The strip S, the ball B and

the constants j0 and C from Lemma 15 and Corollary 16 can be chosen uniformly

for the family of operators H�.

Since fb0j : j 2 Zg is a basis of L2([0; L]; C 2)� f0g [12], [21], there exists a constant

c such that for any sequence (xj) 2 `2 the inequality c
P

j2Z jxjj
2 � k

P
j2Zxjb

0
jk2

holds.
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We choose the constant j0 su�ciently large such that Lemma 15 and Corollary 16

hold, Re�j < � for all jjj > j0, and such thatX
jjj>j0

kbj � b0jk
2 < c. (39)

Next, we de�ne the recti�able path 
1 as the border of the rectangle [�l+ i(Im�0j0 +

�=(2L)), �l+i(Im�0
�j0
��=(2L)), �u+i(Im�0

�j0
��=(2L)), �u+i(Im�0j0+�=(2L))].

Thus, 
1 is located in the resolvent set of H� for all � 2 [0; 1]. The spectral projec-

tions

P� :=
1

2�i

I

1

(�Id�H�)
�1 d� Q� := Id� P�

splitX into the closed subspaces XP;� = ImP� andXQ;� = ImQ� which are invariant

with respect to H�.

Next, we will construct a map B : X ! X which is injective, a compact perturbation

of Id in X and maps XQ;0 into XQ;1 by mapping b0j ! bj for jjj > j0:

The projections P� and Q� depend continuously on �. De�ne a su�ciently �ne

mesh f�l : l = 0 : : : Ng such that kP�l � P�l�1k < 1 for all l = 1 : : : N . Then

Pl + Ql�1 and Pl�1 + Ql are automorphisms of X. Moreover, they are compact

perturbations of Id since the resolvent (�Id � H�)
�1 is a compact perturbation of

the operator ( ; p) ! (0; (�� i
r + �)�1p). Let J :=
Q1

l=N(P�l + Q�l�1), and
~J :=

QN
l=1(Q�l+P�l�1). J and ~J are automorphisms ofX, and compact perturbations

of Id. J maps injectivelyXP;0 intoXP;1, and ~J maps injectivelyXP;1 intoXP;0. Thus,

J is an isomorphism from XP;0 onto XP;1. We de�ne B in the following way: Let

x =
P

jjj>j0
xjb

0
j + xP where xP 2 XP;0. Then, Bx :=

P
jjj>j0

xjbj + JxP . B is

injective due to (39) and since J is injective, and B is a compact perturbation of Id

[13].

Consequently, B is also surjective. Hence, it maps XQ;0 onto XQ;1, i. e. the set

fbj : jjj > j0g establishes a L2 basis of XQ;1. This implies that there exists a M > 0

such that kT (t)jXQ;1
k �M �t since Re�j < � for all jjj > j0.

Let 
2 be a smooth closed path in R encircling W, and situated in the half-plane

f� : Re� < �g and in the interior of 
1. De�ne the spectral projection

P2 :=
1

2�i

I

2

R(�) d�,

and its image by XW . HjX
W

is a bounded operator which has a discrete spectrum

outside of W. Hence, there exists a M > 0 such that kT (t)jX
W

k � Me�t. Moreover,

the projections P1 and P2 commute, and the image of P1 � P2 is �nite-dimensional

since the spectrum of H is discrete between the paths 
1 and 
2.

Consequently, we can de�ne X1 = Im(P1 � P2), and X2 = XQ;1 �XW to meet the

assertions of the theorem. �

The Theorems 14 and 17 assert basically the same growth properties for the semi-

group T (t) despite the di�erent constructions. We collect both results in the follow-

ing corollary.
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Corollary 18 Denote

�0 :=

�
maxfRe�00;maxReWg if r0rL 6= 0,

maxReW if r0rL = 0.

Let � > �0. Then, there are at most �nitely many eigenvalues of H of �nite algebraic

multiplicity in the right half-plane C � := f� 2 C : Re� � �g. Moreover, X can be

decomposed into two T (t)-invariant subspaces

X = X+ �X�

where X+ is at most �nite-dimensional and spanned by the generalized eigenvectors

associated to the eigenvalues of H in C � . There exists a constant M such that the

restriction of T (t) to X� is bounded according to

kT (t)jX
�

k �Me�t (40)

in any norm which is equivalent to the X-norm.

