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Abstract

This paper studies convergence of the stochastic weighted particle method for
the Boltzmann equation. First the method is extended by introducing new stochas-
tic reduction procedures, in order to control the number of simulation particles.
Then, under rather general conditions, convergence to the solution of the Boltz-
mann equation is proved. Finally, numerical experiments are performed illustrating
both convergence and considerable variance reduction, for the specific problem of
calculating tails of the velocity distribution.
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1. Introduction

Direct Simulation Monte Carlo (DSMC) is presently the most widely used numerical
algorithm in kinetic theory [2]. In this method, a system of simulation particles

(@mmﬁﬂ, i=1,....n, t>0,

is used to approximate the behaviour of the real gas. Independent motion (free flow) of
the particles and their pairwise interactions (collisions) are separated using a splitting
procedure with a time increment At¢. During the free flow step, particles are moved
according to their velocities,

t+AL
azi(t—l—At):mi(t)—l—/ v;(s)ds, 1=1,...,n,
t

and boundary conditions are taken into account. During the collision step, particle pairs
(z,v), (y,w) are randomly chosen in small cells of the position space, according to the
collision probability for the interparticle potential. The post-collision velocities

v* =v*(v,w,e) =v+e(e,w—v), w* =w*(v,w,e) =w—e(e,w —v) (1.1)

are determined by randomly selecting a direction vector e from the unit sphere S% in the
Euclidean space R*. Here ( .,.) denotes the scalar product in R*. The number of collisions
is computed from the local collision frequency. The limiting behaviour (as n — o0) of
this algorithm has been studied in [9]. In particular, during the collision step, the particle
system approximates the solution of the spatially homogeneous Boltzmann equation

(cf. 3], [4])

%@M::LLP@mﬂmyﬁmm—mwmem%(m)

where B is the collision kernel.

A basic problem in many applications of DSMC (e.g., flows with high density gradients,
or low Mach number flows) are large statistical fluctuations, so that variance reduction
is a challenging task. To this end, a modification of DSMC called stochastic weighted
particle method (SWPM) was proposed in [6]. Convergence of this method has been
studied in [7] (see also [10]). In SWPM a system of weighted particles is used, which allows
one to resolve low density regions with a moderate number of simulation particles (cf. [8]).
SWPM is based on a partial random weight transfer during collisions. This leads to an
increase in the number of particles, so that appropriate reduction procedures are needed
to control this quantity. Various deterministic procedures with different conservation
properties were proposed in [5], and some error estimates were found. However, so far
there was no convergence proof for SWPM with reduction.

The purpose of this paper is to fill this gap. The basic idea is the introduction of
new stochastic reduction procedures that, on the one hand, do not possess all conservation
properties of the deterministic procedures, but, on the other hand, have the correct expec-
tation for a much larger class of functionals. This idea is rather natural in the context of
stochastic particle methods. Under very general assumptions on the reduction procedure,
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we prove convergence to the solution of the Boltzmann equation (1.2). Numerical exper-
iments are performed illustrating both convergence and considerable variance reduction,
for the specific problem of calculating tails of the velocity distribution.

The paper is organized as follows. In Section 2.1 a family of Markov jump processes
is introduced, and its relationship to the Boltzmann equation is discussed on a heuristic
level. In Section 2.2 conditions on the various components of the processes are given, and
the convergence theorem is formulated. Section 3 is concerned with the proof of the main
result. The proof is based on an auxiliary theorem, where the assumptions concerning
the reduction procedure are less restrictive, but also less explicit. Previously known
results concerning convergence of SWPM without reduction are obtained as a corollary.
In Section 4 we provide several examples of stochastic reduction procedures and show
that they satisfy the assumptions of the main theorem. Section 5 contains results of some
numerical experiments.

2. Stochastic reduction

2.1. Markov process

We introduce a family of Markov processes Z(™ | n =1,2,..., and study its asymptotic
behaviour as n — oo . The parameter n can be considered as the number of particles at
time zero or as the inverse of an average particle weight. It will be sometimes omitted in
order not to overload the formulas.

The process

Z(t):((gi(t),vi(t)), izl,...,m(t)), t>0,

is determined by the generator

A5() = [ [8(2) - 8(2)] Q(z, ), 2.1)
z
where ® is an appropriate test function,

z€Z = {(m;(gl,vl),...,(gm,vm)) :m=0,1,2,..., ¢ >0, vZ-ER?’}, (2.2)
and

| Qeon(z;d2), I m < mpax(n),
Q(z7dz) o { Qred(z; di) R otherwise. (23)

In case of collision, the transition measure is
. 1 . o
Qunlds) =5 3 [ Srateniod?) qunsii, ) de, (2.4
2 1<i£j<m Y S?

where ¢ denotes the Dirac measure. The jump transformation is (cf. (1.1))

(Vk, Gk) i E<m, k#4,7,
(vi, 9 — G(z;,3,€)) , if k=1,
[Jcoll(z;iaja e)]k = ('Uj,gj - G(z;i,j, e))7 if k=y, (25)
(v¥, G(z;1,7,¢€)) Jif E=m+1,
(v;,G(21,7,€)) Jif E=m+2,



where

G(z;1,7,e) = T K(j;i,j, ) min(gi, g;), k(z;1,7,€) >0, (2.6)
and (cf. (1.1))
vl = v*(v;,vj,€), v; = w*(v;,vj,€). (2.7)
The intensity function is
qeon(2;%, 7, €) = (1 + &(z;1, J, €)) max(gi, g;) B(vi, vj, €) (2.8)
so that
G(z;1, 7, €) qeon(2; 1, 5, €) = gi g; B(vi, v, €) - (2.9)

In case of reduction, the transition measure is

Quea(z5d9) = [ 8ru(e)(05) (25 49), (2.10)
Gred(z)
where
[Jrea(2; )]k = (0k(2;0), gu(2; 9)), k=1,...,m(z9), (2.11)

and 6 belongs to some parameter set Oreq(2). Let

Qred(2;dZ) = Tred(n) Prea(z; dZ), Gred(2; d8) = Trea(n) prea(z; d6) , (2.12)

where Poeq and preq are probability measures. Note that (2.4) can be written in a form
analogous to (2.10), with

Ocon(z) ={(1,5,€) : 1<i#j7<m, eeS8}.

