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Abstract

We derive useful general concentration inequalities for functions of Gibbs
fields in the uniqueness regime. We also consider expectations of random Gibbs
measures that depend on an additional disorder field, and prove concentration
w.r.t the disorder field. Both fields are assumed to be in the uniqueness regime,
allowing in particular for non-independent disorder field. The modification of
the bounds compared to the case of an independent field can be expressed in
terms of constants that resemble the Dobrushin contraction coefficient, and
are explicitly computable.

On the basis of these inequalities, we obtain bounds on the deviation of a
diffraction pattern created by random scatterers located on a general discrete
point set in the Euclidean space, restricted to a finite volume. Here we also
allow for thermal dislocations of the scatterers around their equilibrium posi-
tions. Extending recent results for independent scatterers, we give a universal
upper bound on the probability of a deviation of the random scattering mea-
sures applied to an observable from its mean. The bound is exponential in the
number of scatterers with an upper bound rate that involves only the minimal
distance between points in the point set.



1. INTRODUCTION

Concentration inequalities for functions of random fields play an important role in
various areas of probability theory, with numerous applications ranging from the more
abstract to the explicit analysis of given models ([LT91],[Ta96],[Le01]). The aim of our
present paper is twofold. First of all, motivated by the study of disordered systems, we
derive general concentration inequalities for functions of Gibbs fields in the Dobrushin
uniqueness regime that have not appeared before in this simple and useful form. The
focus in our approach is on applicability of the estimates and not just existence. In
particular we are interested not just in the mere finiteness of the constants appearing in
the estimates but in explicit expressions that can be readily evaluated (or estimated) in
given models.

Secondly, in parallel to the general treatment, we show in this paper how these esti-
mates can be applied to the analysis of the self-averaging properties of random diffraction
measures of general point set I' in the Euclidean space ([BaaHoe00],[Hof95a],[Hof95b]).
Randomness appears here naturally as a probability distribution governing the thermal
dislocations of the scatterers around their equilibrium positions. Additionally, we al-
so consider a random distribution for the scattering amplitudes appearing. We stress
that these random scattering measures are beautiful objects themselves that are of con-
siderable interest. Extending previous results for independent scatterers of [K01b|, we
give a universal upper bound on the probability of a deviation of the random scattering
measures applied to an observable from its mean that depends on the point set I' only
through the minimal distance between its points (Theorem 4,5).

Being motivated by the study of general disordered systems, the first and basic ques-
tion is for a useful concentration estimate of a function of a Gibbs field in the uniqueness
regime, where no assumptions are made about translational invariance (Theorem 1). In
the next more interesting step we will be interested also in expectations of functions
w.r.t. to Gibbs measures, when the latter are themselves functions of another random
field modelling the disorder (Theorems 2,3). While it is very often assumed in the clas-
sical models of disordered systems (like the random field Ising model or the Edwards
Anderson spin glass) that this random field is independent, there are interesting phys-
ical situations where this is not the case. It is our emphasis that we are able to treat
also this dependent situation, again assuming no symmetries at all. We believe that
these inequalities can be useful tools in a variety of circumstances to extend results for
disordered systems from independent disorder to nonindependent disorder.

The assumption we chose to impose on the random distributions is essentially the
Dobrushin uniqueness condition. (See [Geo88] Chapter 8. More precisely we assume
even a slightly stronger form of it, but the difference is minor from the point of view
of applications.) It turns out that the constants that appear in our estimates can in
all cases be expressed by the original Dobrushin contraction coefficient, and constants
measuring the dependence of one random field from the other one that are defined in the
same spirit. We stress that all of these quantities can be estimated in terms of bounds
of the potential of a Gibbsian specification in a very simple way.
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Coming back to our main example of diffraction measures we will need to estimate
the concentration properties of a function that is not convex. Unfortunately non-convex
functions are appearing in a lot of applications, and so very often all elegant methods
based on convexity are simply not applicable. Let us mention in this context also the
very beautiful result of [SZ92] who proved that the Dobrushin-Shlosman Mixing Condi-
tion [DS84| implies a Logarithmic Sobolev inequality and vice versa, at least for certain
state spaces. (The Dobrushin-Shlosman condition is less restrictive than the Dobrushin
condition we are working with. A simple new proof of the first implication was recently
given in [Ce01]). In principle one can obtain exponential concentration as a corollary to
a log-Sobolev inequality (see [Le01] Theorem 5.3). Here the problem would be that there
are no handy formulas for the constant appearing in the log-Sobolev inequality so that
also the resulting concentration estimates would not be explicit. Also, for the purpose
of the concentration results we are interested in, log-Sobolev inequalities are a detour,
assuming an additional structure (gradient) that is not needed for the present problem.

We conclude this introduction with an outline of the rest of the paper. Chapter
2 is an extended introduction containing an overview of the main results, including the
general concentration theorems and a first application to random scattering measures. In
Chapter 3 we give more results for random scattering measures along with their proofs.
They follow in an elementary but slightly tricky way from the general concentration
estimates. In Chapter 4 we describe applications to disordered spin systems and provide
details about the estimation of constants. Chapter 5 contains a simple proof of the
basic concentration estimate of Theorem 1, where in particular the form of the constants
appearing becomes clear. It follows from consequent use of estimates in the Dobrushin
uniqueness region on the basis of the classical martingale method. Chapter 6 contains
a proof of the concentration estimates for expectations w.r.t random Gibbs measures
of Theorems 2 and 3. They use the explicit knowledge of the variation of the Gibbs
measure in the Dobrushin uniqueness regime when the local specification is perturbed,
in combination with a chain rule argument for variations.

2. MAIN RESULTS
2.1 Basic concentration estimate in the Dobrushin uniqueness regime

Suppose that I' is a countably infinite or finite set and F is a standard Borel space. In
our applications below E will be a finite set or a ball in the finite dimensional Euclidean
space.

Suppose we are given a random field X = (X,)zcr taking values on E', with distri-
bution y. Following standard notation, we denote by

C= (Cm,y)z,yel" with Cm:y = g,j’lgz)ar H/J'( ‘gmc) - 'u'(' |£’EC) !:z: (2'1)

£yc =E;c




the Dobrushin interdependence matriz. Here the Lh.s. of (2.1) denotes the wvaria-
tional distance at the site . Given two measures p and p/ on EU it is defined by
Hp( N—p'(- )H:c = maxf‘f p(dé.) f(&:)— [ p'(d&m)f(ﬁm)‘/é(f). The maximum is over non-
constant functions f on E. Here and throughout the paper 6(f) := sup,, .+ |f(u) — f(u)|
denotes the total variation of a function f where u,u’ are taken over the range of defini-
tion of this function. If f is vector valued, we the Euclidean norm on the r.h.s. We write
=T'\y for the complement of the site y.
One says that the random field X (respectively its distribution p) satisfies the Do-
brushin uniqueness condition iff
X .
c” :=su Cry <1
jm > Cay (2.2)
yel
We need to introduce a new notion. Let us say that the random field X (resp. p) satisfies
the transposed Dobrushin uniqueness condition iff
X
c; :=sup Cry <1
t vel a;r Y (2.3)
Obviously ¢ and ¢X vanish if the X,’s are independent. Then we have the following
general concentration estimate.