Remark: The eigenvalues of H can be computed numerically by solving the complex

equation h(�) = 0. The eigenvalues of H0 in C nW form the sequence �0j for � = 0,

� = 0, r00r
0
L 6= 0 (see Theorem 17). The roots of the characteristic function h

can be obtained by continuing along the parameter path ��, ��, r00 + �(r0 � r00),

r0L + �(rL � r0L) for � 2 [0; 1].

5 Existence and properties of the �nite-dimensional

center manifold

The results of �4 permit the application of theorems about the persistence and

properties of normally hyperbolic invariant manifolds in Banach spaces [7], [8], [9]

to the semi�ow S(t; �) generated by system (21), (23) in the following situation:

Assumption 19 Assume there exist a � 2 (�0; 0) according to Corollary 18 and a

simple connected compact set K � R
m with the following property:

The spectrum of H(n) can be split for all n 2 K in the following manner:

specH(n) = �c(n) [ �s(n) where

Re �c(n) � 0

Re�s(n) < � < 0.

Due to Corollary 18, the number of elements of �c(n) is �nite and, hence, constant

in K if the eigenvalues are counted according to their algebraic multiplicity. We

denote this number by q. Moreover, for each 
 2 [�; 0), there exists a bounded
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simple connected open set U
 � K such that the splitting of specH(n) can be can

be extended to U
 :

specH(n) = �c(n) [ �s(n) where

Re �c(n) > 
,

Re �s(n) < � for all n 2 U
 .

There exist spectral projections of H(n), Pc(n) and Ps(n) 2 L(X), corresponding

to this splitting. They are well de�ned and unique for all n 2 U� and depend

smoothly on n. We de�ne the corresponding closed invariant subspaces of X by

Xc(n) = ImPc(n) = kerPs(n) and Xs(n) = ImPs(n) = kerPc(n). The complex

dimension of Xc(n) is q. Let B(n) : C q ! X be a basis of Xc(n) which depends

smoothly on n. B(�) is well de�ned in U�. Using these notations, we can state the

following theorem:

Theorem 20 (Model reduction)

Let k > 2 be an integer number and Emax > 0. Then, there exist a "0 > 0 and

an open neighborhood U � U� of K such that the following statements hold. De�ne

b := maxn2clU kB(n)�1Pc(n)k, and the sets

B = f(Ec; n) 2 C
q � R

m : kEck < bEmax + 1; n 2 Ug � C
q � R

m , and

N = f(E; n) 2 X � R
m : kEk < Emax; n 2 �g � X � R

m

where � is an arbitrary closed subset of U . For all " 2 (0; "0), there exists a Ck

manifold C satisfying:

i. (Invariance) C is S(t; �)-invariant relative to N if " 2 (0; "0).

ii. (Representation) C can be represented as the graph of a map which maps

(Ec; n; ") 2 B � (0; "0)! ([B(n) + "�(Ec; n; ")]Ec; n) 2 X � R
m

where � : B�(0; "0)! L(C q ;X) is Ck�2 with respect to all arguments. Denote

the E-component of C by

EX(Ec; n; ") = [B(n) + "�(Ec; n; ")]Ec 2 X.

iii. (Exponential attraction) Let (E; n) be such that S(t; (E; n)) 2 N for all t � 0.

Then, there exist (Ec; nc) 2 B, M > 0 and tc � 0 such that

kS(t+ tc; (E; n))� S(t; (EX(Ec; nc; "); nc))k �Me�t for all t � 0. (41)

iv. (Flow) The values �(Ec; n; ")Ec are in Y and their Pc(n)-component is 0 for

all (Ec; n; ") 2 B � (0; "0). The �ow on C \ N is di�erentiable with respect
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to t and governed by the following system of ordinary di�erential equations

(ODEs):

d

dt
Ec =

�
Hc(n) + "a1(Ec; n; ") + "2a2(Ec; n; ")�(Ec; n; ")

�
Ec

d

dt
n = "F (Ec; n; ")

(42)

where

Hc(n) = B(n)�1H(n)Pc(n)B(n)

a1(Ec; n; ") = �B(n)�1Pc(n)@nB(n)F (Ec; n; ")

a2(Ec; n; ") = B(n)�1@nPc(n)F (Ec; n; ")(Id� Pc(n))

F (Ec; n; ") = (fk(nk)� gk(nk)[EX(Ec; nc; "); EX(Ec; nc; ")])
m

k=1 .