The starting point for the study of the convergence behaviour is the representation

®(Z(t)) = ®(Z(0)) + /Ot A(®)(Z(s)) ds + M(t), (2.13)
where M(t) is a martingale satisfying
EM(t)?=E /Ot[Acpz — 28 Ad](Z(s))ds. (2.14)
For
®(z) = izm;gi o (vi) (2.15)

one obtains
2(2(1) = [ eliuitd). (2.16)
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where

w(t, dv) Zg’ b (t (2.17)

is called the empirical measure of the process. For k = 1,2, it follows from (2.4), (2.9)
that

/Z[@(z) — 3(2)]* Qeon(z,dz) = (2.18)

S el + 65) = plo0) = () Gl ) (i ) de

N | — N | — N | —

S g / p(07) + 9(v?) — o(v:) — @(v;)* Gz, 5, )+ Blvs,v3,€) de,
and from (2.10), (2.11) that

/Z B(2) — (=) Quealz,d2) = / B(Joea(36)) — B()]* qrea(zd8)  (2.19)

Gred(z)
“ k
— / [Z Zg’ V)| Grea(2; d8).
Gred(z) =1
Using the property (cf. (1.1))
v*(v,v,e) = w*(v,v,e) = v, (2.20)

we conclude that (cf. (2.1))

1% e (6 + 0(05) = () = (0] Blovis€) de + R, 2),

'LJl

where R(p,2z) = Ri(p,2) — Ra(p, 2),

Ri(#,2) = X{m>mumex(n)} / !Zgz (3:) =D 9:¢(v:) | Grealz; d6) (2.21)
red =1

and
Ry(p,2) = (2.22)
Xomsmaton 5 Y 995 [ olo ~ () — o(03)] B(viy i, ) de.
1<z;6j<m
Consequently, one obtains (cf. (2.17), (2.7))
A(® = R( %Z( ))+
/ / [0+ (w7) = 9(0) — () B(v,,€) dens, do) s, dw),
R3 JR3 Js2



and (2.13) takes the form (cf. (2.16))

[ o) utt,dv) = (2.23)

[ o)ut0.do) + [ Blout)ds+ [ Rg, (6 ds + M),
with the notation

Blow) =3 [ [ [ o)+ pw") = 0(v) - pw)) Blo,w,)dev(dv) v(aw) . (2:24)

The expected limiting equation (as n — o0) is therefore

/723 w(v) A(t,dv) = /723 w(v) A(0,dv) + /0 B(p,A(s))ds. (2.25)

Note that, under appropriate assumptions on the collision kernel, (2.25) is a weak form
of the Boltzmann equation (1.2).

2.2. Convergence theorem

We assume that the initial condition of equation (2.25) satisfies

A0, R?) < oo, (2.26)

/ [v][2\(0,dv) < oo, (2.27)
R3

and that the initial state of the process is such that (cf. (2.17))

m(0)
p(0,R*) =Y g:(0) < Co, (2.28)
=1
limsupE'/ |v]|? (0, dv) < o (2.29)
n—oo R3S
and
lim  Eo(u(0),A(0)) =0, (2.30)
where
ol vn) = swp | [ ow)mldv) — [ olo)ma(av)], (2.31)
lellz<t |JRs RS
v) — w
lollo = max{ gl sup PRLTEWNL ) o). (232)
v,weR? ||’U - w” vERS?
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The assumptions concerning the collision kernel are

/B(v,w,e)de < Cg, (2.33)
82

[B(v,w,e) — Blos,wp,e)lde < Cpfllo—wl +llw—wil],  (234)
82

and the assumption concerning the weight transfer parameter (cf. (2.6)) is
k(z;1,7,e) < Cy. (2.35)

The individual particle weights are assumed to satisfy

(1) < Ggmax(n), Ve>0, =1,...,m(¢), (2.36)
where
7}1—>I£lo max(n) = 0. (2.37)

The mass of the system (cf. (2.17)) is assumed to be uniformly bounded,
m(t)
ut, R®) =) g(t) < Cu, V>0, (2.38)
=1

Furthermore, we assume that the particle number bound indicating reduction satisfies

lim mmax(n) = o (2.39)

n—oo

and that the parameter of the waiting time before reduction satisfies

lim 7ea(n) = oo. (2.40)

n—oo

Finally, we need some assumptions concerning the reduction procedure. They are formu-
lated using the sets (cf. (2.2))

Z(e) = {z cZ:m<(l —5)mmax(n)}, eco,1], (2.41)

and

2(5):{2«62: ZgZ-SCo(l—I—s)}, £>0. (2.42)
=1
Two assumptions are related to conservation properties (for bounded continuous ¢

and (v) = [[v]]?), namely

/ B(5) Pea(z;d5) = 8(z), Vze 2\ 2(0), (2.43)



and

lim sup mea(n) sup / [®(Z) — @(z)]z Pea(z;dZ) < o0, Ve>0, (2.44)
no0 se2(\2(0) J2

where ® is defined in (2.15). Two other assumptions are related to the reduction prop-
erty itself - there exists some § > 0 such that

sup / Po(2) Prea(z;d2) < (1 — 8) Mmax(n) (2.45)
z€Z(N\Z(0) Y 2
and
1 2
lim ———  sup / {Q)o(zl) —/ ®o(2) Prea(2;dZ)| Pred(2;d2z1) =0, (2.46)
n—oo mmax(n)z z€Z(EN\Z(0) Y 2 Zz

where (cf. (2.2))
Po(z) =m, z€Z. (2.47)
Theorem 2.1 Under the above assumptions,

lim E sup po(u(t),A(t)) =0, VT >0. (2.48)

0 tefo,T)
Remark 2.2 In case of mass conservation
p(t, R?) = p(0,R?), Vt>0, (2.49)
condition (2.38) is fulfilled with C,, = Co, according to (2.28). Otherwise, condition

lim Sup gmax(n) Mmax(n) < o0 (2.50)
n— o0

implies (2.38).

Remark 2.3 Assumption (2.43) represents the fact that the reduced system has the cor-
rect expectation. Note that (2.43) is not fulfilled (for sufficiently general test functions)
wn the case of deterministic reduction.

Remark 2.4 Assumption (2.43) implies mass conservation on average so that

> = /Z (Z@-) Pea(2d5) < gmax(n) /Z Bo(3) Preal; d3)

and

/Z Bo(3) Pra(2d3) > — > %



Thus, for z such that

D0 = (1= ) Mumax(n) gmax(n), (2.51)
one obtains
/Z@o(E)Pred(z;dé) > (1 —€)Mmmax(n). (2.52)

Consider z € Z~(5) \ Z(0) such that > 7 gi = Co(1 + 8) and choose € so that (2.51) is
fulfilled. Then (2.52) and (2.45) imply

Co(1+6)

gmax(’n) < (1 B 5) mmax(n) .

Thus, a necessary condition for the consistency of the assumptions is

Co < inf Mmax(n) gmax(n) - (2.53)

Remark 2.5 It is well-known (cf. [1]) that, under the assumptions (2.33), (2.84), there
ezists a unique solution in L'(R?) of equation (1.2) satisfying

ft,v)dv = f(0,v)dv, t>0,
RS RS
and
[l seoyas = [ ol so0)ds, 20,
RS RS

The corresponding measure-valued function A(t,dv) = f(t,v) dv solves the weak equation
(2.25). Euistence for that equation can also be established using Lemma 3.6 below and a
fized point argument.

Remark 2.6 The results hold for

vtw | ool vt e
2 2 ? ? ? -

2 2
instead of (1.1) (cf. (2.20) and (3.10) below).

v*(v,w,e) =

3. Proof of the main result

We start with a theorem, where the assumptions concerning the reduction procedure are
less restrictive, but also less explicit.



Theorem 3.1 Assume (2.95), (2.94), (2.26), (2.36), (2.37), (2.38), (2.43), (2.44), (2.80),

and
lim sup )\(t {|lv|]| > r}) =0, (3.1)
'r‘—)oot [
lim limsup E sup w(¢, {||v|| >r}) =0, (3.2)
T—>00 n—oo tE[O ]
T
Jm B / X{m(s)>mmax(n)} 45 = 0. (3-3)

Then (2.48) holds.