Theorem 1. Suppose the random field X = (X,)zer taking values in E' is distribut-
ed according to a Gibbs measure u that obeys the Dobrushin uniqueness condition with
Dobrushin constant ¢, and also the transposed Dobrushin uniqueness condition with
constant cf{ .
Suppose that F is a real function on E' with ,u(exp(tF(X))) < oo for all real t.
Then we have the Gaussian concentration estimate

P (1= )1 - )
7 F(X)—,u(F(X)) >r) <exp (—— 5 Vr >0 (2.4)
( ) SR (Gl
Here §(F) (62(F)) ser 1S the (infinite) variation vector of F, where 6,(F) =

Sup; ¢, o=t F(&)—F(¢')| denotes the variation of F at the site x. Its [2-norm is denoted

F(¢
by HQ le =Y .er(6z(F))?. If this norm is infinite, the statement is empty (and thus
correct).

Remark. Ready-to-use upper bounds on the Dobrushin constant ¢ are known when the
conditional expectations are given in terms of a Gibbsian specification with a defining
interaction potential ® (see Georgii Chapter 8.1)!. Let us mention the following general

1Prescribing a consistent set of conditional probabilities in terms of an interaction potential ® is of
course the standard way of producing a Gibbs measure. Recall the following well-known facts about
Dobrushin uniqueness. If p is an infinite volume measure for which the Dobrushin uniqueness condition
(2.2) holds, it is necessarily the unique Gibbs measure for the local specification defined by the system of
its conditional expectations. This can be proved by a contraction method where the Dobrushin constant
c appears as contraction coefficient (See e.g. Theorem 8.7 of [Georgii]). Existence must be proved
seperately but is of course guaranteed e.g. by a compact state space E.
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classic bound on ¢* that takes care of all high-temperature situations. We point out
here that it gives the same estimate we would have on c¢X also on the constant c;.
So, suppose that p(d€;|Xze = &) = exp(— Y Ase @A(gm&\z))A(dgm)/zm(gp\m) for a
Gibbsian potential ® = (®4)acr (meaning that ®4 is a function on E' that depends
only on E4). Here ) is a o-finite measure on E, which must be the same for all sites
z €' and Z,({r\;) is the usual normalization factor. Then we have that

1
X, g¥< 5 Sup D (14 = 1)5(®a) (2.5)
zell Az

independently of the single site part §(®.). This is stated as Proposition 8.8 in [Geo] as
a bound for ¢, for a brief explanation why it implies the bound for ¢;¥ too, see Chapter
4. Be aware however that interdependence constants C;, and Cy, whose actual values
differ significantly could occur for models with very different ®, for different sites x € T'.

Remark. Often the theorem will be used in the following situation. Suppose that F' =
F(X,) is a function that depends only on variables in a finite set ACT. Then ||0(F) lez <
|A||6(F)||?%-. The reader who likes to see an interesting application of this is advised to
go directly to 2.3 “First application to random diffraction measures”.

2.2 Chain rule concentration estimates for disordered systems with dependent
disorder

The concentration inequalities we are going to present now apply to situations where
a random fields Y is given whose distribution depends on the realizations of another
‘external’ random field X. This is precisely the case in the study of disordered systems
where X models the external randomness and one is given the Gibbs distribution of Y
for any fixed configuration of X. We assume here that both fields are in the Dobrushin
uniqueness regime in a natural sense, and that the dependence of Y on X is not com-
pletely unreasonable. To control these properties quantitatively we will have to introduce
constants (in the spirit of the Dobrushin constant) governing the deviation of the fields
X (respectively Y') from the case of product distributions, and constants governing the
degree of influence from X to Y. Very often in disordered systems the distribution of
the external random field X will even be assumed to be a product distribution, but we
don’t need this for our estimates. Indeed, it is our emphasis to be able to treat the
more general case of Dobrushin uniqueness for X. The resulting concentration estimates
will depend only on these constants, and thus contain only minimal information about
the distribution of (X,Y). We stress that while the definition of the constants might
look at little frightening at first sight, they are very easy to control, so the estimates are
very explicit. (This is done e.g. by (2.5) and an analogous consideration given below in
Chapter 4.)

We call them ‘chain rule estimates’ because the distribution of the field Y is a (possibly
very complicated) function of the field X, so that in order to control expectations of



functions of both fields some ‘chain rule for variations’ will be needed. Let us now
formulate our results in a precise manner.

Suppose that I'x and I'y are countable (finite or infinite) sets, and Ex and Ey are
standard Borel spaces. Suppose that we are given two random fields X = (X;)zery
taking values in E§<X and Y = (Y,)zer, taking values in Eg". Suppose that their joint
distribution x that is as follows.

(i) The marginal of u on the variable X, denoted by u*, is a Gibbs measure that obeys the
Dobrushin uniqueness condition (2.2) and the transposed condition (2.3). We denote
the corresponding ‘marginal Dobrushin constant’ by ¢X and its transposed version by
eX.

(ii) For any realization n of X the conditional distribution of Y given X, denoted by
u(-|X =n), is a Gibbs measure that obeys Dobrushin uniqueness and its transposed
version. Moreover we demand uniformity in 7 in the sense that the following uniform
Dobrushin constant ¢¥>* and its transposed version cZ/’°° obey

Y, 00

= sup Z sup C;/y(n) <1l, ¢
zel'y ’

Y, 00

. =sup } supCr, () <1l (94

yely YElY zery

Here CY  (n) denotes the Dobrushin matrix for the fixed configuration 7.
(iii) To control the dependence of the field Y from the field X let us introduce their
dependence matriz in the following way

cYeX .= sup I (- ‘X =10,Ye =w,e) |X =n,Ye = w,e)||,
mn ;"luC:TluC

(2.7)

It describes the possible change of the fixed Y -single site conditional distribution at z
w.r.t. variation of the X-variables in u. The supremum is taken over the respective
spaces, i.e. 1,7 € E)F(X and w € E{;Y. We demand that the following dependence
constant and its transposed version obeys

Y+—X = sup 2 : CY(—X 00, z"(—X := sup 2 : CY(—X (2,8)
z€ly uelx uelx zel'y

For independent X and Y these constants vanish, obviously.
We need a little more notation. Let us write §;°(G) := sup, i, .—p_ ., |G(n,w) —

G(n',w)| for the X -variation at the site x € I'X for a function G on the product s-
pace. The notation for §Y (G) is analogous. Note that the corresponding partial infinite
variation vectors §% (G) = (62 (G))mel‘x and " (G) are not in the same space anymore,
in general because the index sets I'x and I'y are different.