System (42) is symmetric with respect to rotation Ec ! Ece
i' and � satis�es

the relation �(ei'Ec; n; ") = �(Ec; n; ") for all ' 2 [0; 2�).

Remark: The theorem is a direct consequence of the general results of [7], [8], [9]. In

this case, the invariant manifold is even �nite-dimensional and exponentially stable.

The proof is mostly concerned with the proper de�nition of the coordinates and

describes in detail the appropriate cut-o� modi�cation of the system outside of the

region of interest to make the unperturbed invariant manifold compact. A similar

result about model reduction for systems of ODEs with the structure (1) has been

presented already by [27].

Proof:

Existence, representation, and smoothness

Firstly, we introduce a splitting of E 2 X which is valid for n 2 U�. Let n 2 U�. For

any E 2 X, we de�ne Ec = B(n)�1Pc(n)E 2 C q and Es = Ps(n)E 2 Xs(n). Then,

E = B(n)Ec + Es, and a decomposition of (21) by B(n)�1Pc(n) and Ps(n) implies

that Ec 2 C
q , Es 2 Xs(n) � X, and n 2 R

m satisfy the system

d

dt
Ec = Hc(n)Ec + a11(Ec; Es; n)Ec + a12(Ec; Es; n)Es (43)

d

dt
Es = Hs(n)Es + a21(Ec; Es; n)Ec + a22(Ec; Es; n)Es (44)

d

dt
nk = fk(Ec; Es; n) for k = 1 : : :m (45)

where Hc; a11 : C q ! C q , a12 : X ! C q , a21 : C q ! X, a22 : X ! X, and

Hs : Y ! X are linear operators de�ned by

Hc(n) = B�1HPcB Hs(n) = HPs � 2�Pc

a11(Ec; Es; n) = �B�1Pc@nBf a12(Ec; Es; n) = B�1@nPcfPs

a21(Ec; Es; n) = �Ps@nBf a22(Ec; Es; n) = �Pc@nPcfPs

fk(Ec; Es; n) = " (Fk(nk)� gk(nk)[B(n)Ec + Es; B(n)Ec + Es])
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for k = 1 : : :m. We introduced the term �2�PcEs which is 0 arti�cially in (44).

System (43)�(45) couples a system of ODEs in C q , an evolution equation in X, and

a system of ODEs in R
m . The right-hand-side of (43)�(45) is only properly de�ned

as long as n stays in U�.

In the next step, we modify system (43)�(45) such that it is globally de�ned and

generates a semi�ow. Beforehand, we introduce some notation.

Let d : R ! [0; 1] be a smooth monotone function such that

d(x) =

(
0 x � 0

1 x � 1.

Let 
 2 (�=k; 0), and U be an open neighborhood of K such that clU � U
 . Then,

the borders of U and U
 have a positive distance, and there exists a smooth and

globally Lipschitz continuous map N : Rm ! Rm such that

N(n) =

(
n for n 2 U
2 U
 for n =2 U .

Let � be an arbitrary closed subset of U , � > 0 and

nmax := max
n2U


jnj

R :=
p
6 + (bEmax + 1)2 + n2max,

s(x; Ec; n) := jEcj2 + jnj2 + x2 � R2 for x 2 R; Ec 2 C
q ; n 2 R

m ,

�(Ec; n) := d
�
jEcj2 + jnj2 � (bEmax + 1)2 � n2max

�
.

The functions s and � are smooth with respect to their arguments.