Corollary 3.2 Suppose mmax(n) = 00 so that no reduction procedure is needed. Assump-

tions (3.8), (2.43) and (2.44) are obviously fulfilled. Moreover, since

max g;(t) < max g;(0),

[l gty = [ ol 0, d),
R3 R3

assumptions (2.87), (2.88), (3.2) are fulfilled under appropriate assumptions concerning
the inatial state. Thus, the conclusion of Theorem 8.1 holds. This is the previous result

of [10], [7].

Remark 3.3 Condition C, < oo (c¢f. (2.85)) is not explicitly used in the proof of Theo-
rem 8.1. However, it is needed to avoid explosion in the case Muyax(n) = co. It was used
wn the old papers. Letting C, — oo with m — oo, explosion can be reached. Condition

(2.49) and

Mmax(n) < 00 (3.4)

is used in (3.48), in the proof of Theorem 2.1.

The proof of Theorem 3.1 follows [10]. For any r > 0, we consider the function x, on R?,

1 LAl <7,
@) =3 r+1—o], i [o]€lrr+1],
0 L i ol 21,

and denote

or(v) = o(v) xr(v), veR

Note that

lerllz < 2]lellz, (3.5)

We prepare the proof by several lemmas.
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Lemma 3.4 Assume (2.86), (2.87), (2.88), (2.53), (2.43), (2.44) and (3.83). Then (cf.

limsup £ sup sup |M(e,,t)|=0.

nsoo te[0,1] flellp<1

Proof. Theset D, :={¢, : |l¢|lz <1} is compact in C({||v]| < r+1}). Consequently,
for any € > 0, there exists a finite subset {¢;; : = 1,...,I(e)} of D, such that

min || — il <€, Vi e D,.

This implies the estimate
I(e)
|M(pr,t)] < Sup, (M, )]+ ) 1M (g, 0)]. (3.6)
o€ =1
According to (2.18), (2.19), (2.33) and (2.43), it follows that
[A(@)(Z(s))] < 2[lello Cr u(s, R?)".
Using (2.38), we obtain (cf. (2.13), (2.15))

|M(e,t)] < 2[lplle sup u(s,R%) |1+ Cpt sup u(s,R’)
s€[0,T] s€[0,T]

< 2 ||‘P||oo Cy [1 + CBtCu] )
so that (3.6) implies
I(e)
sup sup |M(p,,t)| <2eC,[1+CpTCu+ Y sup [M(,t)|. (3.7)

tE[O,T]HLpHLSl =1 tE[O,T]

The martingale inequality gives

N

E sup |M(p,t)| <2(E M(¢,T)?)
te[0,T]

(3.8)
Using the elementary identity a® — b® = 2(a — b)b+ (a — b)?, one obtains

AD%(2) = 28(2) AD(2) + / [®(2) — @(2)]? Q(z,d3),

Zz

so that, according to (2.18), (2.19),
A®*(2) = 28(2) AD(2) = X{m(z)<mmax(n)} X

5 2 90 [ o) +p(05) — () — o) Glaiiye) Bluy vy, ) de

1<i#j<m
i m 2

) lz Gi p(¥;) — Zgi 90(’01')] Gred(2; d8) .
=1 =1

11

T X{m(z)>mmax(n)} /
[C]

red (Z



Using (2.6) and (2.33), we conclude that (cf. (2.10), (2.11))
A®%(2) —28(2) AD(2) <

8ol Co Y 9:9; min(gi, 65) + Xim(e)>mamen(n)} / [®(2) — ©(2)]° Qrea(2; d5).

1<ij<m z

Now (2.14), (2.36) and (2.38) imply

E M(p,T)* < 8¢lls C5 T gmax(n) Cit (3.9)
T
! sup / [@(2) - q)(z)]z Qred(z; dé) E/ X{m(s)>mmax(n)} dS,
26Z(e'\Z(0) Y2 0

where ¢’ is such that C, < Co (1 +¢'). Using (3.7), (3.8), (3.9) and Va2 + 8% < |a| + |},

we counclude that

E sup sup |M(90T,t)|S250”[1—I—CBTC”]—|—2[(5)C“\/8CBTgmax(n)

te[0,T][|ellL<1

T 5 I(e) 2
+2 (E/ X{m(s)>mmax(n)} dS) Z [ sup / [@1(2) - Q’L(z)]z Qred(z; dé) :
0 Zz

i=1 [2€Z()\2(0)
Using (2.37), (2.44) (for ¢ = 1);) and (3.3), we conclude that

limsup £ sup sup |M(er,t)|<2eC,[1+CsTC,], Ve>0,

n—oo te[0,T]||e||L <1

and the assertion follows. [ |

Lemma 3.5 Assume (2.58), (2.33) and (3.8). Then (cf. (2.22))

T
lim E'/ sup |Ra(er, Z(s))|ds=0.
0

noreo llellz<1
Proof. It follows from (2.33) that

R (¢, 2)| < Xim(z)>mmas(m} 2190 C5 > gig;-

1<ij<m

Thus, using (2.38), we obtain

T T
/ Sup |R2((P"'7 Z(S))| ds S 2 CB 05, / X{m(3)>mmax(”)} ds ?
0 0

llellz<1

and the assertion follows from (3.3). |
Lemma 3.6 Assume (2.83) and (2.84). Then (cf. (2.24), (2.31), (2.32))
B(p,v) = B(eo,v1)| < 2|lellz (CB + C1) (v, 1) [V(R?) + 11 (R7)].
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Proof. Introduce

1

b(e)(v,w) = 5 /8 [o(v" (v, w, €)) + p(w"(v,w, €)) = @(v) — p(w)] B(v,w, ¢) de

and

o)) = [ He)ow)uldn), bale)o) = [ b u)vld).
According to (2.33), (2.34), and since (cf. (1.1))

[o*(v,w,¢) — v (o, wr, @)l < 2l —val + w — wal],

<
<

lw* (v, ,€) = w* (g, wi, )| < o —vill + 2w — wal],

one obtains
|b(cp)('u,w) - b(cp)(vlawlﬂ <
2 lelle / [B(v,w,¢) = B(vr,wn, )| de + 2] v = vi]| + [jw = wi]|| Ca

< 2lplle (Co + Ca)|lo = wall + w — wi] (3.10)
and
b, ¥)(v) — Bilep, 1) (@) < 2 llle (O + Co) (RO o — v, i=1,2. (311)
It follows from (3.11) and
bl )(0)] < 210l CoU(RY),  i=1,2,
that
15:(e,0)lls < 2llellz (Cs + CL)w(R?),  i=1,2. (3.12)
Finally, using (3.12) and the notation

(oh = [ olo)vido). (3.13)
one obtains
Blp,v) = Blp,m)l < [{bal, ), 4) = (bal,0),10)| + {ba(ip,14), ) = (ba(,01),0)]
< [IBales )l + 1810, ) 12 0 1)
< 2)l¢llr (Cp + Cr) W(R®) + m(RY)] olv, ),
and the assertion follows. [ |

Proof of Theorem 3.1.  Note that (2.43) implies R;(p,2) = 0 (cf. (2.21), (2.10),
(2.11), (2.12)). Thus, according to (2.23), (2.25), we obtain (cf. (3.13))

(e, 1(2)) — {0, A(1))] <
[y () — (@r, XD+ {0 — @, u(E))] + [{p — 0, A(2))]