Then the first result concerns the concentration properties of Y-averages w.r.t the
field X.
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Theorem 2. Suppose that X andY are random fields with joint distribution u satisfying
(i), (i3), (iii). Suppose that G is a real function on E'* x E'Y with p(exp(tG(X,Y))) <
oo for all real t. Then we have the Gaussian concentration estimate

¥ (G (X,7)|X) - u(G (X, V) > 1)

2 _ XN\ _ X (2.9)
< exp T (1-c)d-q) Vr >0

! (165 @| + <" (@) )

< 0.

1
CY(—XCEN—X ) 2

oo Y!
(1—eV>=)(1—er™

with the ‘effective constant’ c¥> eff — (
Remark. We can view ¢¥-¢ff as the ‘effective strength’ of the influence the random field X
has on the field Y. The form of the constants will become clear in the proof that combines
an application of Theorem 1 for the X-marginal with a chain rules for variations.

Remark. The reader should realize that the dependence constants (and thus cY’eﬂ) are

as easily estimated as the Dobrushin constants if the single site conditional distribution
of Y, is given in a Gibbsian form with a random energy function. This is analogous
to the estimate for the Dobrushin constants in (2.5) and is explained in more detail in
Proposition 1 of Chapter 4.

Almost automatically we then also have the following ‘total concentration result’.

Theorem 3. Under the hypothesis of Theorem 2 we have the ‘total’ concentration esti-
mate

,u(G (X,Y) — u(G(X,Y)) > r)

i € cz‘°°>]1]1

r [[ (1—e¥)(—e)
(| 18" (@)l

(@)} + " <H18" (@)1
(2.10)

Remark. The form is easy to understand. The term within the inverse of square brackets
has the character of a squared variance. It is the sum of the term for the Y-average from
Theorem 2 and a uniform version of the term for the conditional Y -distribution from
Theorem 1.



2.3 First application to Random diffraction measures

It is our aim now to look at the self-averaging properties of the diffraction pattern
created by random scatterers (‘atoms’) located on a general discrete point set I' which is
a subset of the Euclidean space. The function F' whose concentration properties we will
be interested in describes the result of a measurement at the random diffraction pattern.
We stress that this function is not a convex function, so all methods based on convexity
simply cannot be applied. To appreciate the charm of this topic the interested reader
may take a look at some of the beautiful experimental diffraction patterns of quasicryals
(This is how quasicrystals were discovered in 1982). Here is the problem. Let us very
briefly describe at first how this function turns up.? Consider the scattering image of the
complex random measure ( ‘random Dirac comb’) given by

pr(n,w) = Y Mubotow, (2.11)

zel’

where §, denotes the Dirac-measure at the site . The point set 'CR" is assumed to
be countable. The 7,’s are complex numbers modelling scattering amplitudes. The w,’s
‘dislocations’ are vectors in the underlying Euclidean space R”. Below they will be made
random according a random field X = (X;)zer taking values 7 = (7)z)zer and a random
field Y = (Yz)zer taking values w. So, the point set I' modelling the locations of the
scatterers in Euclidean space has a geometric meaning here, but it also serves just as an
index set for the random fields. The classes of distributions we allow for them will be
described later.

Fix any finite volume ACI'. Then, the object that contains all information about
the scattering image of the points in A is the finite volume scattering measure which
by definition is the Fourier-transform of the corresponding finite volume autocorrelation
measure. The latter is defined as follows

w 1 .
’)’X’ = m Z nznmlém—m’+wz—wml (212)
z,z' €A

Here the star denotes complex conjugate. Since we allow A to be any finite set, we have
chosen the natural normalization by the number of points, as in [K01b]. A measurement
on the scattered intensity is described by an observable k — (k) in Fourier-space,
modelling the measurement device, which is usually taken as a Schwartz test-function.
The corresponding result of the measurement is then given by 47 (¢) = [ 47 (k) (k)dk.
Here the Fourier-transform of a tempered distribution + is defined by duality, (¢) =

2For a summary of the basic notions of mathematical scattering theory for point scatterers, see e.g.
Chapter II of [BaaHoe00] and Appendix A of [K01b]. The reason for the definitions of the diffraction
measures can be understood in an elementary way by superposition of the reflections of an incoming
beam at the individual scatterers. The results are physically meaningful when one takes measurements
at distances far away from the scatterers and there is only single-scattering.



~v(¢), where ¢ denotes the Fourier-integral of the Schwartz-function ¢ over R”. So, the
function we are interested in is given by

1
2~ T,w _ * oA /
(mw) = 43(0) = 77 Z;A Mol @& — &' + Wy — war) (2.13)

We assume that the function (k) is real and view it as a fixed parameter, so that (2.13) is
a real function® on the random fields modelling the dislocations and random amplitudes.

We can now take averages of this function describing the random scattering image for
instance w.r.t the distribution of the dislocations w to obtain an w-averaged scattering
image. This can of course also be done w.r.t the scattering amplitudes 7, or w.r.t. to
both random fields 77 and w. The study of the large A-behavior of the average is then one
part of the story that is essentially reduced to understanding the diffraction pattern of
I' without disorder. The other part of the story which we are going to discuss now is the
control of the self-averaging properties of the diffraction image. Concentration estimates
were looked at for the first time in [K01b], for the cases independent w,’s and fixed 7,’s,
and vice versa. Before that there were only few partial results of the SLLN type can
be found in the quasicrystal literature for special sets I', see however [Hof95a]. (This is
because of the different inclinations of probabilistic, statistical mechanics and diffraction
communities which we are hoping to bring together at this point.) The emphasis in
this study is to understand the influence of the point set I' and the function ¢ for the
quality of the concentration estimate. Since scattering experiments are a tool to guess the
structure of I" one is interested in estimates that depend on very little a priori information
about I'. It turned out in [KO01b] that for the independent case we could obtain large
deviation upper bounds that involve only the minimal distance between points in I' and
hence do not depend on the structure of the set T' at all. This means in particular that
the quality of the large deviation estimate is independent of the nature of the limiting
diffraction image when A tends to infinity, be it pure point or diffuse. The dependence
on the observable ¢ is expressed then in terms of a suitable Sobolev-norm.

The proof given in [K01b] for the independent case used a cluster expansion for the
logarithmic moment generating function of (2.13). At the price of some technical work,
it has the advantage to provide also a central limit theorem (for ‘non-pathological’ T, in
particular lattices) and shows that the bounds appearing are essentially optimal. On the
basis of the general results in Theorems 1,2,3 we can now extend the concentration result
in a rather easy and elegant way to the case of dependent fields that obey Dobrushin
uniqueness. Let us give here only the result that corresponds to Theorem 1, and provide
more discussion later.

