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The long term behavior of a Stochastic PDE
Roger Tribe
November 1993

Abstract

. The one-dimensional heat equation driven by a particular white noise
term is studied. From initial conditions with compact support, solutions
retain this compact support and die out in finite time. The long term
~behavior of solutions from certain initial conditions can be described by
a system of wavefronts whose positions move approximately as Brownian -
' motions and such that two wavefronts annihilate when they collide. *



1 Description of results
" We consider in this paper the equation ‘
i = (1/2)Au+ Ju(l — u)[Y2W ()

where W is a space time white noise on [0,00) x R. Solutions are processes
(u(z) : t > 0,2 € R), jointly continuous in (t,z), which satisfy a weak form
of (1) (see Walsh [11]). Throughout and without further comment we consider
only solutions for which u,(z) € [0, 1] for all ¢, z.

\ Equation (1) has a dual and in section 2 we give a formula for the mo-
- ments E(u¢(z1)...us(zn)) as the expectation of a certain functional of an n-
dimensional Brownian motion. This will imply uniqueness in law for solutions
of (1) and the strong Markov property. In section 3 we calculate some mo-
ment bounds needed in later sections. The existence of solutions follows from
an approximation argument as in Shiga [10] or Reimers [6]. This construction
also allows the coupling of solutions which is the basis of comparison arguments
needed in future sections. The symmetry of equation (1) is also used repeatedly: -
if u is a solution started at f then 1 — u is a solution started at 1 — f.

In section 4 we prove a compact support property. Define for f: R — [0, 1]

R(f) =sup(z: f(z) > 0), L(f) =inf(z: f(z) < 1).

We show that if —co < L(up) < R(uo) < oo then —oo < L(u;) < R(ut) < oo
for all time. We call the region of the solution lying between L(u:) and R(u:)
a wavefront. The paths ¢ — R(u;),t — L(U;) are right continuous with left
limits.
In section 5 we show that solutions that mltxally have compact support will
" die out in finite time. We also obtain some weak control on the width of the
wavefront showing that sup, ¢, R(u;) — L(u:) grows slower than O(t1/?).
In section 6 we consider initial conditions with a single wavefront. We show
“that, under Brownian rescaling, the motion of the position of the wavefront
(¢t — R(upa2:)/n) converges to that of a Brownian motion as n — oo. ‘
Finally in section 7 we consider solutions started from initial conditions
Son 1(=1)if; where —oo < L(fi) < R(fi) < oo. The solution consists of inter-
vals where it equals 0 or 1 seperated by wavefronts. When two wavefronts collide
they annihilate each other precisely because solutions with compact support die
out. Using this we show that (again under Brownian rescaling) the motion of
the wavefronts approaches the motions of a system of annihilating Brownian
motions.
’ We remark that the proofs require the exact moment formulas obtained in
section 2 and do not immediately generalise to similar equations for whlch in
general no moment formulae exist.
Notation: For a function f: [0,00) x R — R we write f', Af for spatial
derivatives and f for the partial derivative in time.



For f,g : R — R we write (f, g) for the integral [ f(z)g(z)dz whenever this
is defined. We use the same notation (u, f) when u is a measure on R.

- C will be the space of continuous functions on R with values in [0, 1] and with
the topology of uniform convergence on compacts. M will be the space of Radon
measures on R with the vague topology: prn, — u if and only if {un, ¢) — (1, @)
for all ¢ € C. the space of continuous functions on R with compact support.
On €([0, 00), C) (or C([0, 00), M)), the space of continuous functions from [0, co)
into C (respectively M), we write (w; : ¢ > 0) (respectively (p. : ¢ > 0)) for the
coordinate maps and W; (respectively M) for the filtration they generate. We
shall write @/ for the law of a solution to (1) started at f on either of the above
canonical path spaces. «

. B=(By,...,B,) will be a Brownian motion with B(0) = z = (21,...,2n)
" under P;. We shall write L¢(X) for the local time at a of the semimartingale
X. P B . » ! B .

|fllp denotes the L? norm for p € [0, c0]. We write p;(z) for the Brownian
- transition density and P, for the Browniap semigroup. Throughout we have the

convention that inf(#) = +oo. ‘



2 Uniquehess

To state the moment formula below we use the following notation: We write
L; j(t) for the local time of B; — B; at zero and define

n
CLa(t)= ) Lij(b):
‘ fi=1,i#j
We also use the following notation for any n-vector z:
Q(J) = (2}1,'. By iy ey (Bn) (S Rn_? »
l;.("?) - (mlv"'1zi—lxzi)?i+1)"'1wj’zi1zj+ls”wmﬁ)E Rn'

" Proposition 2.1 Let u be a solution to'(I)‘ started at f. Write my(t,z) for
the moment E(uy(z1)...us(2n)) and set mo(t,z) = 0. Then forn >1

ma(t,2) = Bg(f(Bu(t))... f(Ba(t))e 20V (2)
1) Y B[ e oo BT
si=1i#j VO :

Remark. The proof shows (see equation (3)) that the moments mny (2, z) satisfy
the mild form of a heat equation with certain singular forcing terms that act
only on the subspaces @; = ¢, # j. Then (2) is the Feynman-Kac formula for
the solution.

* Proof. For ﬁxgd t, T

Gnpeae= N =i =N+ [ [ peeslo - @t - w2, |

for s € [0,t) and both sides converge to u(z) as s — t. Ito’s formula then gives
for s € [0,)

' (uu’pt—a(icl =)+ (v, pr—s(n ... 3))
= (fip(z1=2)) .. (fipslzn =) + M,

+(1/2) Z ‘/0‘3 ‘/Ptf-s(zi — Y)P—s(25 — y)us(¥)(1 — ua(y))

1,7 =1,i#]
. ]___[ (usspt—a(iﬁ - ))dy ds
k#ij -
where M, is a martingale. Taking expecta.tions and letting s — ¢ gives
ma(t,z) ~ (fipe(21 =) - (frpe(En — ) (3)
n t
=) Y [ -
_ ij=1,i#5 /0 _
N pe-e(zr = z))(mn_s(5, 29) — mn(s, 2(49))d2l9) ds.

k#j



Let ho(t,z) = 0 and define 77, (¢, z) inductively by using equation (2). We
shall show below that (7, (¢,z) : n = 1,2,...) also satisfie (3) and that the
two solutions agree. In several steps we use the observation that for h > 0
measurable

B [ AL ()
/ /pa(zt y)Ps(Z; —y)h(y)dy ds

We split the right hand s1de of (3) (with my, replaced by 7, ) into three parts.
The first part

Ry / / ,,pt-,<z,—z,)ﬂpt,zk-zk>

4, =1,i#j] S k#d
zm)(f(Bl( ). F(Bn (s))e'Lﬂ(‘)/4)dz(J)d3

 : '_(1/2) Z //”— p,(z, z,)]___[p.(f:k—zk)

1,j=1,i#£] . . k#j )
By, ,,( f(By (t —8))... f(Bn(t — s))e-Ln(*-,’)/f*)dg(f )ds

’ : 4 _(1/4) Z E, (f(Bl ®).. 'f(Bn t)) ‘/: e—(I‘m(i)r—Ln(a))/v‘idLi’j (s))

1,5 =1,i£]

= B(f(Bi(t). [(Ba(®)e O ~1)). | (4)

" The second part

—(1/2) Z ‘//,11" ,(z]’—z, Hpt- zk—zk)

i J"l i#] k#J

(1/4) E,( / Lt} i (s — 1, E(;)(r))sz,m(r))dg(j) ds

l,m=1, l:,ﬁm

: —(1/16) Z Z

4 =Li m=1, lm
Bl [ [ e EnO1 B (s 5, O (B ()
— —pes [ [ euormons
. . 0 Jo
S i) 3 nealt - BN (r)

i,i=1,i%] I,m=1, I#m



= (1/4)E£(/,,t<e'9“"”4—1) En) thn-l(t—r,§<‘>(r))drz,m(r>) (5)

I,m:l, l;ém

The third part:

a2 3 //p - )

t,j=1,i#]
I pe-a(ze - Zk)ﬁm_1(s,g(j))dg(j) ds
’ k#j .
= [ 3 e T T
4,j=1,i#]

Combining (4,5,6) shows that (f, : n = 1,2,...) also solve (3). Note that
my(t, ) = m(t,z) = Pif(z) and that m, are bounded An induction argument
shows that 771, are also bounded. Then a Gronwell argument (and induction on
n) shows that (3) has a unique bounded solution and hence that my,, = #n, for
_ all n proving the result. o

.Existence of solutions can be obtained by an approximation argument, see
Shiga [10] or Reimers [6]. We chose the method of Reimers as it quickly gives us
the following coupling construction. Reimers considers only deterministic initial
conditions but, as he points out, his construction easily deals with random initial
data.

Proposition 2.2 Let f(z), f(z) € [0,1] for z € R be measurable variables on
(Q,G', P") with ¢ — f(z),z — f(z) continuous. Then there is an eztension
(2,64, P)= (2 x Q",G' x G!, P' x P"), a G; adapted white noise W, and Gy
adapted processes (u(z), () : t > 0,2 € R) such that

a) (t, &) — w(z), (t,z) — B:(z) are jointly continuous and t — us,t — Uy
are continuous as maps from [0,00) to C almost surely.

b) u, @ are solutions to (1) started at f, f with respect to Wy .
c) (w:wm(z) < B(z), Vi > 0,z € R) = (v: f(z) < f(z), Vz € R).
(Here we are regarding f, f as having been eztended to Q in the obvious way).