Consider the following modi�cation of system (43)�(45):

d

dt
Ec = Hc(N(n))Ec + ~a11Ec + ~a12Es (46)

��(Ec; n) [Hc(N(n))Ec + ~a11Ec + ~a12Es + �s(x; Ec; n)Ec]

d

dt
Es = Hs(N(n))Es + ~a21Ec + ~a22Es (47)

d

dt
nk = ~fk(Ec; Es; n)��(Ec; n)

h
~fk(Ec; Es; n) + �s(x; Ec; n)nk

i
(48)

for k = 1 : : :m, augmented by a di�erential equation for the dummy real variable x:

d

dt
x = ~g(x; Ec)� �s(x; Ec; n)x (49)
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where

~a11(Ec; Es; n) = �B(N(n))�1Pc(N(n))@nB(N(n))@nN(n) ~f(Ec; Es; n)

~a12(Ec; Es; n) = B(N(n))�1@nPc(N(n))@nN(n) ~f (Ec; Es; n)Ps(N(n))

~a21(Ec; Es; n) = �Ps(N(n))@nB(N(n))@nN(n) ~f(Ec; Es; n)

~a22(Ec; Es; n) = �Pc(N(n))@nPc(N(n))@nN(n) ~f(Ec; Es; n)Ps(N(n))

~fk(Ec; Es; n) = fk(Ec; Es; N(n)) for k = 1 : : :m,

~g(x; Ec) =

(�
� 1

2x
d
dt
(jEcj2 + jnj2)

�
d(jxj � 1) for jxj > 1

0 for jxj � 1.

The right-hand-side of system (46)�(49) is smooth and globally de�ned. It generates

a semi�ow ~S0(t; (Ec; Es; n; x)) on C q �X � Rm � R. The modi�cation has no e�ect

if (Ec; n) 2 B. The equation for _x implies

_s =

(
�2�sx2 for jxj � 2

�2�s [(1� d(jxj � 1))(jEcj2 + jnj2) + x2] for jxj < 2

in the vicinity of M0 := f(Ec; Es; n; x) : s(x; Ec; n) = 0g. Thus M0 is an invariant

manifold of ~S0 which has an exponential attraction rate greater than 2�. Moreover,

system (46)�(49) implies:

d

dt
(Pc(N(n))Es) = (@nPc@nN ~f � 2�Id)(Pc(N(n))Es).

Hence, the manifold M1 := f(Ec; Es; n; x) : Pc(N(n))Es = 0g is invariant with

respect to (46)�(49). For bounded Ec and Es, the rate of attraction towards M1 is

close to 2j�j.

There is a one-to-one correspondence between the semi�ows S(t; �) and ~S0(t; �) in
the following sense: The map acting from

f(Ec; Es; n; x) 2 M0 \M1 : (Ec; n) 2 Bg ! X � U de�ned by

(Ec; Es; n; x)! (B(n)Ec + Es; n)

is injective and maps ~S0 onto S. The inverse

(E; n)!
�
B(n)�1Pc(n)E; Ps(n)E; n;

p
R2 � jB(n)�1Pc(n)Ej2 � jnj2

�
is properly de�ned in N .

At " = 0, ~f and all ~aij vanish. Hence,

~C := f(Ec; Es; n; x) 2 C
q �X � R

m : Es = 0; s(x; Ec; n) = 0g

is a smooth compact invariant manifold of (46)�(49). Es decays with a rate greater

than j�j. Hence, if 2� > j�j, the attraction rate transversal to ~C is greater than
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j�j. The generalized Lyapunov numbers for the component of the linearization of ~S0
tangent to C are greater or equal than 
 > �=k. The perturbation to nonzero " is

C1 small, and all derivatives of the perturbation with respect to (Ec; Es; n; x), and "

up to order k are bounded uniformly for small " in the vicinity of ~C. Consequently,
the general theorems of [7], [8], [9] imply:

There exists an "0 such that for all " 2 [0; "0) there exists a compact invariant Ck

manifold ~C0 for ~S0(t; �). ~C0 is a C1 small perturbation of ~C. Hence, its Es-component

can be represented as a Ck graph

Es = �0(Ec; n; x; ").

The contraction rates towards M0 and M1 are greater than j�j close to ~C. Conse-
quently, ~C0 � M0 \M1. The evolution of Ec, Es and n does not depend on x if

(Ec; n) 2 B. Hence, �0(Ec; n; x; ") does not depend on x if (Ec; n) 2 B.