SWrite 47°“(k) = | Y ca nee* (z+ws)|2 for the Lebesgue density of the finite volume scattering
measure. So, for real test functions (k) the function (2.13) is always real, and it is nonnegative if
¢ > 0. Of course it is not a convex function in w but of oscillatory nature! It is convex as a function of
n though.
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Theorem 4. Assume that X = (Xz)zer is a field of complex random wvariables
(‘scatterers’) indexed by the point set TCRY, and that Y = (Yz)zer is a random field
of R” -valued random variables (‘thermal dislocations’). Assume that the field of the joint
variables Z = (X,Y) = (X.Yz)zer is distributed according to a Gibbs measure u that
obeys the Dobrushin uniqueness condition (2.2) with a Dobrushin constant c. Assume
also the transposed Dobrushin uniqueness condition (2.3) with constant c;.

Let ACT be any finite set. Assume that the random point set {x + w,,x € A} has
minimal distance b > 0, for p-a.e. realization of w of the dislocations. Moreover we
assume the following p-a.s. uniform bounds on the single site distributions

|X£L‘| S 17 5(X:c) S €scy 6(Ym) S Edl (214)

for all x € A*. Then the corresponding random scattering image ﬁ/f’y(go) in the finite
volume A obeys the universal large deviation estimate

w (|37 @) = w2 (@) 2 7)

< 2exp (_ Al r? (1-c)(1—c) ) Vr >0 (219
= 8 (cacl@llus + carlddflus )

Here we have introduced the Sobolev-norm involving integrals of derivatives up to the
order of the dimension v where we make explicit also a scaling factor b/2. For a function
g : R — C the norm is given by

1 1 1
lolls = 757 2= 5 Gy [, 4ol (2.16)
k=0

The constant b/2 plays the role of fixing a length scale and here it is the ‘uniform packing
radius’ as defined above. The constant | B;| denotes the volume of the v-dimensional unit
ball.?

Remark. Theorem 4 shows self-averaging of the diffraction measures applied to an ob-
servable that is exponential in the number of scatterers |A|, with an explicit estimate on
the rate. We regard this estimate as very satisfactory. Indeed, the L.h.s. of (2.15) depends
in a complicated way on three complicated objects, the geometry of the point set ACT,
the test function ¢, and the distribution y of the random field (w,n). The upper bound

450 £4; bounds the diameter of the supports of the distribution of the dislocation variables Y, taken
in the Euclidean norm for all sites z.

50f course, d*g(y) : (R¥)k — R¥ denotes the k-th differential of g at the point y and ||d*g(y)| =
SUP|y, |=...|vj |=1 |d®g(y)[v1, .. .,vk]| is the usual norm of a k-multilinear mapping, at any fixed point y,
where |v| denotes the Euclidean norm. Similarly |dg|,,» = ﬁ > r=o %W Jow 1451 g(y)||dy.
The advantage of including the factor b > 0 inside the definition of the norm is the scale invariance:
Rescaling of the measurement function ¢, (k) = 0 ~“¢1(k/o) where @1 is a probability density w.r.t the
v-dimensional Lebesgue measure, leads to ||$o||v,p = ||#1]|y,60- Similarly € ||déo||v,p = €0 ||dp1]u,b0-
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on the r.h.s. of (2.15) is in comparison very simple. The influence of the dependence
structure of the random field is entirely factorized into the constant (1 — ¢)(1 — ¢;), a
structure that is inherited from Theorem 1. The dependence on ¢ is only through the
integrals appearing in the Sobolev norm. The dependence on I' is only through the u-
niform packing radius /2 > 0 appearing as the scaling factor in this norm. We stress
that all quantities appearing in the estimate (2.15) are explicitly computable, and so an
experimentalist can produce actual numbers on the r.h.s. of (2.15). Also the assumption
of uniform positivity of the packing radius can be given up, leading to somewhat uglier
estimates. For more on this see Chapter 3, Addition to Proposition 1.

Remark. Even for the independent case this bound is slightly better than the one given
in [KO1b]. It would seem possible to prove a result of this type by an extension of
the expansion method described in [K01b], at least to certain smaller classes of weakly
dependent Gibbs fields. This would be at the price of adding a huge layer of complexity
to the expansions, so the concentration estimate method is definitely favorable.

3. FURTHER APPLICATION TO DIFFRACTION - PROOFS
Concentration result for quenched scatterers or quenched dislocations

It is physically important to know what happens when we have a frozen configura-
tion of scattering amplitudes n and we are interested in the concentration of 57" (¢)
centered at its average over the dislocations w, for fixed n. So, we have ‘quenched’ the
n-configuration. This describes a disordered material with frozen types of scatterers that
are subjected to thermal motions around their equilibrium positions. We mention that
we get the valid bound for this case by the formal application of Theorem 4 (although
this case is not logically contained in the statement of the Theorem). The corresponding
constant in the denominator of the argument of the exponential is obtained by putting
the bound on the variation of the amplitudes €, = 0. So, it doesn’t depend on the
Sobolev norm of ¢ anymore but only on the Sobolev norm of its differential. Next ¢, ¢;
have to be taken as constants for the w-distribution for that particular 7.

An equal game can be played by exchanging the roles of 7 and w, so that we are fixing
the latter ones. Note that, when w is fixed we are left with a model on a distorted but
fixed point set {z + w;,z € I'} (with modified but positive minimal packing radius b/2).
Thus we can assume without loss of generality that w, =0 for all z € T.

Concentration result for average over dislocations

It is physically very natural to consider a model for the joint distribution of scatterers
n and dislocations w whose joint distribution (X,Y) = (n,w) is of the type as described
in Section 2.2. A special case for this would be a model of independent scatterers with
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thermal dislocations that might depend on the type of the scatterer, but we don’t need
independence for the scatterers.

Theorem 5. Suppose a distribution for the scatterers X and dislocations Y as described
in Section (2.2). Again we assume the uniform bounds on the scatterers and amplitudes
as detailed in Theorem 4 (2.14).

Then, the corresponding fized-scatterer scattering image that is averaged over the dis-
locations obeys the universal large deviation estimate

X (|G ()] %) = w2 ()| > 7)
2 _ X\ (1 X (3.1)
Al O (CEy: D NN VA
(el + 7o ealld@lly)

We have also have the total bound

w (|27 () = (X ()| > 1)

Al r?
<2exp | —

< 2exp

[ (1—c¥)1 - }—1+[<1—cY’°°)<1—c2‘°°)]—1]‘

. R 2 R 2
(sscll@lls + ¥l ealldpll,,s) (calld@ll.s)
(3.2)

Let us now give the estimate on the [2-norm of the variation of our function w.r.t.
the scatterers and the dislocations. ;From this, Theorem 4 follows immediately from
Theorem 1. Similarly Theorem 5 follows from Theorem 2 and Theorem 3.