< e (00} = {or, MO + [ 1B a(5) ~ Blrs M)l ds + (3.14)
Mors )+ [ 1Ralions Z06))1 ds + el st Lol > )+ e, o > 7).
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Using (3.5), (2.26), (2.38) and Lemma 3.6, we conclude from (3.14) that (cf. (2.31))
o(u(t),A(?)) <
20(u(0),)(0)) +4(Cs + ) [ elus), D [a(6, %)+ X, 7] do +

sup |M(er,1)| +/0 sup |Ra(¢r, Z(s))| ds + u(t, {[lv] = 7}) + A, {llv]| > r})

llellL<1 [lel|L<1

40+ 00) G+ 20RO [ olus) As)) ds +

IN

T
sup sup |M(p,,s)| + / sup |Ra(pr, Z(s))|ds +
0

s€[0,T][|e||L <1 [lellL <1

sup (s, {[[vll > r}) + sup Als, {llvl > r}) +22((0), A(0)).

s€[0,T) s€[0,T]
Gronwall’s inequality implies

sup o(u(t), A(t)) < exp (4(Cp + CL) T [Cu + M0, R?)]) x

te[0,T]

T
!sup sup IM(sor,t)|+/ sup |Ra(er, Z(s))| ds+
te[0,T]||¢l|p<1 0 llellz<t

t;{l}p]u(t Akl >7}) + Sup At vl = r}) + 2 0(u(0), A(0))] :

According to Lemma 3.4 and Lemma 3.5, we obtain

limsup E sup o(u(t), A(t)) < exp (4 (Ce+CL)TI[C,+ )\(O,Rs)]) X

n—oo  te[0,T]

[hmsup B sup p(t,{|[v] >r})+ sup At {llo]l > r}) + 2 limsup Eg(u(0), A(O))] ,

n—oo te[0,T] te[0,T] n—oo
for arbitrary » > 0. Using (3.1), (3.2), we finally obtain

limsup B sup_o(u(t), \(t)) <

n— oo te[0,T]

2 exp (4 (Cs+ CL)T [C, + (0, R3)]) limsup Eo(u(0), A(0)),

n—oo

so that (2.48) follows from (2.30). |

In the remaining part of this section we show that, under the additional assumptions

of Theorem 2.1, conditions (3.1), (3.2) and (3.3) are satisfied.

Remark 3.7 Since
1
A vl 2} < 5 / [v]|* At, dv),
condition (3.1) follows from assumption (2.27).
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Consider
Zi(s), s>t>0, z€Z, Zs (1) = 2z,
and let (cf. (2.41))
T, =inf{u >t : Z ,(u) € Z\ Z(0)}, t>0, z€Z, (3.15)

be the first moment of reaching Z'\ Z(0) . The joint distribution function of (7t ., Z: ,(7¢.))
is denoted by P, ,. Note that

P,,(ds,dZ) = 6, ,(ds,dz),  z¢€ Z\ Z(0). (3.16)

Let oy, be the moment of the first jump of the process starting in z at time ¢. The joint
distribution function of (o4 ., Z;.(0t.)) is denoted by @y .. Note that (cf. (2.3), (2.12))

Q::(ds,dZ) = Prob(t + € € ds) Prea(2;dZ), z€ Z\ Z(0), (3.17)

where ¢ has exponential distribution with parameter meq(n). Let 7/, denote the moment
of the first reduction jump, when starting in z at time ¢. Introduce the kernel

K(t,z;dt1,dz) = / / P; .(ds,dz) Q, s(dt1,dz), (3.18)
Z\2

which represents the joint distribution of time and state after the first reduction
jump of the process starting in z at time ¢, and the iterated kernels

KW (¢ 2; dty, dzy) = / / K(t,z;dty, dz) K (ty, 21; dts, dz,) [>1, (3.19)
z

where K(1) = K .

Lemma 3.8 Assume (2.43), (2.38), (2.28), (2.29). Then (cf. (2.41))
lim limsup E sup w(t, {||lv|]|>7r}) < C,limsup sup KU(0,2;[0,T],2), (3.20)

T2 pnsco te[0,7T] n—oo Z€Z~(0)
forany [ >1.
Proof. Introduce the function

F(t,z) = E;, sup p(u,{||v|| >r}), te[0,T], z€Z. (3.21)

u€lt,T)

Using the strong Markov property, one obtains

F(t,2) = /tm/ZK(t,z;dtl,dzl)Et,z{ sup p(u, {|[v|| > r})

u€[t,T)

Ttl,z = t17 Z(Ttl,z) = zl}

< [ [ Kzt den) B { sup ptu 1ol 2 )

u€[t,T)

T
+/ /K(t,z;dtl,dzl)Et,z{ sup p(u, {|lv]| > r})
t Z

ug [t,tl]

=t 2(r) = )

=t 2(r) = )

+ [ [ Kttt den) B s uton (vl >

ug t1

Ttl,z = t17 Z(Ttl,z) = zl}

< E, sup ( Allvl | > r3) + / /K zydt1,dz1) F(ti,z1). (3.22)

ug [t,min(T,Tt

15



Iterating (3.22), one obtains

T
/ /K(l)(t,z,dtl,dzl) F(tl,zl) (323)
t Z

-1 T
+Z/ /K<k>(t,z;dt1,dz1)f(tl,zl)+f(t,z), I>1,

=1Vt Z

where

f(taz) = Et,z sup :u’('u’a {HUH > T})

ue [tymin(TyTt’,z)]

Using the inequality

Wt A=) < % [ ol d)

and the fact that the function [p, ||v||® p(u,dv) takes at most two different values for
u € [t,min(T,7/,)], one obtains

f62) < B s [ i)
R3

1
r? weltmin(T,! )]
1

B [ W0l tt,0) + B [ 0IP a(r0) xt

= 7% {‘I’(z) +/tT/Z‘I’(21)K(taZ;dt1,dzl)} : (3.24)

where (cf. (2.15))

IN

= Zgi oz |
1=1
Note that (cf. (2.5))
/ / Z) P .(ds,dz) = ®(z). (3.25)
Using (2.43) with ¢(v) = ||v]|?, we obtain (cf. (3.17))

// (21) Qs s(dtr, dz) < /Z@(zl)Pred(é;dzl)ztﬁ(E). (3.26)

It follows from (3.25) and (3.26) that (cf. (3.18))

/tT/cI)(zl)K(t,Z;dtl,dzl):/T/cI)(zl)/oo /Z\Z P, .(ds,d?) Q. :(dt1, dz)
_ / /Z\Z / / (21) Qo 5(dtr, d21) P, (ds, d3) / /Z\Z 3) P,..(ds, d5)

<
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and (cf. (3.19))

T
[ RS AL EVES (ORI RS (3.27)
t Zz

Note that F(t,z) < C,, according to (2.38) and (3.21). Using (3.24), (3.27), (3.23) one

obtains

T 21
F(t,z) < / /K(l)(t,z;dtl,dzl)F(tl,zl)—|——2<I>(z)
t Jz r

21
< CuKY(t, 2t T),Z)+ = ®(2). (3.28)
T
Finally, (3.20) follows from (3.28), (2.28) and (2.29). |
Lemma 3.9 Assume (2.28) and (2.40). Then
1 (T
limsup E T/ X{m(s)>mmax(n)} ds < (3.29)
n—oo 0
!
limsup sup K(l)(O, z;[0,T], 2) + Zlim sup sup K(k)(O, z;[0,00), 2\ Z(0)),
n—oo e #(0) k=1 D" 2cZ(0)
forany [ >1.

