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Abstract

Propagation of the slow Biot wave is investigated within the low-frequency

range. For the �rst time it is proven theoretically that longitudinal wave of

the second kind is not propagatory if its wave number is lower than some

critical value. This critical wave number is a bifurcation point, above which

longitudinal wave of the second kind becomes to be propagatory. Asymptotical

formulae for phase velocity and attenuation of P2 wave are derived.

Introduction

A fundamental theory for the propagation of elastic waves through an isotropic

and macroscopically homogeneous �uid-saturated porous medium was developed

by M.Biot [1-2]. Biot showed that one shear wave and two longitudinal waves,

namely the fast (P1) and slow (P2) modes, can propagate in a �uid-saturated porous

medium. The shear wave and the longitudinal wave of the �rst kind (P1) predicted

by the theory are similar to the corresponding waves in an ordinary isotropic elastic

medium. The most interesting phenomenon, predicted by Biot, is the existance of

a longitudinal waves of the second kind (P2), the so-called Biot slow wave. The

main feature of this waves is that its phase velocity is always lower than both

compressional wave vlocities in a �uid and in a solid. The slow wave was observed

experimentally at ultarsonic frequencies in arti�cial rocks made of sintered glass

beads [3] and con�med theoretically [4]. Later it was registered in natural granular

soils (Monterey sand) also at ultarsonic frequencies [5].

In the low frequency range the Biot theory assumes that slow wave is highly disper-

sive and strongly attenuated below some critical frequency, which depends on the

pores size in the skeleton and the viscosity of the �uid. This critical frequency is

typically around 1�10 kHz for water saturated porous materials of around 1 Darcy

permeability [6]. The Biot slow wave is characterized by the out-of-phase motions

of the solid skeleton and pore �uid. This relative motion is very sensitive to the

viscosity of the �uid and the dynamic permeability of the porous medium.

Although Biot's theory has been thoroughly studied during last 40 years, the ques-

tion of why slow wave cannot be detected in low-permeability materials such as

natural rocks is still open. First attempt to answer this question was made in [7].

The authors suggested that this lack of perceivable slow wave propagation is prob-

ably because of clay particles which are deposited both within the pores and on the

surfaces of the rock grains. They reduce porosity and permeability of the rock and
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greatly increase the viscous losses. The latter results in increasing attenuation of

the slow wave and its complete disapparence.

Propagation of the slow wave in air-�lled porous materials (porous ceramics of

2 � 70 Darcy and natural rocks of 200 � 700 mDarcy permeability) was inves-

tigated experimentally [8] between 10 and 500 kHz. The velocity and attenua-

tion coe�cient were measured as functions of frequency. It was shown that in the

low-frequency limit the phase velocity and attenuation of the Biot slow wave are

essentially determined by the permeability of the porous material.

The purpose of this papers is to prove analytically that the Biot slow wave is not

propagatory below some critical wave number which is proportional to permeabil-

ity of the media. In should be emphasized here that because of the fact that we

consider the propagation of elastic waves through an in�nite space in the absence

of external forces, one must set the wave number k to be real and de�ne frequency

! = !(k), which can be complex, as a solution of corresponding dispersion equation.

In contrast to the widely used Biot's model, various phenomenological parameters

of which it is di�cult or impossible to measure, we rely on the more simple mathe-

matical model of saturated poroelastic materials, proposed by K. Wilmanski [9-12].

This model leads to similar results as the classical Biot model. Detailed comparison

of the models is presented in [13].

1. Problem Statement

1.1. Mathematical Model

Consider propagation of the bulk waves through an in�nite space 
 occupied by

a saturated porous medium. The set of balance equations describing the porous

two-component medium has the following general form (x 2 
; t 2 [0; T ]) [9-12]:

Mass conservation equations

@�F

@t
+ div

�
�FvF

�
= 0;

@�S

@t
+ div(�SvS) = 0: (1:1)

Here, � is the mass density, v is the velocity vector and indices F and S indicate

�uid or solid phases, respectively.

Momentum conservation equations

�F
�
@

@t
+ (vFj ;

@

@xj
)

�
vFi �

@

@xj
T F
ij + �(vFi � vSi ) = 0;
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�S
�
@

@t
+ (vSj ;

@

@xj
)

�
vSi �

@

@xj
T S
ij � �(vFi � vSi ) = 0; (1:2)

where (�; �) denotes the inner product.