A

Proposition 1. Look at the function (n,w) — Y7 () on the set where |ny| < 1 for
all sites x € A and the minimal distance of the point set {x + w,,x € A} is bigger than
b > 0. Then we have

8" (v (9))

- 2”?‘1”{”” (Z[é(nzw) 5 (3:3)

TzEA

and

|0z, <

_ 2dplle :
<A (Z[&wm> (3.4)

Proof. For each x € A we have for the variation of the non-normalized observable that

( > Mo~ o'+ wa - w)) < 23(n.) x sup 3 |@(z — @’ + s

z,z' EA w z'EA

(3.5)
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where we have used that |n,| <1 for all z, and that |¢(z)| = |@(—=z)|. This expression is
not particularly transparent, but it can be estimated in terms of the much nicer Sobolev
norm. To get good estimates it is important to refrain from the temptation to put the
sup inside the sum! Now, let us use the following fact that was proved as Proposition 3
in [K01b]: For any point set I'CR” whose points have a minimal distance of a > 0 we
have the estimate

> 1)l < gl

zeIV

(3.6)

Here the norm on the r.h.s. was introduced in (2.16). This statement is reminiscent of
Sobolev embedding theorems. It follows from the fact that for any v-times differentiable
function g on the unit ball B; around the origin one has

1900 < 137 Xk=o w1 5, d°9()ldy.

We apply this statement for the set I''(z,w) = {x — 2’ + w; —w,r, 2’ € T'} that includes
the arguments the r.h.s. of (3.5) is summed over. It is simple but important to note that
its minimal distance is bounded below by b > 0, independently of x and w. So we get

Z|¢(m—x'+wz—wz:) < Z

z'eA z€IM (z,w)

¢(2)| < llg

2 (3.7)

This already proves the desired estimate (3.3) on the [>-norm.

Next we show the result for the w-variation. It is in the same spirit but there is a
small trick involved. We have

o ( Y neniple— o+ we — “’”)

z,z' EA (38)

< 2sup sup Z ‘gﬁ(m—m'+wm—wzr)—cﬁ(x—w'-l—w;—wzf)

'
Wae Wa,W, z'€A\z

This time, for each fixed &, wge, and w’, let us define the set I'(z,wge,w’) = {z — 2’ +
wh — wgr, ' € T\z} including all the arguments of the second @-term. We note that the
minimal distance between the points of any of these sets is bounded below by b > 0.
Then we can bound the r.h.s. of (3.8) by

2 sup sup Z ‘(ﬁ(z + wy —wi) — @(z)‘
Wowy Woe zel(z,wqe,w!)

(3.9)
<2 sup supd|p(+u) - ¢(2)|

ul<8(wa) T 2k
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where supy. is over all I’ with minimal distance > b. For u # 0 and any such I’ we write

Z‘¢(z+ — ¢(2) WZ‘/ s o(z + tu + su/|ul) dt‘

zel’

d
< |u|/ Z‘ds o(z + tu + su/|ul) ‘dt< |u| Sup. Z ‘a‘szogﬁ(w+su/|u|)

wel+tu

(3.10)
It is important to note that " 4+ tu is still a set with minimal distance > b, for any fixed
t. So we can estimate the sum uniformly in ¢ and get

ds

@(w+su/|u|)\g‘ Getsu/)|  <ldgls  (31)

&
ds ls=0 v,b

wef‘—ktu

s=

The finishes the proof of Proposition 1.

The assumption that {z + w,,z € '} may have a positive minimal distance, y-a.s. is
not necessary for a similar estimate to hold. We will now briefly discuss what estimates
can be made when the a.s. minimal distance assumption is lifted, however still assuming
a.s. uniformly bounded dislocations. In fact, the reader will realize that the proof
of Proposition 1 shows the a priori sharper statement (i) given below. The resulting
estimate is then exploited more explicitly in statement (ii) under the assumption of
bounded dislocations.

Addition to Proposition 1.
(i) For a function g : R — C define the norm ||g|r,,. to be the smallest number such that

sup Z lg(z +Yz)| < |lgllr,n  for pu-a.e. realization of Y (3.12)

A similar definition is made for a linear form dg by replacing the modulus on the
l.h.s. by the norm of the linear functional at x +Y,. Then, under the sole condition
that |ng| < 1 without any restrictions on I' and p, Proposition 1 holds with || - ||r,,.
replacing || - ||,5-

(ii) Denote the minimal distance of the unperturbed set T'CRY by by > 0 and assume that
|Yz| < R a.s, for any ﬁwed arbitrarily large R < 0o. Then we have the (crude) estimate

I Ml < (24 2R/00)”|| - lubo-

Remark. Note that therefore Theorem 4 and Theorem 5 have obvious extensions
obtained by the application of the Addition to Proposition 1 on the basis of the general
concentration Theorems 1,2,3!

Proof of (ii). The idea is to estimate the sum on the L.h.s. of (3.12) in terms of sums
of integrals over balls with fixed radii bp/2 that might overlap using the statement given
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after (3.6). Then simply count the possible number of overlaps. Without loss put v = 0.
Then

> lole+ Vo) < |Zk' . /2 = / S 15y, eiva)®) 145 9(y)lldy
z€l 0 RY ger 2 (3.13)

< [;5321263 o7 8] 19l < (24 2R/b0) gl

To understand the last inequality note that, at any point ¥ the sum in the bracket must
be smaller than the number of points in any set with minimal distance by whose distance
to y is smaller than R’ = R+ by/2. But this number is certainly bounded by the volume
of the ball with radius R’ + bp/2 devided by the volume of the ball with radius by/2. It
is obvious from this argument that the given factor could be improved by more careful
counting.

4. APPLICATION TO RANDOM GIBBS MEASURES

Example: Self-averaging of free energy density for dependent disorder

Let us mention at first an application that shows exponential self-averaging of the
free energy for the case of a disordered model with disorder field that obeys Dobrushin
uniqueness. Note that we don’t assume absence of phase transition for the spin variables
of the model itself. It is a straightforward application of the basic concentration Theorem
1 and reads in the abstract setting as follows.