Proof. Introduce the function
T
H(t,z) = E't,z/ X (mamax(n),00) (M (1)) du te0,T], z€2Z. (3.30)
¢

For z € Z(0), the strong Markov property implies (cf. (3.15))

e
Y
Y
Y
)

For Z € Z\ Z(0) and s € [0,T], one obtains

H(t,z) =

T
(/ X(mmx(n),w)(m(u)) du |7t =8, Z(1,) = 2) P; .(ds,dz)
¢

(

(/ T X(menax(n),00) (M) du
(/ST X (mma(n) 00) (M) du) P, .(ds,d?)

/ X(mena(r)00) (721 it

t
s

Ny

Tt,z = S, Z(Tt,z) = 2) Pt,z(ds,dé)
\Z

Tt,z = S, Z(Tt,z) = 2) Pt,z(ds,dé)

Ny

\Z

\Z
z
z
Z

Ny

\Z

s,2) P, ,(ds,dZ). (3.31)

J
J
-
J
J

E,
©)

E,,
0)

E,,
0)

E,
0)

H(
0)

(
(
(
(

Ny

\Z

H(s,3) = / B /Z E,: ( / ' X(mman(m) o) (1)) dtt | 00z = £, Z(04) :z> Q. :(dt, dz)

17



_ / /Z\Z B, /TX,,LW o (m (u))du‘as,g:t,Z(Us,g):z)Qs,g(dt,dz

(
+ .. </TX (mamax(n),00) (M (1)) du ‘ o5z =1, Z(0s3) = z) Qs :(dt,dz
/ / .. (/TX _— )( m(u)) du ‘ o5z =1, Z(0s3) = z) Qs :(dt, dz)

([s,00), 2\ 2(0)) + (T — 5) @s,5([T, 00), 2(0))

IN

Sy N (o)) b 0,5 =1, (o) = ¢) Qualdr )
/ / B, ( / a0 () s | 0105 = 8, Z(,2) = z) Q. 5(dt, d2)
- )[@“as %), 2\ Z(0)) + Qus([T; ), Z(0))] (3.82)

// H(t, 2) Qs .s(dt, dz)—l—/(t—s)Qs,g(dt,Z(O)).

Thus, (3.31) and (3.32) imply, for z € Z(0),

H(t, 2) //Z\Z P,.(ds, dz// Qus(dts, dzs) H(ty, 20) + h(t,2),  (3.33)

/ /z\z {/ (= 8) Quzldu, 2(0)) + (3.34)

(T = 5)|Qus(T,0), Z(0)) + Qus([5, ), 2 \ 2(0))] }Pt,zws,ds).

Note that inequality (3.33) holds also for z € Z \ Z(0), according to (3.16) and (3.32).
Thus, using the kernel (3.18), inequality (3.33) implies

where

T
H(t,z) < / / K(t,2z;dt1,dz1) H(t1,21) + h(t, 2), tel0,T], =z€Z. (3.35)
2(0)
Iterating (3.35) one obtains

T
H(t,z) < / KW (t, z; dty, dz;) H(ty, 21)
t Jz

-1

T
+Z/t ZK()(t,z;dtl,dzl)h(tl,zl)—|—h(t,z), [>1.  (3.36)

k=1
Next we estimate the function (3.34), which consists of three terms. According to (3.17),
for s € [0,T] and 2 € Z \ Z(0), the distribution function Q,z(du,Z) corresponds to
a random variable s 4+ £, where ¢ has exponential distribution with parameter m.eq(n).
Thus, we obtain

1

Tred(7)

/ (u—s5)Qsz(du, Z(0)) <

18



and

1

Tred(7)

(T —5)Q, ([T, ), 2(0)) < (T — s)Prob(s + £ > T) <

?

so that the first two terms are estimated by — j(n) . The third term is estimated by

T// Q.:([s,00), 2\ Z(0))P, ,(ds,d5) < TK(t, 2 t,00), 2\ Z(0)).
t J2\2(0)

Since H(t,z) < T (by definition (3.30)), it follows from (3.36) that

l

+ T3 KB, 2]t 00), 2\ 2(0)),

k=1

21

Tred(7)

H(t,z) < TKY(,z[,T),2)+

so that (3.29) is a consequence of (2.28) and (2.40). |

Note that, to complete the proof of Theorem 2.1, it remains to check that the right-
hand sides of (3.20) and (3.29) vanish, for some [ > 1. Indeed, conditions (3.1), (3.2)
and (3.3) are then satisfied, according to Remark 3.7, Lemma 3.8 and Lemma 3.9.

Lemma 3.10 Consider subsets Zy,..., 2111 C Z, where [ > 1. Then, for any At >0,

! I+1
sup K2, z5[t, 0+ AL, Z) < ) a(Ze, At)+ > B(Zk, Zk-1),  (3.37)
tEO,ZEZH_l k:l k:2
where
a(Z',At) = sup K(t, z[t,t+ At], 2) (3.38)
t>0,z€2’
and
B(Z2,2" = sup K(t,z[t,00),Z\Z2"), z2'zZ'c Z. (3.39)
t>0,ze2’!
Proof. We first prove
! !
@
sup KWY(t,z;[t,t+ 1AL, Z) < a(Z, At) + B(Zk, Zg_1) . 3.40
e KOst > >0z Zh). (A0

For [ = 1, the assertion follows from definition (3.38). For [ > 1, we obtain from (3.19)
that

KWt 2: [t + (L + 1AL, 2) =
/ /K z;dty, dz;) KO(ty, 215 [t, t + (L + 1)At], 2)

t+ At
/ /K(t,z;dtl,dzl)K(l)(tl,zl;[t,t—l—(l—l—l)At],Z)
Zz
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+(I+1)A
+/ /K zydty, dzy) KO(ty, 203 [t,t + (1 + 1) At], Z)
t+A

t

K(t, z [t t+ At], Z)

IN

_|_

+(I+1)At
/ K(t,z,dtl,dzl)K(l)(tl,zl,[tl,tl—I—lAt],Z)
t

_|_

At

t+(I+1)A

/ K (t, z;dty, dz;) KO (ty, 205 [t, ¢ + (I + 1)At], 2)
t+AL Z\Z,

K(t, 2 [t,t + At], 2)

+ sup  KO(t,z[t,t + IAL], 2) + K(t, 2 [t, 00), 2\ Z1),

t>0,2€2;

IN

and, using the definitions (3.38), (3.39),
sup  KUW(t 26,14+ (1+ )AL, 2) < sup  K(t,z[t,t + At], Z)

tzo,zezH_l tzo,zezH_l
+ sup KU(t,z[t,t+ 1AL, Z2)+ sup K(t,z;[t,00), Z\ Z)
tzO,ZEZl tzo,zezH_l

= a(Zl-I-l:At) + sup K(l)(taz; [tat—l_lAt]:Z)—l_ﬁ(ZH—l:Zl)‘

t>0,2€2;
Thus, (3.40) follows by induction. Note that (3.19) implies
KWt 25 [t,t + IAL], 2) =

t+IAtL
/ K (t, z;dty, dz;) KO (ty, 205 [t, t + 1AL, Z) (3.41)
t z

t+IAL
+/ K(t,z;dty, dz) KW (ty, 213 [, t + IAL], Z)
t Z\Z,

< sup K(l)(t,z; [t,t + IAL], Z) + K(¢,2;[t,00), 2\ Z1), [>1.