Proof. Reimers solves a discrete space and time equation as follows. Let zk =
k27" 4 = (1/4)j27%". Let &,x be an array of LLD variables with P(EJ'
1) = P(EJ & = —1) = 1/2. Then solve the discrete equa.tlon uo(:cn) = f(zk) and
ugr(2h) = ug(ek) + (1/4)(ug (oh) — 2uyy (k) + w (ah 7))
v +2m Doy (2E ). )



" 4 also solves (7) but with Go(zX) = f(zk). We shall choose o shortly Reimers
avoids a limiting argument by using a little non-standard analysis. Fixing an
infinite n, he checks that u is S-continuous and that the formula,fort > 0,z € R

u(z) = st(uti(zﬁ))‘ for some ), & t,zk ~ &

defines a :;;olution;to (1) with respect to a certain white noise. This construction
works provided o is a uniform lifting of the function u(l — u)|*/2. We choose
the particular lifting o(u) = |u(1 — u)|*/? A a|u(1 ~ u)| where & = 2"/2, Hence
lo(u) — a(u)l < 2™?|u — @|. We now check simply by induction using (7) that
1f Uy, (1) < Gy (2f) for all k then ut,+x(zn) < Gy () for all k. Indeed

t"“ (an) t"“ (mn)
(/) (=5H) = g (@5 ) + (1/4) gy (25 7) — 5 (a7 )
+(1/2)(u3 (25) = B3 (28)) + 27N (o (g (28)) — (3 (21))
(1/2)(ug3 (21) — B (1)) = 27/ Yo (uyy (a5)) - o(a4y (21))]

IN A

This prdves part c) of the proposition. The same method shows that when
f, f €[0,1] then u, @ € [0, 1]. Reimers shows that u,(z) — P f(z) are uniformly
_ Holder continuous on compacts and this implies the continuity needed in part
a). o

Proposition 2.3 The law @/ on (c([0, ), C) W, W) of a solutmn to (1)
started at f is unique. The fa,mzly (Qf : f €C) is strong Ma,rkov

Proof. Since the moments E(ut(zl) .ut(%n)) are determined and since the
. solutions. are bounded by 1-then the distribution.of u; is determined. The
extension to finite dimensional distributions and the strong Markov property
are standard. For instance one can check that the law of any solution to (1)
is a solution to a standard martingale problem and that, as above, the one
dimensional distributions are umque Then one may appeal to Ethler and Kurtz
[2] theorem 4.4.2. o



3 ',Moments

Lemma 3.1 ka) :

B(un(a)(1 — ue(v)) = Bo)(F(BL (D)1~ F(Ba(2)))e22/4)

5)

,E(Ut(z)(l - ut(y))ut(z)) ’
= Bz, (f(B1(t))(1 — f(Ba(t))) f(Ba(t))e~E2()/%)

+(1/2)E(e3,0) f(,te“““” *hy(t — s, Ba(s), Ba(s))dL1,3(s)
where hy(s, z,2) = B(u,(z)(1 — u’(z'))),»
¢

0 B(ua(e)(t - ue(y))u(2)(1 - w(w)))
= Eleg,au)(f(Bi(0))(1 = £(Ba(1)))f(Bs(t))(1 ~ F(Ba(t)))e /%)

t
HUDEn [ €5V (e = , Ba(s), Ba(e), Bo(e))dTaa(e)
] . )
i B
‘+(1/2)E(:,y,2,w) / e_I“(,)/4h3(t -3 Bl(s)l -B2 (8): B4(8))dL1,3(3)

where hy, hs are defined by h;(: z,y,2) = E(u,(z)(1 — u,(y))u,(z)) and
ha(s,,y, w) = Blug(2)(1 ~ us(1))(1 = us(w)))-

This lemma. can be proved by the same method as in Proposition 2.1.

Lemma 3.2 Suppose that —oco < L(f) < R(f) < oo and that u is a solution to
(1) started at f.

o) E(f u(z)(1 - 'u,t(:z:))dm) —last—oo,
b) B, 7 (1 — us(y))u(z)dy dz) < C(f)t"/? 1og!/*(t) for allt > e.
) B((f w(=)(1 - w(z))de)?) < C(f) for allt > 0.
Proof. a) From lemma 3.1 a) we have
B( [ w(2)(1 - w(o))do)
[ Baa FB )L = f(Ba(0))e™ 22 )

Eo / F(@+ By(®))(1 ~ f(z + By(t)))dze™1/3,

It

8



We now break ‘this into two parts, replacing f by fo(z) = I(z < 0) in one part
and estimating the error by doing this in the other, part.

Ey / fo(z + B1(t))(1 — ol + Ba(t))) daa-Laa(t)/2
= ; EQ((BZ(t) - Bl(t))+e‘Ll.2(t)/2)

= B (B(6) = Bal) e 1 2)anas)
=y t &2 (B (5) — Ba(s) > 0)d(B — Bz)(s))

t = s ’
+Eg/ e L1a0)/2(1/9)dL; 5(s))  (integration by parts)
0 ‘ '

= By(l-e B L1 a t oo,

The error is

IEo/f(z + B1(£))(1 - f(z + Bg(t))) \ |
~fo(e + Ba(t))(L — fola + Ba(t)))dz e~ Ea02|
2E°/ e+ Ba(8) — foa + Ba(0) oo/

IN

I/\'

2(|R(H| + [L(ANE(e /%) 0 as t — oo,

b) We shall write W (t) = (B1(t)— Ba(t))/2'/2. We also use below the change
- of variables u = (z — y)/2"/%,v = (2 + ‘1/)/21/2 Ta.klng t > e we have

w0 w) i)

IN

IA

In

Eo//I(y < z)((l - (y+ Bl(t ))f(z +Bg(t)) ,

“exp(— L~ (B — By)/2)dydz
By [ 10 <5y B0 2 5(1) + Bt < RO
exp(~L; ¥ (By — Ba)/2)dy dz-
Eo_// u> 0, (v—u)/ 21/2+B1(t) > L(f))
K(v +u)/2/? + By(t) < R(f)) exp(- Lf i (B, — By)/2dudv

By fo (21’ 2(R() = L(N) +2W(t) — w)+ exp( ~L3(W — u)/2"/?)du

1y [ R ~ LNV ) 2 ~2R() - E(F))d

9



+Eg/0°° 2(W(t) — u)y exp(—LO(W — u)/2Y/)du

IA

OB+ W3) + By [ [ expl-B2W — )2 A

IA

S4By [ 21 - expl— LW —)/2))du

00

IA

c(pi1og ) + [ BoL (W )du
2t1/2 logt/3(t)

C(H)E? 1og (1) + /
' 2t1/210g*/3(1)
o0

IA

t
/ ps(u)ds du
0

2
e v /thu

IA

C(F)t? log?(t) + Ct'/2 /
2t1/32 Iog"/’(t)
< C(HtM10g2(t).

c) From lemma 3.1 ¢) we have

B( [ wle)(1 - w(e))de))

= // E(¢,¢’z+?lz+y’), |

((FBUOYL - F(Ba O F(Ba(t)(1 = F(Ba))e 4O (8)
(1/2)]0‘3—%)/%2@_3, Bi(s), Ba(s), Bs(9))dlaa(s)  (9)

(1/2) /0 t e~ L)/ gyt — s, By(s), Ba(s), 34(3))d1;1,3(s)> dz dy. (10)

We shall show that (8,9,10) are all bounded uniformly in time.

Considering first the term (8). The error in replacing f(B1(t)) by fo(Bi(t))
(where fo(z) = I(z < 0) again) is bounded by .

[ [ Bomsrsasn @B < IRV (BN Bale))(1 - F(Ba(0))
e~ (sl +Eaa(t)/2) gy ~
(IR + 1)) B0, (e ++)%) |
[ BoonaFBaE)( - FBaleD)eE )y
< C(f)Bpo(e /%) -0 ast—co.

IA

Similarly f maybe replaced by fo throughout (8) at no loss. Doing this leads to

f / E,045)(e” 41z + Bi(t) < 0,2+ By(t) > 0)

10



1(z + Ba(t) < 0,2 + Ba(t) > 0))dody
= [ Boous (Bt A Ba(t) - (Baft) V Ba(t) e 4y,

We now write for brevity E for E(0,0,9,y)- Expanding this using Ito’s formula
we get R ‘ .

(1/2)E( /0 te,'[”(’)/“dL?((Bl A Bs) - (B2 V By)))

SB[ OB (5) A Ba(s) 2 Bafe) v Ble)
| B A B() = (Balo) V B(o)
(B[ e O(By(s) A Ba(s) - (Ba(s) v Ba(s))+dLa(s))
= /2E([ IO B(5) > Bals), Bals) 2 Ba(o)dLaa(s)) (1)

H1/2B( [ eI (BL(5) < Ba(s) Bale) < Ba(o)dIa (o) (12)
HU/2B( [ e HORB(5) > Ba(o), Bale) < BaloiEsa(s) (13)
/([ e BBy (5) < o) Ba(s) > Ba(s))dIna(s))) (14)
(/28 [ OB () A Bals) 2 Bae) V Bule)Ea ()
—(1/2)E /0t e~E4()/41(B, () A Bs(s) > Ba(s) V Ba(s))dL2.4(s))
~(1/2)8 [ B B(6) = (Balo) V Ba()sdBas(s)

~(1/28 [ B ONB6) A Ba(o) - Bao)slaals) (1)

Note that only the first four terms are non-negative. We bound the term (11)
by : . ;

(1/2)B( || &0/ oD sl o)

< E(exp(—(1/2)(L1,2(72,3) + L3,a(12,3))))

where 7;,; = inf(t : B;(t) = Bj(t)). The term (12) may be bounded symmetri-
cally. For y > 0 we bound the term (13) by

' (1/2)2(/:é-(1/2)(L,x.=(a)+La..(s))1(31(8)253(3))@2’4(3)) |

11



< E(ekp(—(l/z)(LLz(Tl,a) + L3 4(71,3))))-

A similar bound (i.e. by interchanging the roles of some of the Brownian mo-
tions) holds when y < 0 and also for the term (14). The following lemma shows
that all these terms and hence (8) have bounded integrals in y, completing the
first step.

Lemma 3.3 Let o =inf(t > 0: [Bl(t)| > |y|3/4/2)
a) E(o,0)(exp(—(1/2)L1,2(c))) is square integrable in y on R.
b) E(o,0,y,y)(exp(—(1/2)(L1,2(72,3) + L3,4(72,3)))) is integrable in y over R.
¢) E, O,y,y)(exp(—(l/z)(Ll 2(m1,3) + L3,4(72,4)))) is integrable in y over R.