Corollary 1. Suppose the random field X = (X;)zer (‘disorder field’) taking values in
EE(X is distributed according to a Gibbs measure uX that obeys the Dobrushin uniqueness
condition with Dobrushin constant ¢, and also the transposed Dobrushin uniqueness
condition with constant ci<. Suppose that Q is a measurable space (‘spin space’) and p is
a positive measure on Q (‘a priori measure on the spin-space’). Suppose that H is a real
function (‘Hamiltonian’) on EE(X x Q. Define the function (corresponding ‘free energy’)

by

F(X) :=—log (/ p(dw) (e_H(X""))) (4.1)

whenever it exists. Then we have the Gaussian concentration estimate

X X r) < ex -0 -g) ,
7 (F(X) p” (F (X)) > )S p( X () ) Vr >0 (4.2)

This follows from the easy fact that the variation §X (F) is bounded by the partial
variation §.X (H). Note that the estimate can be used to prove self-averaging of the finite
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volume free energy density that is exponentially fast in the volume (for disordered spin
systems whose Hamiltonian have bounded local variations w.r.t the disorder field X).
This is clear since ||§X (H )Hf2 will be of the order A when H is any reasonable finite
volume random Hamiltonian depending only on spin variables in A (while fixing a spin-
boundary condition outside). Note that for very general non-local dependence of H on
X this fact is still true, the precise constants depending on the specific model, of course.

Example: Pair interactions on general graphs

Let us now discuss the class of models with pair interactions on a general graph
to illustrate how the various “Dobrushin-type” constants can be estimated in terms of
simpler constants bounding the pair potentials themselves. Suppose that Gx = (I'x, Bx)
is a graph with vertex set I'x and set of edges (or ‘bonds’) Bx. Suppose that its degree is
bounded my mx. Suppose that u¥ is a measure with state-space EE(X obeying Dobrushin
uniqueness and its transposed version with formal Boltzmann weight

ocexp(— Z Uz,y(w:zawy)) H A(dns) (4.3)

{z,y}eBx z€lx

with a pair potential satisfying sup,, , |Us,y(w) —Usz,y(w')| < u for all {z,y} € Bx. Then
we have from (2.5) that ¢¥, ¢ < mxu/2 for the constants appearing in Theorem 1. The
same would be true if there were any additional single site potential possibly differing
from site to site (as long as all integrals converge).

Let us now consider a disordered (or nested) system whose fields X and Y are both of
the pair potential type and see what constants arise in the chain rule estimates of Theorem
2 and Theorem 3. Let us suppose that Y is a variable whose conditional distribution
u(-|X = n) is a Gibbs measure on a graph Gy = (I'y, By) with vertex set I'y and set
of edges By . Suppose that its degree is bounded my my. Suppose uniform Dobrushin
uniqueness and its tranpose for the distribution with formal Boltzmann weight of the
form

ocexp(— Z Wz,y(wmawy7n{z,y})) H N (dws) (4.4)

{Eyy}eBY z€l'y

with a pair potential W that is a function also of an edge variable 7, ,. So, we as-
sume that I'x = By equals the set of edges of the inner variable Y. This is the case
e.g. for ‘nearest neighbor’ pair-interacting spin glass models on arbitrary graphs. Sup-
pose that the X-influence on the interaction between Y'’s is bounded in the sense that
sup,, sup,, . |[Wzy(w,n) — Wy (w,n')| < ¢. Then we have from Proposition 2 given in
the section below that CX ;_ X < g/2 so that the interaction constants are bounded by
Y% <mxq/2 and ¢ X <q.

Finally, assuming that sup, sup,, ,» [Wz,y(w,n) — Wey(w',7)| < w, we get the bound

Y,00

on the uniform Dobrushin constants c¥>*°, c; < myw/2. In this way all constants
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appearing in the concentration Theorem 1,2,3 have been expressed in the elementary
variation parameters ¢, w, u of the potentials and the degree of the two graphs appearing.
In the simple situation of the graph I'y = Z” with independent X,’s we thus have in

. Y,
particular ¢X =c¢X =0, Y <X <wvgq, ¢ X < ¢, and ¢V'*°, ¢, < vw.

Simple estimates on the dependence constants

For practical use let us mention the following proposition that was already applied in
the previous example.

Proposition 2. Suppose that the conditional distribution of Y, has the Gibbsian form
,u(dwm|X =1, Yo = Wge) = exp(—Hz(n,wm,wmc)))\(dwz)/Zm(nwp\m) where H,(n,w) is a
function on the product space and X is a o-finite measure on Ex. Then we have that

1
CX;_X < §6§(Hz) (4.5)

Proof of Proposition 2. Within the proof of Proposition 8.8 of [Geo88| the following was
shown. Suppose that )\g)(dwm) = e"(i)(“’z))\(dwm)/fA(d&z)e"(i)(‘:’m), i = 1,2 are two
measures on the single site space FE, given in terms of the functions u(¥). Then their
variational distance can be bounded in terms of the variation of the function u(t) — u(?)
so that one has |[ASY — AP, < Tsup,, o [uM(we) — u®(wg) — uM(W]) + u® (Wh)!.
But from here the Proposition is obvious. ’

Proof of Estimate on Dobrushin constants and transpose given in (2.5). Assuming the
inequality above one sees that Cpy < 33 4 {2y} 0(24) (which is also explicitly pointed
out in the proof of Proposition 8.8 in [Geo88|). We point out for our purposes that it is
symmetric in z,y. So one gets (2.5) from here, for both cX and c.

5. PROOF OF THEOREM 1

The proof of Theorem 1 relies on an appropriate extension of the martingale method
that is well-known for the case of functions of independent variables to the case of Do-
brushin uniqueness. (See e.g. [Ta96] Paragraph 4 for independent variables). It is based
on Lemma 1 which is a uniform estimate on the martingale differences, taken w.r.t. the
filtration obtained by introducing an arbitrary order of the sites in the index set I". The
interesting point of the proof is then to understand how the weak dependence of the
Gibbs distribution can be handled, in comparison to the case of independent variables.
It turns out that this can be done in a very simple and elegant way by the use of estimates
of the variational distance of Gibbs-measures in the Dobrushin uniqueness regime w.r.t
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changes of the local specification. A clear two-pages proof of the result we need for our
purposes can be found in [Geo88|, we won’t repeat it here and just refer to the necessary
information we need as ‘Fact about Dobrushin uniqueness’. This ‘fact’ will be exploited
again in more generality below in the proof of Theorem 3.

Now, let us start with the proof. In fact we prove the following stronger (but less
convenient) statement.

Theorem 1°’. Fiz a bijection from the positive integers to I' and denote by < the

order on I' that is inherited by that bijection. Denote by D. = (Dz,y1:c<y)z ver the

triangular matriz given in terms of the geometric series D = ZZOZO C™ of the Dobrushin
interdependence matric.
Suppose that F is a real function on E* with pu(exp(tF(X))) < oo for all realt. Then

we have

,,.2

u(F (X) = u(F (X)) > 1) <exp AT DT (5.1)
< 12(I)

D* denotes the transpose of a matrix D, and 1 is the unit matrix. Assuming this, Theo-
rem 1 is implied for simple reasons: We first use that ||(1+D% )v||2 < || D*v||» for vectors v
with positive entries, because of the positivity of the matrix elements of C. Next use that
ID®IE = |5, (DD ayvaty| < 32, (DD (2 +v2) < sup, ¥, (DD, loll%
We have that sup, Y, , Dz.Dy. < sup, >, Dzusup, >, Dy, = ||D|i=||Dl[;x where
the last symbols denote the operator norms. Noting that the Dobrushin constant
equals ¢ = ||C||;x and that ¢;* = ||C|;~= we see that the last expression is bounded
by (1 —c*)~1(1 — ¢i)~1. This proves the form of the estimate given in Theorem 1.