Balance equation for the change of porosity

@�n

@t
+
�
vSi ;

@

@xi

�
�n + nEdiv(v

F � v
S) = �

�n

�
; (1:3)

where � is the relaxation time of porosity, assumed to be constant. TF and TS are

the partial stress tensors, � is a positive parameter which is constant in the model

used in this paper.

Constitutive relations for linear poroelastic materials

T
F = �pF1� ��n1; pF = pF0 + �(�F � �F0 ); (1:4)

T
S = T

S
0 + �SdivuS1+2�SsymgraduS + ��n1; (1:5)

where pF is the pore pressure, pF0 and �F0 are the initial values of pore pressure and

�uid mass density, respectively, � is the constant compressibility coe�cient of the

�uid depending only on the equilibrium value of porosity nE. �n = n � nE is the

change of the porosity, and � denotes the coupling coe�cient of the components.

T
S
0 denotes a constant reference value of the partial stress tensor in the skeleton, �S

and �S are the Lamé constants of the skeleton, which depend only on nE, and u
S

is the displacement vector for the solid phase with

v
S =

@uS

@t
: (1:6)

1.2. Dimensionless variables and parameters

Let us rewrite the system of equation (1.1)-(1.6) in a dimensionless form. For this

purpose we introduce the following dimensionless variables and parameters [13]:

�̂F =
�F

�S0
; �̂S =

�S

�S0
; v̂

F =
v
F

US
jj

; v̂
S =

v
S

US
jj

;

where �S0 is the initial value of the skeleton mass density and US
jj =

p
(�S + 2�S)=�S0

is a velocity of a longitudinal wave in an unbounded elastic medium. Also one has

x̂ =
x

US
jj �

; t̂ =
t

�
; û =

u

US
jj �

; p̂F =
pF

�S0 (U
S
jj )

2
; �̂ =

�

(US
jj )

2
;

�̂ =
��

�S0
; �̂ =

�

�S0 (U
S
jj )

2
; �̂S =

�S

�S0 (U
S
jj )

2
; �̂S =

�S

�S0 (U
S
jj )

2
; �̂ = �US

jj :

After the change of variables and parameters the original system (1.1)-(1.6) keeps

its form except of the right-hand side in the equation for the change of porosity.

One gets there ��n. For typographical reasons we omit below the symbol ^ char-

acterising dimensionless quantities.
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1.3. Dispersion equation for the bulk waves

Let us investigate propagation of bulk waves through the porous medium. We

con�ne ourselves to the consideration of a 1D problem, i.e. we study the propagation

of longitudinal waves only. In 1D case the system (1.1)-(1.6) takes the following

form (for convenience strain tensor eS has been introduced and we have assumed

that � = 0):

@�F

@t
+

@

@x

�
�FvF

�
= 0; (1:7)

@�S

@t
+

@

@x
(�SvS) = 0: (1:8)

�F
�
@

@t
+ (vF ;

@

@x
)

�
vF + �

@�F

@x
+ �(vF � vS) = 0; (1:9)

�S
�
@

@t
+ (vS;

@

@x
)

�
vS � (�S + 2�S)

@eS

@x
� �(vF � vS) = 0; (1:10)

@eS

@t
=

@vS

@x
; (1:11)

@�n

@t
+
�
vS;

@

@x

�
�n + nE

@

@x
(vF � vS) = ��n; (1:12)

Consider the propagation of the harmonic waves whose frequency is ! and wave

number is k. Below we use the following dimensionless parameters: !̂ = !� and k̂ =

kUS
jj � (the upper symbol ^ is again omitted in further consideration). Substituting

solutions in the form

�F � �F0 = RF exp (i (kx� !t)) ; �S � �S0 = RS exp (i (kx� !t)) ;

vF = V F exp (i (kx� !t)) ; vS = V S exp (i (kx� !t)) ; (1:13)

eS = E exp (i (kx� !t)) ; �n = D exp (i (kx� !t))

into equation system (1.7)-(1.12) one gets the system of algebraic equations for the

unknown amplitudes, namely:

!RF � krV F = 0;

!RS � kV S = 0;
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!rV F � kc2fR
F + i�(V F � V S) = 0;