The existence of ~C0 and the one-to-one correspondence between S and ~S0 imply that

the manifold

C := f(B(n)Ec + �0(Ec; n; "); n) : (Ec; n) 2 Bg

is an invariant Ck manifold of S relative to N . The �ow on C is governed by

d

dt
Ec = [Hc(n) + a11(Ec; �0(Ec; n; "); n; ")]Ec

+ a21(Ec; �0(Ec; n; "); n; ")�0(Ec; n; ")

d

dt
nk = fk(Ec; �0(Ec; n; "); n).

(50)

The rotational symmetry of the semi�ow S implies

�0(e
i'Ec; n; ") = ei'�0(Ec; n; ") (51)

for all (Ec; n; ") 2 B � [0; ") and ' 2 [0; 2�).

Expansion of the graph �0
The graph �0 satis�es

�0(Ec; n; 0) = 0 for all (Ec; n) 2 B. (52)

Furthermore, the manifold E := f(E; n) 2 X � U : E = 0g is invariant with respect

to S for positive ". On E , _E = 0, and _nk = "Fk(nk) for k = 1 : : :m. Consequently,

E \ N � C, i.e.,
�0(0; n; ") = 0 for n 2 U , " 2 [0; "0). (53)

Finally, we observe that the right-hand-side of (46)�(49) depends smoothly on Ec

and ". Exploiting the identities (52) and (53), we may expand

�0(Ec; n; ") =

Z 1

0

@1�0(sEc; n; ") dsEc

= "

Z 1

0

Z 1

0

@1@3�0(sEc; n; r") dr dsEc. (54)

25



Denoting the double integral term in (54) by �, we obtain

�0(Ec; n; ") = "�(Ec; n; ")Ec. (55)

We obtain the assertion iv of the theorem by inserting (55) into system (50) for the

�ow on C. The invariance of � with respect to rotation of Ec is a direct consequence

of (51).

Exponential attraction of C
The theorems of [7], [8], [9] imply that the set of all points x which stay in a

small tubular neighborhood of a compact normally hyperbolic invariant manifold

M for all t � 0 form a center-stable manifold which is foliated by stable �bers of

attraction rate according to the generalized Lyapunov numbers in the stable part

of the linearization of the semi�ow along M. In order to map N into a small

neighborhood of C, we have to go again through the �rst part of the proof using a

di�erent scaling of the coordinate Es: Rede�ne Es = 4
p
"Ps(n)E 2 Xs(n). Then,

E = B(n)Ec + Es=
4
p
", and a decomposition of (21) by B(n)�1Pc(n) and Ps(n)

implies that Ec, Es and n satisfy system (43)�(45) where the coe�cients aij, and

the functions fk (k = 1; : : :m) are slightly modi�ed:

a11(Ec; Es; n) = �B�1Pc@nBf a12(Ec; Es; n) = B�1@nPcfPs=
4
p
"

a21(Ec; Es; n) = � 4
p
"Ps@nBf a22(Ec; Es; n) = �Pc@nPcfPs

fk(Ec; Es; n) =
p
"
�p

"Fk(nk)� gk(nk)[
4
p
"B(n)Ec + Es;

4
p
"B(n)Ec + Es]

�
The modi�cations applied to system (43)�(45) to extend its domain of de�nition

and make it generate a semi�ow can be applied to the rescaled system as well. The

rescaling changes only the coe�cients ~aij, and the functions ~fk (k = 1; : : :m) of

system (46)�(49):

~a11(Ec; Es; n) = �B(N(n))�1Pc(N(n))@nB(N(n))@nN(n) ~f(Ec; Es; n)

~a12(Ec; Es; n) = B(N(n))�1@nPc(N(n))@nN(n) ~f(Ec; Es; n)Ps(N(n))= 4
p
"

~a21(Ec; Es; n) = � 4
p
"Ps(N(n))@nB(N(n))@nN(n) ~f (Ec; Es; n)

~a22(Ec; Es; n) = �Pc(N(n))@nPc(N(n))@nN(n) ~f (Ec; Es; n)Ps(N(n))

~fk(Ec; Es; n) = fk(Ec; Es; N(n)) for k = 1 : : :m.