Now let us start with the proof of the uniform bounds on the martingale differences
of the function F(X).

Lemma 1. Define the decreasing sequence of o-algebras by putting T, := o ( vy > a:) ,

for x € T'. Then the Martingale differences of the random variable F(X) taken w.r.t this
ordering obey the uniform bound

IW(F(X)|T2) — w(F)| Tes)llow < 8a(F) + 3 8y (5.2)

yer<z

Proof of Lemma 1. This estimate relies on the following piece of information (see [Geo88],
Theorem 8.20).
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Fact about Dobrushin uniqueness. Suppose that I' is a countable set, infinite or
finite, and the random variables (X)zer are distributed according to a Gibbs measure
p that obeys the Dobrushin uniqueness condition (see Introduction). Put D = >  C™
where C is the interdependence matriz of p. Suppose that we are given another Gibbs
measure p such that the variational distance of the single site conditional probabilities is
uniformly bounded

sup lo(-18) = A(+ [z < ba (5.3)

with constants b, for x € I'. Then the expectations of any function f(€) on the infinite
volume configurations & don’t differ more than

0(f) = B(F) < Y 6y(F)Dy,abe (5.4)

y,zel’

To show Lemma 1 let us use short notations like u(F(X)|T;)(€) = p(F(X)[é>z) etc.
Now, to estimate the martingale differences in (5.2) let us write

|W(F(X)|€>0€s) — (F(X)[E50)]

S N(F(X<z§:c§>z)‘§>m€z) - N(F(X<z§fﬂ§>z)‘§>z)

§>w)

The second term is bounded by 6.(F). For the first term we apply the ‘fact about
Dobrushin uniqueness’ on the conditional spin-system on the sites y in I' with y < x that
is obtained from the original conditional probabilities by fixing {-,. Putting p(dé<.) =
u(d§§z|£>z) and p(dé<s) = u(d&sz‘&zfz) we have the estimate (5.3) with b, = 0 for
all y < z and b, = 1. This gives in fact that sup, sup,__, over the first modulus on
the r.h.s. of the last inequality is bounded by the second term in (5.4). This finishes the
proof of Lemma 1. Note that, in this application, we applied the ‘fact about Dobrushin
uniqueness’ to the finite index set of the sites that are less or equal than z. In this
situation the proof of ‘fact’ becomes even simpler, as is easily seen by going through the
short proof of Lemma 8.18 and Theorem 8.20 given in [Geo88]. It is also simple to verify
that the statement holds for any, possibly degenerate kernels 5( - |£) allowing for e.g. also
for Dirac measures on specific configurations.

(5.5)

+ 'u'(‘F(X<m§z§>E) — F(X<oX2852)

To complete the proof of Theorem 1’ we apply Lemma A.1 (given in Appendix A) on
the filtration defined in Lemma 1. To be able to do so we need that u is trivial on the
tail o-algebra, but this is clear because it is the only Gibbs measure that is compatible
with the specification defined by its conditional expectation, using Dobrushin uniqueness
again. So the proof of Theorem 1’ is finished.
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Lemma A.1 itself, at least in the case of a finite filtration, is a simple application
of the Martingale method in the context of uniformly bounded Martingale differences.
However, we need to treat correctly the presence of the infinite filtration. Infinities in
the filtrations are appearing also in a slightly different way in the proof of Theorem 3,
so for the sake of clarity we give the results needed along with their complete proofs in
Appendix A.

Remark. We remark that a term like u(f(X.)|¢>282) — u(f(X2)|¢>2) is dangerous in the
presence of a phase transition for the measure p. Then we could not exclude that there
might be discontinuous behavior, even for arbitrarily distant sites z, z, for certain &~.,.
Therefor the proof doesn’t generalize to the phase transition region.

6. PROOF OF THEOREMS 2,3

The Proof of Theorem 2 relies on Theorem 1’ and another application of the ‘Fact
about Dobrushin uniqueness’ stated in Chapter 5, along with the application of a chain
rule for variations. Again, let us give the strongest version of Theorem 2 first.

Theorem 2’. Fiz a bijection from the positive integers to TX and denote by < the
order on TX that is inherited by that bijection. Denote by DY = Yo (C’Y"”)n the
geometric series of the uniform Dobrushin matriz Cf’f = sup,, C’Xy (n).

Suppose that G is a real function with p(exp(tG(X,Y))) < co for all real t.

Then we have the Gaussian concentration estimate

,u(,u(G (X,Y)|X) - u(G (X,Y)) > r) < exp (—2T—A;> (6.1)
where
M =||(1+ [DX]")6¥(@) + (1+ [D]") [c¥ ¥ [DV=]'6" (G) (6.2)

12

whenever this quantity is finite.

Of course the definition of D‘f is the same as D, in Theorem 1’ for the marginal
distribution on X.

Proof of Theorem 2’. We denote the function that is appearing in the estimate by F(n) :=
pX="(G(n,Y)) and apply Theorem 1’ for that function. We need to estimate its variation
6X (F). We will show that, in the sense of inequality between coordinates, we have

§(F) < 6%(G) + [c¥<X]*[D¥>*]'s¥ (@) (6.3)
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From that Theorem 2’ follows by Theorem 1°.
Take any n and n' with n, = 7}, and put G~ (n,,w) := inf,  G(9;en,,w). Then we
have

pX=NG(n,Y)) — ¥ (G(n,Y))
< pTUGM,Y)) = uF TG (a0, Y)) + uF TG (136, V) — pF T (GT (126, Y)
<6 (G) +sup oy (WXT"(G(7,Y)))
1
(6.4)
To control the variation of the conditional spin system when we change its local
specification by changing the X-variable we need to use again the ‘Fact about Dobrushin
uniqueness’.
Denoting p(dw) = pX="\="= (dw) and j(dw) = pX=""\:"(dw) we have to put by <
CY+X in the statement of the ‘fact’ controlling the change in the local specifications

caused by a single site variation of X. For fixed 77 we set f(w) := G(7],w) so that we get
from the ‘fact’

WETFEO) =TT < D0 &) D Dy (6.5)

yel'Y zelY

Collecting terms and using vector notation the desired inequality for §(F') follows.