Proof a) We bound the expectation in the region |y| > 1. Define p = inf(z >
: |Bu(t) — Ba(t)] > |y|*/3/2) and 5 = inf(t > 0 : |By(t) + Ba(t)| > ]y]3/4/2)
' Then o > p A pso that
E(0,0)(exp(—(1/2)L1,3())) A
< Eo,0)(exp(—(1/2)L1,2(p))) + P(0,0)(5 < p)- (16)
‘Letting W = (B; — B;)/2'/? then p = inf(t > 0 W (8)] > |y[*/3/23/?) and
Eo,0)(exp(~(1/2)L1,2(0)))
B(o,0)(exp(—-27/2LO(W))
Clyl-—z/s

Il

IA

(using Revuz- and Yor [7] exercise VI.4.9) giving a square integrable bound.
Define

' 9(2,2) = Payn(ink(t: [Ba(e)] > [9¥/*/2) < infl(t : |Ba(t)] > [yl*/2/2%12)).

Then the second term in (16) is g(0,0) and g is harmonic on the rectangle
lz| < |y[3/4/23/2, |z| < [y|*/3/2%/% and has the obvious boundary conditions.
Then by the maximum principle g(z, z) is bounded above by the harmonic
functlon

g(z,2) = 2cosh(23/?rz/3]y]2/3) coss(z:’/""m/liIy|2/3)(cosh(7rIyll/m/fi))‘“1

Hence g(0,0) < 2(cosh(1r|y|1/ 12/3))-1 which is again square mtegra.ble complet-
ing the proof of part a).
b) Again we consider |y| > 1. Deﬁne o; = mf(t >0: |B,~(t) — B;(0)] >
|y>/%/2) and &; = inf(t > 0 : |B;(t) — B;(0)| > |y|/2). Then 153 > o2 A &3 and
72,3 > 03 A G2 so that '

F(o,0,9:3)(exp(=(1/2)(L1,2(72,3) + La,a(73,3)))
< Eo,04.5)(exp(—(1/2)(L1,2(02) + Ls,4(03))))
+E(o,b,9,y)((53 < 03) U (G2 < 03)).

12



The first term on the right hand side can be factored by independence and is

then bounded using part a). The second term on the right hand side can be

bounded as in the proof of part a). A similar argument also proves part c).e
We now consnder the term (9). From lemma 3.1 b)

ha(t — s, By(s), Bz(S), Bjs(s))
= E(By(s).Ba(),Bs(2))(
f(wa(t - s))(l — f(Wa(t - 3)) )f(Ws(t — 5))eLs(t=s)/4

+(1/2) /0 efﬂs('>/4h1(t'—s-r, Wl(r),Wg(r))dL,.(Wl - Ws))
= Blooetn)(F(BAD)L — F(Ba (1) f(Ba(t))e™ B W-2W4 5,y (17)
+(1/2)E(,“+,,)( / e~ (Lalr)- L=(-’))/4h1(t—r, Bl(r) Bg(r))dL13|.7-'018)

Substltutmg (17) into the expectatlon in (9) gwes '

(1/2)B(a 0,2 49,240)(f (Bl(t))(l = f(Bz(t)))f(Bs(t))
/‘ e-(L.(s)+L3(t,)5L3(a))/4dL2’4(8))_ (19)

[0}

k Repacmg f(B1(2)) by fo(Bl(t)) in this expression gives an error of at most

(1/2)Ba,,04y,049) (| Ba ()] < IR(f)I VIL(f)]) f e~ IlN44L, 4)

This has an 1ntegral over ( ,¥) that is uniformly bounded in ¢ as we have seen
in the treatment of (1 1). Similarly f may be replaced by fo throughout (19) at
the cost of at most a constant. This leads to ’

(1/2)E, z,z+y,z+y)(fo(31(t))(1 - fo(Bz(t)))fo(Bs( )
/ e (B Es()-Eso)/4g L, 4(s))

= E(;, 0=y, y)((1/2)1(z < Bi(t),z > Bg(t) z < Ba(t))e‘Ls(‘)/‘*
/ —(L,(,) La(‘))/4dL2 4(3)) i
0
We now perform the integral over z to obtain (writing E for E0,0,~y,-1))-
t
(1/2)B((Br(1) A Ba(t) = Ba(0) ™ 2 [ emliate)=ExtDAaL, )
, 0 ;
" )
= (1/2)E( A‘ ((B1(s) A B(s)) — Ba(s))+e~ 24V %dL,4(s))

13



+1/2B( / [ et DAL o)

d(((Bu(s) A Bs(s)) - 32(3))+e "’(‘)/4))

The first term on the right hand side exactly cancels with (15) We expand the
second term further:

(1/4)E( f / e~ (Ba()=LalrD/4G L, 4(r)e= L)/ 44LI((B; A Bs) — Bz)))
) 0 voO ’

~/eys( [ [ e OO ars )
 (Bals) A Ba(s)) - Ba(o))ye V(o) (20)

t s .
—-(1/4)E(/ / ef'(I’l(’")'LS('))/4dL2,4(r)e-L3(‘)/4dL1’3(8))_
0 JO

We may further Lound the one posifive term here by
1 ] ‘
(1/4)E( / / e~ ) -EsENAGL, (r)em B MAd L, (s))
o Jo ‘ .

= E(/t e'L‘(’)dL2,4(s))

which has a bounded integral over y exactly as before.
To finish the bound on (9) it remains to consider the term (18). Substltutmg
- (18) into the expectation in (9) we obtain

(1/4) Be o ztprei) / ~La(s)/4 / e (Bs(r)=Es(s))/4
It~ , Ba(r), Ba(r)dLa () a(4) (21)
From lemma 3.1 a) we have 4
hl(t —'1‘, B1(1‘), Bz(r))
E(5,(r),82(r)) (F(Wa(t = 7))(1 = f(Wa(t — r)))e™220=7/%)
E(e,0)(f(BL())(1 = f(Ba(t)))e~(F2(I= LD/ 7).
Substituting this (21) gives .
(1/4)E(e,0,0+y,0+0) (F(B1(®)(1 = F(B2(2))

t t . ; o
/ - Dalo)/4 / e~ (Bs(r)=La()+Ea()-Lalr DN/ GL 4 (#)d s 4(s)).
0 ] ‘ .

Il

kReplacing f by fo here gives an error of at most

R m— R OGN RO
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As above this has an integralin (z, y) that is bounded in t. So we may consider
(1/4)Be e 29,000 o By )L = folBa()))
/ emLala)/ / ) B BB WAGL, | (r)d T a(s))
= (14)Bann(I(Balt) S 5 < Bi(0)
/ F L)/ / ~(Bs(r) Lo Ealt)- LWy Loa(r)dTaa(s))-
0 . 8

Integrating over o gives‘(a’gain writing E for E(0,0,~y,~y))
(V/AB(Bi(t) - Ba(0))+ o

/ " g Lals)/a f e=(Es(r)=Es(e)+Ea(t)- E:(r))/4dL13(,.)dL2 5(3))
(5/4)E((Bl(t)‘ 12100 P

' N‘/t /r ’e—(Lg(s)+Ls(r‘)—’Ls(s)—ffa(r’))/f*sz 4(s)dL1,3(r))

([ [ im0y ) - Bl ()08

L (1/8)E( / / / LB () D)=Ll Ea()/4
dLa,4(s)dLy, 3(1‘)dL1 2(9))- (23)

The first term on the right hand side of (23) exactly cancels with (20). Boundmg
_the s—1ntegral in the second term gives the upper bound .

(1/4)E(e—(1/2)Ls.q(’r:.4) / / e—(L;(r)—Lg(r)+L:(g))/4dL1 3(r)dL1,é(q))

IN

(1/2)E(e (/1) Esa(raa) / (g > ri.a)e~ B4, 2(q))
: < E(e_(1/2)L3 a(7a, .)e—(1/2)r,1 a(s, ,))
which is integrable over y by lemma 3.3. This finishes the bound for the term

(9). The term (10) is bounded in a similar way by permuting the Brownian
motions By, ..., By. This completes the proof. e
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4 Compact Support Property

We shall need control of sup, u(z). Given the Green’s function representation

w(e) = Pef(e) + [ [picale = i)t = v a,,

this is equivalent to controling sup, N;(z) where

Niz)= [ [ peeate = ()t = w5

This is done by controling all increments |Ny(z) — N:(y)|. for z,y in dyadic grids
" (as in say the proof of the modulus of continuity of Brownian motion). Estimates

of the sort in the following lemma occur in several papers ([4],[5],{11]) but since
none are quite suited to our needs we prove another. :

Lemma 4.1 . Fore,t>0,A€R
P(|Ny(z)| > €, Is < t, = > A) < c1e7 (L Vv t*2)(f, P,I(4, 0)).
Proof. ‘We use the estiinates, for0<s<t
at
/ /(pg_,(z —2) = pi—s(y — 2))%dzds < Clz—y|At'/?,
o , :
/ ‘/(pt__,.(:c —2) = py_p(z —2))2dzdr < Clt— 8|2 A s12,
o .

' Applying Burkholder’s and then Holder’s inequalities we have, taking p > 2,
E(|Ny(z) - No(y)[*F)

< COB(([ [(prmslo=2) =y~ 2 ualaldsds)
< 0o ~sI AP B[ [(oresla =) = piosly = )8 e)dn e
< Cl)le -3l AP |
B[ €= [ = )+ pecsly = sl de)
) .

C(p)(|z — y| At/2P 13 (f, pi(z — ) + pe(y — -)).
Similarly,for 0 < s < ¢ k ’

E(1N:(z) = N.(2)/")
< @B [#(e-2u(azary)

16



IA-

<

+C(p)B(( /0 / (Pter(@ = 2) = Py—r (2 — 2))*u, (2)dz dr)P)
C'(P)(‘/‘.t‘/'pf_,.(:n - z)dz dr)P"lE(‘/‘.t/p?_,(z — 2)uy (z)dz dr)‘
40t = sl A )P IB( [ [(p1er(a = 2) = s (o= 2P () dr)

C(p)lt — SI(”‘I)/’t”’(f,p:(z ~ ) +pu(z =)

Deﬁne Tl = t’ = 12‘" for j € Z n € N. Define the events

AL 0l = {INyg(257) = Ny (o)) 2 2/}
Ayz‘,k,n(e) = {|N, (:z:ﬂ) Ny (zn)| > 52‘"/10},

Set mo = inf(n > 1: 27" < t'/2), Then if j > 1

IN

IN

IA

A

<

<

X X Y Pl

n>ng 1<j5< <2"t k>2"‘A

Y Y5 e, ek - N, (znn”)

n>ng1<j<2nt k>2m4
C(p)e'zptllz Z gn(2- (4p/5))

n>ﬂo
z Z 2-—n f: Pti -+ 254 (:!:,, k ))
1<i<amtk>amA ' ;

C(p)e?rtt/2 Y~ gn(3-(4p/5)

“n2nG

Z (/ #() (/pt, (z — y)dy +27"(t]) " ?1(= 2 A —kz-"))dz)

1<_1<2"'t

,‘ C(p)e‘z”tl/z Z 2n(2 (4p/5))

n>ng

S (R NG/ (A (4= 2770000

S 1<5<2mt
) (kv /7)Y 2e-Uelo)( 5, Byt (A ) Y 2
. n>ng . ‘ 1<j<2nt
c'(p)e°21’(t3/2 VE)(f, PiI(4,00)) ifp>15/4.

