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Abstract

We expose an intrinsic stability problem in joint calibration of a LIBOR mar-

ket model to caps and swaptions by direct least squares calibration. This problem

typically encounters if one tries to identify jointly the volatility norm behaviour and

the correlation structure of the forward LIBORs. As a remedy we propose collateral

incorporation of a 'Market Swaption Formula', a rule-of-thumb formula which prac-

titioners tend to use, in the calibration routine. It is shown by experiments with

practical data that with this new calibration procedure and suitably parametrized

volatility structures LIBOR model calibration to caps and swaptions is stable. The

involved calibration routine is based on standard swaption approximation or its re-

�nements by Hull & White, Jäckel & Rebonato. We deal with the issue of di�erently

settled caps and swaptions by accordingly adapting the swap rate formula and give

a respective modi�cation of Jäckel and Rebonato's re�ned swaption approximation

formula.

1 Introduction and summary

Since the development of the well-known LIBOR market model (e.g. Brace, Gatarek,

Musiela [1997] and Jamshidian [1997]), joint calibration of this model to prices of caps

and swaptions has been a perennial problem. For a clear discussion of particular thorny

issues involved we introduce notations and specify the LIBOR market model as the forward

LIBOR process L with respect to a given tenor structure t0 < T1 < T2 < : : : < Tn in the

terminal bond measure IPn :

dLi = �
n�1X
j=i+1

ÆjLiLj 
i � 
j
1 + ÆjLj

dt+ Li 
i � dW (n); (1)

where for i = 1; : : : ; n�1 the processes Li are de�ned in the intervals [t0; Ti]; Æi = Ti+1�Ti
are day count fractions, and, 
i = (
i;1; : : : ; 
i;d) are given deterministic functions, called

factor loadings, de�ned in [t0; Ti]: Further in (1), (W (n)(t) j t0 � t � Tn�1) is a standard

d-dimensional Brownian motion under IPn:

As a matter of fact, a one-factor model, i.e. a model with only one Brownian motion

(n = 1), is generally considered too restrictive to describe the dynamics of the yield curve

properly. Also, a LIBOR model with time independent volatility norms j
ij is considered
unrealistic as in practice LIBOR volatilities tend to increase short before they approach

their maturity. However, as we will see by Observation 1.1 below, a more factor model
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(i.e. d � 2) with time dependent volatility norms j
ij(t) has essentially too many degrees

of freedom to be identi�ed by the prices of caps and swaptions alone.

Observation 1.1 Let us �x some arbitrary, time independent, instantaneous correlation

structure � (rank d; 1 � d � n� 1) and take a system of d unit vectors ei 2 IRd with �ij =

ei � ej . Then, we consider volatility norms gi(t) := j
ij(t) of piece-wise constant functions
on the tenor structure ft0; T1; : : : ; Tng: We thus obtain a LIBOR market model (1) with


i(t) = gi(t)ei which, obviously, has n(n� 1)=2 free parameters in the gi whereas we �xed

the correlation structure in advance. Clearly, this number is exactly the same as the total

amount of caps and swaptions and so, at least in principle, it would be possible to match the

prices of these instruments by just �tting the piece-wise constant gi(t): We now emphasize

that this observation holds regardless the ex-ante speci�ed correlation structure � !

By Observation 1.1 we suspect that due to many degrees of freedom it may be possible to

match a system of caps and swaptions closely by various LIBOR models of di�erent nature.

For instance, suppose a cap/swaption price system is calibrated well, in some sense, by

a (multi-factor) model with a correlation structure of the form �ij = exp(��ji � jj) and
rather �at volatility functions gi: Then, it may be possible that the same prices can be

matched within the same accuracy as well by a one factor model (� � 1) together with

stronger time varying gi(t): Needless to say that the latter model will have entirely di�erent

statistical properties. We stress that this is a problem of model instability which arises for

non-parametric volatility structures as well as for parsimoniously structured volatilities.

To explain, let's imagine the following situation. Suppose a system of market quotes can

be �tted by a non-parametric structure with a mean relative accuracy of about 0.1%,

involving a particular time independent instantaneous correlation structure combined with

a family of piece-wise constant volatility norms gi. OK, we then �x a completely di�erent

correlation structure and re-calibrate the piece-wise volatility norms gi and see how close

we can get. Knowing that we still have enough degrees of freedom we expect that we

will attain a not too bad accuracy again. Indeed, we are not surprised to �nd a mean

accuracy of 0.5% after re-calibration. However, in case the average bid-ask spread of the

cap/swaption prices was 0.5% (typical bid-ask spreads in practice might be even higher),

it is clearly not possible to say which model is better. For parsimonious models attainable

accuracies are typically less (e.g. 2% -4%) but similar situations may occur as shown by

experiments with practical data in Section 5.

The arguments above are supported by practical experiments in Section 5 and have led to

the following main conclusion.

Conclusion 1.2 For any LIBOR market model with more than one factor and time de-

pendent volatility norms:

1 The information in the cap/swap market is not rich enough to identify jointly the in-

stantaneous model correlations and the time dependence of the volatility norms, even

if the correlation structure under consideration is assumed to be time independent.

2



2 Any 'implied identi�cation' of the instantaneous correlation structure of the for-

ward LIBORs can be seen as the consequence of a particular parametrization of

the volatility norms in the model. As an example, a natural and popular choice

is j
ij(t) = cig(Ti� t) with a common function g belonging to some pre-speci�ed class

(e.g. piece-wise constant) and di�erent constants ci for di�erent LIBORs. However,

this choice though reasonable, is hard to justify properly by economical arguments and

so is any entailed 'implied' correlation structure.

3 Direct joint calibration of the instantaneous correlation structure and the volatility

norm behaviour to the cap/swap market su�ers from model instability.

4 For realistic LIBOR market models (more factors and time dependent volatility norms)

we need to involve an additional economic concept to overcome model instability in

the method of calibration to caps and swaptions.