!V S � kE � i�(V F � V S) = 0;

!E + kV S = 0;

(! + i)D � knE(V
F � V S) = 0: (1:14)

Here r = �F0 =�
S
0 , cf = UF=US

jj , and sound velocity in a �uid UF =
p
�. Requesting

that the determinant of this system must vanish yields the dispersion equation for

longitudinal waves:

F(k; !) = 0; (1:15)

where

F(k; !) = r(!2 � c2fk
2)(!2 � k2) + i!�

�
(1 + r)!2 � k2(1 + rc2f)

�
: (1:16)

It should be reminded that similar to our previous research on surface waves [14-17],

we consider the solutions of (1.7)-(1.12) in the absence of external forces. In this

case it is necessary to derive ! as a function of the real wave number k 2 R1. Thus,

Re!=k de�nes the phase velocity of a wave and Im! gives its attenuation.

Our goal is to prove that solution !P2(k) of dispersion equation (1.15), corresponding

to the Biot slow wave, possess a bifurcation. It takes place in some critical point

kcr (bifurcation point), in small neighbourhood of which solution of equation (1.15)

splits into several branches.

2. Bifurcation of the Biot slow wave

Let us rewrite equation (1.15) as

r(~!2 � c2f )(~!
2 � 1) + i~!

1

~k

�
(1 + r)~!2 � (1 + rc2f)

�
= 0; (2:1)

where ~! = !=k and ~k = k=�. Obviously, for the case k � 1 (high-frequency range)

equation (2.1) has the roots (note that here 1=~k � 1 is assumed to be a small

parameter)

~!P1 = �1�
i

2

1

~k
�

4 + r � rc2f

8r(1� c2f )

1

~k2
+O

� 1

~k3

�
(2:2)

and

~!P2 = �cf �
i

2r

1

~k
�

1� c2f (1 + 4r)

8r2(1� c2f)(�cf )
1

~k2
+O

� 1

~k3

�
; (2:3)

which de�ne the velocities and attenuations of forward and backward directed lon-

gitudinal waves of the �rst and second kinds, respectively. It is evident, that in
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the high frequency limit, phase velocities of P1 and P2 waves do not depend on

frequency !.

Next let us consider low-frequency range, when k � 1 and, consequently, ~k � 1.

Solutions of equation (2.1) are sought in the following form:

~! = ~!0 + ~k~!1 + ~k2~!2 + : : : (2:4)

For the longitudinal P1 wave of forward and backward directions one obtains:

~!P1 = �

s
1 + rc2f

1 + r
� ~k

ir(1� c2f)
2

2(1 + rc2f)(1 + r)2

�~k2
s

1 + r

1 + rc2f

r2(1� c2f)
3(2(1� r)(1 + rc2f) + 1� c2f)

8(1 + r)4(1 + rc2f)
2

+O(~k3): (2:5)

Nowever for the P2 wave construction of asymptotic solution for the corresponding

root of (2.1) is much more complicated. We prove later on that there exists some

critical value of wave number kcr, below which longitudinal wave of the second kind

is not propagatory. Thus, asymptotic expansion of corresponding root of (2.1) has a

di�erent structure depending on whether wave number of P2 wave is lower or higher

then its critical value kcr.

Substitution of (2.4) into (2.1) yields for the forward directed P2 wave:

~!f

P2 = �i
rc2f

1 + rc2f

~k � i
r3c4f(1 + rc4f)

(1 + rc2f)
4

~k3 +O(~k4): (2:6)

Solution for the backward directed P2 wave is sought in the form

~! =
1

~k
~!0 + ~!1 + ~k~!2 + : : : (2:7)

and it leads to the expansion

~!b
P2 = �i

1 + r

r

1

~k
+ i

r(r + cf )

(1 + r)2
~k +O(~k2): (2:8)

Obviously, expansions (2.6) and (2.8) consist of the imaginary terms only. The

latter means that phase velocity of P2 wave is equal to zero, i.e. the wave is not

propagatory. However, these expansions are valid only if wave number k is less then

some critical value kcr. In other words there exists a bifurcation point kcr in small

neighbourhood of which solution of equation (1.15) splits into several branches. Let

us prove this statement. Consider dispersion equation (1.15). It is easy to see that

exact solution for P2 wave is given by:

6



k2 =
1

2rc2f

�
r!2(1 + c2f) + i�!(1 + rc2f)

+

q
r2!4(1� c2f)

2 � �2!2(1 + rc2f)
2 + 2ir�!3(1� c2f)(1� rc2f)

�
(2:9)

Proposition. There exists some critical value of wave number kcr 2 R+ such that:

a) if 0 < k < kcr then equation (2.9) has two pure imaginary roots !1(k) and !2(k),

Re!j(k) = 0, j = 1; 2;

b) if k = kcr then equation (2.9) has one multiple pure imaginary root, i.e. !1(k) =

!2(k), Re!j(k) = 0, j = 1; 2;

c) if k > kcr then equation (2.9) has no pure imaginary roots.

Proof. Applying the change ! = �i�
; 
 � 0, equation (2.9) can be rewritten as

F1(
) = F2(
); (2:10)

where

F1(
) = 


q

2r2(1� c2f)

2 � 2r
(1� c2f)(1� rc2f) + (1 + rc2f)
2; (2:11)

F2(
) = 2rc2f
~k2 + 
2r(1 + c2f)� 
(1 + rc2f); (2:12)

and, as above, ~k = k=�. It should be noted here that function under the square root

g(
) = 
2r2(1� c2f )
2�2r
(1� c2f )(1� rc2f)+(1+ rc2f)

2 is always positive. Consider

equation (2.10). First let us investigate behaviour of functions F1(
); F2(
) as


!1. Obviously,

F1(
)


2
� r(1� c2f) and

F2(
)


2
� r(1 + c2f ) (2:13)

i.e. F2(
) is steeper than F1(
). Consequently, if ~k = 0 then function (F2 � F1)(
)

has two real roots: 
 = 0 and some 
�, so that (F2 � F1)(
) < 0 in (0; 
�).

Next we calculate stationary points for F1(
) and F2(
) and in�ation points for

F1(
). One can easily check, that function F1(
) has two stationary points, namely



(1)
1 � (1 + (1 + 7r)c2f)=(2r) and 


(2)
1 � (1 + (1� 5r)c2f)=r and function F2(
) has

one stationary point 
2 = (1 + rc2f)=(2r(1 + c2f)) such that:


2 < 

(1)
1 < 


(2)
1 : (2:14)

Function F1(
) has unique in�ation point


inf �
1� rc2f �

3
p
2 3
p
r 3

q
c2f(1�

3
p
2 3
p
r 3

q
c2f)

r(1� c2f)
(2:15)
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and it being known that 

(1)
1 < 
inf < 


(2)
1 as well as that F1(
) is concave if


 < 
i and F1(
) is convex if 
 > 
i. Preceding analysis allows us to conclude

that there exists unique point of tangency of functions F1(
) and F2(
) (see Fig.1).

2 4 6 8 10 12 14
�

1

2

3

4

F1, F2

Figure 1: Numerical example: r = 0:1; cf = 0:3; ~k = ~kcr = 16:97

Thus, using that F
0

1(
) = F
0

2(
) one can de�ne point of tangency, i.e. critical value


cr:


cr �
1

2r
+ 2c2f(1 + 3rc2f � 2c2f); (2:16)

which is positive by virtue of physical sense. Corresponding critical value of wave

number is de�ned from equation (2.10) and is given by:

~kcr � cf

�
1 +

1

2rc2f

�
; i.e. kcr � cf

�
1 +

1

2rc2f

�
�: (2:17)

Therefore, it was proven that there exist some critical real value kcr for which equa-

tion (2.9) has one multiple imaginary root !cr = �i�
cr.

Next we prove that if k < kcr then equation (2.9) has two pure imaginary roots

and if k > kcr then equation (2.9) has no imaginary roots. Consider following

multiplicative expansions

k = kcr

�
1� �k1 � �2k2 + : : :

�
and

! = 
cr

�!cr

cr

+ �!1 + �2!2 + : : :
�
; (2:18)

where � is a small parameter. Note that here any � can be chosen. For example one

may set � = cÆf ; 0 < Æ � 1. Subsitution of (2.18) into (2.9) yields the bifurcation

equation. >From its O(�) approximation it follows that k1 = 0. From the next

O(�2) approximation one has:
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�k2 =
1