t>0,z€2;

Using (3.41), (3.40) and (3.39), one obtains (3.37). [

Lemma 3.11 Consider subsets Zo, 21,...,2, C Z, where l > 1. Then (c¢f. (3.39))

!
sup KU(t,2;[t,00), Z\ Z) < Zﬂ Zky Zr—1) (3.42)
k=1

t>0,2€2;

Proof. For [ =1, the assertion follows from (3.39). For [ > 1, we obtain from (3.19)
that

K(H_l)(t,z; [t,OO),Z\ZO) = / / K(taz;dtladzl) K(l)(tlazl; [t,OO),Z \ ZO)
t Zz
= / Kt Z, dtl,dzl) K(l)(tl,zl;[t,OO),Z\Zo)
Zy

/ Kt Z, dtl,dzl) K(l)(tl,zl;[t,OO),Z\Zo)
t Z\Z;

< sup K()(, i[t,00), 2\ Z0) + K(t,2;[t,00), 2\ Zi)

t>0,2€2;
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and

sup K(l+1)(taz; [t,OO),Z\Zo) < sup K(l)(taz; [t,OO),Z\ZO) —I_B(Zl-l-lazl)‘

tzo,zezH_l t>0,2€2;
Thus, (3.42) follows by induction. [ |

Lemma 3.12 Assume (2.38), (2.35), (2.33). Then (cf. (3.38))

£

li Z At) = At 1. 4
ni}% a( (5)7 ) 07 v < 2 (1 _I_ CH) CB C” ? € E (07 ) (3 3)
Proof. It follows from (3.18) that, for u > ¢,
K(t, z; / / P; .(ds,dz) Qs s([t,u], Z)
Z\Z(0

/ /Z\Z(O) P, .(ds,d?) Qs,z([s,U],Z) < P,([t,u],Z) = 1 — Prob(r, > u). (3.44)

Each collision increases the number of particles by at most 2, so that at least

k(z) = mm‘”‘(n)z —m(z) (3.45)

jumps take place before the particle number bound mmax(n) is crossed for the first time.
Therefore, we obtain 7, > 01 ,(k(z)), and

Prob(r,, > u) > Prob(oy.(k(2)) > u), (3.46)

where 04 .(k), k =1,2,..., denotes the moment of the k-th jump of the process starting
in z at time ¢. The waiting times between the jumps of the process have the parameter
Teol(2) . Using (2.38), (2.35), (2.33), we obtain (cf. (2.4), (2.8))

Teoll(2) = Qeon(z,2) Z / 1+ &(2;1,7,e)] max(gi,9;) B(vi,vj,€) de

1<z;6j<m

< (1+C) CBmZgz_ (1 + Cx) Cp CyMMimax(n)

=1

We conclude that
Prob(o:.(k(2)) > u) > Prob(aé,z(k(z)) > u), (3.47)

where o; (k) denotes the k-th jump time of a process with waiting time parameter (cf.

(3.4))
(14 Cx) Cp Cpmmax(n). (3.48)
According to (3.45), (2.41), one obtains

k(z) > kmin(n,€), Vze Z(e),
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where

kmin(n,€) = {M} (3.49)

and [z] denotes the integer part of a real number z . Consequently, for all z € Z(e),
kmin (n,€)

Prob(aé,z(k(z)) > u) > Prob(aé,z(kmin(n,s)) >u) =Prob | t+ Z &LE>uw), (3.50)

where (§;) are independent random variables exponentially distributed with parameter

(3.48). Using (3.44), (3.46), (3.47) and (3.50), one obtains

kmin (n,€)
sup  K(t,z[t,t+ At],Z) < 1—Prob Z &> At .
=1

t>0,2z€Z(¢)

Since (cf. (3.48), (3.49))

kmin ”75)

kmin(n7 5) 3
E &= — , as n — 0o,
,L-z:; (1 + Cli) CB Cu mmax(n) 2 (]— + C,{) CB C”
and
kmin(”ye)
kmin 3
Var &L = (m,¢) — 0, as n — oo,

[(1 + Ck) O CpMimax(n)]?

kmin (n,€)
- & — 20+ Ci) o0 in probability, as n — oco.
Thus, (3.43) follows. [ |

Lemma 3.13 Assume (2.45) and (2.46). Then

lim B(Z2(6),2(e)) = 0, Veelo,d). (3.51)

n—oo

Proof. It follows from (3.18), (3.17) that
K(t,2[t,00), 2") = / / P: .(ds,dz) Prea(21; 2") = E Peoa(Zs (70.2); 2")
¢ Jz\2(0)

and therefore

B(Z2',2" = sup E Prea(Z:i.(1:.); Z\ 2").

t>0,z€2’
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Consider z € Z~(5) and denote 2’ = Z; ,(7¢,) . Using (2.45) and mass conservation during
collision jumps, one obtains

Prea(2'; 2\ Z(g)) = Prea(?'; {21 : ®o(21) > (1 — €) Mimax(n)})
< P (z';{zl;cpo(zl)_ /Z Bo(5) Prua(; d7) > (5—5)mmax(n)}>

1 2
< _ 3 1.z /.
< G ), [‘Mzﬂ ] #002) Ptz ,dz)] Peea(#';d21)
1 2
< sup / {Q) z1) — / Do(2) Preal(z;dz ] Prea(z;dz1) .
[(5 - 5) mmaX(n)]z zeZ~(6)\Z(0) Zz 0( 1) z 0( ) d( ) d( 1)
Consequently, (3.51) follows from (2.46). [ |

Lemma 3.14 Assume (2.40), (2.43) and (2.44). Then
lim B(Z2(6"),2(6") = 0, V0<§ <6 <. (3.52)

Proof. Consider z € Z~(5') and denote 2’ = Z; ,(7z,.) . Let ®(2) = >, ¢; . Using (2.43)

and mass conservation during collision jumps, one obtains

Pred(z Z\Z((S”)): red( {zl: ( )>CO(1+5”)})
< Prea (25 {21 : ®(21) — ®(2') > Co (6" — 6")})

< e . 200~ [ 90 Pt )] Pt

1 2
< o Sup / {Q) z —/ ®(2) Pealz;d2 ] Prea(z;dz1) .
[CO (5 -4 )]2 2eZ(8\Z(0) Y 2 ( 1) Z ( ) d( ) d( 1)

Consequently, (3.52) follows from (2.40) and (2.44). [ |

Lemma 3.15 Assume (2.38), (2.85), (2.33), (2.45), (2.46) (2.40), (2.48) and (2.44).
Then

limsup sup K(H'l)(O,z; 0, T,Z2) = 0 (3.53)

n—oo Z€Z~(0)
for sufficiently large [.

Proof. According to (3.37), property (3.53) is fulfilled provided that

Z(0) C Zi41, (3.54)
lim B(Zk, Zk-1) = O, kE=2,...,0+1, (3.55)
n— o0
and
lim a2, At) = 0, E=1,...,1, (3.56)
n— o0
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for some Zo, Z1, . .., Zi41 and At such that
T < [At. (3.57)
Consider the choice
Zy = Z(ENZ&), k=1,...,1,  Zi=Z(611),
where € € [0,§) and
0<f1<...<6 <4.