As new economic concept suggested in Conclusion 1.2-[4] we propose in this paper the

incorporation of a so called �Market Swaption Formula (MSF)� in the objective function of

the calibration routine. Below we introduce this MSF as a �rule of thumb� formula (3) in

accordance with the usual intuition of the market. This formula comes down to a natural

link between implied Black volatilities of caps and swaptions and the global correlation

structure of the LIBOR process.

Let for i = 1; : : : ; n; Bi be the value of a zero bond with face value $1 at maturity time Ti;

seen at the present calendar date t0: Then, it is well-known that the swap rate Sp;q over

period [Tp; Tq] with settlement dates Tp+1; Tp+2; : : : ; Tq; seen at t0; may be written as

Sp;q =
Bp �Bq

Bp;q

=

q�1X
k=p

w
p;q

k
Lk; (2)

where Bp;q :=
P

q�1
k=p

ÆkBk+1 is the so called annuity numeraire and w
p;q

k
:= ÆkBk+1=Bp;q

are weights. Hence, the swap rate can be seen as a weighted sum of forward LIBOR rates.

De�nition 1.3 Market Swaption Formula (MSF) The MSF poses that, given the

Black volatilities 
B
i

of the caplets and the global correlations Cor(Li(Tp); Lj(Tp)) of the

LIBOR process, the implied Black volatilities �MSF
p;q of the MSF swaption prices are given

by

S2
p;q(�

MSF

p;q )2 =

q�1X
i;j=p

w
p;q

i
w
p;q

j
LiLj 


B

i 

B

j Cor(Li(Tp); Lj(Tp)): (3)

Essentially, the ideas behind formula (3) originate from Rebonato [1996] and also Schoen-

makers, Co�ey [1998]. In fact, they are related to other approximation formulas discussed

in Section 2. Now our central result in this paper is enhanced joint calibration to caps

and swaptions by collateral use of the MSF in the calibration procedure. The key idea is
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basically 'Calibrate the LIBOR market model such that the prices of caps and swaptions

are �tted 'as good as possible' while the MSF formula is matched 'fairly well' and is imple-

mented as a modi�cation of the standard mean-squares objective function by the Market

Swaption Formula. The details are given in Section 3. It turns out that incorporation of

the MSF is a way to identify less ambiguously (de-)correlations in the market model. In

other words, the MSF serves as an instrument which decides more or less the trade-o�

between the explanation power of the correlation structure and the volatility norms and

as such is a remedy for the intrinsic instability of direct least squares calibration.

Having found a way around the intrinsic or model instability of the LIBOR market model

we are still left with the problem of parameter stability. Non-parametric (even time inde-

pendent) correlation structures as well as piece-wise constant volatility norms are di�cult

to identify in a stable way because of their large number of free parameters. That means,

a small perturbation in the swaption prices may be re�ected in wildly changing parame-

ter sets. This is the classical problem of over �tting. To overcome this problem we will

implement the parsimonious correlation structures by Schoenmakers, Co�ey [2000] which

are endogenously positive, have nice economical features, and are particularly designed for

the LIBOR market model. Besides, we will use exponentially parametrized volatility norm

functions as proposed by Rebonato [1999].

In Section 2 we outline a direct least squares method for calibration against caps and

swaptions which is based on parsimonious correlation structures of Schoenmakers, Co�ey

[2000,2002] and a well known approximate relationship among implied Black-volatilities of

caps and swaptions, see e.g. Rebonato [1996] and also Schoenmakers, Co�ey [1998] where

was already touched upon this calibration methodology via a ratio correlation structure.

In particular, Jäckel and Rebonato [2000] show by case studies that the above mentioned

approximate relation between caplet and swaption volatilities is usually quite good and,

moreover, they give a re�nement of this approximation which may be used instead. Here it

should be mentioned that Hull and White [2000] derived a similar swaption approximation

method with respect to a di�erently structured volatility matrix 
(t): Further in Section 2

we argue in the spirit of Conclusion 1.2 that direct least squares calibration may be instable.

Empirical con�rmation of the stability problem by experiments with practical data will be

presented in Section 5. We modify the mean squares objective function with the MSF in

a suitable way in Section 3 and illustrate in practice the stability properties of the thus

obtained new calibration procedure in Section 5.

Before we test our new method on market data, however, we have to deal with the fact that

caps and swaps are settled di�erently in practice. A way to handle this issue is given in

Section 4 where we adapt the swap rate formula accordingly. Moreover, in the Appendix we

derive a respective modi�cation of Jäckel and Rebonato's re�ned swaption formula which

applies for di�erently settled caps and swaptions.

Finally, in Section 6 we show how to extract a low factor market model with an arbitrarily

chosen number of factors (Brownian motions) from a once calibrated multi-factor model
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by principal component analysis. We underline that the here proposed way of calibrating

low factor models is conceptually generic and most of all stable since the multi-factor

calibration is done in a stable way.

2 Direct least squares calibration to caps and swaptions

As suggested in several studies, e.g. Schoenmakers, Co�ey [1998], Rebonato [2000], rather

than calibrating the market model (1) directly to market prices of swaptions, for instance

by Monte Carlo simulation, we will take advantage of the following well known approxi-

mate relationship between (local) swap volatilities, LIBOR volatilities, and instantaneous

LIBOR correlations (e.g. Rebonato [1996]),

S2
p;q�

2
p;q �

q�1X
i;j=p

w
p;q

i
w
p;q

j
LiLjj
ijj
j j�ij; (4)

which may be explained by studying the Itô di�erential of the swap rate (2), e.g. see [5, 6,

10, 15]. As in Section 1 we assume deterministic volatility norms gi and time independent

instantaneous correlations �ij : By integrating (4) we thus obtain,

1

Tp � t0

Z
Tp

t0

�2
p;q(s)ds �

q�1X
i;j=p

�ij

Tp � t0

Z
Tp

t0

w
p;q

i
(s)w

p;q

j
(s)Li(s)Lj(s)