The same bound (with a different constant) holds when Al is replaced by A?
provided that we take p > 25/3. Define -

a9=U U U An@uaz, (o

U n>ne1<i<2nA kD> 2mA

17



Then P(A(¢€)) < C(t V t3/2)e=20(f, P,I(A, 00)). On the set A°(e) we may esti-
mate | N,(z)| for s < t,z > A by an infinite sum of increments over neighbouring
dyadics in the usual manner. Moreover we need at most 2¢ increments over step
length 2=™° and two steps (one in space and one in time) of length 2= for
n>2. So )
N, (2)] < 262710+ 2) " €27/ < cge(1 +1).
n>2

The set A(cg e(l + t) 1) then leads to the desired result. ®

We now establish a compact support property by considering the Laplace
functional of a solution, adapting the method used for super-Brownian motion
. in Dawson, Iscoe and Perkins [1].

" Proposition 4.2 Let u be a solution to (1) such that R(uo) < 0. Then for all
t>0,b> 441/

P(sup R(u,) > b) < cs(t™Y/?v tza)e_bz/lst.
s<t

Remark. By considering 1 — u we obtain a corresponding result about L;.
Proof. Fix 9 : R — [0, 1] continuous, integrable and with (z : ¥(z) > 0) =
(0,00). Let p(z) = ¥(z — b). For 0 < a < b define stopping times
7o = inf(t > 0:wy(z) > 1/2,32 > a), py = inf(t > 0: (us,¥s) > 0).
Fix t and let (¢)(z) : s € [0,t],z € R) be the unique non-negative bounded

solution to .
‘ { _:;’S‘A (1/2)A8* = (1/4)(8*)* + Ay
P =0 ‘

The existence and uniqueness for this ecﬁiatibn is discussed in [3]. Comparing
with the solution to the same equation without the —(1/4)(¢*)? term shows
that ¢} (z) < A fy”° Piy—r9hy(2)dr. The function h(z) = 12(b — z)~2 solves
r' = (1/ 2)h2 on (—oo,b). Arguing as in the proof of the maximum principle
shows that ¢)(z) < 12(b—z)~2 for all z < b,s < ¢, A > 0. Using the Feynman
Kac representation for ¢* as in [1] lemma 3.5 we'havé for any r € (z,b)
¢Mz) < 12(b—r)"?P,(inf(t: By(t) =7) <t — )
< 24(b—r) " Py(By(t) > r — z).
Supposmg that b > 4t1/2, 2 < b — 2t/2 we choose r = b — tll 2 to find

¢*(z)<24t- (b-2)/8t v < ¢, o (24)

Ito’s formula gives

d(e—(u.,¢;\;’)-—x j'o'(u’.’,i//b)df) '
o~ #2)=2 [ (urs)ar (lu,(z)(l — u,(2))[Y ¢} (2)dW, ,

(e, =) = (1/2)A03 = M) + (1/2)(us(1 = ue), (43)?)ds) -

18



- So, using the integrability of ¢ to show the stochastic integral is a martingale,
» E(l _ e‘(“muﬁﬁé\ﬁ)"" fumu(“miﬁ’b)d")‘
= E(1- e‘(“°’¢3)) ‘ : :
’ T _(u 83)=2 [ (urpo)dr ' s LY
+E(/ e s o YR ((1/4)u, — (1/2)us (1 — u,), (¢7)°)ds
0

< B(a- e )t B[ (1/8)ul(-00,0), (6))ds). (25)

As A — 0o s0 ¢* T ¢ € [0, 00]. Letting A — oo in (25) gives

P(py < TaAt) ~ —
< lim E(l -(utl\fgy¢g/\fl) Af”\m'('U"l-ﬂl‘l’)‘i") ) :
— X—oo

IA

B(1— e~ (047)) 4 B( / ((/4)0T(=00,0), (67 )ds)

/ 96 (2)de+ / / / (1/4)Po(w—y) ¢°°(2))2dydzds

Choosmg a= b/2 and usmg the bounds in (24) we have '

A

P(Pb < 1-., A t)

0 b/2 ' .
/ 24t~ (”—z) /S‘dz+ / / / p,(:c—y)144t e(b"”) /“dyda,- ds

<

< gs‘bflejb /8t 4 14447 / e(t=2) /4t g

. —00 _

< Cblegm¥/1e , : ,

< Ct—Y% —b’/let : ' ; (26)

But from lemma 4 1 a) we have for b > 4tl/2

P(P, f(m) + Ni(z) > 1/2, S > b/2 s<t)
P(P,I(~00,0)(b/2) + Ns(z) > 1/2, 3z > b/2,5 < t)
P(Ny(z)>1/2- Po(Bl(l) >2), Iz >b/2,5<t)
C(t v1?*)(I(~o0,0), PI(b/2, 00))
C'(t Vt")tl/z'e'b’/&

P(Tb/g S t) :

IAIA A IA ‘u

which combined with (26) completes the proof. e

Corollary 4.3 Let u be a solution to (1) with —oo < L(uo) < R(ug) < oo.
Then the path t — R(uy) is, almost surely, right continuous with left limits. At
the at most countably many jumps R(u:) < lim,y; R(u,)
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Proof. We prove the desired regularity on a fixed (but arbitrary) time interval
[0, M]. We have P(—oo < infsepo,m] L(us) < sup,E[o u) B(us) < 00) =1 from
proposition 4.2. Let s = j27", A, = {s3,s%,...} and A = Unso&n. For
Jym > 0 define 4;n = (sup,; ¢, ¢ i+ R(u) — R(u ,) > 2-7/4), Then, also from
proposition 4.2, P(4;,) < C ‘exp(—2"/2/16). .By Borel Cantelli there exist
A(w), N(w) with P(4, N < 00) =1, R(us)(w) € [— A(w),A(w)], Vi € [0, M] and

@ € N> n(w) Nj<aran 4jn-

We now fix a sample pa.th for which A(w), N(w) < 0o. Choose 0 < s <t <
M withs € A,t —s <27V, We may choose a sequence s = 39 < 91 < ... <
sp_1 <t < s with s; € An,,s,+1 — 8 = 27™ niyq >n; fori = 0,...,k— 1.
Note that s — sx_1 < |t — s| Then

R(u) ~ Ru)

(R(ur) = R(ua,)) + (R(voroy) = Rt ) + - + (Blua,) — R(us,))
gme-alt gy g/t

C(t - s)'/*, | » | (27)

IN N

Suppose that hrnsupm s€A, ,<tR(u,) > hmmf,n 1€A,s<t R(u,) for some t €
(0, M). Then we may obtain a contradiction to (27). Hence we may define
S = limy1s,sen,0<t R(1,). From it’s definition ¢ — S is left continuous. If for

"somet € [0, M) lim SUP |y 45¢ S5 > liminf, s ;51 S5 then we can again obtain a
contradiction to (27). Hence ¢ — S; has right limits on [0, M). Also (27) implies
that R(u;) < S; for all ¢ € [0, M] and that S, can only jump downwards. Since
R(ut) = S: on QN[0, M] we have R(u;) =S; at continuity points of S; in [0, M ]
We may exhaust the jumps of S; by a sequence of stopping times Tk, k= 1 2,.
Using proposmon 4.2 and the strong Markov property at time T}

P( sup  R(u,)— R(ur,) > 27™/?) < Cexp(—2"%/16).
Th<s<Th+2"™ . o

Then P(limsup,y, R(us) < R(ur,) Vk = 1,...) = 1. From the contlnulty of
us(z) we have that liminf, Lts>t R(u,) > R(ut) Combining these observations
shows that R(u;) = Si+ at jump points completmg the proof. e
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5 Death
_ Proposition 5.1 a) Form>1, supfd(0 m) P((umioo, 1)>0<Cm?!

- b) For B € [0 00) there ezists C(B) < oo such that whenever m > 1 and
(f, (=5m®! —mfP, mf + 5m5t)) < <mym 21 then P((umsoo, (—m?, mﬁ)) >
0) < cgm” -1,

Remarks. We sketch the argument of the proof in words. One can prove
that super Brownian motion dies out by calculating the Laplace transform
E(exp(—A(u¢, 1))) and letting A — oo. An exact calculation of the Laplace
transform is impossible for our eqaution but the method will provide a suitable
bound provided we can show that for long periods of time .

[|u(t, )]0 < 1—€ for some € > 0. (28)

To do this we use the fact that the total mass is a non-negative martingale
and so its brackets process converges. This implies that the amount of noise
decreases and eventua.lly cannot counteract the effect of the heat kernel which
by itself would lead to (28).

In part b) we allow mass at a distance 5m5! from the area of interest From
proposition 4.2 this mass should only travel O(m®) in time m% thus should
not affect the mass inside the area of interest. We do not have the additive
property of super Brownian motion (or a subadditive property) so that this
requires several small changes in the above sketched argument. Since part a)
follows from part b) and proposition 4.2 we give only thg details for b).

Part b) suggests that a solution with initial mass m is likely to die out by -
time m!%. In section 7 we shall show that from initial condltlon f < I(O m), a
solution dies in time O(m3). ‘

Finally a shght change in the argument Would show that ( fy ) < oo is
sufficient to ensure a solution will die in finite time. .+ - v

Proof. B will be fixed throughout the proof and we- suppress notation for
* . its dependence in all variables. Write t, = jmb for j = 0,1,... and let J; =
[-mf — jm5,mf + jmP!] for j =0,1,...,5. Deﬁne the events for i=0,1,.