Note that (3.54) is fulfilled. Choose At according to (3.43) and [ such that (3.57) holds.
Then (3.56) is fulfilled according to Lemma 3.12. Moreover, one obtains

5(Z~k,z(5)) + B(Zklzwk—i))
B(Z(6), Z(¢)) + B(Z(r), Z(0k-1))

so that (3.55) is fulfilled according to Lemma 3.13 and Lemma 3.14. |

B(Zk, Zk—1) <
<

Lemma 3.16 Assume (2.45), (2.46) (2.40), (2.48) and (2.44). Then

limsup sup K(l)(O,z; [0,00),Z\ Z(0)) = 0, (3.58)

n—oo Z€Z~(0)
foranyl=1,2,....

Proof. According to (3.42), property (3.58) is fulfilled provided that

2, C Z(0), Z(0) C 2
and

hmﬂ(Zk,Zk_l) == 0, kzl,...,l,

n—oo

for some 2y, Z1,...,2;. According to Lemma 3.13 and Lemma 3.14, it is sufficient to
choose

Zy = Z(e), Zp = Z(6), k=1,...,1,

where £ € [0,8) and 0 < 6, < ... < 8§ <§. [ |

According to Lemma 3.15 and Lemma 3.16, the right-hand sides of (3.20) and (3.29)
vanish, if [ is sufficiently large. This completes the proof of Theorem 2.1.

4. Examples of reduction procedures

Here we introduce a class of reduction procedures and check the assumptions of Theo-
rem 2.1.

24



Given the state (2.2), we form v groups

zi:Fi(z):((gi,j,vi,j), jzl,...,mi), 1=1,...,7(2), Zmi:m.

In each group, a reduction procedure Preq, is applied independently, and the new state is
formed of the group results, i.e.

.
Pred(z; di) = / . 5(51 _____ 57)(d2) H Predﬂ-(zi; diz) .
Z Z =1
Note that, for ® defined in (2.15) and @, defined in (2.47),
() =®(51)+ ...+ B(3,),  Bo(Z) = Bo(Z1) +... 4 Bo(Z,).

Assumption (2.43) is fulfilled if

/Zcp(z)Pred,i(z;dz) — 8(2),  i=1,...,7(2), (4.1)

/@(2) Prea(z;dZ) = /<I> Prea1(z1;dz1) +. ..—I—/ ®(Zy) Predq(2y; dZy)
z z z

B(z1) + ...+ ®(z,) = ®(2).
Assumption (2.44) takes the form

”
lim sup mea(n) sup Z/ [®(2) — @(zi)]z Preai(2;dZ) < o0, Ye>0. (4.2)
n—roo 2€Z(e)\2(0) =1 /2

Assumption (2.45) is fulfilled if

~

sup / Do(2) Preai(zi;d2) < (1 — 8) Mimax(n), (4.3)
2€2(8\2(0) =1 /2

and assumption (2.46) takes the form

) 1
R E “4)
Y 2
sup Z / |:¢0(21) - / QO(E) Pred,'i(z'i; dé) Pred,'i(z'i; dzl) =0.
Zz Zz

€ Z(H\2(0) 51

Example 4.1 Given a state (2.2), we define

ol(z) ={1,....,m},  p(z{i}) =

Zk 19k
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and

Jr(:z(z;j):(zgk,vj), i=1,...,m,
k=1

1.¢. a random index is chosen, and the weight of the system is given to the particle with
that index. Thus, mass is conserved. Moreover, one obtains (cf. (4.1))

m

/Z ®(z) PY)(z;dz) = ;w(vj) g; =®(2), Vaz, (4.5)
and (cf. (4.2))
[136) - o P ds) < (4.6)
[ 201 P d2) = i (ig) o(03g5 < ol (ig)
Note that (cf. (4.3), (4-4))
POz {z: @o(2) =1)}) = 1. (4.7)

Example 4.2 Given a state (2.2), we consider m independent uniform random numbers,

1.€.
Oi(2) = 0,1, plh(zd6) = dby ...doy,,
and some
g = max g .
We define
A R - -
and

Jr(:g(z;ﬁ) ={(gk,vk), k=1,...,m : g =g}.

During this the procedure of “individual reduction”, each particle either gets weight g or
gets weight zero being removed from the system.

Note that

1 1
/ g;db; = gi, / (992 db; = g: 3. (4.8)
0 0

26



For ® defined in (2.15), one obtains (cf. (4.1))

[ee P = [, el 0)aha
z red

| (Z g;som-)) By b= giplv) =0() (19

and (cf. (4.2))

/Z[@(E) — ®(2))? P(?(z dz) /@(2) [Zgz (v;) z:gZ (vs) ] pred(z df)

- [ [Z<g;—gi>w<vi>] by iy =Y / (gt — ) (i) do
= Zsovz 9: (G —gi) < llell® gzgz- (4.10)

Note that, for ®q defined in (2.47),

Bo(2) = ! > 4

9 =1

Thus, according to (4.8), one obtains (cf. (4.3))

/Z ®o(2) PP (2;d3) = Zm:gi (4.11)

Q| -

and (cf. (4.4))

zm: (4.12)

Now we consider a mixture of 0 < ; < groups with the mass conserving reduction
procedure Pr(elg and of v — ; groups with the “individual” reduction procedure Pr(:d
Necessary conditions are a restriction on the choice of the groups,

Zg” < gmax(n), Vi=1,...,7, (4.13)

and a restriction on the choice of the weight bounds,
3 < gmax(n), Vi=m+1,...,7. (4.14)
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Note that condition (4.1) is satisfied, according to (4.5) and (4.9).
Using (4.6) and (4.10), one obtains

nmofm 2 v m;
Z/ 2)" Preas(2i;d2) < llo|1” | Y (Zgi,j) + > @Y 9
i=1 \j=1

i=y1+1 Jj=1

Thus, condition (4.2) takes the form

1 m; 2 m;
limsup mrea(n)  sup i (Z gm) + 27: J; Zgi’j < o0, Ve>0. (4.15)

n—oo zEé(e)\Z(O) =1 7=1 1=y +1 7=1

Since (cf. (4.13))

1 m; 2 noomg
(ng) < Gmax(n) Zzgi,j

i=1 i=1 j=1
and (cf. (4.14))
2 m; v omy
DG %5 < gma(n) D, D Gis
=+l =1 =y +1 j=1
condition (4.15) reduces to (cf. (2.38))

lim sup Wred(n) gmax(n) < ©00.

n—oo

Using (4.7) and (4.11), one obtains

~

3 / Bo(2) Pags(zids) = m+ 3 - Zgu
=1

Z 1= 71-I—1 i=1

Thus, condition (4.3) takes the form

v m;
1
sup [+ Y __Zgi,j] < (1= 8) Munax(n) . (4.16)
2€Z(6)\2(0) i1 1

Using (4.7) and (4.12), one obtains

Y 2 Y m;

- . 1
>/ [cbo(zl)— [ a2 Pred,i(zi;dz)] Paai(zide) < 30 =Y g
i=1 Y2 Z i=vi+17" j=1

Thus, condition (4.4) takes the form
1 Ll
lim ———  sup — g%l = 0
n—o0 mmax(n)z ZEZ(J)\Z(O) !i:;—l 3 J]

and follows from (4.16) and (2.39).
For the following examples, it remains to check (4.13), (4.14) and (4.16).
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Example 4.3 The simplest procedure is individual reduction in one group. Consider the
case

7:17 71:07 gl:gmaX(n)-

Then condition (4.16) takes the form

m

1 1
sup g = Co(l4+96) < (1—46)mmax(n),
2€Z(5)\Z(0) gmax(n) ,Lz:; gmax(n)

which is fulfilled for sufficiently small § provided that (2.53) holds.