S2
p;q(s)

gi(s)gj(s)ds; (5)

where t0 denotes the present calendar date. Next, we note that the (stochastic) fractions in

the r.h.s. integrands of (5), which by (2) may be regarded as weights, tend to vary relatively

slow in practice and therefore may be approximated by their values at t0: Under this

additional assumption instantaneous swap volatilities may be considered as deterministic

(though model inconsistent) and as a well known consequence swaprate processes are log-

normal martingales under their respective annuity numeraire measure. So the quantities

in the l.h.s. of (5) may be seen as squares of implied Black volatilities �Bp;q consistent with

model swaption prices Swpnp;q and thus obtain the following swaption approximation,

(�Bp;q)
2 :=

q�1X
i;j=p

w
p;q

i
(t0)w

p;q

j
(t0)Li(t0)Lj(t0)

S2
p;q(t0)

�ij

Tp � t0

Z
Tp

t0

gi(s)gj(s)ds; (6)

Swpnp;q = Bp;q(t0)E p;q (Sp;q(Tp)�K)+

� Bp;qSp;q(t0)N (d+)�Bp;qKN (d�); with (7)

d� :=
ln[Sp;q(t0)=K]� (�Bp;q)

2(Tp � t0)=2

�Bp;q
p
Tp � t0

and K being the strike of the swaption. In (7), N denotes the cumulative standard normal

distribution function. So, by (7) we get approximative model swaption prices which should

be computed otherwise by tedious Monte Carlo simulation. Further, a nice feature of

swaption approximation via (6) and (7) is that we may calibrate the market model as well

by �tting the volatilities (6) directly to ATM swaption volatilities quoted in the market1

1Since we calibrate to at the money caps and swaptions this makes hardly any di�erence in practice.
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We next proceed with choosing a particular form for the volatility norms gi,

gi(t) = cig(Ti � t); (8)

where the i-independent function g takes care of the practically observed �hump shape� in

the volatility behaviour as function of time to LIBOR maturity, and the ci are (positive)

constants for di�erent LIBORs. As g has to act, in principle, on [0;1[ it is plausible to

take a constant plus a linear combination of the �rst two Laguerre functions e�s=2 and

(s� 1)e�s=2; properly scaled. Without restriction we require g(0) = 1 in (8), then choose

g1 := lims!1 g(s) as parameter and de�ne

g(s) = ga;b;g1(s) := g1 + (1� g1 + as)e�bs; a; b; g1 > 0: (9)

See Figure 2 for a typical example. In fact, parametrization (9) is essentially the same

as the one proposed in Rebonato [1999]. Now, the parameters a; b; g1 and ci are to be

determined consistent with the Black caplet volatilities 
B
i
, via

(
Bi )
2 =

1

Ti � t0

Z
Ti

t0

g2i (s)ds =
c2
i

Ti � t0

Z
Ti

t0

g2(Ti � s)ds

=
c2
i

Ti � t0

Z
Ti�t0

0

g2
a;b;g1

(s)ds: (10)

Let us introduce for p � min(i; j) the quantities

�
a;b;g1

i;j;p
:=

1

Tp � t0

Z
Tp

t0

gi(s)gj(s)


B
i

B
j

ds =
1

Tp � t0

cicj


B
i

B
j

Z
Tp

t0

g(Ti � s) g(Tj � s)ds

=

p
Ti � t0

p
Tj � t0

Tp � t0

R
Tp

t0
ga;b;g1(Ti � s) ga;b;g1(Tj � s)dsqR

Ti�t0

0
g2
a;b;g1

(s)ds

qR
Tj�t0

0
g2
a;b;g1

(s)ds
: (11)

Fortunately, expression (11) is easily evaluated analytically.2 Hence, the coe�cients ci

have dropped in (11) and from (6) we obtain

�p;q(a; b; g1; �1; �2; �1) :=

vuut q�1X
i;j=p

w
p;q

i
(t0)w

p;q

j
(t0)Li(t0)Lj(t0)

S2
p;q(t0)


B
i

B
j
�
a;b;g1

i;j;p
�ij(�1; �2; �1);

(12)

where as the next step, after parsimoniously parameterizing the volatility norms, we have

chosen a full rank parsimonious correlation structure suitable for the LIBOR market model,

�ij(�1; �2; �1) := exp

�
�
jj � ij
m� 1

(� ln�1

+�1
i2 + j2 + ij � 3mi� 3mj + 3i+ 3j + 2m2 �m� 4

(m� 2)(m� 3)

��2
i2 + j2 + ij �mi�mj � 3i� 3j + 3m+ 2

(m� 2)(m� 3)

��
; (13)

i; j = 1; : : : ;m; 3�1 � �2 � 0; 0 � �1 + �2 � � ln�1:

2We omit the rather long expressions, to prevent errors in the tedious calculations one might produce

the results easily with a program like, Mathematica or Maple, e.g..
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For a motivation and systematic derivation of (13) and related correlation structures we

refer to Schoenmakers, Co�ey [2000] and its updated version Schoenmakers, Co�ey [2002].