Assuming this, Theorems 2 is obtained from Theorem 2’ by an analogous estimate on
M as Theorem 1 is obtained from Theorem 1’. Using the triangle inequality and splitting
off the common matrix we are left with the new term

[ =XT (D=1 0|l < [CY X [CY XTI x |IDY>] 0|2 (6.6)

The first factor ist bounded by ¢¥ <% ¢} < X. The second factor has already been seen to
be bounded by (1 — ¢¥"®)~1(1 — ¢ ™) ~1||v||%.

Proof of Theorem 3. To prove Theorem 3 we need a double filtration. Define the filtration
m(l) = a(Xy; y > :1:) on the probability space ET* and the filtration 7;(2) = a(Yy; y >

:L') on the probability space ETY. Then Lemma A.2 tells us that we can treat them like
they were finite filtrations if the function in question has exponential moments and we
have bounds on their martingale differences. Now, the martingale differences in the first
line of (A.3) are controlled by (5.2) applied to the conditional distribution of Y given
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any fixed configuration of X. The martingale differences in the second line of (A.3) are
controlled in terms of (6.3). Collecting terms Theorem 3 follows.

A different (although less natural) way to prove the ‘total concentration result’ of
Theorem 3 would be to prove that the joint distribution can be represented as a Gibbs-
measure for the joint variables £, = (n,w,), estimate its joint constants ¢, ¢;, and then
apply Theorem 4. Note in this context that it won’t be true in general that the resulting
measure is a Gibbs measure, even for independent X_.’s, when one allows for conditional
Gibbsian distributions of the Y-variables having phase transitions (which is however
excluded here). For more on this, see the research in [EMSS], [K99], [K01].

APPENDIX

Lemma A.1. Suppose that (2, To, p) is a probability space. Suppose that (7;)i=o,1,2,...
is a decreasing sequence of o-algebras such that p is trivial on the tail-o =algebra Foo =
ni:o,l,z,... Ti. Suppose that Z is a real random variable on Q such that p (exp(tZ)) < oo
for all real t. Assume that Z has uniformly bounded martingale differences

14(Z|T) = (Z|Tiz1)l|oo < M (A1)

Then we have the exponential concentration estimate

2

,u(Z —u(Z) > a) < exp (—ng) (A.2)

Remark. Tail triviality is needed! Otherwise u(Z) must be replaced by u(Z|7) in the
Lh.s. of the estimate.

Remark. If the sum in the denominator of the argument of the exponential does not
converge, the statement is empty, obviously. In the case of a finite filtration (7;);=0,1,...,n
the statement is applied by putting 7; := 7, for i > n.

Lemma A.2. Suppose that (Q(1), 76(1)) and (Q3), 76(2)) are measurable spaces. Denote
by (Q, Fo, i) the corresponding product space with the product o-algebra where the dis-
tribution p has the form p(doMdw®) = p(dw™M)p® (dw@|wM) with a probability
measure on the first space and a probability kernel from the first to the second space.
Suppose that (7;(16)),-:0,1,2,'__ are two decreasing sequence of o-algebras on the spaces

Q) such that (a) the measure u1) is trivial on the tail-o =algebra .7:&1)) = ni=0,1,2,... 7;(1)
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and (b) the measure p? (- |w™M) is trivial on the tail-o =algebra FE = Nizo,1.2.... 7;(2)
for any pM-a.e. w®,

Suppose that Z is a real random variable on Q such that p (exp(tZ)) < oo for all real
t. Assume that Z has uniformly bounded martingale differences

12T @ ) — w(Z| T8 @ T oo < My, Vi=0,1,...

(A.3)
1621 T @ T) — w(ZI T @ T)low < Lj, Vi=0,1,...

Then we have the exponential concentration estimate

2

(2= 0) < o0 (<55 ) )

Proof of Lemma A.1. We will show that
t2 oo
'u<et(Z—#(Z))) < e'T X2 M (A.5)

., From this the estimate on the probabilities follows in the standard way from the ex-
ponential Markov inequality saying that for all ¢ > 0 in the form p(Z — u(Z) > a) <

t(Z-p(Z|T))

e_t“u(e ) by optimizing the bound (A.5) over ¢.

Now, to show (A.5) one puts ¢t = 1 without loss and estimates the Laplace transform

N<ez—u<zm)eu<zm)—u<2)) — M<M[ez—u(2m)|7-1] % eH(Z|7'1)—H(Z))

(A.6)
< Hu[ez"‘(z'mWﬂH u<eu(zrr1>—u(zrr))

The supremum over the conditional Laplace transform of the first martingale difference is
estimated in terms of the uniform bound M,. Estimating the higher terms of the Taylor
series of the exponential by the use of the uniform bound from the hypothesis and noting
that the linear term vanishes one gets that

M2

|l AT T | < Mo - My < e (A7)
where the latter bound is elementary. ;From that we get by iteration

u(ez_“(z)) < e Tico Mizu(eYN) (A.8)

where Yy = u(Z|Tn) — u(Z). To show (A.1) we show that lim 4o u(eYN) =1. To see

this, note at first that, by the backwards Martingale theorem (see e.g. Bauer Theorem
60.8) we know that, p-a.s. limyyeo 4(Z|7Tn) = p(Z|7). But since we assumed that p
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is trivial on 75 this means limy1o, Y = 0 p-a.s. So one has lim n4oo ,u(eYleNS,\) =0
for all fixed A\. But from this follows the convergence of the full integrals because of the
uniform estimate

sup u(ey”lywzx)Se‘A sup u(ezy”)
N=0,1,... N=0,1,...

1 1 1 1 (A.9)
< e_xu<ezp(Z|TN))2#<e—zu(Z|TM)) ? < e"‘u<e22)2u(e_22)2 < 00
where the last inequality is Jensen’s inequality.
t2 co
Proof of Lemma 3. We need to show that u(et(z_“(z))) < e'r LZo(MI+LY),
Now, we write the Laplace transform as
'u<et(Z—;L(Z))) _ u(eZ—MZm(”@Téf))eU) (A.10)

with U = u(Z |76(1) ® T2 — u(Z). With the same arguments as the ones leading to
(A.8) one gets that

u(eZ—p(Z)) <Al M;M(ev,veu) < AT, M2 Mev) n p,((eVN _ l)eUﬂ (A.11)

where Vy = u(Z |76(1) ®T]\(,2)) —u(Z |76(1) ®7'o(02)). We can apply the martingale decompo-
sition for ,u(eU) from which follows that ,u(eU) < e3 220 LY using tail-triviality. So, we
need to show that the second term in the last parenthesis converges to zero with N 1 oco.
But this follows from the backwards martingale convergence theorem, tail triviality and

existence of all exponential moments in an analogous fashion as in the proof of Lemma

Al
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