This rescaled version of system (46)�(49) generates a semi�ow ~S1=4(t; �) which is

equivalent to ~S0 for " 6= 0 At " = 0, ~aij and ~f still vanish such that ~S1=4 has also

the exponentially attractive invariant manifold ~C for " = 0. The perturbation to

nonzero " is C1 small, too. (However, it is of lower order of ".) Hence, we may

adjust "0 such that the manifold ~C persists under perturbation to " 2 (0; "0) for ~S0
and ~S1=4. Denote the perturbed invariant manifold for ~S1=4 by ~C1=4. The graph �1=4
representing the Es component of ~C1=4 as a function of (Ec; n) in B satis�es

�1=4(Ec; n; ") =
4
p
"�0(Ec; n; ") for " 2 (0; "0) (56)
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because the persisting invariant manifold is unique in a neighborhood of ~C, and
~S0 and ~S1=4 are equivalent. The manifold C satis�es: (E; n) 2 C if and only if

(Ec; n) 2 B and E = B(n)Ec + �1=4(Ec; n; ")=
4
p
".

Let (E; n) be such that S(t; (E; n)) 2 N for all t � 0. Then, the corresponding

trajectory of ~S1=4 is

�
Ec(t) = B(n(t))�1Pc(n(t))E(t); Es(t) =

4
p
"Ps(n(t))E(t); n(t);

x(t) =
p
R2 � jB(n(t))�1Pc(n(t))E(t)j2 � jn(t)j2

�
.

It satis�es jEc(t)j < bEmax, n(t) 2 �, and kEs(t)k < 4
p
"maxn2� kPs(n)kEmax for all

t � 0. Consequently, (Ec(0); Es(0); n(0); x(0)) is in a small tubular neighborhood of
~C1=4 for all t � 0. Hence, it is in the center-stable manifold of ~C1=4 if "0 is su�ciently

small. The existence of stable �bers for the center-stable manifold of ~C1=4 and the

contraction rate greater than j�j transversal to ~C1=4 imply that there exist a constant

M > 0 and a trajectory (E�c (t); E
�

s (t); n
�(t); x�(t)) 2 ~C1=4 such that

k(Ec(t); Es(t); n(t); x(t))� (E�c (t); E
�

s (t); n
�(t); x�(t))k < Me�t.

Denote the distance between � and the border of U by Æ (Æ > 0). Let tc � 0 be

such that Me�t < minfÆ; 1g for all t � tc. Then, kE�c (t)k � bEmax+1 and n�(t) 2 U
for all t � tc. Consequently (E�c (t); n

�(t)) 2 B, and E�s (t) = �1=4(E
�

c (t); n
�(t); ") for

all t � tc. Hence, we may choose Ec = E�c (tc) and nc = n�(tc) to meet assertion iii

of the theorem. �

6 Conclusions and generalizations

Mode approximation The graph of the center manifold enters the description

(42) of the �ow on C only in the form O("2)�. All other terms appearing in (42) can

be expressed analytically as functions of the eigenvalues of H(n). Systems of the

form (42) but replacing � by 0 are calledMode approximation models. These models

are implicit systems of ordinary di�erential equations because the eigenvalues of H

are given only implicitly as roots of the characteristic function h of H. The con-

sideration of mode approximations has proven to be extremely useful for numerical

and analytical investigations of longitudinal e�ects in multi-section semiconductor

lasers because the dimension of system (42) is typically low (q is often either 1 or

2); see, e.g., [2], [3], [4], [6], [22], [26], [29], [31].

The Lang-Kobayashi system There is an obvious generalization of Theorem

20 to another class of laser models. A very popular model for the investigation

of delayed optical feedback e�ects in semiconductor lasers is the Lang-Kobayashi
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system [14]; see, e.g., [28] and references therein. It reads

d

dt
E(t) = (1 + i�)nE(t) + �ei'E(t� 1)

d

dt
n(t) = "

�
F (n)� g(n)jE(t)j2

� (57)

if its scaling is appropriate to the situation of a short external cavity [30]. System