Now, inevitably, the following question arises. Suppose we are given a LIBOR model

with certain volatility norms gi consistent with (8) and (9) and correlation structure of

the form (13). Then, for this particular model, how close are approximative swaption

prices obtained via (6) and (7) to model swaption prices, for instance, obtained via Monte

Carlo simulation? This issue is studied in Jäckel, Rebonato [2000] and from this paper we

conclude the following:

i) For a �at initial yield curve, a typical volatility norm structure (8)-(9) and correlation

structure (13) with �1 = �2 = 0, Monte Carlo simulated swaption prices agree with prices

approximated via (6)-(7) up to an average error of about 0.3% relative. 3 So approximation

(6) works out pretty well in this case.

ii) For a non-�at yield curve (a typical GBP curve) the pricing errors due to (6) are larger,

approximately 2% relative on average.

iii) By taking into account terms with @w
p;q

i
=@Lj in the expanded Itô di�erential of (2) we

may re�ne approximation (6). In fact, this re�nement comes down to a suitable correction

of the weights w
p;q

i
in (6). See Jäckel, Rebonato [2000] for further details. For a �at initial

yield curve somewhat surprisingly it turns out that Jäckel & Rebonato's re�ned swaption

approximation formula coincides with (6) again, but, for a typical GBP curve the average

relative error between with this re�ned formula approximated swaption prices and (Monte

Carlo simulated) model prices reduces to approximately 0.3%. In fact, Hull & White [2000]

propose a similar re�ned swaption approximation formula, however, there the concerning

expression is based on a di�erently parameterized volatility structure and therefore less

convenient in our context.

Based on swaption approximation (6)-(7), where if need be (6) is re�ned by correcting the

weights according to Jäckel, Rebonato [2000], we now aim to calibrate the (approximate)

swaption prices (7) to a system of ATM market swaption prices. Equivalently, as we are

dealing with ATM prices, we may calibrate the volatilities (6) to ATM Black swaption

volatilities in the market.4 As a �rst approach we therefore aim to �t (12) in least square

sense to market quotes, i.e., we are going to minimize the 'root mean square' distance

RMS(a; b; g1; �1; �2; �1) :=r
2

(n�1)(n�2)

P
1�p�q�2; q�n

�
�B
p;q
��p;q(a;b;g1;�1;�2;�1)

�B
p;q

�2
�! mina;b;g1; �1;�2;�1 : (14)

We thus have to carry out a least squares search for six parameters a; b; g1; �1; �2; �1:

Then, the ci are determined by (10) and the calibration of the multi factor LIBOR model

is principally done. However, since we are trying to calibrate jointly the time dependence

3In Table 2, Jäckel, Rebonato [2000], only the subset Sp;41 of the swaption matrix is considered. We

have carried out similar experiments and observed an overall relative RMS error of approximately 0.3%

due to approximation (6)-(7) for the there used model data and a �at initial yield curve of 7% p.a.
4The relative errors for swaption prices are in practice of the same order as for swaption volatilities.
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of the volatility norms and the instantaneous correlation structure of the forward LIBORs

we may be faced with

STABILITY PROBLEMS

as explained in general in Section 1. To get a feeling for this problem in our particular

situation let us look at (12) again. In (12) we see that each term in the sum on the right-

hand-side contains a product of an expression � which exclusively depends on the shape

of g and a correlation factor � which only depends on three correlation parameters. Now,

loosely speaking, one could state that a system of market swaption volatilities which in fact

appear on the left-hand-side of (12) determines these products in a stable way, but, the

determination of their individual factors may be instable! See Section 5 for an illustration

of this phenomenon by a practical example.

Remark 2.1 As turns out in practice swaption approximation via (6)-(7), where if nec-

essary (6) is re�ned by weight corrections, is good enough for our purposes in the sense

that the average relative error of approximate ATM swaption prices (or volatilities (6))

with respect to ATM model prices (or implied model volatilities) is at most comparable

but usually much less than the relative RMS error of the attainable calibration �t.

Remark 2.2 In a rougher approximation one might choose the volatility norms to be time

independent, hence a = b = 0 in (9) and then �
0;0;�
i;j;p

� 1 in (11). However, generally, �
a;b;g1

i;j;p

may be less or greater than 1; depending on a; b and g1: See in Figure 1 an �-surface for

a typical choice of g which is plotted in Figure 2.

101214161820 i

10 12 14 16 18 20j

0.6

0.8

1

112141618

Figure 1: �
0:5;0:4;0:6
i;j;p

; p = 10 � i; j � 20

3 Stable calibration via the MSF

Experiments showed that for arti�cial data sets where swaption prices where simulated

by our LIBOR model with typical pre-selected parameters a; b; g1 and �1; �2; �1 the least

squares minimization procedure returned the input parameters always fairly good though
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2 4 6 8 10
s

0.6

0.8

1.2

1.4

g

Figure 2: s! g0:5;0:4;0:6(s)

with small RMS errors due to the little inaccuracy of the involved swaption approximation.

In contrast, from direct least squares calibration experiments with various Euro-market

data we found out that for some data sets comparable �ts may be achieved by, on one hand,

a rather �at g-function combined with a correlation structure with �1 relatively close to

zero and, on the other hand, a highly non-�at g-function combined with correlations �ij �
1; hence a one-factor model. This phenomenon particularly occured in situations where

the attainable overall RMS �t was not too well, possibly caused by internal misalignments

in the cap/swaption market data. See for an example Section 5. In Sections 1 and 2

we explained the cause of this stability problem and in this section we propose a new

calibration strategy as a way around. Roughly, we propose the following:

� Fit the LIBOR model to the swaption prices via minimizing (14) as close as possible,

but, such that the 'rule-of-thumb' Market Swaption Formula (3) is still matched 'fairly

well' by this model.

� In case an 'exact' �t is possible, the calibration procedure should return this �t.