A_, {‘/t / u,(z)(l —-u,,(z))dzds < m” 80 sup (u,, I_,a) <m }

a<t,+1

On the event AJ there is httle noise in J3 dunng [t,,tH.l] and we sha.ll see that
there is enough tlme for the heat kernel to drag the solution unlformly below
1/2 on J3. The first step is to show that the events A; occur frequently. Define
P1(s, :z:) mlou_,I].(Q‘!) and note that for z € J3,s < m'®, m > 1

¥i(s,2) Py(By(s) €74)
. ;Po(‘]Bl(leQ)l <m?l) .
Po(|By(1)] <m) >1/2.

v
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The process (us,¥1(s)) is a martingale on [0, m!%] so that

B(( /0 - /] ] us(2)(1 - uafé))dz @” “)

< E((‘/omv /41/;?(3,(2:)11,(2)(1—u,(z))dzds)1/4)

= CB([(u, $1()ylieo] ) |

< CE( jullaoo(u,n/:l(g))l/ %) (Burkhdlder’s inequality)

< CB((uo, h2(0)?)

< C(E((uo,¥1(0))))"/?

< C(m+ /, $1(0,2)da)'/?

< omif? o , , | (29)

where in the last step we use the a.Ssumption that (uo; I1,) 5 m and an easy
upper bound on ;. Also ~ ; '
k  P(sup (u,,17,)> mz)

s<mioe

S P( sup 2(uerth(s)) 2 m*)
< Cm2E((uo, %1(0))) |
< Cmt 5 o (30)

Define N, = 23;1 I;.

P(Nm9§ < 771,95 - m86)

P[* [ we)(1 = wodeds 2 mE) 4 P( sup (1) 2 )

£<m100

< Com™? ‘ (31)

IA

‘using (29,30) and Chebychev’s inequality. This complétes the first step.
Define B; = {w(z) < Pi—y;us;(2) + Cm~1, V2 € J3,t € [tj,141]}. The
second step is to show that 4; N B; is unlikely. Fix j,m and define

My(z) = ut,-+t‘(=’)—Pt—‘t5"t,-(z)

= [ [ ol - e 02 = e G2,

We shall control M,(z) again by c’ontrolling it’s increments over dyadics. We
‘consider M;(z) — M;(y) is the terminal value of a martingale with (in a slight
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abuse of notation)

() = 3(3)) = [ [ rcr( = 2) =p1cr (0= 5) sty 40 (2)(1 = s ().
(32)

We now consider |z—y| < 1 and ¢t < m®. We use also the bounds |p:(z)—p:(y)| <

Ct~!|z — y| and |pe()| < Ct~1/2. We split the space integral in (32) into two

~ halves, over J; and J§. The first half i 1s bounded on 4; by (a.pplymg Holder s
inequality)

| ( /0 / (Pe-r(z = 2) = pe—r(y - z))”/’dz dr)*/® .
o /0 t /J 3 ()1 - ur(2))°dz dr)*/°

t v
< C(/o [Ipt—r(® = ) — Pt—r(y = .)”i/)?)ilsm—zo
t : - ,
< C(/ (t - ‘9)—-'3/4;7\ |z — y|3/2(t _ 3)"3/2ds)4/5mf2° ‘
0
< Clz - 12/5m—20

When z;y € Jz the second half is bounded by

/ Ipece(e =) = s - Moo / peorle =)+ pierly ~ 2)dzdr

IN

o[ ¢ o =3l = )~ 2ar BB ()] > )

| Cle- |2/5
" Now wnte gk =tk = k2‘” “Then if n > 0, ,zk, :c""'l € J 2‘” <tl < m
CP(IMy (2pth) — My (21)] 2 m®27/%, 45| Fy)
< P(IMg (o) = My ()] > mo2 0,
| [Ma (27) — My ()] < €27 °m~ 20| 7y )
< 2exp( —Cm 23"/10) '

l/\

;usmg [9] corollory IvV.37.12. In an entirely similar way we have

- P(IMy (=4 ) My l(zn)| > m=62-1/20 4. i F) < 2exp(— Cmaz"/m)
Now define

Bujn = {|My(eh*) = My ()| v |y, (zn) M- 1(:vk)l > m™°27"/2%

BE=U U U Bun

n201<I<m52n . ch ohtier,
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Then defining g(m) = || P(Bf n 4j|F; )l we have

g(m)<C Z 27 mP(mf + md) exp(—C’msz“/lo) < oo.

n>0

" On the set B we ma.y estlmate | My ()| fort < m5, z € J; in the usual ma.nner
by an mﬁmte sum over dyadic increments. Indeed we need at most m® steps
over intervals of length 1 and two steps over intervals of length 2™ for each
n > 1. Thus for ¢ Sms,zEJz

|My(z)| < m™t+m=8) " 27" < Cmt

n21

_ when C = 1+4271/20(1 — 2-1/20)-1, Hence

P(Bf N 4;|F,;) < P(BiNA4;|F;) Sgm—0 as m—» co.

Define &; = t; + m®2, Then on 4; N B;, for t € [f;,tj41],2 € Ja

uy(z) <

IN

IA N

Pg_tjutj(ib) + C'm"l

(s Mot + [ oy (s = mhdz + O

Cmi(t—t;)~Y? + cm™?

Cm~1/4,

This completes the second step

Define C; = {(utﬁl, I;,) = 0}. The third step is to show that 4; N CY is
unlikely. Again fix j,m. As in section 2 we may assume that we have coupled
to u a process 4 with u;; = 4;, and solving on [fj,tj+1]v~

i = (1/2) At + o(a)dW
where
o(f :c) [(1.— u)lllz if 4| <1/2orifz € JS
’ | /2|1/2 if |4 > 1/2 and z € J;.

(33)

(34)

We can construct # so that & > 0'and so that u; = 1; for all £ < inf(s > fj :
|lu|lc > 1/2). Thus by (34), for sufficiently large m, we see that u; = 4, for all
"t € [£j,t;41] on the set 4; N B;. Then if D; = {(fig;, 15,) < m?}

P(A;NB; NC}|F;)
P(AJ nBJ n{(ui;-p-ulfx) > O}Ift,)
- P({(f4.,10,) > 03N D | F;).

IA
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For the process % we may argue again as in [1]. ‘Let 0 < ¢o(z) < 1 satisfy
(¢o(z) > 0) = Jy. Let 93(s,z) solve

) = (1/2)A4) - (1/4)(¥2)® on n (£, t541]
¢2(t1+1) = Ado.

We may now estimate E(exp(— (u,, ¥3(s))) by expanding it according to Ito’s
formula:

P({(at,‘-}-n IJ:) > 0} n DJ!}-{,)
Jim (1 exp(~(fty ¥ 5410y 175

= Jim (1 - exp(~(ig, $}(E))Io, + lim B / exp( (e, $3()))
(@ (1/2)293(6) + 93 (5)) = (1/2)(0(50), (¥3())")) do; 1 77) -
< hm ('u.t ,1/;2 (t N, + hm E(/t 1/ ity (2) (4 (3, 2))*dz ds]]—'—)

< hm ( 2||¢v2(t Moo /%(t‘,,z)dz—l-/ /(¢2(3,z))2da:ds)35).

From [1] lemma 3.1 we have [ (z)] <4/(tj41— 9). Usmg this we see that the
first term of (35) is bounded by Cm~3. Also from [1] lemma 3.1 we ha.ve also
“'the’bound, for z & Jy : :

(s, )<C(t,-+1—~s)-‘exp<—é'd(z,11)(t,-+143)*1/*) |

where d(:n Ji1) = inf(Jy — 2| : y € J1). Using this one ﬁ1ay show that the
second and third terms of (35) are also bounded by Cm~3. This proves that
P(4; N B; n Ci|F;) < Cm‘3 and combining with (33) that

P(4;n c°|7-',1) <1/2 ' ~(36)

- for sufﬁc1ently large m. Thxs completes the thu‘d part of the proof.
- Define N, = Y0, I(A" UC;). Then

1

: P(N;; <n/4)

i=1.,

P(Z I(I(45 N c'°) ~ (45U C,)) > n/2)

IA

(4/ nz)E((Z I(I(Aj NCy) - (45 UC;)))?) -

=1

< 4/n
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using (36). Recall that N, = Z:‘zl I(4;). Then using (31) we have

s

P(D C;) > P(Npss > (1/4)m®, N > (4/5)m®)
i=1 ;
> 1— P(N, < (1/4)m®®) — P(N25 < m®® —m8)  (37)
>

1-Ccm™. . (38)

From proposition 4.2 we have

P(D CJ n {(ummo, Jo) > 0})
ji=1
S ZP((utJ,Jl) =0 (‘u.m:.uo Jo) > 0)
,‘7 =1

{ cm® mzaooe—m /16 < et
Combining this with (38) completes the proof. e
Lemma 5.2 Suppose that —oo < L(f) < R(f) < 0o. Then

P(sup|R, — L,| > 144(1/2)- (1/1000)) < C(f)t—l/zooo
o8&t .

“Proof. Wefixt > e. Write § = 1/1000 and sj = jt1'35. We suppress, depen-
dence on that initial data. f. ,
Define

: ST
R; = sup(z : / uy,(2)dz > 1(1/2)-4),

. I;j = 1nf(:c : / (]_ — usj(z))dz Zrt(1/2)—6)'

—00

From the compact support property we have —oo < L,; < L], R < R,;
For sJ < t, by Chebychev’s inequality a.nd lemma. 3.2b)

P(‘/;‘ Uy, (2)dz > 15¢) 5 P(/ g, ( z)/ (1- U (v))dy dz >t(1/3)+45)

Ct* log!/?(1).

IA

Now apply proposition 5.1 with m = t%, 3 = 200 to see

. poo i
P((u,j_*_tsoo&, (LJ -+ 5t2055, Lj + 5t2056 + t)) > 0,‘/;/ u,j(z)dz < tsﬁ) < Ct‘_sa.