4

!2
1


2
cr

k2cr
A (2:19)

with

A =
1 + c2f

c2f
+

1� c2f

c2fg(
cr)
p
g(
cr)

�
� r3(1� c2f)

3
3
cr + 3r2(1� c2f)

2(1� rc2f)

2
cr

�3r(1� c2f)(1 + r2c4f )
cr + (1� rc2f)(1 + rc2f)
2
�
> 0: (2:20)

It is obvious, that for given k2 > 0 equation (2.19) has two real solutions for !1 if plus

sign is chosen in its left-hand side. The letter means that we consider expansion

k = kcr

�
1 + �2k2 + : : :

�
and k > kcr. Consequently, equation (2.10) has no any

solution (see Fig.2).

2 4 6 8 10 12 14
�

1

2

3

4

5

F1, F2

Figure 2: Numerical example: r = 0:1; cf = 0:3; ~k = 17:5 > ~kcr

Vice versa, if k = kcr

�
1� �2k2 + : : :

�
< kcr then for given k2 > 0 equation (2.19),

as well as equation (2.9), has two imaginary roots (see Fig.3). Thus, Proposition

was proven.

Remark. One can also prove Proposition applying the same procedure to the dis-

persion equation (1.15). Taking into account that F(kcr; !cr) = 0 and F 0

!(kcr; !cr) =

0, one can de�ne critical values kcr and !cr. Next one has to substitute expansions

(2.18) into (1.15). As above one obtains at O(�) approximation that k1 = 0. From

the next O(�2) approximation one gets:

�k2 =
1

2

!2
1


2
cr

k2cr
A1 (2:21)

with

A1 =
�6r
2

cr + 3(1 + r)
cr � r(1 + c2f)
~k2cr

�r(1 + c2f )

2
cr + (1 + rc2f)
cr � 2rc2f

~k2cr
> 0: (2:22)
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2 4 6 8 10 12 14
�

1

2

3

4

F1, F2

Figure 3: Numerical example: r = 0:1; cf = 0:3; ~k = 16:0 < ~kcr

Analogously to (2.19), equation (2.21) has two real solutions for !1 if for given k2 > 0

plus sign is chosen in its left-hand side.

Therefore we conclude that P2 wave is not propagatory if its wave number is less

than critical value kcr. Otherwise, the frequency of P2 wave is given by

!P2 = 
cr

�!cr

cr

+ �!1

�
+O(�2) (2:23)

with

!1 = 2
kcr


cr

r
k2

A
: (2:24)

Consequently, phase velocity of forward and backward directed P2 wave is de�ned

by �Re(!P2)=k, where k = kcr

�
1 + �2k2

�
+O(�3).

Numerical example. Second formula in (2.17) shows clearly that critical wave

number is directly proportional to the permeability �. Thus, corresponding critical

wave length's dependence on � is through an inverse proportionality. To obtain

estimates of critical wave length, we take the following typical values of parameters

[18]: �F0 = 0:2 � 103 kg

m3 , �S0 = 2:0 � 103 kg

m3 , UF = 0:9 � 103 m

s
, US = 3:0 � 103 m

s
i.e.

r = 0:1 and cf = 0:3 as in given above �gures. Also � = 4 �10�6 s. For � = 109 kg

m3�s
,

� = 108 kg

m3�s
, and � = 107 kg

m3�s
critical wave length is equal to 0:22 cm, 2:22 cm,

and 22:21 cm, respectively. Corresponding critical frequency for the lowest value of

� is about 20 kHz. We conclude that the Biot slow wave becomes to be propagatory

with rather short wave length and, consequently, it cannot be detected in the low

frequency range of interest in seismology (1� 100 Hz).
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3. Conclusions

The results presented in the paper concern propagation of the Biot slow wave at low

frequencies. For the �rst time it was proven analytically that longitudinal waves of

the second kind is not propagatory if its wave number is lower than some critical

value. This critical wave number is a bifurcation point, above which longitudinal

wave of the second kind becomes to be propagatory. Asymptotical formulae (2.17)

derived here show clearly that critical wave number is directly proportional to perme-

ability �. However even for low permeable materials critical wave number is rather

big. Thus we conclude that propagating slow modes have rather short wave length

and, consequently, they cannot be observable at very low frequencies of interest in

seismology.
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