The MSF involves global correlations. However, there are generally no closed form expres-

sions for these correlations of a LIBOR market model, but, by neglecting the stochastic

nature of the log-LIBOR drifts (which are in magnitude of second order anyway) it is easy

to derive the following approximation in terms of the model factor loadings determined by

ci; g and �;

Cor(Li(Tp); Lj(Tp)) � Cor(lnLi(Tp); lnLj(Tp))

�

R
Tp

t0
ga;b;g1(Ti � s) ga;b;g1(Tj � s)dsqR

Tp

t0
g2
a;b;g1

(Ti � s)ds

qR
Tp

t0
g2
a;b;g1

(Tj � s)ds
�ij

=: �
global; �;g
ij;p

: (15)
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Hence, in terms of the LIBOR market model the MSF becomes by this approximation,

S2
p;q(t0)(�

MSF

p;q (g; �))2 �
q�1X
i;j=p

w
p;q

i
(t0)w

p;q

j
(t0)Li(t0)Lj(t0)


B

i 

B

j �
global; �;g
ij;p

: (16)

We now implement our new calibration strategy via minimization of the following objective

function,

RMS(g; �) max
�
RMS(g; �); RMSMSF (g; �)

�
; (17)

where RMS(g; �) := RMS(a; b; g1; �1; �2; �1) is given by (14) and

RMSMSF (g; �) :=

vuut 2

(n� 1)(n� 2)

X
1�p�q�2; q�n

�
�B
p;q
� �MSF

p;q
(g; �)

�B
p;q

�2

:

The idea behind (18) is clear: For parameters g; � with RMSMSF (g; �) � RMS(g; �); the

objective function is just equal to the mean squares error MS(g; �) of the (approximative)

model swaption prices with respect to the market quotes and so disregards the precise

value of the MSF �tting error. If RMS(g; �) � RMSMSF (g; �); however, the objective

function equals the geometric mean
p
MS(g; �)MSMSF (g; �) of the direct mean squares

error and the mean squares MSMSF (g; �) of the MSF �t. Since search algorithms usually

work better with di�erentiable objects we next replace in (18) the function max(x; y) by
4
p
x4 + y4 which is di�erentiable for (x; y) 6= (0; 0): Then, we square the objective function

and thus obtain the following minimization problem,

MS(g; �)

q
fMS(g; �)g2 + fMSMSF (g; �)g2 �! min

g: a;b;g1 ; �: �1;�2;�1
(18)

(MS=mean squares).

Clearly, if a very close �t is possible with (14), for example, when we would calibrate to

Monte Carlo simulated swaption prices for a particular choice of input parameters a; b; g1

and �1; �2; �1 instead of calibrating to market swaption quotes, then due to the factor

MS(g; �) in (18) in front, the concerning parameters will be retrieved (as it should be)

and the calibration will not be a�ected by the MSF. However, in practice the usual cases

is that there is no very accurate �t via (14) possible and then the procedure will return

the parameters such that RMS(g; �) is as close as possible to zero while the average error

RMSMSF (g; �) is not too large, in a sense. In fact, one might consider then the (eventually

re�ned) swaption price formula (6)-(7) with the calibrated parameter set as a model based

correction of the more intuitive Market Swaption Formula (3)!

4 Dealing with di�erently settled caps and swaptions

In the US, UK and Japanese market caps are quarterly and swaps are semi-annually settled.

In the Euro market swaps are annual while semi-annual caplets are available. Clearly, this
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complicates a direct application of the method described in Sections 2 and 3 where caps

and swaptions are assumed to be settled at the same tenors. We deal with this problem by

taking a LIBOR5 model with respect to an equidistant Æ-period tenor structure Tj = t0+jÆ;

j � 0; starting at the calendar date t0 of the given market data and modify the swap rate

formula (2) for 2Æ-settled swaps into (19) below. Then, for the European market we may

take Æ = 0:5 and for the other markets Æ = 0:25: We thus consider swap rates bSp;q in

connection with 2Æ-settled swap contracts over periods [Tp; Tq] with p and q even. By

standard arguments it follows that

bSp;q = Bp �BqP q�p

2

k=1 2ÆBp+2k

=

q�1X
j=p

bwp;q

j
Lj ; (19)

with bwp;q

j
= Bj+1=

P(q�p)=2

k=1 2Bp+2k: Obviously, the whole calibration procedure in Sec-

tions 2,3 goes through with Sp;q; w
p;q

j
in (6)-(7), (12), and (16) replaced by bSp;q; bwp;q

j
; thus

yielding b�p;q(g; �) and b�MSF
p;q (g; �) as implied model and MSF volatilities, respectively.

Then, the expression for MS in (18) modi�es to

dMS(g; �) :=
8

(n� 1)(n� 3)

X
1�p�q�2; q�n; p:q even

 
�Bp;q � b�p;q(g; �)

�Bp;q

!2

(20)

and a similar modi�cation applies to the expression for dMS
MSF

:

For di�erently settled caps and swaptions the formula improving approximation (6) given

by Jäckel, Rebonato [2000], which basically comes down to replacing the weights w
p;q

j
in

(6) and (12) by w
p;q

j
+y

p;q

j
; where y

p;q

j
is a correction computed from the initial yield curve,

needs to be modi�ed as well. In the Appendix a re�ned swaption approximation formula in

connection with (19) is derived and given via a correction term byp;q
j

(see (23)) which needs

to be added to bwp;q

j
in (19). For a calibration procedure based on this re�ned formula in

the context of di�erently settled caps and swaptions we simply use bwp;q

j
+ byp;q

j
in stead of

w
p;q

j
in (6)-(7), (12), (16), and (20).

Whereas in Jäckel and Rebonato [2000] the correction term y
p;q

j
vanishes for a �at yield

curve it turns out in the Appendix that, generally, the modi�ed correction term (23) does

not vanish when the yield curve is �at. This somewhat remarkable fact was con�rmed by

simulation tests which showed that in the case of a �at initial yield curve the �standard�

swaption approximation via (6) modi�ed for swaps de�ned by (19) was signi�cantly less

accurate compared with the case studies of Jäckel and Rebonato [2000]. However, we note

that for typically �humpe shaped� functions g and correlation structures � our simulations

showed that the mean model accuracy of the in the Appendix derived re�ned swaption

formula lays within 0.5% relative, both for the �at initial yield curve and the GBP curve

used in Jäckel and Rebonato [2000]. Therefore, for di�erently settled caps and swaptions

5For instance, in the European market we should speak of �EurIBOR� etc, but for convenience we just

use one term �LIBOR� throughout.
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we recommend to use the re�nement (23) in any case, whether the initial yield curve is �at

or not.