]
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The mass inside the interval (R; — 5250 —t, R, —5¢2°5%) is controled in a similar
way. Then we have >

P(3s; < tsuch that (u, 4800, (EJ + 5t20%¢ T + 512086 4 t))
( (g aso0s , (Rj — 512°%0 — ¢, R — 562°5)) > 0)
< Ct¥(t ¥ 1ogt/3(t) + 1758
< ct™i, ’ (39)
From the compact sﬁppOrt properfy'proposition 4.2 we have also

P(sup |Re| V |Ly| > t3/%) < C123e=t""132t < 04=0/2, (40)
- e<2t

Combining (39, 40) with the fact that L; — ; < 2t(/2)~% we have .
’ P(|R3j+tsooa - Laj+t’°5‘| Z 2¢(1/2)-¢ + 10t2056, ds; < t) S ct=t/2,
‘We now need to interpola.te between the grid points, But from lemma 4.2

P( ) : +i11£6 ; ](R, - R_,J._Hsoos) \Y (L,J._Hsoor - L) > t(llz)—ﬁ)
s€[8;5 - ,'3;,'.,.: ) . .
< OBt /ami

A similar estimate allows inﬁerpolation over the‘ interval [0, s3] which cbmpletes
the proof. e s . '
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6 A single wavefront

Throughout this section u is a solution to (1) started at f with —oo0 < L(f) <
R(f) < oo. Define ,
8™ (2) = tna(na). (41)

Lemma 6.1 For continuous integrable ¢ the processes ((u§"’, ?) 12> 0)n=1,2,...
are tight.

Proof. Rescaling the Green’s function representation gives, for integrable ¢,
t
(66,8 = 0, Pad) +72 [ [ )1 = o )V Pecsb(@de,s (42)
0 ,

for some new white noise W. Note that all terms in (42) are continuous in t.
The first term on the right hand side of (42) converges to (I(—oo, 0], P¢). We
shall check the Kolmogorov tightness ciiterion for the stochastic integral in(42).
For0<s<t .

w [ [ —'vi’*)(m))|1/22’t_;¢(z5dwz,r
2 [ [ et — o @) Bs (o)
= ' [ @)1= A @) e () W
a5 [ o)t — P DR b(0) — Brcr e
Using the moment bounds from lemma 3.2 |
B [ [ W@~ @R b))
CIILE( [ [ mi(e)1 — k)i do)?)

, S ,
)t~ VB [ ([ e (@)1~ e (2)) o)’

< C(¢, f)(t - 8)2 '
Using the bduhd [|1Pe¢ — Pglloo < ||8llco(]t — s]s™! A1) we also have

IA

IN

B [ [ 1)1 = ) Pecrble) = Prcr $)ae, )Y
< CE( /0 ' / o (02)(L = e (2)d ([t — s*(s = 7)=2 A 1)dr)?)
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C)(t —3) /0 "B / e (12)(1 = (22t = (s = )7 A )dr
< C(¢, )t —9).

This checks Kolmogorov s criterion and completes the proof.

Theorem 6.2 a) Given € > 0,T < oo then for all sufficiently large n there is
a coupling of processes (@, By :t > 0) with B a Brownian motion started at 0,
@ a solution to (1) started at f and

Plsup (R(una)/m) = Bl V (E(umsc) /) = Bi 2 ) <

b) If u is a solution to (1) started at f then the processes (R(unat)/n : ¢ >
O)n_l 2,... converge in disiribution to a Brownian motion started at 0.
Proof. Part b) follows directly from part a). The key step in proving part a) is

- to show that the measure valued processes (pgn)(z)dm : tVZ 0)n=1,2,..., as defined
in (41), converge in distribution and that the limit has the law of the process

pi(de) = I(:c < By)dz - (43)

where B;isa standard Brownian motion started at 0.

Lemma 6.1 implies that the processes (vg (z)dz : t > 0)n=1,3,.. are txght
(see [8]). We extract a convergent subsequence, which we continue to label »(").
By cha.ngmg probability space we may take measure valued processes SO

with /l.(n) = 'u(n")(a;)d:c and u(") = p, Thus for any ¢t > 0 and ¢ continuous
with compact support we ha.ve

. Sli}: l(“a ): ¢) - (Pm ¢)| — 0. | (44)

- -Note that sup,5, y.," (#) < l|$]l1 as. Using this we may extend the convergence

. in (44) to continuous integrable ¢. Note also that po = I(z < 0)dz a.s.
Suppose ¢,(z) is smooth, bounded and sup,epo,¢ [6s| V |Ads| V IqS,I is inte-
. grable. Then ‘

(4,6 = 87000+ [ (W, 1/2)88, + b )dr +mi($) fors <t
mg")(qﬁ) is a continuous martingale

[m(n)(¢)]‘a /0‘/ n¢,2.(?")"‘n’r (n:c)(l - u,%z,. (nz))dz dr.

Note that |[m{™(8)| < (1+ 5)||5up,cfo,4 [6:] V |AG4[ V |dsll1. We may pass to
the limit to see that

(s)8s) = (#o,¢o)+/ (ur,(l/2)A¢r+¢r)dr+m,(¢) fors<t

my(P) is a continuous martingale.

e
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We shall now identify the brackets process of m; for certain ¢. The crucial
lemma is as follows. .

Lemma 6.3 Fiz ¢ > 0, smooth, of compact support and with [¥(z)dz = 1.
Let ¢, = P,_ 9. Then asn — oo

E (( /0 t / n¢f(‘m)un:,(nz)(1 — Uy (nz))de ds
_ /0 t / 264(2)(2)unss (n2)dz ds)z) —o0.

We delay the proof of fhis lemma to the end of this section.
Choose ¥1,...,¥n € C.. For ¢,(z) as in lemma 6.3,0 <r; < ... <1y <
r<s )

E((ma(¢) - "‘r((ﬁ))z(/"’n ) ¢1) s (/-‘f,n "/’n))
= lim B((m{"(8) - m{M(#) (17, 1) - (82, 9m))

= Jim B((Im® )], ~ @)D, 91) - (42, 9n)
= Jim B[ [ nluns(n0)(1 ~ vy (n2)) oV da
| (D, 1) (o, %))
= Jlim B f [ 2842164 ro)n oD, 1) .- (42 )

B Gier 2648l ). (i )

using lemma 6.3 in the penultimate step. This calculates the brackets 5procesé
and shows that the limit point . satisfies the following martingale problem:
For all 9 > 0, smooth, of compact support and with [ ¢(z)dz =1

(/J'h Pi_yp) = (I(~00,0), Pyp) +m, ('/’) for s <t,
m,(¢) is a continuous martingale with

[ma(¥)] ./Os(pf, 2P,y Py’ )dr for s < £,

Applying Ito’s formula shows that e givén by (43) also satisfies this martingale
problem. It remains to show that umqueness of solutions holds. By polarisation
show that

e 8), 0B = [ Pecr P+ Pecr b Pecrt Y
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Applying Ito’s formula gives
E((pey 1) -« - (1, ¥r))
k
= J1(1(=00,0), Pa) | | | - (45)

i=1

+ Z E ] (l‘::’Pt—a"piPt-r"/{;' + Pt—-r"l}th—rd'g) H (I"'s; Pt—s")bk)ds)-

1,j =1;i#] k#i,j

The identity E((pt, %)) = (I(=00,0), P;y) can be extended by a monotone class
argument to hold for all non-negative . Similarly using induction and (45)
the moments E((g¢,%1) ... (14, ¥r)) are determined. Since p:(¥) < |[#||1 these
moments determine the distribution of u; and, as usual, uniqueness of the one
dimensional distributions implies uniqueness for the martingale problem. This
completes the proof of convergence as measure valued processes.

To obtain the coupling stated in part a) we fix € € (0,1),T < 0o and choose
'k > 1 such that Po(sup;<7 Bt > k) < €. We also choose 0 < ¢ € Cc with
(¢ > 0) = (0,1) and define P(z) = (= +k+1)A(k+ 1~ :z:) Al);, an
apprommatlon to I(—k, k). '

‘Since p.(") = (") it has a jointly continuous density o, )(:c) and defining
B4 (x) =1, /n,(m/n) then, by extending the probablhty space to define a suit-
~ able white noise, 4 is a solution to (1) started at f. Defining B; = sup(z :
pi((z,00)) > 0) gives a processes whose finite dimensional distributions are
those of a Brownian motion. Letting B; = lim sup(B, s<t,s €Q,s—t)pro-
duces a Brownian motion started at 0 and so that u;(z)dz = I(z < B;)dz, Vt >
0. - , '

We consider sufﬁc1ently large n so that R('u(")) L(v(n) ) € [-1,1]. Then

P(sup R(3(" N2k = (sup(m ),¢(-— ) > 0)
~ P (sup(,,,,,s( ~k)>0)

= Po(sup B:>k)<e

(The convergence holds since the set is a contmulty set for the limit law.) So
for sufficiently la.rge n we have

P(sup |B(2) /nlV |L(@maz) /| V |Be| > k) < Be. (46)

From lemma 5.2, for sufficiently large n, -

P(fgg |R(tin2e) — L(ﬁnzt)l/n >e€) < e ﬁ‘ . , (7)
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From (44), for sufficiently la.rge n,
P(oup (3™ 91) - (e < B i) 2 9 e (48)

_ On the intersection of the three sets in (46,47,48) we have

R(@nx)/n = R(@)

L™ +e

(I(z < L(5(™), g1) — (& + (1/2)) + ¢
(@, 1) — (b + (1/2)) +e

(I(z < Bt) ¥e) — (b + (1/2)) + 2¢
B, + 2e.

IN

I

SN IA

Similarly L(#@n2¢)/n > B, — 2¢ which gives the desired coupling. e

Proof of lemma 6.3.

Fix 1 as in the statement of the Iemma. Let X4, Xz be lndependent va.nables
with density ¥(z) and independent of the Brownian motion B. Define f(")(z) =

f(nz).

Lemma 6. 4 Let ¥, ¢: as in lemma 6.3. Let ug = f 3a,tzsfy —00 < L(f) <
R(f) < oo. Then -

([ ] et =t |
: _2»/0 /P‘f(m)m(z)qs;(z)dzds

< 2 [ [ o)) @)1 - FO @y < 2)dyda -+ le(myt)]

where e(n, t) is independent of f and 1 > |e(n,t)| — 0 as n — oco.