However, this procedure just compensates the effect of blow-up. It is of little practical
use, but may serve as a test example for illustrating convergence properties.

In order to construct reduction procedures relevant for the calculation of tail function-
als, we introduce a shell structure of the velocity space,

-V .
V., = U€R337‘1’SHII)7<T¢ }, 1=1,...,5 -1,
{ VT "
v—V
Vs = {UER3: %Zﬁ;} S>1,
where 0 =7; < ...<rg< oo and V, T are the mean velocity and the temperature of

the system. For each shell, a certain weight g; satisfying
3 < gmax(n), Vi=1,...,S. (4.17)

is chosen. Then the corresponding subsystem is either divided into groups with weight g;
(and possibly one with lower weight) to which mass preserving reduction from Example 4.1
is applied, or kept as one group, subject to individual reduction from Example 4.2 with
parameter g; . Note that conditions (4.13) and (4.14) are satisfied. A sufficient condition
for (4.16) is then

sup Z _i Z gil < (1 —=48)mmax(n), (4.18)

2€Z2(6N\2(0) =1 | ¥ jluev;

where the bracket means rounding up to the next integer.

We gives two examples for the choice of the quantities g; , corresponding to different
reduction strategies. In the first case one would like to have precisely n particles after the
reduction. In the second case one would like to have at least n/S particles in each shell
after the reduction.

Example 4.4 Define




where the bracket means rounding up to the next integer. Then the parameters

satisfy (4.17). The left-hand side of condition (4.18) is estimated as

S m
1 Co(l1+46
sup Znig sup Zgi—l—S < M—I—S.
zeZ(8)\Z(0) ;=1 2€Z(§)\Z(0) Gmax(1) im1 Gmax(2)
If
Co
Imax(n) = Cy— for some Cy>1, (4.19)
n
and
Mmax(n) = Cmn for some Cp, > 1, (4.20)
then
Co(l1+46
M +8 < n (4.21)
Imax(n)

and (4.18) is satisfied, for sufficiently small § and sufficiently large n.. According to (4.21),
all conditions are satisfied when replacing n} by arbitrary n, > n! such that

S
Y oni = n. (4.22)
=1

Example 4.5 Define

_ : 1 .
g; = min gmax(n),; Z 9|, 1=1,...,5,

tjivieV;

where n; denotes the desired minimum number of particles in the shell V; after reduction.

Note that condition (4.17) is satisfied. The left-hand side of (4.18) is estimated as

S m S
Zn¢+5+ sup ! Zgi < Zni+5+m
=1

2€Z(5)\Z(0) gmax(n) i—1 =1 gmax(n)

so that condition (4.18) is satisfied, for sufficiently small § and sufficiently large n, pro-
vided that (4.19), (4.20) and (4.22) hold. Note that (4.19), (4.20) imply (2.50).
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5. Numerical experiments

We counsider the relaxation of a mixture of two Maxwellians
folv) = aMi(v) + (1 - a)My(v),

where

1 lv— Vi
Mi(v) = ey P <_ 2T,

and
a=01, V,=(94.82,0,0), V= (-10.54,0,0), Ti=T,=1,
to a Maxwellian My, (v) with

Voo = (0,0,0),  T., =334. (5.1)

Our main interest is the calculation of a tail functional,

/ f(t,v)dv, t € [0,50], (5.2)
{llv||>105}

1.e. of the mass outside some ball with large radius. SWPM with the reduction procedure
from Example 4.4 is applied. The relevant parameters are

2

n = 105 ’ mmax(n) = 2’)’L, gmax(n) = ;

and
S =51, r,=230:-1), +=1,...,5. (5.3)

Confidence bands for the functional (5.2), calculated with DSMC and SWPM, are
displayed in Figure 1. The left graph shows that both algorithms model the same time
evolution. The right graph shows how the algorithms approximate the very small value
at equilibrium,

/ My (v)dv = 32-107".
{llv]|>105}

Beside convergence, which is the main objective of the present paper, this example il-
lustrates the variance reduction effect, which was the motivation for introducing SWPM.
The number of repetitions is chosen in such a way that DSMC and SWPM need almost
the same CPU time. In this particular example, SWPM is about 16 times more time
consuming (per trajectory), so that the gain factor in efficiency of about 50 results from
a tremendous variance reduction.

An interesting feature of SWPM is the variable number of simulation particles dis-
played in Figure 2. First we note that SWPM produces a correct result despite the
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0.0008 e se07
f DSMC ——
0.0007 1 CSWPM ] 7007 |
0.0006 | exact time limit -
6e-07
0.0005
0.0004 | 5607 |
0.0003 4e-07
0.0002 se07 |
0.0001
0 2607
-0.0001 1007 |

0 5 10 15 20 25 30 35 40 45 50 0 5 10 15 20 25 30 35 40 45 50

Figure 1: Tail functional (5.2) and zoom (right).

strong fluctuation in the overall number of particles (left graph) and the correspondingly
large number of reduction steps. This illustrates the main theoretical result of this paper.
The variance reduction effect is explained best by looking at the curves for the number of
simulation particles in the tail (right graph). At the beginning, both algorithms do not
have particles inside the tail. Then SWPM (with x = 1 in (2.6)) produces such particles
rather quickly and keeps them. At the end, in SWPM 10% of the particles are in the
tail, while in DSMC the relative amount corresponds to the value of the functional. How-
ever, the number of particles is just an illustrative quantity, the important point are their
correct weights. This is achieved by using a relatively large number of shells (cf. (5.3)).

14000

DSMC ——— Y ——
200000 SWPM - ] 12000 | SWPM
| 10000 |
150000 5000 |
100000 6000 |
4000 | |
50000 : 2000 |/
0 0
0 5 10 15 20 25 30 35 40 45 50 0 5 10 15 20 25 30 35 40 45 50

Figure 2: Number of particles in the system (left) and in the tail (right).

It should be noted that in SWPM momentum and energy are conserved in the mean,
while DSMC conserves these quantities pathwise. However, convergence for higher mo-
ments 1s observed. Results for the second energy component

/ v f(t,v) dv, t € 10,50], (5.4)
R3

are displayed in Figure 3. The corresponding asymptotic value is given in (5.1). Again,
the left graph shows that both algorithms model the same time evolution. The right
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graph shows how the algorithms approximate the equilibrium value. For this functional
the variances of both methods are roughly the same, and the gain factor in efficiency of
DSMC just corresponds to the lower effort per trajectory mentioned above.

>0 'DSMC ——— 3% 'DSMC ———
450 1 SWPM 1 337 | SWPM
400 r exact time limit - 1 exact time limit -
350 } 336
300 r 335 -
250 ¢
200 334
150 333 &
100
50 332
0 331

0O 5 10 15 20 25 30 35 40 45 50 0O 5 10 15 20 25 30 35 40 45 50

Figure 3: Functional (5.4) and zoom (right).
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