Remark 4.1 Unlike in (2), the modi�ed coe�cients bwp;q

j
do not necessarily sum up to 1

exactly, for j = p; : : : ; q � 1.

5 An empirical case study; the Euro market 18.10.2001

As an example we demonstrate the calibration procedure for EURO-market quotes at

October, 18, 2001. The yield curve is given by the discount factors (zero-bonds) in Table 1

and the available semi-annual caplet volatilities are given in Table 2. We thus take a

tenor structure with Æ = 0:5 and n = 41 and compute the in Table 2 missing caplet

volatilities by linear interpolation. For the (Black) swaption volatilities relevant for this

tenor structure, see Table 3. All calibration experiments below will be based on interpolated

caplet volatilities obtained from Table 2 and (exclusively) the swaption volatilities which

are given in Table 3. In this respect we note that we don't apply any interpolation or

smoothing procedure to the swaption data. Since EURO-swaptions are annually settled

we use the re�ned approximation based on (23) in the Appendix. For the minimum search

of di�erent objective function (20) we use a version of the Powell algorithm, e.g. see

Numerical Recipes in C, [9]. Experiments have shown that it is di�cult in practice to

identify jointly the three �hump shape� parameters a; b; g1 together in the sense that

calibration results are very close if one �xes a = 0; hence a decaying exponential for g. In

this respect one could argue that market data only identify that LIBOR volatilities start

�low� and end up �high� when reaching maturity, rather than identifying more detailed

behaviour of g: We will now test the following three calibration procedures:

I Direct calibration under � � 1 and a = 0

II Direct calibration under g � 1

III Calibration via incorporating MSF by (18) under �2 = 0; a = 0

The di�erent calibration procedures I, II, and III will be run in a sequential way. First

we calibrate only to swaptions with maturity time 1 year, then the thus identi�ed model

parameters are taken as starting values for a calibration to swaptions with maturity 1 year

and 2 year, and so on. We thus end up with a sequence of parameter sets where each set

identi�es a LIBOR model which is calibrated to the corresponding segment of Table 3.

The results are given in Table 4-I, Table 4-II and Table 4-III, where we note that in the

last row of these tables all swaptions of Table 3 are involved.

12



Conclusions

From Table 4-I we see that a reasonable RMS �t to each segment of the swaption matrix is

already attainable by a one-factor model. However, we see that the market rule of thumb

formula MSF is drastically violated by this model. In contrast, by our new developed

calibration method we obtain in III a �t which has a comparable RMS accuracy, but, with

much less violation of the MSF! By observing Table 4-I and Table 4-III the stability prob-

lem of direct calibration becomes clear. In particular, when the whole swaption matrix is

involved the corresponding RMS calibration errors in Table 4-I and Table 4-III are, also in

view of typical bid-ask spreads in the swaption market, not signi�cantly di�erent. Hence,

an unambiguous identi�cation of the model parameters based on the RMS objective func-

tion alone is hardly possible. Further in Table 4-III we see, as expected, that in case the

whole swaption matrix is involved the attainable RMS �t is less and that in this situation

the MSF error is not very much larger than the RMS error. In fact, the MSF then prevents

the search routine for ending up with a comparable RMS �t with � � 1 as in Table 1 and

so forces stability of the calibration.

Finally, for �at volatility norms (II) we have basically RMS = RMSMSF but in Table 4-II

we see that the attainable RMS accuracy is then particularly poor for calibration to short

maturity swaptions. This may partially explain that �at volatilities are considered unre-

alistic in general.

6 Calibration of low factor models

For any desired number of factors (Brownian motions) d; it is possible to extract a d-factor

model from a multi-factor model as follows.

(I) Carry out a stable multi-factor calibration as outlined in Section 3 and thus identify

the correlation matrix �.

(II) Construct by principal component analysis an approximation ~� of � with rank d :

(i) determine Q and � such that � = Q�Q> with QQ> = I, � = diag(�1; : : : ; �n)

and �1 > � � � > �n > 0;

(ii) set ~� := (�1; : : : ; �d; 0; : : : ; 0); E := Q~�1=2;

~E :=

"
1qP
d

l=1
~E2
il

Eik

#
1�i�n�1; 1�k�d

and then take ~� := ~E ~E>:

(III) Substitute ~� for � in (12) and re-calibrate a; b; g1; hence the volatility �hump� g, by

(14) while keeping ~� �xed and then re-compute the ci according to (10).

Remark 6.1 Since now the correlation structure � is determined, the re-calibration of g

may be done by direct least squares as there are no stability problems anymore. In fact,

the price for the dimension reduction will be a larger violation of the market swaption

formula MSF rather than a larger calibration error.
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Remark 6.2 In the multi-factor calibration we have restricted g to a = 0 for the sake of

stability. In the low-factor re-calibration, however, one may relax this restriction and thus

opens up the possibility of identifying a really �humpe shaped� volatility function.

Tables

j Tj (yr) Bj j Tj (yr) Bj

1 0.5 0.98260 22 11 0.57295

2 1 0.96675 23 11.5 0.55574

3 1.5 0.94967 24 12 0.53894

4 2 0.93160 25 12.5 0.52280

5 2.5 0.91248 26 13 0.50712

6 3 0.89262 27 13.5 0.49174

7 3.5 0.87222 28 14 0.47666

8 4 0.85132 29 14.5 0.46189

9 4.5 0.83017 30 15 0.44767

10 5 0.80875 31 15.5 0.43434

11 5.5 0.78748 32 16 0.42161

12 6 0.76618 33 16.5 0.40917

13 6.5 0.74526 34 17 0.39704

14 7 0.72449 35 17.5 0.38519

15 7.5 0.70415 36 18 0.37383

16 8 0.68409 37 18.5 0.36255

17 8.5 0.66450 38 19 0.35136

18 9 0.64527 39 19.5 0.34063

19 9.5 0.62656 40 20 0.33033

20 10 0.60826 41 20.5 0.32064

21 10.5 0.59043

Tabel 1: Discount factors, 18.10.01

j Tj (yr) 
Bj (%)