Proof of lemma 6.4. Using lemma 3.1 a) we have

E ( /ot / N3, (nz)(1 — u,,:,(n:c))q&?(a:)dz ds)’

Il

E(/; /nunz(t—s)(hz)(l - unz(t_,j(nz))¢?t_s)(m)dz ds)

[ [ #- @ stns+ Ba(nie - 1)
(1 = f(nz + By(n(t — s)))ne~Fra(n*(t=0))/2) 4y 4
| [eabta) Bl 1 + Bt - o)

Il
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(1- F™)(2 + By(t — s))ne "k 2("',")/2)d:1: ds
= By f F™(Xy + But))(1 - f™)(Xa + Ba(t)))

ng=n(E3 L) (X1 +B1 = X="B=)/2(1/2)dL°(X1 + By — X3 — B3))
— Eo(f(n)(Xl + Bl(t))(l - (‘n)(x2 + Bz(t)))(]. _ e—nL°(X1+Bx—X:—B:)/2))

= Bo(f™(X1 + Bi®)(1 — f™(Xz + Ba()I(r <)) + e(n,t) (49)
where 7 = inf(t: Xy + By(t) = Xa + Bs(t)) and “

le(m,8)] < E(|1 - -"L°(X1+B:-X=-B=)/= I(r < t)[) —~0 asn— oo.
Let fo(z) = I(:c <0). Note that f(") — fo as n— oo.

Eo(fo(X1+ Bi(t))(1 — fo(Xz2 + Ba(t)))U(r < 1))
Po(X1 + B]_(t) < 0 Xg + Bz(t) > 0 T < t)
2Py(X1 + Bu(t) < 0, X3+ Ba(t) 2 0, X< X 1) (reflection principle)
2P0(B2(t) <X < X1 < B1(t))
By (1)

Ba(t) ,
28y / YW(E)ddz 1(Bat) > Ba(®))

B;t

It

= B / . ¢(z)dz)’1(31(t)>Bz(t)))

Bl(t

/2B / ).

N Thls is a smooth function of (¢, Bl(t),Bz(t)) a.nd may be expa.nded by Ito ]
‘ formula. Thls leads, after some calculation, to

B [ /260 + (/2B ()e)

[/ P(e)i)eds

e f/f./‘op fd(m)rqg‘(z)tﬁ'(z)ﬁdzds‘

Il

| ) By replacmg 'z,b(y) by ¥(y +a) we see that the same equahty st1ll holds if fois

replaced by fa(z) = I(z < a). For f as in the lemma but also smooth we have
B 2‘/; /P,f(m)o, (z)qﬁ',(m)dw ds
o = __2/_0:0 fl(a)-/:/ P,fay(m)cﬁcy(z)q&’,(z’)’dz ds;io o
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- /_°° f'(a)Bolfa(X1 + Bi(t))(1 - fa(Xa + Bz(t)))I(T < t))da

= B[ FE@IX+Bi) Sa$ Kat Balt)7 < da)
= Eo((f(X1 + Bi(t) — f(Xa + Ba(t))) (7 < t, Xa + Ba(t) > X1 + Bu(1))).

The same equality must then also hold without the smoothness assumption on
f. Then

|Eo(£(X2 + Ba(8))(1 — £(Xz + By(t)I(r < 1))
-2 [ [ Pftelbu ()il ds
< Eo(f(Xz + Ba(t))(1— f(X1 + Bi(t))I(r < t, X2 + Ba(t) > X1 + Bi(t)))

+EBo(f(X1 + B1(t))(1— f(X2 + Ba(t))I(r <, X3 + Ba(t) < X1 + Ba(t)))
2Eo(f(X1 4 B1(t))(1 — f(X2 + Ba(t)))I(X2 + Ba(t) < X1 + Ba(t)))

2//P¢¢($)P{t/}(y)f(m)(ly —-cf(y))I(y < z)dyd:c (50) 7

IA
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Combining (49) and (50) completes the proof of lemma 6.4. o
We can now finish the proof of lemma 6.3. Let F; = o(u, : s < t)

E((/ /¢2(m nun:,(nz)(l — Upa,(nz))dz ds

226,(2)8, (2)umas (n2)da d5)?) |
25 / ([ 2(ahm (r0)(1. s e - z¢,<z>¢:(m)uﬂ=,(nm)4z)

([ [ 2 () - 26 (0)61 (0 () i ) o

opt gt , , :
2E/, Z,E((/ /n¢f(y)u,._:,.(ny)(1 ~ Up2,(ny))
[s] s
—2¢7(y) P (y)tnar (ny)dy dr| Fra,)ds (51)
where 0 < Z, < C(8)(1 + [ uns,(2)(1 - un:,(z))dz) is square integrable by
lemma 3.2. We use the Markov property and lemma 6.4 to bound the conditional

expectation in (51) by (noting that the compact support property implies that
the hypotheses of this lemma are satisfied)

IN

2 / / Pre (2 Pre ()t (n2) (1= s, (n))1(y > 2)dz dy-+e(m, t—s). (52)

Note that both terms'in (52) are bounded. Substituting the bound (52) into
(51) will produce a term that vanishes as n — oo provided that the terms in
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(52) converge to zero in probability as n — oco. This is 1mmed1ate for e(n,t —3)
by lemma 6.4. For the ﬁrst term in (52) we have

CIA

B / / Pre (®) Pre (4 s (n2)(1 = tnss (n))I(y < @) dyds)
[ [Pes@P-piuse)

Byl (no + By(n®s)(1 = fry + Ba(as))e” B g dy

[ [P P <o)

Eo(f™) (2 + Ba(s))(1 - f™(y + Bz(s)))e"""’_n(" =B 3)dg dy
/ / P b(e) P p(0)1(y < 2)
E(I(z + Bl(s) <0,y + By(s) 2 0)e” ~nL}"(Bi~ B=)/=)dz dy

[ [Perbi@)Pe ity < =)
(P(lo+ Ba(o)| € 0, [R(A))/nl) + P+ Bals)| € [0, |5(7)/n]))do dy

Note that e"‘Lv—'(Bi‘B’)/z — 0 on the set {y < z,z+By(s)> 0,!/+Bz(s) <0}
and both integrals on the right hand side converge to zero by the dominated
convergence theorem. This finishes the proof of lemma 6.3.: ¢
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7 Multiple wavefronts

In this section we fix fiyi=1,...,21 with —00 < L(f;) < R(f;) < oo and also
ay,...,a21 € R. We consider the initial conditions

21
(=) = Z(——l)if,-(z - na;).

Theorem 7.1 Let u™ be a solution to (1) started at f*. Set v} (z) = u /,t(nz)
Then v*(z)dz converge in distribution as n — oo as continuous M valued pro-
cesses. The limit has the law of

2

v (2)de = Y (~1)1(z < X;(t))ém» ' | (53) |

i=1
where (X1,...,Xq1) 15 a sysite‘m;of annihilating Brownian motions started at
" (@1,...,021) and where we have the convention that X;(t) = —oo for values of t

after the annihilation of particle 1.

We have been unable to follow the method of proof used in Theorem 6.2 since we
cannot find a suitably simple martingale problem for the system of annihilating
Brownian motions. Instead we use the following argument: the 21 wavefronts
- move independently until they begin to overlap. For large n the positions of the
wavefronts move approximately as Brownian motions so with large probabilty
the first collision will be between exactly two wavefronts and the others will still
be seperated by a distance O(n). By lemma 5.2 the colliding wavefronts will have
total width O(n!~(1/500)), By lemma 7.2 below these two colliding wavefronts
will die in time O(n?~(1/259)) which is too quick for the other wavefronts to have
interfered or for another collision to have occured. After the first annihilation
we are left with 2] — 2 wavefronts and the argument can be repeated.

Lemma 7.2

lim limsup sup P((ugma,1)>0) =0.

=00 m—o0 t<I(0,m)

Proof. Let %4(z) = ((a — z) A 1);. Take independent solutions u!,u" to (1),

driven by independent white noises W!, W™ and with initial conditions u}, =

o, ug = P1. Define for m > 1
T™ =inf(t > 0: Ry(u') > Ly(u") + m).

Using the method of proposition 2.2 we may:. construct a further solution &™ to
(1) with respect to another independent white noise W but with initial condition
7Y(2) = upm(z — m) — uhm(z). Define '

up(z) = (“t (2 —m) — uy(@)I(t < T™) + 8 qm(2)I(t > T™).
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Note that u{,"(z) = ¢1(z —m) — o(z) > I(z € (0, m)). Then for nice ’¢
(u,9) - (13", ) ‘ i
tAT™ : : ot )
= [ it-m - a/288)ds+ [ (@ e, (1/2)50)ds
0 tAT™

[T [ e mit i - )
[ [ e - e,

[ [ -aren e,

= [r.amanas / [ @ - @) (e,

provided we define a martmgale measure W by (for bounded measura.ble )
, tAT™ :
W,(¢) - / / () (o — m) < 1AW o _m
: AT et
-[ [ e -m = nawi,
Jo. - . o :

/+ /t :Tm / Pa)dWT.

-+ To check that u™ is'a solution to (1) we need to check that W is a white noise..
 But this is true if [W(9)]; = fo (¥?,1)ds (see [1 1]) and this follows immediately
- from the independence of W" whwm,

- We sketch the remaining argument in words. Slnce the two wavefronts move
independently and their positions move approximately as Brownian motions,
the collision time should occur in time O(m2?). At the collision time the com-
bined width of the two wavefronts should by lemma 5.2 be O(m!~(1/5%0)), The
a.rgument can then be repeated a finite number of times until the wavefront is of
size O(ml/ 50). Then proposition 5.1 a) ensures that that with high probablhty
it dies in a further time O(m?). _—

Let vy ‘(:c) =1—ul 2 (mz), v () = m,t(m(z— 1)) Then from theorem
6.2 for ¢ €. ’ o

((vm' #), (v"“' ¢) (/ #(z) dz,/ 2; ¢(:c)dz) ‘(54)

00

where (Bl,Bg) is a two-dlmensmnal Brownian motion started at (0,1). Us-
ing the fact that |u™ )| Vv o "(z)| < 1 we may extend (54) to continuous

37



'int'egra.ble ¢. Fix continuous ¢o > 0 with [ ¢o = 1. Then
limsup P(T™ > 6m?) »

m— 00

< Iim 15up P((v]™, go) + (v, o) > 1,V < 6)
Ba(t) :

< B 1(] do(z) dz:+f ‘po(z)dz > 1,Vt < 0)
= Po,l(Bz(t) > Bi(t),Vt < 6)

(26)~Y/2
= / pi(z)dz

-1(28)7'1(3 ) )
< (w9)"Y2

We also have
P(T™ < 6m?, Rpm (' (- — m)) — LTm(u.) > 2(0m2)(1/2) ~(1/2000))
< P(Ry(u') — Ly(u}) > (6m?)(1/2)-(1/1000) 34 < gpy2)
+P(Ry(u") = Ly(u") > (Bm?)/2)-(/ ’°°°’, 3t < om?)
< (omz)—l/zooo o A
by lemma 5. 2 So using the comparison of solutlons in proposition 2.2 we have

limsup sup Q‘f(Rg( )= Li(l —w) > 2(0m2)(1/2) (1/1000) ¢ < gm?)
m—oo f:.f<I(0,m) :

< (x6)~/3, | | | (55)
Now define mg = m,tp = 0, tn-: Gm?,_l,mn = 2t,(,1/2)_(1/1000).» Define 7p =
inf(t : (wy, 1) = 0), 70 = 0 and 7, = inf(t > o1 : Re(w) — Li(1 — w) < my,).