(57) generates a semi�ow on the Banach space C([�1; 0]; C ) � R and has also the

structure (1). The parameters have the same sense as in (2)�(4) (we have dropped

the indices since there is only one section). The parameter " is small if the external

cavity is short. The operator H is a delay operator in (57). According to [10], Corol-

lary 18 is also valid for the delay operator H (�0 is �1 in Corollary 18). Moreover,

the cut-o� modi�cation performed in the proof of Theorem 20 manipulates only

the �nite-dimensional components Ec and n. Hence, the proof does not rely on the

ability to cut-o� a smooth map smoothly in the in�nite-dimensional space X which

is the Hilbert space L2([0; L]; C 4) in �5 but a Banach space for system (57). The

only property of the operator H(n) used in the proof is the existence of a spectral

splitting according to Assumption 19 accompanied by the results of Corollary 18,

and the smooth dependence of the dominating subspace Xc on n. Consequently, if

Assumption 19 is satis�ed, Theorem 20 applies to (57) as well. The set K supposed

to exist in Assumption 19 is a point n0 in R (typically referred to as threshold carrier

density) in the case of a scalar n.

There are other models in the spirit of (57) for di�erent experimental situations,

e.g., for lasers subject to dispersive feedback or for two lasers interacting with each

other. All have the structure of (1) where H is a delay operator smoothly depending

on n, and " is small if the external cavity is short. Hence, Theorem 20 allows to

reduce these models locally to low-dimensional systems of ODEs.

A Physical background of the traveling-wave equa-

tions and discussion of typical parameter ranges

System (2)�(4) is well-known as traveling wave-model describing longitudinal dy-

namical e�ects in semiconductor lasers (see [5], [15], [25] for further references).

Results of numerical simulations have been presented in [2], [4], [5], [6], [19].

The quantities  and p describe the complex optical �eld E in a spatially modulated

waveguide:

E(~r; t) = E(x; y) � ( 1(t; z)ei!0t�
�
�
z +  2(t; z)e

i!0t+
�
�
z).

The complex amplitudes  1;2(t; z) are the longitudinally slowly varying envelopes

of E. The transversal space directions are x and y, the longitudinal direction is z,

and ~r = (x; y; z). For periodically modulated waveguides, � is longitudinal modu-

lation wavelength. The central frequency is !0=(2�), and E(x; y) is the dominant

transversal mode of the waveguide.
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typical range explanation

 (t; z) C 2 optical �eld,

forward and backward traveling wave

i � p(t; z) C 2 nonlinear polarization

n(t) (n;1) spatially averaged carrier density in section S1

Im�0k R frequency detuning

Re�0k < 0, (�10; 0) decay rate due to internal losses

�H (0; 10) negative of line-width enhancement factor

g1 � 1 di�erential gain in S1
�k (�10; 10) real coupling coe�cients for the optical �eld  

�k [0; 1) maximum of the gain curve

�k O(102) half width of half maximum of the gain curve


r;k O(10) resonance frequency

Ik O(10�2) current injection

�k O(102) spontaneous lifetime for the carriers

P (0;1) scale of ( ; p) (can be chosen arbitrarily)

r0, rL C , jr0j; jrLj < 1 facet re�ectivities

Table 1: Ranges and explanations of the variables and coe�cients appearing in (2)-(12).

See also [5], [23] to inspect their relations to the originally used physical quantities and

scales.

The equation _E = H(n)E (see �1) for an uncoupled waveguide (� = 0), a mono-

chromatic light-wave in forward direction ei!t 1(z) and a constant carrier density n

imply a spatial shape of the power j 1j2 according to

@zj 1(z)j2 = (2Re�(z) + 2Re�(i!; z))j 1(z)j2 (58)

where

�(i!; z) =
�(z)�(z)

i! � i
r(z) + �(z)
. (59)

2Re�(i!; z)) is a Lorentzian intended to �t the gain curve of the waveguide material.

Hence, _E = HE produces gain dispersion, i. e., the spatial growth rate of the wave

ei!t (z) depends on its frequency !. The variable p(t; z) reports the internal state

of the gain �lter. See [5], [23] for more details. The Lorentzian gain �lter is also

used by [1], [15], and [16]. Since the coe�cients �, �, and 
 are supposed to be

spatially section-wise constant, �(�; z) = �k(�) for z in section Sk for k = 1 : : :m.

The equation (4) is a rate equation for the spatially section-wise averaged carrier

density. It accounts for the current Ik, the spontaneous recombination �nk=�k, and
the stimulated recombination. See table 1 for typical ranges of the quantities.
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