1 0.5 23.25

2 1 22.97

3 1.5 21.50

4 2 20.03

5 2.5 19.06

6 3 17.95

8 4 16.38

10 5 15.40

12 6 14.41

14 7 13.77

16 8 13.16

18 9 12.74

20 10 12.40

24 12 12.10

30 15 11.79

40 20 11.40

Tabel 2: Caplet ATM volatilities, 18.10.01

Mat:nPer: 1 yr 2 yr 3 yr 4 yr 5 yr 6 yr 7 yr 8 yr 9 yr 10 yr 15 yr

1 yr 20.71 18.89 17.32 16.16 15.21 14.53 13.92 13.42 13.01 12.65 11.57

2 yr 18.12 16.59 15.49 14.71 14.11 13.65 13.22 12.87 12.58 12.28 11.28

3 yr 16.58 15.17 14.35 13.78 13.38 13.06 12.73 12.45 12.21 12.01 11.01

4 yr 15.39 14.13 13.48 13.11 12.83 12.58 12.33 12.14 11.94 11.77 10.74

5 yr 14.28 13.39 12.95 12.60 12.35 12.15 11.95 11.76 11.64 11.48 10.51

7 yr 12.86 12.16 11.84 11.54 11.34 11.22 11.02 10.90 10.80 10.69

10 yr 11.66 10.93 10.65 10.43 10.28 10.17 10.05 9.98 9.89 9.80

15 yr 10.87 10.19 9.95 9.70 9.60

Table 3: Swaption ATM volatilities, 18.10.01
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up to mat. # swpnts b g1 RMS max. err. mat:� per: RMSMSF

1 yr 11 0.56 0.46 0.017 0.046 1�1 yr 0.19

2 yr 22 0.64 0.46 0.020 0.050 2�1 yr 0.18

3 yr 33 0.68 0.46 0.020 0.048 1�1 yr 0.17

4 yr 44 0.70 0.46 0.021 0.053 4�15 yr 0.16

5 yr 55 0.70 0.46 0.022 0.061 5�15 yr 0.16

7 yr 65 0.66 0.45 0.023 0.054 5�5 yr 0.16

10 yr 75 0.50 0.44 0.035 0.079 10�10 yr 0.16

15 yr 80 0.46 0.43 0.044 0.120 15�4 yr 0.16

Table 4-I: Sequential direct calibration, � � 1; a = 0

up to mat. # swpnts �1 �2 �1 RMS max. err. mat:� per: RMSMSF

1 yr 11 0.26 0.00 0.06 0.045 0.083 1�15 yr 0.045

2 yr 22 0.68 0.00 0.09 0.042 0.069 2�2 yr 0.042

3 yr 33 1.30 0.52 0.16 0.035 0.064 3�2 yr 0.035

4 yr 44 1.30 0.00 0.13 0.034 0.067 4�2 yr 0.034

5 yr 55 1.89 0.00 0.15 0.031 0.061 4�2 yr 0.031

7 yr 65 1.54 0.00 0.12 0.037 0.071 7�2 yr 0.037

10 yr 75 0.86 0.00 0.08 0.049 0.10 10�3 yr 0.049

15 yr 80 0.40 0.00 0.08 0.057 0.13 15�4 yr 0.057

Table 4-II: Sequential direct calibration, g � 1

up to mat. # swpnts �1 �1 b g1 RMS err. max. err. mat:� per: RMSMSF

1 yr 11 1.29 0.28 4.05 0.62 0.005 0.014 1�1 yr 0.045

2 yr 22 1.43 0.24 6.88 0.54 0.015 0.034 2�1 yr 0.040

3 yr 33 1.43 0.22 6.18 0.55 0.019 0.038 3�2 yr 0.039

4 yr 44 1.56 0.20 6.25 0.58 0.023 0.049 4�2 yr 0.035

5 yr 55 1.35 0.18 6.02 0.56 0.024 0.048 5�2 yr 0.037

7 yr 65 0.92 0.15 5.65 0.52 0.028 0.057 7�2 yr 0.044

10 yr 75 0.32 0.10 5.48 0.52 0.040 0.089 10�3 yr 0.052

15 yr 80 0.00 0.11 5.14 0.47 0.045 0.117 15�4 yr 0.061

Table 4-III: Sequential calibration by new method via MSF, �2 = 0; a = 0

Appendix: Modi�cation of Jäckel & Rebonatos re�ned swap-

tion approximation

In the standard swaption approximation (6) (or (12)), as well as in its modi�cation for

2Æ settled swaptions in connection with Æ settled LIBORs obtained in Section 4 by using

(19) instead of (2), terms involving the derivatives of weights with respect to LIBORs

are neglected. By taking these terms into account, one may derive an improvement like

in Hull, White [2000] and Jäckel, Rebonato [2000]. We here derive a re�ned swaption

approximation which is, in fact, a modi�cation of Jäckel & Rebonato's formula, which

applies in the case where swaptions are 2Æ settled (e.g. annually), while caps are Æ settled

(e.g. semi-annually).
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By (19) we have

@ bSp;q
@Li

= bwp;q

i
+

q�1X
j=p

Lj

@

@Li

bwp;q

j
=: bwp;q

i
+ byp;q

i
; (21)

with p and q even and

bwp;q

j
=

Bj+1

2
P(q�p)=2

k=1 Bp+2k

=

Q
q�1
l=j+1(1 + ÆLl)P(q�p)=2

k=1 2
Q

q�1
l=p+2k(1 + ÆLl)

:

For derivation of the correction term byp;q
i

in (21) its convenient to work with logarithms,

ln bwp;q

j
=

q�1X
l=j+1

ln(1 + ÆLl)� ln

(q�p)=2X
k=1

2

q�1Y
l=p+2k

(1 + ÆLl):