Fix f <'I(0,m). From (55) and the strong Markov property we have for fixed
n and sufficiently large m ~

Qf('rn = Tn=12tn|Tn-1 < o0) < '2(1r0);‘1/2.
So for sufficiently large m '
Qf (T3ooo > t1 + taooo) < 6000(%0);1/2 ‘

We now conmder 9 > 1 so that mage0 < (20)3000 1/50 From lemma. 5.1 a) we
have

Qf(TD — T3000 > > (26)300000 2|T3000 < OO) < 0(26)-3000 —1/50'
So for all sufficiently large m
Qf(TD Z (3000(20)3000 + (20)300000)m2)

Q' (mp > t1 + .. .t3000 + (260)°°°°°m?)

<
< 6001(x6)=1/2
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completing the proof. e
Proof of theorem 7.1. D el PR
Given ¢¢ > 0,T < oo,m > 1,81,...6m € C. with ||#i]lc < 1 we shall
show, for sufficiently large n, there exists a solution u to (1) started at f™ and a

process v arising from annihilating Brownian motions (X1,..., X2) asin (53)
such that. o ) :

, P(i“(lg (v}, i) — (v, 65)| 2 €0,3j =1,...,m) < e (56)

P(|X; - ai| > 2e,di=1,...,2) < e ‘ (57)

' Thls lmphes the desired convergence in d1str1but10ns

' Given € > 0, for sufficiently large n we may, by Theorem 6.2, ﬁnd a proba.bll-
ity space with the following variables: independent solutions (@* : k = 1,...,2l)
to (1), started at fi, driven by 1ndependent white noises W* and Brownlan
motions By such that, if we set B '"(a:) = n,‘.'(n'.':), then P(A‘) < € where

= {sup |n"*R(ak,,) ~ Bf| v [n"1L(ak.,) — B"[ >e¢ Jk=1,. 2k}. (58)
t<T '

We‘zﬁx such an 7 and solutions (8* : k =1,...,2l) (suppressing the dependence
on n). Define ' .

uf(a:) = ut (a: - nak), Bf = B! 4 na; fori=1,. ._.,21. :

We now construct our solution  to (1) started at f™ by using the processes

" (u*F:k=1,...,2]) as the basic ingredients. We seem to need a fair amount of '

‘notation alas. We shall define 'Stopping times 77, ..., T; that mark the times of

successive collisions and subsets (1,...,2l) = So D 51 D...D 5 =0 that list

the labels of the remaining wa.vefronts after each collision. Sk will have 21 — 2k

- elements that we list in increasing order as s(k,1) <... < s(k, 2l - 2k). Define
ffTo—To=0andfork—l 21 ’

T = ‘mf(tZT" l.R( (k- W) = L, (u’(’c 1"“fl))) forz< Sk -1
T = inf(T*:i=1,. 21—2k+1)
JE = inf(i T"—T'“)

a(k) = s(k—1,0%) -
b(k) = s(k—1,7%+1) -
S = Si- 1—{a(k);b("°)} |

When a collision occurs we shall use a new independent solution of (1) to follow .

the annihilation of the two colliding wavefronts. For k = 1,...,1 let o* be
- solutions to (1) driven by an independent white noises W" and with initial
. conditions

ok = ) _ 2,
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Let wf 5., = w} for ¢ > T* and let w® = 0. Fixing € € (0,1] we plan that
the colliding pairs of wave fronts die out in time n%e. So we define a process #;
taking the values :

221 n( 1)‘(’°”)u’(k”) +wF on [T*, (T* 4 n?€) A T*+1) for Ic < 1
Y2 (—1yetkidyg®I) on [(T £l ATHL,THY), k< 1-1
0 on [T + n%e, 00).

4 will be the desired solution on the set where nothmg goes wrong. We shall

‘modify the definition whenever the annihilating pairs of wavefronts live too
long, collide with another wavefront or when another collision occurs during
their annihilation. Define '

Il

S¥ inf(t > T* : R(wf) > L(u:(k-1'1k+2))or L(1-wf) < R(u:(’é_l"’k_l)))
S% inf(t: (wk,1)=0) : ‘

S inf(SE AT+ : S ATHHL < Tk 4 1)

Anf(T* 4 n?e : T* 4+ n’e < 55)'

‘(We need to define R(u!F~1"1) = oo, Ly(uilk~12-2k+3)) oo to ensure sk
is well defined).

The stopping time § is the first time something goes wrong. Let 14 be a
solution to (1) driven by yet another independent white noise W and with
_ starting condition %o = %s. Then we define ~

It is possible to check (usmg the same argument as in lemma. 7.2) tha.t uis a
solution to (1) started at f™. < ,

Let (X¥ : k = 1,...,2l) be the system of annihilating Brownian motions
induced by (B'c k= 1,...,21) and let v™ be the induced measure valued
process by the recipe (53). Also let v}}(z) = un2:(nz). We shall now check that
(56) is satisfied which will finish the proof. ‘

We define various good sets:

By = {R(a)- L(a]) < 14(n?*T)M3)-(1/1000) 'y < 2T, =1,...,21}
By = {(wrsyni,1)=0,Vk=1,...,1}
By = { sup (R(wf)— R(wp))V (L(1 - wiu) — I(1 — wf))

tE[T™, T*+n%]
. , <ne® VE=1,...,1}
B = BLUB3UB3

S§% = inf(t>0:B! - B < < 2)
S = inf(t>0:B] - Bf < —2)
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C: = {[S", 5" 4 n%] are disjoint intervals for i < j}
C: = {|Bf -Bi|V|Bf~Bi|>el*+2,

Vk;éz,J, Vs,t € [S™, S"J+e] Vi, j:1<4i<j <}
cs = {Bi- B’l <eBvie [§%, 5t +e,Vi,j:1<i<ji<li}

C = 01UCQUC3.

To prove (56) it is enough to prove the followmg two claims.
- Claim I: On the set ANBNC we have |(v}, ¢) — (v{°, $)| < CelBfort<T
and qs € (¢1’ )¢m)
_Claim II: lim,_,0 limsup,,_,,, P(AN'BNC)=0.
We shall assume that n is chosen large enough so that

R(ug~ )+€ < L(”o) —€ < R(ug) + e < L(ug*') +e

for all suitable k. Thus at tlme zero the wavefronts are seperated and in the
correct order and on A the Brownian motions also start in the correct order.
Then on A we have n?T%/ ¢ [§%, 57]. So on ANC; we may match the sequence
of collisions T%,...,T* exactly w1th the sucessive collisions in the annihlating
Brownian motions. In particular the k’th annihilation is between the Brownian
' particles B%*), B¥*) and occurs during the interval [S*(¥):b(¥), §a(R),b(k)],

‘We now check claim I. On 4 N C: we have TE+1 > n25a(k), (k) 4 p2 € >
T* +n%. On ANC;N B, we have for £ € [T*, T* + n%, t < T

'n'lR(wf) < n_lR(wg,,.)+el/3 '
A R(usy)) + €3

Il

< Bb(ﬂ@. +€/3 +€

< B"’(_k,tl T*42) _

< n_lL(u:(k—l,J"+2))
~and mmlla.rly L(1 — w}) > R(u’(k_l J*

-1))‘ On B; we have inf(T* + n?%¢ :
T* 4 n?e < S%) = co. ’I‘hls paragraph has then checked that on ANBNC we
have S = oo and the solution u agrees with the process @ constructed from the
independent parts (uJ i=1,...;2). - «

We work now on the set A ﬂ BNC. Fix ¢ with ||<;S|]°° < L For ¢ E
[S"’(k)’b(") +¢, Salk+1)0(k+1)] g .yI'—1 we have o

(vi, o) = (un’t(n‘)’¢)
‘ = (@pa(n), ¢)

CA=2k:

Z( 1k)"""”(u"(k”)( 2

i=

Al
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202k

Z( 1),(k,a) -s(k.J)( Y, ¢(-+na,(k,,-)))-

i=

Also for such t

21-2k

0 8)= 3 (=1 ® 1z < B, (- + mau, )

j=1

So |(v, y @) — (v ,¢)t< 2le by (58)
Fort € S"‘(’“)’*’("= Salk)b(k) 4 €], k = 0,...,l there are two possible extra

€errors: )
n(wf,8) < nTH(R(w)) - L(1 - wp))
< 24 n Y (R(wha) - I(1 - wha))
= 26/ 4 n (RGP — D)
< 26242+ (B - BY)L)
< 3¢M% 426

(using the definition of C3) and

X0
JROEE X0 < 5

This proves the ﬁrst claim.
By lemma 5.2 P(BS) < Ci(n®T)~1/20%, By lemma 7.2

P(B;NB;)
< 20sup(Qf ((wnae, 1) > 0) : R(F) — L(1 — f) < 28(n?T)(1/2)-(1/1000)) < ¢

for sufficiently large n We have
- P(BS) < 2Usup(Q (R(w:) > ne'/3,3t < n¥e) : f < 1(~o0,0))

which, by proposition 4.2, is bounded by ¢ for sufficiently large n.

Finally p(e,y1,-.-,y2) := P(C®|B§ = v1,..., B& = ya) is independent
of n and (by elementary properties fo Brownian motions) converges to zero
as ¢ — 0 uniformly on (y : |y — a;| < §) for small §. But on A we have
|BE — ai] < 2¢+ (BR(f:) — L(£:))/n (whiCh also implies (57)). We have shown
that ‘

hm hmsupP(B"') = hm hm supP(A NCe) =0.

n—o0

Combining this with (58) proves clalm Il. e
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