So @ bwp;q

j
=@Lp = 0; and for p < i < q;

1bwp;q

j

@ bwp;q

j

@Li

=
Æ

1 + ÆLi

1
fi>jg �

1P(q�p)=2

k=1 Bp+2k

[(i�p)=2]X
k=1

Æ

1 + ÆLi

Bp+2k;

where [x] denotes the largest integer less than or equal to x: Hence, we get by a little

algebra

eyp;q
i

=

q�1X
j=p

Lj

@

@Li

bwp;q

j
=

1

1 + ÆLi

1

2
P(q�p)=2

k=1 Bp+2k

i�1X
j=p

ÆBj+1Lj

�
1

1 + ÆLi

q�1X
j=p

ÆBj+1Lj

2
nP(q�p)=2

k=1 Bp+2k

o2

[(i�p)=2]X
k=1

Bp+2k: (22)

In the spirit of Jäckel, Rebonato [2000], we introduce the notations,

F
q

i
: =

q�1X
j=i

ÆBj+1Lj

Gq

s : = 2

(q�s)=2X
k=0

Bs+2k; Gq

s := 0; if s > q:

Then, from (22) it follows that

byp;q
i

=
1

1 + ÆLi

F
q
p � F

q

i

G
q

p+2

�
1

1 + ÆLi

F
q
p

[G
q

p+2]
2
(G

q

p+2 � 2

(q�p)=2X
k=[(i�p)=2]+1

Bp+2k)

=
F
q
pG

q

2[i=2]+2
� F

q

i
G
q

p+2

[G
q

p+2]
2(1 + ÆLi)

: (23)

Resuming:
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The re�ned swaption formula for di�erently settled caps and swaptions follows from (6)-(7)

by simply replacing there Sp;q and w
p;q

j
by bSp;q and bwp;q

i
+ byp;q

i
; where bwp;q

i
and byp;q

i
are given

in (19) and (23), respectively.

We recall that in Jäckel, Rebonato [2000] swap and LIBOR rates are assumed to be settled

at the same tenors and is shown that for a �at yield curve the correction term for the re�ned

swaption approximation vanishes. Indeed, their experiments con�rm that the standard

approximation (6)-(7) is very good for a �at initial yield curve. So, we are now interested

in the quality of the standard approximation modi�ed for di�erently settled caps and

swaptions. By similarly comparing Monte Carlo prices with approximated prices under a

�at yield curve we found out that the accuracy of (6)-(7) modi�ed for di�erently settled

caps and swaptions via (19) was signi�cantly less. The explanation is the following: For a

�at yield curve, the correction term (23) in the modi�ed swaption re�nement formula does

not vanish in general. Let us consider this phenomenon in more detail and assume the

initial yield curve is �at, i.e. Li �: L: Then, the swap rate is �at also and in particular we

have for 0 � i � q � p� 2; i even,

Sp+i;q =

q�1X
j=p+i

bwp+i;q

j
Lj = L

P
q�1
j=p+i

Bj+1

2
P(q�p�i)=2

k=1 Bp+i+2k

= L

P
q�p�i

l=1; oddBp+l+i +
P

q�p�i

l=1; even Bp+l+i

2
P(q�p�i)=2

k=1 Bp+i+2k

= L

P
q�p�i

l=1;l odd(1 + ÆL)Bp+l+i+1 +
P

q�p�i

l=1; even Bp+l+i

2
P(q�p�i)=2

k=1 Bp+i+2k

= L(1 +
1

2
ÆL):

Let i = 2l + p with 0 � l � (q � p� 2)=2; it then follows that

F
q

i
= F

q

2l+p
=

q�1X
j=2l+p

ÆBj+1L =

(q�p�2)=2X
k=l

ÆB2k+p+1L+

(q�p�2)=2X
k=l

ÆB2k+p+2L

=

(q�p�2)=2X
k=l

ÆB2k+p+2L(1 + ÆL) +

(q�p)=2X
k=l+1

ÆB2k+pL = Æ(L +
1

2
ÆL2)G

q

p+2+2l;

and, for i = 2l + p+ 1 with 0 � l � (q � p� 2)=2; we get

F
q

i
= F

q

2l+p+1 =

q�1X
j=2l+p+1

ÆBj+1L

=

(q�p�2)=2X
k=l+1

ÆB2k+p+1L+

(q�p�2)=2X
k=l

ÆB2k+p+2L

=

(q�p�2)=2X
k=l+1

ÆB2k+p+2L(1 + ÆL) +

(q�p)=2X
k=l+1

ÆB2k+pL

=
1

2
ÆL(1 + ÆL)G

q

p+2l+4 +
1

2
ÆLG

q

p+2l+2:
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So, for i = 2l + p with 0 � l � (q � p� 2)=2; we have

F q

pG
q

2[i=2]+2
� F

q

i
G
q

p+2

= Æ(L+
1

2
ÆL2)G

q

p+2G
q

p+2l+2 � Æ(L+
1

2
ÆL2)G

q

p+2+2lG
q

p+2 = 0;

hence byp;q
i

= 0: However, for i = 2l + p+ 1 with 0 � l � (q � p� 2)=2; we obtain

F q

p
G
q

2[i=2]+2
� F

q

i
G
q

p+2 = Æ(L+
1

2
ÆL2)G

q

p+2G
q

2l+p+2 �
1

2
ÆL(1 + ÆL)G

q

p+2l+4G
q

p+2 �
1

2
ÆLG

q

p+2l+2G
q

p+2

=
1

2
ÆL(1 + ÆL)(G

q

p+2l+2 �G
q

p+2l+4)G
q

p+2 =
1

2
ÆL(1 + ÆL)Bp+2l+2G

q

p+2

and thus byp;q
i

=
Bp+2l+2

2G
q

p+2

ÆL 6= 0:
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